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Abstract A Grünbaum type of measure of symmetry is calculated and estimated for the
DoCarmo-Wallach moduli spaces for eigenmaps and spherical minimal immersions. The
DeTurck-Ziller classification of minimal imbeddings of 3-dimensional space forms is used
to obtain exact determination of the measure for the SU (2)-equivariant moduli.
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1 Introduction and statement of results

Given a compact homogeneous Riemannian manifold M and an eigenvalue λ of the Laplace-
Beltrami operator acting on C∞(M), a (spherical) λ-eigenmap f : M → SV into the unit
sphere SV of a Euclidean vector space V is a map whose components α ◦ f, α ∈ V ∗, are
in the eigenspace Hλ corresponding to the eigenvalue λ. (Such maps are harmonic in the
sense of Eells-Sampson with constant energy-density λ/2. For details, see [9] or Appendix
2 in [23].) Assuming that M is isotropy irreducible, a conformal λ-eigenmap f : M → SV

is called a spherical minimal immersion. The conformality factor is then λ/ dim M and f is
an isometric minimal immersion of M into SV with respect to λ/ dim M-times the original
metric on M . (See [8,23,27,28] or the brief summary in Section 1 of [26].)

The DoCarmo-Wallach moduli spaces parametrize spherical eigenmaps and spherical
minimal immersions f : M → SV for various Euclidean vector spaces V .

For a given eigenvalue λ, let S2
0 (Hλ) denote the space of traceless symmetric endomor-

phisms of Hλ. Within S2
0 (Hλ), the DoCarmo-Wallach moduli spaces are linear slices of the

convex body
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2 Geom Dedicata (2012) 160:1–14

Kλ = {C ∈ S2
0 (Hλ) | C + I ≥ 0},

where ≥ means positive semi-definite. The slices are by linear subspaces Eλ (spherical
eigenmaps) and Fλ (spherical minimal immersions), where Fλ ⊂ Eλ ⊂ S2

0 (Hλ) are defined
by certain orthogonality relations in terms of the Dirac delta δλ : M → SH∗ and its differ-
ential [23,28].

Beyond the fact that the moduli Lλ = Kλ ∩ Eλ and Mλ = Kλ ∩ Fλ are convex bodies in
their ambient linear spans Eλ and Fλ, very little is known about their structure.

If G is a transitive group of isometries of M , then the eigenspace Hλ carries a nat-
ural G-module structure, and Eλ and Fλ are G-submodules with respect to the extended
G-module structure on S2

0 (Hλ). On the level of the spherical maps, this G-action is given by
precomposition so that the moduli Lλ, and Mλ are also naturally G-invariant.

For a compact rank one symmetric space M = G/K [2], the eigenspaces Hλ are irre-
ducible [13–15], and the structure of the quotient S2

0 (Hλ)/Eλ, in particular, dim Eλ is known
[22]. In fact, the finite sums of products Hλ · Hλ of functions in Hλ is a G-submodule of
S2(Hλ), and

Eλ = S2(Hλ)/Hλ · Hλ. (1)

If {λk}k≥1 denotes the sequence of eigenvalues in increasing order, then we have

Hλk · Hλk =
{∑k

i=0 Hλ2i if M = Sm∑2k
i=0 Hλi otherwise

(2)

Combining (1)–(2) gives dim Eλ = dim Lλ.

For the Euclidean sphere M = Sm and G = SO(m + 1), we write Hk
m = Hλk , Ek

m = Eλk ,
etc. The decomposition of Ek

m into irreducible SO(m + 1)-components (in terms of highest
weights) has been calculated in [8,23,27]. This shows that the moduli space Lk

m parametrizing
spherical λk-eigenmaps f : Sm → SV is nontrival if and only if m ≥ 3 and k ≥ 2. (Triviality
of the moduli for m = 2 is known as Calabi’s rigidity [4].) The first nontrivial domain S3

is special in view of the splitting of the acting group SO(4) = SU (2) · SU (2)′. The fixed
point sets (Lk

3)
SU (2) and (Lk

3)
SU (2)′ are linear slices of Lk

3. Moreover, by restriction, they are
mutually orthogonal SU (2)′- and SU (2)-submodules of Lk

3. Since they parametrize SU (2)-
and SU (2)′-equivariant eigenmaps, they are called equivariant moduli. Note that SU (2)′ is
a conjugate of SU (2) within SO(4), and the module structures on the respective equivariant
moduli are isomorphic via this conjugation.

