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Abstract Let (Mk
3)

SU (2) denote the DoCarmo–Wallach moduli space of SU (2)-
equivariant spherical minimal immersions of the three sphere S3 of degree k.
Although the complexity of these moduli increases rapidly with k (for example,
dim(Mk

3)
SU (2) = O(k2)), we show here that they possess linear slices that are sim-

plices of dimension O(k). The construction of these simplicial slices depend on the
DeTurck–Ziller classification of 3-dimensional spherical space forms imbedded into
spheres as minimal SU (2)-orbits. The existence of these slices enables us to give
asymptotically sharp estimates on a sequence of Grünbaum type measures of symme-
try of these moduli.
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1 Introduction and simplicial slices of the moduli

The curvature of the three-sphere S3 minimally immersed in the unit sphere SV of an
orthogonal SU (2)-module V as an orbit can only take discrete values λk/3, k ∈ N,
where λk = k(k + 2) is the kth eigenvalue of the Laplacian � of S3 with respect to
the standard (curvature 1) metric, see Takahashi (1966) and Wallach (1972). Keeping
this standard metric on S3 (up to the conformality factor λk/3), the components of
such an immersion f : S3 → SV become spherical harmonics of order k on S3,
(eigen)functions in the eigenspace Hk

3 ⊂ C∞(S3) of � corresponding to λk . We
call f an SU (2)-equivariant spherical minimal immersion of (algebraic) degree k.
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For fixed k, we denote by (Mk
3)

SU (2) the DoCarmo–Wallach moduli space of such
immersions. [For the original construction of the moduli, see DoCarmo and Wallach
(1971), Wallach (1972). For a detailed up-to-date treatment of the subject, see Chapters
4–5 in Toth (2002) and also Weingart (1999).] This notation is justified as this moduli is
the SU (2)-fixed point set of the moduli Mk

3 of all degree k spherical minimal immer-
sions f : S3 → SV (into various Euclidean vector spaces V ) defined by dropping
SU (2)-equivariance and keeping conformality (with factor λk/3). (The moduli Mk

3
parametrizes full spherical minimal immersions up to congruence on the range. Mk

3
is a compact convex body in an SO(4)-submodule of S2(Hk

3), the symmetric square
of Hk

3. The induced natural action of SO(4) on S2(Hk
3) restricted to Mk

3 is given by
precomposition of the corresponding immersions. Via restriction SU (2) ⊂ SO(4), the
fixed point set (Mk

3)
SU (2) then parametrizes the SU (2)-equivariant spherical minimal

immersions. In fact, this moduli is a compact convex body in an SU (2)′-submodule
of S2(Hk

3), where SO(4) = SU (2) · SU (2)′ is the natural almost product structure).
In their early work DoCarmo and Wallach (1971), showed that Mk

3 is nontrivial iff
k ≥ 4 by giving a lower bound on the dimension (depending on k ≥ 4), in particular,
they showed that dim M4

3 ≥ 18. They conjectured that their lower bound was sharp.
In Muto (1984), for the first nontrivial moduli M4

3, Muto settled the conjecture by an
explicit computation. In Toth (1994) the conjecture has been resolved affirmatively
for any k ≥ 4. Initiated by the work of Mashimo (1984, 1985), individual spherical
minimal immersions of S3 (and also higher odd dimensional spheres) have been con-
structed by several authors, see DeTurck and Ziller (1967, 1992, 1993), Escher and
Weingart (2000), and Toth and Ziller (1999). Using these, in Toth and Ziller (1999)
the 18-dimensional moduli M4

3 has been completely described in geometric terms.
Although there is a natural SO(4)-equivariant imbedding Mk

3 → Mk+1
3 defined

in Toth (2002) (which restricts to an SU (2)′-equivariant imbedding (Mk
3)

SU (2) →
(Mk+1

3 )SU (2)), in the degrees k ≥ 5, not much is known about the structure of the
moduli Mk

3 or the SU (2)-equivariant part (Mk
3)

SU (2).
In the study by Toth (1999, 2000) of SU (2)-equivariant spherical minimal immer-

sions into spheres of minimum codimension, an interesting phenomenon occurs. In
degree k = 6, the least codimensional example, the so-called tetrahedal minimal
immersion Tet : S3 → S6 corresponds to a boundary point of (M6

3)
SU (2) and this

point is a vertex of a triangular slice (by a plane through the origin) of the entire mod-
uli. [The tetrahedral minimal immersion gets its name from its full invariance group,
the binary tetrahedral group (the lift of the rotation group of a regular tetrahedron via
the two-fold cover SU (2) → SO(3)). Factoring, it gives a minimal imbedding of the
tetrahedral manifold into the 6-sphere.] In degree k = 8, the same phenomenon recurs:
(M8

3)
SU (2) possesses a tetrahedral slice (by a 3-dimensional linear subspace) and one

of the vertices of the tetrahedron corresponds to the octahedral minimal immersion
Oct : S3 → S8 (with invariance group the binary octahedral group). Contrary to
expectation, as shown by Weingart (1999), for the icosahedral case in degree k = 12,
the corresponding simplicial slice in (M12

3 )SU (2) is only tetrahedral with one of the
vertices still corresponding to the isocahedral minimal immersion Ico : S3 → S12

(with binary icosahedral invariance group).
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The natural question arises to what extent is this phenomenon general, that is,
do the moduli (Mk

3)
SU (2) (and consequently Mk

3) possess simplicial slices of large
dimension (across the origin).

