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Quantum Control

Many technologies require the ability to induce a transition from a state to
another of a quantum system:

@ Photochemistry (to induce certain chemical reactions with light);

@ Magnetic Resonance (in order to exploit spontaneous emission);

@ Realization of Quantum Computers (to stock information).

To drive a quantum system from one state to another, by designing external
fields:

@ Lasers;
o X-Rays;
@ Magnetic Fields.



Schrédinger equation

dy
AV A
i ( + V)
@ QO C R
@ o = ¢(t,x) wave function, ¢(1,-) € L*(Q), ||[v(t,-)|. = 1;
@ —A + V Schrédinger operator;
@ V: Q — R uncontrolled potential;



Bilinear Schrddinger equation

dip
— =

e (=A+ V) +uWy

Q c R4

¥ = (¢, x) wave function, ¥ (t,-) € L*(Q), |[4(t, )|l = 1;
—A + V Schrédinger operator;

V : Q — R uncontrolled potential;

u=u(t) € U C R control law;

W : Q — R controlled potential.



Bilinear Schrddinger equation

dy
— =

e (=A+ V) +uWy

Q c R4

¥ = 1(1,x) wave function, v (t,-) € L*(2), ||¢(z,-) ||, = 1;
—A + V Schrédinger operator;

V : Q — R uncontrolled potential;

u=u(t) € U C R control law;

W : Q — R controlled potential.

Controllability

Given vy, v, of L>-norm equal to one, find (if there exist) k € N, #,...,# > 0,
uy,...,u, € Usuch that

Y = e—itk(—A-‘rV-i-ukW) ©co00® e—itl(—A+V+u1W) (1/}0)




Quantum Harmonic oscillator

2
) (TR ) v, veR,
Potential well
2
iawéf’ 2 (‘g + ”(t)x> Y1), x€(=1,1), P10 =0,

Orientation of a linear bipolar molecule in the plane

2
iawéf,t) — <_§02 + u(r) cos(0)> ¥(0,1), 6€eS!

@  rotational degree of freedom of a linear molecule,
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Controllability results

Negative results

@ non-exact controllability in the unit sphere of L2(Q)
(Ball-Marsden-Slemrod [1982], Turinici [2000]);

@ non-controllability for the quantum harmonic oscillator
(Mirrahimi-Rouchon [2004]).

Positive results
@ exact controllability in H3(€2) for the potential well
(Beauchard [2005], Beauchard-Coron [2006], Beauchard-Laurent [2010]);
@ L’- and H*-approximate controllability by Lyapunov methods
(Mirrahimi [2006], lto-Kunisch [2009], Nersesyan [2009]);
@ L’-approximate controllability by geometric methods
(Chambrion-Mason-Sigalotti-Boscain [2009]).



Bilinear Schrodinger equation: abstract framework

Let H be a complex Hilbert space
%d} =AY +uBy, uel. (BSE)

We assume that:
@ A has discrete spectrum (i\;)ien;

@ A+ uB:span{¢ | k € N} — H is essentially skew-adjoint (not necessarily
bounded) for every u € U,

@ A has an Hilbert basis ® = (¢ )wen Mmade of eigenfunctions of A;
® ¢ € D(B) forevery k € N;
@ (¢;,By) =0forj+#kand )\ = \.



Definition: propagator and solution

T%(djo) = etk(AJ'_u"B) 0---0¢ (A'HilB)(wO)

is the solution of (BSE) with initial data )y € H associated with the piecewise
constant control u = u; x(o,1,) + U2 X[ 1 41) T
T* is the propagator of (BSE) associated with u.
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Definition: propagator and solution

T%(d}o) = etk(AJ'_ukB) 0---0¢ (A+u1B) (1/}0)

is the solution of (BSE) with initial data )y € H associated with the piecewise
constant control u = u; x(o,1,) + U2 X[ 1 41) T
T* is the propagator of (BSE) associated with u.

Approximate controllability
Given € > 0, ¥y, € H find u : [0,T] — U such that

IT7(0) — 9l <e.

Approximate simultaneous controllability
Givene >0, ¢!,.... " e H, T € UH) find u : [0, T] — U such that

ITW) -5l <e  j=1,...,m.




Chain of connectedness

S c N? is a connectedness chain for (A, B) if

@ (¢a,Bgp) # 0 for every (a,B) € S;
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Chain of connectedness

S c N? is a connectedness chain for (A, B) if

@ (o, Bog) # 0 for every (o, ) € S;
@ for every j < k € N, there exist (a1, 1), ..., (ap, B,) in S such that

jZO(], ,6’1:&2 5,,_]:@,,, ﬂp:k.

Examples:
@ Nersesyan [2009]: S = {(1,n) : n € N},
@ Chambrion et al. [2009]: S = {(n,n+ 1) : n € N}.

A connectedness chain for (A, B), S is said to be non-resonant if

N = Ml 7 Ao = Al

for every (j, k) € S, (¢,m) € N2, {j, k} # {¢,m}.
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If (A, B) has a non-resonant chain of connectedness, then (A, B) is
approximately simultaneously controllable.
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If (A, B) has a non-resonant chain of connectedness, then (A, B) is
approximately simultaneously controllable.