The first nontrivial moduli L2
3 is particularly simple, as it is the convex hull of (L2

3)
SU (2)

and (L2
3)

SU (2)′ . In addition, (L2
3)

SU (2) is the convex hull of the SU (2)′-orbit of the parameter
point 〈Hopf 〉 corresponding to the Hopf map Hopf : S3 → S2. This orbit, in turn, is the real
projective plane imbedded into a copy of the 4-sphere in (E2

3 )SU (2) as a Veronese surface. In
particular, dim L2

3 = 2 dim(L2
3)

SU (2) = 10. (For more details, see [23].)
The moduli Mλ has been extensively studied only for the Euclidean m-sphere Sm and

G = SO(m + 1). (This is partially due to the complexity of the decomposition of Fλ into
irreducible components for non-spherical compact rank one symmetric spaces. For example,
for the complex projective space, Fλ fails to have multiplicity one decomposition [22].) For
M = Sm , in [8], DoCarmo and Wallach gave a lower bound for the dimension of Mk

m . They
showed that the quotient Ek

m/Fk
m is contained in the sum of all class one subrepresentations

in S2
0 (Hk

m) with respect to the pair (SO(m + 1), SO(m)). They conjectured that the lower
estimate was sharp. This has first been proved in [25]. (For a more recent detailed proof,
see [23]. For a different approach and proof, see [28].) With this the decomposition of Fk

m
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into irreducible SO(m + 1)-components is determined, in particular, the exact dimension
dim Mk

m = dim Fk
m is known.

The moduli Mk
m is nontrivial if and only if m ≥ 3 and k ≥ 4. The first nontrivial mod-

uli M4
3, an 18-dimensional convex body, has been described in [26]. (See also [23,28].)

Once again, M4
3 is the convex hull of the orthogonal 9-dimensional slices (M4

3)
SU (2) and

(M4
3)

SU (2), but the structure of these slices is more subtle.
In general, very little is known about the geometry of the moduli Lk

m and Mk
m , and even

the simpler SU (2)-equivariant moduli (Lk
3)

SU (2) and (Mk
3)

SU (2). The degree raising operator
gives rise to SO(m +1)-equivariant linear imbeddings Lk

m → Lk+1
m and Mk

m → Mk+1
m , but

the images are only properly contained in linear slices of Lk+1
m and Mk+1

m [24]. As a related
problem, not much is known how the range dimensions change under these imbeddings.
The domain dimension raising operator [23] does give linear imbeddings Lk

m → Lk
m+1 and

Mk
m → Mk

m+1 onto linear slices of the respective moduli but it increases the range dimension
by dim Hk

m+1/Hk
m = O(km).

A sequence of measures of symmetry {σm}m≥1 for convex bodies à la Grünbaum [11,12]
was introduced and studied in [19–21]. For a convex body L in a Euclidean vector space E ,
and a point O in the interior of L, σm(L, O) measures how far the m-dimensional affine slices
of L (through O) are from being symmetric (viewed from O). The measure of symmetry
σm(L, O) is defined as follows.

First, convexity of L implies that any line passing through O intersects the boundary of
L at two antipodal points. If C ∈ ∂L with antipodal Co ∈ ∂L then O splits the line segment
[C, Co] into the ratio

�(C, O) = d(C, O)

d(Co, O)
,

where d is the distance function on E . This defines the distortion function � : ∂L → R.
Clearly, �(Co, O) = 1/�(C, O).