Let d((Mk
3)

SU (2)) ≥ 1 denote the maximum dimension of simplicial slices of
(Mk

3)
SU (2) (by linear subspaces). As shown in Toth (2006) (see also Sect. 2 below),

we have

d((Mk
3)

SU (2)) ≤ max
∂(Mk

3)
SU (2)

�(., 0), (1)

where � is the distortion function. (For the general definition of the distortion, see
Sect. 2). For C ∈ ∂(Mk

3)
SU (2), �(C, 0) is also the largest eigenvalue of C viewed as

a symmetric endomorphism in S2(Hk
3). This largest eigenvalue has been calculated

in Toth (2002) (Example 2.3.12, p. 121) for more general SU (2)-equivariant (λk-
eigen)maps. This computation along with the existence of SU (2)-equivarant degree
k spherical minimal immersions f : S3 → S2k+1, for k ≥ 5 odd, and f : S3 → Sk ,
for k ≥ 6 even, shows that for k > 4, we have

max
∂(Mk

3)
SU (2)

�(., 0) =
{

k if k is even
k−1

2 if k is odd
(2)

(Although the first moduli (M4
3)

SU (2) is is completely described in Toth 1999, due
to the existence of a 6-dimensional extremal set on its boundary, for the maximum
distortion only the lower bound 3/2 is known). Note that, in contrast to (2), we have

dim(Mk
3)

SU (2) = (2[k/2] + 5)([k/2] − 1) = O(k2).

(This dimension formula was first derived heuristically in DeTurck and Ziller 1992
and precisely in Toth 1999.) Note that, as an interesting consequence, for k ≥ 4 even,
(Mk

3)
SU (2) and (Mk+1

3 )SU (2) are equidimensional.
The main result of this paper is the following:

Theorem A For k ≥ 7 odd, let

m(k) =
[

1

2

(
k −

√
k(k + 2)

3

)]
. (3)

Then m(k) < d((Mk
3)

SU (2)), that is, (Mk
3)

SU (2) has a simplicial slice of dimension
m(k) + 1 across 0.

For k ≥ 10 even, let

m(k) =
[

1

2
min

(
k −

√
k(k + 2)

3
,

k − 10

2

)]
. (4)

Then, 2m(k) < d((Mk
3)

SU (2)), that is, (Mk
3)

SU (2) has a simplicial slice of dimen-
sion 2m(k) + 1 across 0.
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For k odd, the theorem implies that (M7
3)

SU (2) has a triangular slice, (M11
3 )SU (2)

has a tetrahedral slice, (M17
3 )SU (2) has a pentatopal slice, etc. The moduli (M5

3)
SU (2)

actually has a triangular slice; see the remark in Sect. 4. Note that, for k ≥ 25 odd,
m(k) in (3) can be replaced by the simpler lower bound [k/5]. For k even, the minimum
in (4) is attained by (k − 10)/2 if and only if 0 ≤ k ≤ 56. Equivalently, for k ≥ 57,
the formula for m(k) in (3) holds in both cases, regardless the parity of k. As noted
above, the existence of the tetrahedral, octahedral, and icosahedral immersions imply
that (M6

3)
SU (2) has a triangular slice, and that (M8

3)
SU (2) and (M12

3 )SU (2) both have
tetrahedral slices. The theorem above implies that (M14

3 )SU (2) and (M16
3 )SU (2) still

have tetrahedral slices, and that (M18
3 )SU (2) has a 5-dimensional simplical slice, etc.

The concept of a spherical minimal immersion naturally extends to any domain
dimension, and one arrives at the moduliMk

m , a compact convex body in an SO(m+1)-
submodule of S2(Hk

m), where Hk
m is the space of spherical harmonics of order k on

Sm . This moduli parametrizes the spherical minimal immersions f : Sm → SV into
the unit sphere of a Euclidean vector space V , for various V (up to congruence on the
range). By DoCarmo and Wallach (1971), Mk

m is nontrivial if and only if m ≥ 3 and
k ≥ 4. The domain dimension raising operator defined on such minimal immersions
in Toth (2002) gives rise to a linear imbedding Mk

m → Mk
m+1 onto a linear slice of

Mk
m+1. We thus have the following:

Corollary Theorem A holds with (Mk
3)

SU (2) replaced by Mk
m, m ≥ 3.

Dropping the condition of conformality in the definition of a spherical minimal immer-
sion one arrives at the concept of a λk-eigenmap f : Sm → SV , the only assumption
being that all components α ◦ f , α ∈ V ∗, belong to Hk

m . The DoCarmo–Wallach
moduli Lk

m parametrizing the λk-eigenmaps of Sm into spheres (up to congruence)
is once again a compact convex body in an SO(m + 1)-submodule of S2(Hk

m), and
Mk

m is a linear slice of Lk
m . By Toth (1994), Lk

m is nontrivial if and only if m ≥ 3 and
k ≥ 2. We will be primarily interested in the moduli Lk

3, and its SU (2)-equivariant part
(Lk

3)
SU (2). As before, let d((Lk

3)
SU (2)) denote the maximum dimension of a simplicial

slice of (Lk
3)