Theorem (Boscain, C., Chambrion, Sigalotti, 2012)

If (A, B) has a non-resonant chain of connectedness containing (j, k), then for
every e, > 0, there exists u : [0, 7] — [0, 4] such that

. T
1) —dull <o et < 5




1°" step: finite dimensional Galerkin approximation

e Time reparametrization: since ¢/ +«) = ¢“(iA+5) then (BSE) become
X = vAX + BX,
@ Interaction framework: if ¥ = ¢~ /"X, then

Y =e J"Be) Ay

|{¢x, Y)| = [(é, X)|, foreverykeN J

@ Galerkin approximation: projecting the system on Ly = span{¢y,..., ¢y}
we have

o . N
Y = (e'@f*kk)fvbjk).k 1 Y, Yin Ly. J
JKk=




2" step: convexification

We have to study the curve on the torus,

U (ei(Afl — Al )w’ o ’ei(Ajm_Akm)W) .



2" step: convexification

We have to study the curve on the torus,

U (ei(An =y )w’ o ’ei(Ajm_Akm)w) )
Let v > [],2, cos (3) = 0.4298... then

Conv¥([0,00)) D vS' x {0} x --- x {0}.
We can realize the transition between the levels j; and k;.

Example: m =2\, — A\, =1, N, — A, =2,

Conv{T(0), (r/2)} = (%o) 7

then

2

Conv¥([0,00)) D \/TESI x {0}, and 7 v




37 step: “strong” controllability in SU(n)

Thanks to the existence of the chain of connectedness

For every N € N the control system

Y = (ei(/\/—Ak) fvbjk)N

is controllable.

1Y, Y € Ly,

We have more than that

For every N,n and M(t) € SU(n) we can track, with a tolerance of ¢,

M(t) OnXan

R(7)

OanXn OanXan




4™ and final step: Infinite dimension

The controllability on SU(n) is not sufficient in general.

Counterexample:

Every Galerkin approximation of the quantum harmonic oscillator is
controllable but the infinite dimensional system is not controllable.




4™ and final step: Infinite dimension

The controllability on SU(n) is not sufficient in general.

Counterexample:

Every Galerkin approximation of the quantum harmonic oscillator is
controllable but the infinite dimensional system is not controllable.

In conclusion:
@ General controllability result
@ Constructive
@ With L' estimates on the control



Other results

@ Approximate controllability with periodic functions (Chambrion 2012) :
e easy (numerical and physical) implementation of simple transitions
@ no simultaneous controllability
@ Approximate simultaneous controllability with Lie algebraic methods
(Boscain, C, Sigalotti, 2013) :
o applies to the multi-input case
@ no constructive proof



Weakly coupled systems

@ (A4 uB, + ---u,B,) is bounded from below for every u € U
@ ), is non-decreasing and unbounded

k-weakly coupled

The system (A, B) is k-weakly coupled if
® D(|A +uB|*/?) = D(|A[*/?)
@ there exists C such that

R(|A[y, By)| < CI{Al'¢,v)| o € D(A[)

Examples:
@ B is relatively bounded wrt A.
@ iA=-A+V,iB=WandV,W e C*(Q), Q compact.



Growth of the |A|*/?-norm

1lles2 = NAF2017 = (Al 9, ) = D Xil(de, ¥)]

neN

We want to estimate the growth of the |A|*/2-norm

At | < 2IROAF B
<2014, ),

by Gronwall’s Lemma

[ 0)lra < 0 35(0) g |

@ The regularity of the systems is an obstacle to the exact controllability.



Good Galerkin Approximation

Denote by xV the propagator of

X = (Algy +uBly)x x € Ly.

Theorem (Boussaid, C, Chambrion, 2012)

Let (A, B) be k-weakly coupled and B be bounded relatively to |A|*, s < k. For
everys >0, K > 0, ¢ € D(JA[/?), s < k there exists N = N(e, K, 1) such that

lulloe < K = |17} (o) = XV (Oolls <&, 120,

@ A priori estimates in numerical and physical simulations.
@ Convergence of controllability strategies:

@ A bang-bang Theorem for weakly coupled systems (Boussaid, C,
Chambrion, 2012);

@ Approximate controllability in norm H® (Boscain, C, Sigalotti, 2013).



Example: the rotating molecule

0y

1
i (0:1) = —Ea‘%@u(a, 1) + u(r) cos(0)(6,1) 6 e S!

@ Eigenvalues: 0,i,4i,9i,...,k%,...;
@ Control potential

0o 1/V2 0 ...
1/vV2 0 1/2 0 .
B_i 0 12 0 1/2 0
: 0 1/2 0
: 0

@ {(k,k+1);k € N} is a non-resonant chain of connectedness;
@ The system is k-weakly coupled for every k;

@ The system is approximately simultaneously controllable in norm H* for
every k



The control algorithm: “Q-track”

Consider the problem of exchanging the states 1 and 2.
@ we know, a priori, that ||u|[;: = 3.
@ of N = 14 then || T¥(¢;) — Xl (1,0)myg;]| < 1073, for j = 1,2, and for every
t€[0,7].
@ The control u : [0,T] — [0, 1] is




The control algorithm: “Q-track”

1 0 - 0 €% 0
01 0 - e 0 0
To=1:9 1 - -T2l 0 o0 1
@ The error
(¢, T ()| — (@, bl <& (s, TE(@1))| — (B, @)l < €
ise=0(1/T)

@ forN=14,T =624 we have ¢ = 7 % 1073.
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(2, T¥(¢1)): time evolution ¢ € [0, T]




(62,7 (¢a))




(b10, T (2))
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