Second, a multi-set {C0, . . . , Cm} ⊂ ∂L is called an m-configuration if the convex hull
[C0, . . . , Cm] contains O. The set of all m-configurations is denoted by Cm(L, O). We then
define

σm(L, O) = inf{C0,...,Cm }∈Cm (L,O)

m∑
i=0

1

1 + �(Ci , O)
. (3)

For m = dim L the subscript is suppressed and we write σ(L, O).
The purpose of this paper is to calculate and derive various upper estimates for the mea-

sures of symmetry σ(Lλ, 0) and σ(Mλ, 0). Our starting point is the following:

Theorem 1 Let M = G/K be a Riemannian homogeneous space. Assume that the eigen-
space Hλ ⊂ C∞(M) is an irreducible G-submodule. Then, we have

dim Lλ + 1

dim Hλ

≤ σ(Lλ, 0) = dim Lλ + 1

1 + max∂Lλ �(., 0)
≤ dim Vmin

dim Hλ

(dim Lλ + 1), (4)

where f : M → SVmin is a spherical λ-eigenmap with minimum range dimension. If M =
G/K is isotropy irreducible then we have

dim Mλ + 1

dim Hλ

≤ σ(Mλ, 0) = dim Mλ + 1

1 + max∂Mλ �(., 0)
≤ dim Vmin

dim Hλ

(dim Mλ + 1), (5)

where f : M → SVmin is a spherical minimal immersion (inducing λ/ dim M times the
metric on M) with minimum range dimension. In either case of (4)–(5), if equality holds in
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4 Geom Dedicata (2012) 160:1–14

the upper estimate then the respective map f : M → SVmin has L2-orthonormal components
(up to scaling and with respect to an orthonormal basis in Vmin).

Theorem 1 will be proved in Sects. 3 and 4. In particular, the middle equalities in (4)–(5)
are consequences of the more general formula (14) of Theorem 3, the lower bounds in (4)–(5)
will follow from (18) and the subsequent Remark 3, and Theorem 4 will imply the upper
bounds in (4)–(5).
In general, for a convex body L with interior point O, we always have [21]

σ(L, O) ≤ dim L + 1

2
.

For dim L ≥ 2, equality holds if and only if L is symmetric with respect to O. Thus, in the
upper estimates (4)–(5), we need to look for minimal ranges for which dim Vmin < dim Hλ/2.
As noted above, for compact rank one symmetric spaces M = G/K the eigenspaces Hλ are
irreducible so that Theorem 1 applies.

For M = Sm , in view of (4)–(5), to calculate σ(Lk
m, 0) (m ≥ 3, k ≥ 2) and σ(Mk

m, 0)

(m ≥ 3, k ≥ 4), one needs to know the maximal distortion for eigenmaps and spherical min-
imal immersions. This is a difficult and largely unsolved problem [10,24]. To obtain upper
bounds for these measures of symmetry, one needs to know the minimal range dimensions of
such maps. This is the so-called DoCarmo problem. In general, to give bounds on the mini-
mum range dimension is an old and difficult problem [8] (Remark 1.6) and [5–7,18,24,28].

The arithmetic properties of the sequence {σm}m≥1 (to be discussed in Sect. 2) will imply
the following:

Corollary Let dλ = d(Hλ) be the maximum dimension such that Lλ has a dλ-dimensional
simplex as a linear slice (across the origin 0). Then

d(Hλ) ≤ max
∂Lλ

�(., 0). (6)

Analogous statement holds for Mλ (with Lλ replaced by Mλ in (6)). Equality holds if and
only if the sequence {σm}m≥1 is arithmetic from the dλ-th term onward.

In the lowest non-trivial case of quadratic eigenmaps of the three-sphere, the Hopf map
Hopf : S3 → S2 corresponds to both maximal distortion 2 and minimal range dimension.
Hence, we obtain

σ(L2
3, 0) = dim L2

3 + 1

1 + �(〈Hopf 〉, 0)
= 3

2

3
.

The explicit description of L2
3 shows [23] that L2

3 (in fact, (L2
3)

SU (2)) has a triangular slice
across 0. (〈Hopf 〉 can be chosen as one of the vertices of the triangle. Its antipodal is the
parameter point 〈VerC〉, where VerC is the complex Veronese map. The latter is the center of
a disk on the boundary of the moduli, and the boundary circle of the disk is on the SU (2)′
orbit of 〈Hopf 〉.) Thus, equality holds in (6), and we obtain

σm(L2
3, 0) = m + 1

3
, m ≥ 2.