SU (2) across 0. Once again, we have by Toth (2006)

d((Lk
3)

SU (2)) ≤ max
∂(Lk

3)
SU (2)

�(., 0) = max
∂(Mk

3)
SU (2)

�(., 0), (5)

where the last equality holds as the eigenvalue computations do not reflect the differ-
ence between eigenmaps and spherical minimal immersions.
The analogue of Theorem A for eigenmaps indicates that the moduli (Lk

3)
SU (2) have

simpler structure:

Theorem B The maximum dimension d((Lk
3)

SU (2)) of a simplicial slice of the moduli
(Lk

3)
SU (2), k ≥ 2, is the largest possible, that is, equality holds in (5). Thus, for k ≥ 3

odd, (Lk
3)

SU (2) has a simplicial slice of dimension (k − 1)/2, and for k ≥ 2 even, it
has a simplicial slice of dimension k.

Once again, the domain dimension raising operator applied to the moduli Lk
m of

λk-eigenmaps of Sm gives rise to a linear imbedding Lk
m → Lk

m+1 onto a linear slice

123



Beitr Algebra Geom (2013) 54:683–699 687

of Lk
m+1 as in Toth (2002), and the second statement of Theorem B holds for (Lk

3)
SU (2)

replaced by Lk
m .

2 Measure of symmetry for the moduli

In this section we give an application why is it useful to give sharp lower bounds for
d((Lk

3)
SU (2) and d((Mk

3)
SU (2).

In Toth (2006) a sequence of measures of symmetry {σ�(L,O)}�≥1 was introduced
for a (compact) convex body L of a Euclidean vector space E with a specified base point
O ∈ int (L). (For a comprehensive study of measures of symmetries, see Grünbaum
1963). The �th term is defined as

σ�(L,O) = inf
C0,...,C�∈∂L
O∈[C0,...,C�]

�∑
i=0

1

1 + �(Ci ,O)
,

where the square bracket means convex hull and � : ∂L → R is the distortion function.
[At C ∈ ∂L, �(C,O) is the ratio that the point O splits the line segment, the portion
of the line passing through C and O in L]. Roughly speaking, σ�(L,O) measures how
distorted L is in dimension � viewed from the base point O. Clearly, σ1(L,O) = 1.

Although they are affine invariants, the computation of σ�(L,O), � ≥ 2, (even for
planar convex bodies) is difficult. In general, by Toth (2004, 2006), we have

1 ≤ σ�(L,O)

(
≤ � + 1

2

)
.

and the lower bound is attained if and only if L has an �-dimensional simplicial slice
across O. In addition, for �′ ≤ �, we obviously have

σ�(L,O) ≤ σ�′(L,O) + � − �′

1 + max∂L �(.,O)
. (6)

Moreover, equality holds for �′ = dim L, or equivalently, the sequence
{σ�(L,O)}�≥1 is arithmetic from the dim L-term onwards with difference 1/(1 +
max∂L �(.,O)). In fact, for �′ ≥ dim L, as a consequence of the Carathéodory the-
orem, a minimal configuration contains a (necessarily minimal) simplicial configura-
tion. (For a recent proof and generalizations, see Boltyanski and Martini 2001).

Let d(L,O) be the maximum dimension of a simplicial slice of L across O. By the
above, the sequence {σ�(L,O)}�≥1 then starts with a string of 1’s of length d(L,O),
and, by a result in Toth (2008), the sequence is strictly increasing from the d(L,O)th
term onwards.

Setting �′ = d(L,O) in (6), we obtain

� + 1

1 + max∂L �(.,O)
≤ σ�(L,O) ≤ 1 + � − d(L,O)

1 + max∂L �(.,O)
, � ≥ d(L,O), (7)
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where the first inequality is a trivial estimate of the defining equality of σ�. Comparison
of the lower and upper bounds in (7) immediately implies that

d(L,O) ≤ max
∂L

�(.,O). (8)

Combining the upper bound in (7) and (8), as a byproduct, we obtain

σ�(L,O) ≤ � + 1

1 + d(L,O)
, � ≥ d(L,O). (9)

If equality holds in (8) (that is, max∂L �(.,O) is an integer and it is the dimension
of a maximal simplicial slice of L across O) then

σ�(L,O) = max

(
1,

� + 1

1 + max∂L �(.,O)

)
, � ≥ 1, (10)

or equivalently, the sequence {σ�(L,O)}�≥1 is arithmetic from the d(L,O)-term
onwards. [Note that (10) is always true for � = 1]. We will see shortly that the
converse is false, that is, (10) does not imply (8).

A natural (albeit difficult) problem is to calculate the measures of symmetry for all
moduli Lk

m , Mk
m and (Lk

3)
SU (2), (Mk

3)
SU (2) at least with respect to the origin (as base

point).
Theorem B and the previous discussion however imply that, for L = (Lk

3)
SU (2) and

O = 0 the origin, we have

σ�((Lk
3)

SU (2), 0) = max

(
1,

� + 1

1 + max∂(Lk
3)

SU (2) �(., 0)

)
, � ≥ 1, (11)

where [according to (2) and (5)] max∂(Lk
3)

SU (2) �(., 0) is k for k even, and (k −1)/2 for

k odd. Once again a natural question is whether (11) is true with (Lk
3)

SU (2) replaced
by (Mk

3)
SU (2). For example, as noted above (see also the remark in Sect. 5), the 9-

dimensional moduli (M5
3)

SU (2) has a maximal (two) dimensional slice, so that we
have

σ�((M5
3)

SU (2), 0) = max

(
1,

� + 1

3

)
, � ≥ 1,

In general, Theorem A along with (9) give the following:

Corollary For k ≥ 7 odd, we have

σ�((Mk
3)

SU (2), 0) ≤ max

(
1,

� + 1

2 + m(k)

)
, � ≥ 1,
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where m(k) is given in (3). For k ≥ 10 even, we have

σ�((Mk
3)

SU (2), 0) ≤ max

(
1,

� + 1

2 + 2m(k)

)
, � ≥ 1,

where m(k) is given in (4).

We now return to the general case and consider the G-invariant setting, in which
G is a compact (not necessarily connected) Lie group, E is an orthogonal G-module
and L ⊂ E is a G-invariant (compact) convex body with origin 0 in the interior of L.
Under a mild condition, we can calculate the measure of symmetry σ�(L, 0) at least
for � ≥ dim L.

Proposition If G acts on L with no nonzero fixed point (or equivalently, E has no
trivial G-component) then, for � ≥ dim L, we have

σ�(L, 0) = � + 1

1 + max∂L �(., 0)
.

Proof Let C ∈ ∂L such that �(., 0) attains its maximum at C . The center of mass of
the G-orbit G(C) passing through C is G-fixed, and, due to our assumption, it must
be the origin. The center of mass is also in the convex hull of this orbit, and we obtain
0 ∈ [G(C)]. By Carathéodory’s Theorem (Berger 1987), there exist C0, . . . , Cn ∈
G(C), n = dim L such that 0 ∈ [C0, . . . , Cn]. Since L is G-invariant, G(C) ⊂ ∂L so
that we have

σn(L, 0) ≤
n∑

i=0

1

1 + �(Ci , 0)
= n + 1

1 + max∂L �(., 0)
.

Here we used that G acts on L ⊂ E by isometries, and therefore �(Ci , 0) =
�(C, 0) = max∂L �(., 0). The opposite inequality obviously holds, so that the state-
ment in the proposition holds for � = n = dim L. As noted above, the seguence
{σl}�≥1 is arithmetic for � ≥ dim L with difference 1/(1 + max∂L �(., 0)) and the
proposition now follows.

Remarks 1. The simplest example to the proposition is a regular polytope P (centered
at the origin) since its symmetry group acts with no nonzero fixed points. The
proposition then gives the measure of symmetry σ�(P, 0) for � = dim P (and
base point the origin) in terms of the maximal distortion. The maximal distortion
is attained at any vertex. Note that, in dimension two, for a regular odd-sided
polygon, sharp inequality holds in (8), whereas, using the proposition for � ≥ 2,
(10) clearly holds. [For even sided polygons both (8) and (10) hold].

2. By construction, all moduli Lk
m , Mk

m , and (Lk
3)

SU (2), (Mk
3)

SU (2) satisfy the setting
in the proposition, see Toth (2002). The Lie groups SO(m + 1) and SU (2)′ act in
their respective spaces with no nonzero fixed points (Toth 2002, Corollary 2.3.4, p.
144). The proposition gives the measure of symmetry σ� of these moduli but only
in their respective dimension � (and with respect to the origin as base point). Note
that to determine the maximal distortion for these moduli is a difficult problem
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seemingly related to the long standing problem of finding minimum codimensional
spherical minimal immersions (DeTurck and Ziller 1967, 1992, 1993; DoCarmo
and Wallach 1971; Mashimo 1984; Toth 1999, 2002, 2000; Wallach 1972; Weingart
1999).

3 Representations of SU(2)

The irreducible complex SU (2)-modules are parametrized by their dimension, and
they can be realized as submodules appearing in the (multiplicity one) decompo-
sition of the SU (2)-module of complex homogeneous polynomials C[z, w] in two
variables. (We use here some basic facts in representation theory, see Fulton and
Harris 1991; Knapp 1986). For k ≥ 0, the kth submodule Wk , dimC Wk = k + 1,
comprises the homogeneous polynomials of degree k. With respect to the L2-scalar
product (suitably scaled) the standard orthonormal basis for Wk is {ξ j }k

j=0, where

ξ j = zk− jw j/
√

(k − j)! j !, j = 0, . . . , k. For k odd, Wk is irreducible as a real
SU (2)-module. For k even, the fixed point set Rk of the complex anti-linear self map
of Wk given on the basis by ξ j 
→ (−1) jξk− j , j = 0, . . . , k, is an irreducible real
submodule with Wk = Rk ⊗R C. Given a polynomial

ξ =
k∑

j=0

c jξ j ∈ Wk (12)

of unit norm, the orbit map fξ : S3 → Wk , fξ (g) = g · ξ = ξ ◦ g−1, g ∈ SU (2),
(through ξ ) maps into the unit sphere. In coordinates, we have

fξ (a, b)(z, w) = ξ(āz + b̄w,−bz + aw), a, b ∈ C, |a|2 + |b|2 = 1, z, w ∈ C.