In the lowest non-trivial case of moduli M4
3 for quartic spherical minimal immersions of the

three sphere, a role similar to the Hopf map is played by the (minimum range-dimensional)
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quartic minimal immersion I : S3 → S9 [26,23]. The corresponding point 〈I〉 on the moduli
has distortion 3/2 and this gives the upper bound

σ(M4
3, 0) ≤ dim M4

3 + 1

1 + �(〈I〉, 0)
= 7

3

5
. (7)

Remark 1 For some SU (2)-equivariant moduli, low dimensional simplicial slices can be
constructed explicitly. For example, (M6

3)
SU (2) has a triangular slice, and (M8

3)
SU (2) and

(M12
3 )SU (2) both have tetrahedral slices (across 0). These are constructed using the tetrahe-

dral, octahedral and icosahedral spherical minimal immersions [5–7,24,28].

The minimal orbit method [5–7] for SU (2) (or equivariant construction originally intro-
duced by Mashimo [17]) has been used by DeTurck and Ziller to obtain a large number
of low range-dimensional SU (2)-equivariant eigenmaps and spherical minimal immersions
of the three sphere. They constructed these with specific invariance properties to prove that
every homogeneous spherical space form (of S3 and also of higher dimensional odd dimen-
sional spheres) admits a minimal isometric imbedding into a Euclidean sphere (of sufficiently
high dimension). For our purposes here these immersions, in turn, enable us to calculate the
measures of symmetry for the equivariant moduli (Lk

3)
SU (2), k ≥ 2, and (Mk

3)
SU (2)k ≥ 4.

Theorem 2 For k ≥ 2, we have

max
∂(Lk

3)SU (2)
�(., 0) =

{
k if k is even
k−1

2 if k is odd.
(8)

The dimension dk = d((Lk
3)

SU (2)) of the largest simplicial slice of (Lk
3)

SU (2) (across 0) is
equal to this maximal distortion, and we have

σm((Lk
3)

SU (2), 0) =
{

1 if m ≤ dk

m+1
1+dk if m > dk.

(9)

In particular, we have

σ((Lk
3)

SU (2), 0) =
{

k+2
2 if k is even

k if k is odd.
(10)

For k ≥ 5 (8) holds with Lk
3 replaced by Mk

3, and we have

σ((Mk
3)

SU (2), 0) =
{

k+2
2 − 5

k+1 if k is even
k − 10

k+1 if k is odd.
(11)

Remark 2 We have [23]

dim(Lk
3)

SU (2) = [k/2](2[k/2] + 3), (12)

dim(Mk
3)

SU (2) = (2[k/2] + 5)([k/2] − 1). (13)

Since both these dimensions are O(k2), (10)–(11) indicate that Lk
3 and Mk

3 are far from
symmetric. Note also the interesting byproduct

σ((Lk
3)

SU (2), 0) > σ((Mk
3)

SU (2), 0), k ≥ 5

which is to be expected as (Mk
3)

SU (2) is a linear slice of (Lk
3)

SU (2).
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6 Geom Dedicata (2012) 160:1–14

Remark 3 For k = 4, the lowest range-dimensional SU (2)-equivariant quartic minimal
immersion I : S3 → S9 gives

σ((M4
3)

SU (2), 0) ≤ 4.

Compare this with (7). Ironically, this is only an upper estimate because the SU (2)-module
structure on the (linear) range of I is reducible, in fact, the double of an irreducible SU (2)-
module. (See the lemma in Sect. 5.) In addition, on the boundary of the moduli (M4

3)
SU (2)

there is a 6-dimensional set (corresponding to the so-called type II0 spherical minimal immer-
sions [23]). Their ranges are also reducible, the triple of an irreducible SU (2)-module. The
corresponding parameter points are all extremal (in the sense of convex geometry) and their
algebraic description is cumbersome.