(13)

Here g = (a, b) ∈ S3 ⊂ C2 is identified with

[
a −b̄
b ā

]
∈ SU (2), or equivalently,

the unit quaternion a + jb ∈ S3 ⊂ H. [On the right-hand side the inverse g−1 =
(ā,−b) = ā − jb acts on (z, w) = z + jw by multiplication]. From the complex
form of the Laplacian, it is clear that the components of fξ are harmonic, so that
fξ : S3 → SWk is a λk-eigenmap. If k is even and ξ ∈ Rk , then fξ maps into the unit
sphere SRk , so that we obtain a λk-eigenmap fξ : S3 → SRk . (As we will see below,
in both cases the components of fξ are orthonormal, with respect to an orthonormal
basis on the range).

As examples, up to congruence on the range, the Hopf map Hopf : S3 → SR2 is
the SU (2)-orbit of the polynomial ξ = i zw ∈ R2, and the quartic minimal immersion
I : S3 → SW4 is the SU (2)-orbit map of the polynomial ξ = (

√
6/24)(z4 − w4) +

(
√

2/4)z2w2 ∈ W4. (There is no minimal SU (2)-orbit in R4. Note that, even though
W4 is reducible as a real SU (2)-module, I still has L2-orthonormal components).

Substituting (12) into (13) we obtain

fξ (a, b)(z, w) =
k∑

j=0

c j√
(k − j)! j ! (āz + b̄w)k− j (−bz + aw) j . (14)
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To get a more specific expression, we introduce the coefficients {χ j
l }k

j,l=0 through
the generating function

(āz + b̄w)k− j (−bz + aw) j =
k∑

l=0

χ
j

l (a, b)zk−lwl (15)

As we will see below, up to scaling, {χ j
l }k

j,l=0 are the matrix coefficients of the com-
plex SU (2)-module Wk . [As a consequence of the Peter–Weyl theorem, see Fulton
and Harris 1991; Knapp 1986, these matrix coefficients form an orthonormal Hilbert
basis of L2(SU (2)]. Using binomial expansions, χ j

l can be (and usually is) expanded
into a more specific form but we do not need this. Also, using the standard parame-
trization of SU (2) one can also write χ

j
l in terms of Jacobi polynomials. (For details,

see Vilenkin 1968; Vilenkin and Klimyk 1991).
By (15), χ j

l is a harmonic homogeneous polynomial in a, b, ā, b̄ with integer coef-

ficients. Moreover, in these variables, it has bidegree ( j, k − j), so that χ
j

l ∈ H j,k− j .

Since χ
j

l (1, 0) = δ jl , we immediately see that, for fixed j = 0, . . . , k, {χ j
l }k

l=0 is a
basis in H j,k− j .

The matrix elements of the SU (2)-module Wk are

〈(a, b) · ξ j , ξl〉 = 1√
(k − j)! j !(k − l)!l! 〈(a, b)(zk− jw j ), zk−lwl)〉

= 1√
(k − j)! j !(k − l)!l! 〈(āz + b̄w)k− j (−bz + aw) j , zk−lwl)〉

= 1√
(k − j)! j !(k − l)!l!

〈
k∑

m=0

χ
j

m(a, b)zk−mwm, zk−lwl

〉

=
√

(k − l)!l!
(k − j)! j !χ

j
l (a, b).

Since Wk is irreducible, Schur’s orthogonality relations give that

√
(k − l)!l!
(k − j)! j !χ

j
l (a, b), j, l = 0 . . . , k,

are L2-orthogonal with the same norm. In particular, {√(k − l)!l!χ j
l }k

l=0 (up to scal-
ing) is an orthonormal basis for H j,k− j .

The polynomials χ
j

l have many symmetry properties. We only need the following:

χ
j

l (a, b) = (−1) j+lχ
k− j
k−l (a, b). (16)

This follows easily by substituting (a, b) 
→ (ā, b̄), (z, w) 
→ (−w, z) in (15) and
comparing coefficients.
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L2-orthonormality of χ
j

l along with (16), implies that, for k odd, the set of real
polynomials

√
(k − l)!l!
(k − j)! j !

{
�(χ

j
l ),�(χ

j
l )

}
0≤ j≤(k−1)/2, 0≤l≤k

(17)

form, up to scaling, an orthonormal basis for the real spherical harmonics Hk
3. Simi-

larly, for k even, an orthonormal basis is given by

√
(k − l)!l!
(k − j)! j !

{
�(χ

j
l ),�(χ

j
l )

}
0≤ j<k/2, 0≤l≤k

⋃ √
(k − l)!l!
(k/2)!

{
�(χ

k/2
l ),�(χ

k/2
l )

}
0≤l<k/2

⋃ {
χ

k/2
k/2

}
. (18)

4 SU(2)-equivariant eigenmaps

For k ≥ 3 odd, the SU (2)-module structure of the space of real spherical harmonics
Hk

3 is given as follows. First, as complex U (2)-modules, we have

Hk
3|U (2) =

k∑
j=0

H j,k− j =
(k−1)/2∑

j=0

(H j,k− j ⊕ H j,k− j ),

where we usedHk− j, j =H j,k− j . Restricting further to SU (2), we haveH j,k− j |SU (2) =
Wk . Thus, the space of real spherical harmonics decomposes as

Hk
3|SU (2) = k + 1

2
Wk,

where Wk is viewed as a real (irreducible) SU (2)-module. We will use {ξ j , iξ j }k
j=0

as a basis for the real SU (2)-module Wk .
Now, for each j = 0, . . . , (k−1)/2, we consider the λk-eigenmap fξ j : S3 → SWk .

An easy computation shows that

fξ j =
k∑

l=0

√
(k − l)!l!χ j

l ξl

=
k∑

l=0

√
(k − l)!l! �(χ

j
l ) ξl +

k∑
l=0

√
(k − l)!l! �(χ

j
l ) (iξl).

We see that (up to scaling) the components of fξ j form the standard orthonormal
basis of H j,k− j considered as a real SU (2)-module. (It is also clear that fξ j and fξk− j

are congruent.)
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We now let k ≥ 2 be even. An orthonormal basis {η j }k+1
j=1 in the real SU (2)-module

Rk is given by

η2l+1 = 1√
2

(
ξl + (−1)lξk−l

)
, l = 0, . . . , k/2 − 1,

η2l+2 = i√
2

(
ξl − (−1)lξk−l

)
, l = 0, . . . , k/2 − 1,

ηk+1 = i k/2ξk/2.

For each j = 1, . . . , k + 1, we consider the λk-eigenmap fη j : S3 → SRk .
A somewhat tedious computation gives

fη 2l+1 =
k/2−1∑
m=0

√
(k − m)!m!

(
�(χ l

m) + (−1)m�(χ l
k−m)

)
η2m+1

+
k/2−1∑
m=0

√
(k − m)!m!

(
�(χ l

m) − (−1)m�(χ l
k−m)

)
η2m+2

+√
2(k/2)!�((−i)k/2χ l

k/2)ηk+1,

fη 2l+2 = −
k/2−1∑
m=0

√
(k − m)!m!

(
�(χ l

m) + (−1)m�(χ l
k−m)

)
η2m+1

+
k/2−1∑
m=0

√
(k − m)!m!

(
�(χ l

m) − (−1)m�(χ l
k−m)

)
η2m+2

+ − √
2(k/2)!�((−i)k/2χ l

k/2)ηk+1,

fηk+1 = √
2

k/2−1∑
m=0

�(i k/2χ
k/2
m )η2m+1

+√
2

k/2−1∑
m=0

�(i k/2χ
k/2
m )η2m+2

+(k/2)!χk/2
k/2 ηk+1.

Once again, we see that these λk-eigenmaps have orthonormal components, and their
spaces of components are mutually orthogonal.

We now need a general result which facilitates the location of simplicial slices in the
moduli (Lk

3)
SU (2) and (Mk

3)
SU (2). We begin with two lemmas. Given a λk-eigenmap

f : Sm → SV , the space of components of f is defined by V f = {α ◦ f | α ∈ V ∗}.
(Without loss of generality, we will always assume that f is full, that is, the image
of f spans V . Equivalently, precomposition by f is a linear isomorphism V ∗ → V f .
An eigenmap can always be made full by restiction to the linear span of the image.)
Under the DoCarmo–Wallach parametrization, f corresponds to a parameter point

123



694 Beitr Algebra Geom (2013) 54:683–699

〈 f 〉 in Lk
m . This point is on the boundary of Lk

m if and only if V f ⊂ Hk
m is a proper

subspace. In this case we call f an eigenmap of boundary type.
Given a λk-eigenmap of boundary type f : Sm → SV , the line R·〈 f 〉 intersects ∂Lk

m
at another point called the antipodal of 〈 f 〉. As in Sect. 2, the ratio that the origin splits
the line segment between 〈 f 〉 and 〈 f o〉 is the distortion �(〈 f 〉, 0). A representative
λk-eigenmap f o : Sm → SV o of this antipodal point is called an antipodal eigenmap
of f . f o is unique up to congruence.

Lemma 1 Let f : Sm → SV be a λk-eigenmap of boundary type. If, relative to an
orthonormal basis in the range V , f has orthonormal components then the same holds
for an antipodal f o : Sm → SV o , and V f + V f o = Hk

m is an orthogonal direct sum.

Proof See Toth (1999) or Theorem 2.3.14 in Toth (2002).

Lemma 2 Let f j : Sm → SVj , j = 1, . . . , l, be λk-eigenmaps. Let C be in the

convex hull [〈 f1〉, . . . , 〈 fl〉] with C = ∑l
j=1 α j 〈 f j 〉, ∑l

j=1 α j = 1, 0 ≤ α j ≤ 1,
j = 1, . . . , l. Then C is represented by the λk-eigenmap f = (

√
α1 f1, · · · ,

√
αl fl) :

Sm → SV , V = V1×· · ·×Vl (made full). In particular, we have V f ⊂ V f1 +. . .+V fl .

Proof The statement follows easily from the definition of the moduli space. (Note
that, for l = 2, this is the Connecting Lemma in Toth and Ziller 1999).

Proposition Let f j : Sm → SVj , j = 1, . . . , l, be λk-eigenmaps with orthonormal
components (relative to orthonormal bases in the ranges). Assume that the spaces
of components V f j , j = 1, . . . , l, are mutually orthogonal and V f1 + · · · + V fl �=
Hk

m. Then there exists a λk-eigenmap f0 : Sm → SV0 such that the convex hull
[〈 f0〉, . . . , 〈 fl〉] is an l-dimensional simplicial slice of Lk

m across the origin 0.