Remark 4 Forgetting SU (2)-equivariance, the range dimensions of these SU (2)-equivariant
eigenmaps and spherical minimal immersions can also be used in (4)–(5) for Vmin in the upper
estimate of the measures of symmetry σ(Lk

3, 0) and σ(Mk
3, 0). Only upper estimates can

be expected since a least range-dimensional SU (2)-equivariant minimal immersion among
SU (2)-equivariant minimal immersions usually do not have minimal range dimension among
all spherical minimal immersions. This has been pointed out by Escher and Weingart [10]
who, among others, found a spherical minimal immersion f : S3 → SV with k = 36 but
dim V ≤ 36. (For k = 36, the minimum range dimension for SU (2)-equivariant minimal
immersions is 37.)

2 The measures of symmetry {σk}k≥1

The sequence {σk(L, O)}k≥1 has interesting properties.

1. Measure of symmetry [21]. We have

1 ≤ σm(L, O) ≤ m + 1

2
.

The lower bound is attained if and only if m ≤ dim L and L has a simplicial intersection
with an m-dimensional affine subspace passing through O. For m ≥ 2, the upper bound
is attained if and only if L is symmetric with respect to O.

2. Monotonicity [19,20]. σ1(L, O) = 1 and after a possible initial string of ones, the
sequence {σm(L, O)}m≥1 is strictly increasing. The length of the string of ones is the
maximum-dimensional simplicial intersection of L by an affine subspace passing though
O. Weak monotonicity follows from subadditivity of the differences:

σm+k(L, O) − σm+1(L, O) ≥ σk(L, O) − σ1(L, O), k ≥ 1.

3. Sub-arithmeticity [21]. For m, k ≥ 1, we have

σm+k(L, O) ≤ σm(L, O) + k

1 + max∂L �(., O)
.

The sequence {σm(L, O)}m≥1 becomes arithmetic after m = dim L with difference
1/(1+max∂L �(., O)). (More precisely, the index m after which the sequence becomes
arithmetic is the degree of degeneracy in attaining the infimum in (3) by a minimizing
simplicial sequence of configurations.)
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3 The general setting

Let G be a compact Lie group. Recall that an orthogonal G-module is a finite dimensional
Euclidean vector space E on which G acts with linear isometries.

Theorem 3 Let E be an orthogonal G-module and assume that G acts on E with no nonzero
fixed points. If L is a G-invariant convex body with 0 ∈ int L then

σ(L, 0) = dim L + 1

1 + max∂L �(., 0)
. (14)

Proof Assume that the distortion function �(., 0) : ∂L → R attains its maximum on ∂L at
C . Consider the convex hull [G(C)] ⊂ L of the orbit G(C) ⊂ ∂L passing through C . This is
a G-invariant compact convex set. It contains its center of mass which must be G-fixed. Since
E has no nonzero G-fixed points, this center of mass must be the origin 0. Hence there exist
B0, . . . , Bm ∈ G(C) such that

∑m
i=0 λi Bi = 0,

∑m
i=0 λi = 1, 0 ≤ λi ≤ 1, i = 0, . . . , m.

We may assume that m ≥ dim L (by adding more points, if necessary). What we just con-
cluded means that {B0, . . . , Bm} is an m-configuration (with respect to 0). Therefore, we
have

σm(L, 0) = inf{C0,...,Cm }∈Cm (L,0)

m∑
i=0

1

1 + �(Ci , 0)
≤

m∑
i=0

1

1 + �(Bi , 0)
.

On the other hand, the points Bi , i = 0, . . . , m are on an orbit of maximal distortion on ∂L,
so that �(Bi , 0) = max∂L �(., 0), i = 1, . . . , m. We thus have

m∑
i=0

1

1 + �(Bi , 0)
= m + 1

1 + max∂L �(., 0)
≤ σm(L, 0),

where the last inequality is a trivial lower estimate for σm as follows from the definition (3).
Combining the two inequalities above, we find

σm(L, 0) = m + 1

1 + max∂L �(., 0)
.

As noted in Sect. 2, the sequence {σm}m≥1 is arithmetic with difference 1/(1+max∂L �(., 0))

from the dim L-th term onward. Counting backwards, we obtain (14). The theorem follows.

Remark 1 In view of applications to moduli spaces, it would be important to know the min-
imum number of points B0, . . . , Bm (on an orbit of maximal distortion) whose convex hull
contains the origin.