Proof By Lemma 2, the assumption on the spaces of components implies that the
convex hull [〈 f1〉, . . . , 〈 fl〉] is an (l − 1)-simplex. In addition, any λk-eigenmap f :
Sm → SV corresponding to a parameter point in the relative interior of this simplex
has space of components V f = V f1 +· · ·+V fm . Since this sum is a proper subspace of
Hk

m , the entire simplex is on the boundary of the moduli space Lk
m . Moreover, passing

from the relative interior to the boundary of the simplex [〈 f1〉, . . . , 〈 fl〉], the space of
components of the corresponding eigenmaps decreases, so that the intersection of the
affine span of [〈 f1〉, . . . , 〈 fl〉] with Lk

m is again [〈 f1〉, . . . , 〈 fl〉].
Again by Lemma 2, a λk-eigenmap representing a point C = ∑l

j=1 α j 〈 f j 〉 in
the convex hull [〈 f1〉, . . . , 〈 fl〉] is of the form (

√
α1 f1, . . . ,

√
αl fl) : Sm → SV ,

V = V1 × · · · × Vl . We now impose the condition for this map to have orthonormal
components. This holds if and only if α2

j / dim Vj does not depend on j = 1, . . . , l.

The condition
∑l

j=1 α j = 1 then gives α j = √
dim Vj/

∑l
s=1

√
dim Vs . The λk-

eigenmap obtained this way is denoted by f : Sm → SV .
Let f0 : Sm → SV0 be a full λk-eigenmap such that 〈 f 〉 a〈 f0〉 are antipodal. Using

Lemma 1 we see that since f has orthonormal components so does f0, and V f0 is the
orthogonal complement of V f . We obtain the orthogonal direct sum

V f0 + V f1 + · · · + V fl = Hk
m .
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Finally, for j = 1, . . . , l, the j th face [〈 f0〉, . . . ,̂〈 f j 〉, . . . , 〈 fl〉] opposite to 〈 f j 〉 is
on the boundary of Lk

m since each point in the relative interior of this face represents
a λk-eigenmap with space of components V f0 + · · · + V̂ f j + · · · + V fl �= Hk

m . The
proposition follows.

As an immediate application, note that, for k ≥ 3 odd, the (k − 1)/2 λk-eigenmaps
fξ j : S3 → SWk , j = 1, . . . , (k − 1)/2, and, for k ≥ 2 even, the k λk-eigenmaps
fη2l+1 , fη2l+2 : S3 → SRk , l = 0, . . . , k/2−1, satisfy the conditions of the proposition.
Thus Theorem B follows. (Note that, for k odd, the λk-eigenmap whose existence is
guaranteed by the proposition is (congruent to) fξ0 , and, for k even, f0 is (congruent
to) the λk-eigenmap is fηk+1 .)

5 Proof of Theorem A

First, let k ≥ 5 be odd. Let ξ ∈ Wk as in (12). fξ : S3 → SWk is a spherical minimal
immersion if and only if the coefficients in (12) satisfy the following

k∑
j=0

|c j |2 = 1

k∑
j=0

(2 j − k)2|c j |2 = k(k + 2)

3
,

k−2∑
j=0

√
( j + 1)( j + 2)(k − j − 1)(k − j)c j c̄ j+2 = 0,

k−1∑
j=0

(k − 2 j − 1)
√

( j + 1)(k − j)c j c̄ j+1 = 0.

(19)

(See Mashimo 1984; DeTurck and Ziller 1992, 1993; Toth 2002.) The first equation
just means that ξ has unit norm, or equivalently, fξ is a spherical λk-eigenmap. (Note
that it is clear now that fξ has L2-orthonormal components.) The last three equations
are conformality conditions of fξ on the tangent space of S3 at 1.

Remarks In a few cases with k ≥ 4 the system in (19) can be solved explicitly. As an
example, let k = 5 and in (19) set c3 = ±c̄2, c4 = ±c̄1, and c5 = ±c̄0. The first two
equations of (19) give

|c0|2 = |c5|2 = 3

16
, |c1|2 = |c4|2 = 5

48
, |c2|2 = |c3|2 = 11

48
.

The fourth equation is automatically satisfied while the third

√
5c0c̄2 ± 3c1c2 = 0

can be resolved easily. We obtain two quintic spherical minimal immersions f± :
S3 → SW5 = S11. One easily shows that V f+ and V f− are L2-orthogonal. Using the
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proposition above, we see that 〈 f±〉 are two vertices of a (maximal) triangular slice of
(M5

4)
SU (2).

Turning to the proof of Theorem A, we now let

ζ j = c jξ j + c(k+1)/2+ jξ(k+1)/2+ j , 0 ≤ j < (k − 1)/4.

We have

fζ j =
k∑

l=0

√
(k − l)!l! �

(
c jχ

j
l + c(k+1)/2+ jχ

(k+1)/2+ j
l

)
ξl

+
k∑

l=0

√
(k − l)!l! �

(
c jχ

j
l + c(k+1)/2+ jχ

(k+1)/2+ j
l

)
(iξl).

Using (16), we obtain

fζ j =
k∑

l=0

√
(k − l)!l!