In our present setting, the corollary to Theorem 1 can be generalized as follows:

Corollary Let L be as in Theorem 3. Let d be the maximum dimension such that L has a
d-dimensional simplicial intersection across 0. Then

d ≤ max
∂L

�(., 0).

Equality holds if and only if {σm(L, 0)}m≥1 is arithmetic from the d-th term onwards.
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8 Geom Dedicata (2012) 160:1–14

Proof We first claim that the dimension d of the largest simplicial slice cannot exceed the
maximum distortion max∂L �(., 0). We use the properties of the sequence {σm}m≥1 as fol-
lows. First, the existence of a d-dimensional simplicial slice is equivalent to σd(L, 0) = 1.
Second, sub-arithmeticity implies

σ(L, 0) ≤ 1 + dim L − d

1 + max∂L �(., 0)
. (15)

Using (14) and rearranging, the claim now follows.
For the second statement, note that sub-arithmeticity implies

σm+1(L, 0) − σm(L, 0) ≤ 1

1 + max∂L �(., 0)
. (16)

Adding up for m = d, . . . , dim L − 1 and using σd(L, 0) = 1, we see that equality holds in
(15) if and only if equalities hold in (16) for each m ≥ d . The corollary follows.

Let H be an orthogonal G-module. The G action on H naturally extends to the symmetric
square S2(H) and its traceless part S2

0 (H). From now on we will consider E as a G-submodule
of S2

0 (H) and assume that E has no trivial components.

Remark 2 If H is irreducible then on S2
0 (H) (and therefore on each submodule E) G acts

with no nonzero fixed points. Indeed, if C ∈ S2
0 (H) is G-fixed then C , as a symmetric endo-

morphism of H, commutes with the action of G on H. Since G acts irreducibly on H, C
must be a (real) constant multiple of the identity. Since the trace of C is zero, it must itself
be zero.

We define

K(H) = {C ∈ S2
0 (H) | C + I ≥ 0},

where ≥ means positive semi-definite. K(H) is obviously a convex subset of S2
0 (H) with

nonempty interior. Given a traceless symmetric endomorphism C of H satisfying the defining
inequality C + I ≥ 0, the eigenvalues of C are contained in the interval [−1, dim H − 1].
In particular, K(H) is compact, therefore a convex body in S2

0 (H).
The moduli that we will study will be of the form

L = K(H) ∩ E .

We first study K(H). We first prove the important observation that, for C ∈ ∂K(H), the
distortion �(C, 0) is the maximal eigenvalue of C .

Indeed, since C is traceless (and nonzero), the maximal eigenvalue of C must be positive.
Therefore, there must be a maximal t0 > 0 such that −tC + I > 0 for 0 ≤ t < t0. For these
values of t,−tC is in the interior of K(H). Since the determinant of −t0C + I vanishes,
−t0C is on the boundary of K(H). We obtain that Co = −t0C and −t0λmax(C) + 1 = 0,
where λmax denotes the maximal eigenvalue. Combining these, we get

Co = − 1

λmax(C)
C. (17)

Taking norms, we arrive at

λmax(C) = |C |
|Co| = �(C, 0),

and the observation follows.

123



Geom Dedicata (2012) 160:1–14 9

Since dim H − 1 is an upper bound for all eigenvalues, as a byproduct, we also obtain

1

dim H − 1
≤ �(., 0) ≤ dim H − 1. (18)

Remark 3 The upper estimate in (18) immediately gives the lower estimates in (4)–(5).

Remark 4 Helly’s theorem [1] implies that, for a compact convex body L ⊂ E there is an
interior point O such that

1

dim L ≤ �(., O) ≤ dim L. (19)

The bounds are the best possible for L a simplex.

The maximum distortion in (18) for K(H) is attained. Indeed, setting h = dim H, the
largest possible maximal eigenvalue h − 1 occurs for endomorphisms of the form Cχ =
χ � χ − I ∈ ∂K(H), χ ∈ H, with |χ | = h.