(
�(c jχ

j
l ) + (−1)(k+1)/2+ j+l�(c̄(k+1)/2+ jχ

(k−1)/2− j
k−l )

)
ξl

+
k∑

l=0

√
(k − l)!l!

(
�(c jχ

j
l )−(−1)(k+1)/2+j+l�(c̄(k+1)/2+jχ

(k−1)/2− j
k−l )

)
(iξl).

The gap between the indices of the coefficients of c j and c(k+1)/2+ j is ≥ 3 so that
the third and fourth equations in (19) are automatically satisfied. Consequently, fζ j is
a spherical minimal immersion if and only if the first two equations hold:

|c j |2 + |c(k+1)/2+ j |2 = 1,

(k − 2 j)2|c j |2 + (2 j + 1)2|c(k+1)/2+ j |2 = k(k + 2)

3
.

(20)

The constraint 0 ≤ j < (k − 1)/4 guarantees that the components of fζ j are
orthonormal, and that the space of components V fζ j

are mutually orthogonal. To
apply the proposition, it remains to see under what conditions does the system (20)
have solution x = |c j |2 and y = |c(k+1)/2+ j |2.

The determinant of this system is (k + 1)(4 j + 1 − k) < 0 so that x and y are
unique. The additional condition 0 ≤ x ≤ 1 gives

(2 j + 1)2 ≤ k(k + 2)

3
≤ (k − 2 j)2, 0 ≤ j <

k − 1

4
.

This system can easily be resolved and we obtain

0 ≤ 2 j ≤ k −
√

k(k + 2)

3
.
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Theorem A follows in this case.
For k ≥ 4 even, ξ ∈ Rk in (12) if and only if ck− j = (−1) j c̄ j , j = 0, . . . , k/2−1,

and ck/2 = i k/2ak/2, ak/2 ∈ R. With these, we have

ξ =
k/2−1∑

j=0

(
c jξ j + (−1) j c̄ jξk− j

)
+ i k/2ak/2ξk/2,

or equivalently

ξ = √
2

k/2−1∑
l=0

(�(cl)η2l+1 + �(cl)η2l+2) + ak/2ηk/2. (21)

Incorporating the new conditions on the coefficients, we see that fξ : S3 → SRk is
a spherical minimal immersion if and only if we have

2
k/2−1∑

l=0

|cl |2 + a2
k/2 = 1

2
k/2−1∑

l=0

(2l − k)2|cl |2 = k(k + 1)

3
k/2−3∑

l=0

√
(l + 1)(l + 2)(k − l − 1)(k − l)cl c̄l+2 + (−1)k/2+1(k/4)(k/2 + 1)c2

k/2−1

+(−i)k/2
√

(k/2 − 1)(k/2)(k/2 + 1)(k/2 + 2)ck/2−2ak/2 = 0
k/2−2∑

l=0

(k − 2l − 1)
√

(l + 1)(k − l)cl c̄l+1 + (−i)k/2
√

(k/2)(k/2 + 1)ck/2−1ak/2 = 0

(22)

Turning to the proof of the second case, for l = 0, . . . , k/2 − 2, we define

ζ2l+1 = √
2(alη2l+1 + ak/2−l−2ηk−2l−3)

ζ2l+2 = √
2(blη2l+2 + bk/2−l−2ηk−2l−2),

where al , bl ∈ R. The reason for omitting l = k/2 − 1 is the presence of the corre-
sponding coefficient ck/2−1 in the third equation of (22). ζ2l+1 and ζ2l+2 are special
cases of (12) with cl = al , ck/2−l−2 = ak/2−l−2 ∈ R real and cl = ibl , ck/2−l−2 =
ibk/2−l−2 ∈ iR purely imaginary. Thus, we have

fζ2l+1 = √
2(al fη2l+1 + ak/2−l−2 fηk−2l−3)

fζ2l+2 = √
2(bl fη2l+2 + bk/2−l−2 fηk−2l−2).

Just as in the previous case, to simplify the system in (22), we impose a gap ≥ 3
between the indices of the coefficients. This condition amounts to the restriction
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0 ≤ l ≤ [(k − 10)/4]. As before, we then see that fζ2l+1 and fζ2l+2 are spherical min-
imal immersions if and only if the first two equations in (22) are satisfied, that is, if
and only if (|al |2, |ak/2−l−2|2) and (|bl |2, |bk/2−l−2|2) are both solutions (x, y) of the
system

x + y = 1/2

(k − 2l)2x + (2l + 4)2 y = k(k + 2)/6.
(23)

The constraint 0 ≤ l ≤ [(k − 10)/4] guarantees that the components of fζ2l+1 and
fζ2l+2 are orthonormal, and that the space of components V fζ2l+1

, V fζ2l+2
, 0 ≤ l ≤

[(k − 10)/4] are all mutually orthogonal. To apply the proposition, it remains to study
solvability of the system in (23) with nonnegative solutions.

Once again, the determinant of this system is (k + 4)(4l + 4 − k) < 0 so that x and
y are unique. The condition 0 ≤ x ≤ 1/2 gives

(2l + 4)2 ≤ k(k + 2)

3
≤ (k − 2l)2.

This can be easily resolved and, along with the previous constraint, we finally arrive
at

0 ≤ 2l ≤ min

(
k −

√
k(k + 2)

3
,

k − 10

2

)
.

Theorem A follows.
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