In addition, given an orthonormal basis {χi }h
i=1 ⊂ H, {C√

hχi
}h
i=1 is a minimal simplicial

(h − 1)-configuration. Its convex hull, consisting of traceless endomorphisms of H that are
diagonal with respect to this basis, is a simplicial slice of K(H) of dimension dim H − 1.
Thus, by Corollary to Theorem 3, we obtain

σm(K(H), 0) =
{

1 if m < dim H
m+1

dim H if m ≥ dim H

4 H-maps and their moduli

Let M be a compact Riemannian manifold and C∞(M) the space of smooth functions on M .
As usual, we endow C∞(M) with the L2-scalar product. Given a map f : M → V into a
Euclidean vector space V , the space of components of f is V f = {α ◦ f | α ∈ V ∗}. f is full
if dim V f = dim V (that is, composing f with linear functionals on V is an isomorphism
between V ∗ and V f ). Given a finite dimensional linear subspace H ⊂ C∞(M), we call f an
H-map if V f ⊂ H. An H-map is called spherical if it maps to the unit sphere of the range.
In this case we write f : M → SV , where SV is the unit sphere of V .

Let M = G/K be Riemannian homogeneous with acting transitive Lie group of isom-
etries G, and assume that H is G-invariant. With respect to the L2-scalar product H is an
orthogonal G-module. The Dirac delta δH : M → H∗ (defined by evaluating the functions
in H ⊂ C∞(M) on points of M) is an H-map, and it is maximal in the sense that every func-
tion in H is a component of δH. With respect to the induced scalar product on H∗ suitably
scaled, the Dirac delta is spherical, and we can write δH : M → SH∗ .

Given a full H-map f : M → V there exists a (unique) linear map A : H∗ → V
such that f = A ◦ δH. Since f is full, A is onto. We associate to f the symmetric linear
endomorphism 〈 f 〉 = A∗ A − I ∈ S2(H). This association is one to one on the congruence
classes of H-maps, where two H-maps belong to the same congruence class if they differ by
an isometry between their ranges. An H-map f : M → V is spherical if and only if

| f (x)|2 − |δH(x)|2 = 〈(A∗ A − I )δH(x), δH(x)〉 = 〈〈 f 〉, δH(x) � δH(x)〉 = 0 (20)

for all x ∈ M . We conclude that an H-map f : M → V is spherical if and only if the
associated 〈 f 〉 belongs to the linear subspace

E(H) = {δH(x) � δH(x) | x ∈ M}⊥ ⊂ S2(H).
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Integrating the defining equality 〈CδH(x), δH(x)〉 = 0 of C ∈ E(H) over M , we see that
the trace of C ∈ S2(H) vanishes, so that E(H) is contained in the traceless part S2

0 (H).
Since 〈 f 〉 + I = A∗ A is automatically positive semidefinite, we obtain that

L(H) = K(H) ∩ E(H) = {C ∈ E(H) | C + I ≥ 0}
parametrizes the congruence classes of full spherical H-maps f : M → SV .

Since K(H) is compact, so is L(H). The origin 0 = 〈δH〉 is in the interior of L(H).
We say that a full spherical H-map f : M → SV is of boundary type if dim V < dim H

or equivalently 〈 f 〉 ∈ ∂L(H).

Theorem 4 Let f : M → SV be a full spherical H-map of boundary type. Then the distor-
tion �(〈 f 〉, 0) (with respect to the origin 0) is the maximal eigenvalue of 〈 f 〉. We have

dim H
dim V

≤ �(〈 f 〉, 0) + 1 ≤ dim H
ν(〈 f 〉) , (21)

where ν(〈 f 〉) is the multiplicity of the maximal eigenvalue. Equality holds if and only if
f : M → SV has L2-orthonormal components with respect to an orthonormal basis in V .

Proof The first statement was proved in the previous section in a more general setting.
To prove (21) we let C = A∗ A − I = 〈 f 〉, f = A ◦ δH, ν = ν(C), dim H = h and
dim V = n. As noted above, the eigenvalues of C are contained in [−1, h − 1]. Since f is
full, A : H∗ → V is onto. Thus, rank (C + I ) = rank (A∗ A) = rank A = dim V = n so that
the multiplicity of the minimal eigenvalue −1 of C is h −n. Thus, for the multiplicity ν of the
maximal eigenvalue λmax, we must have ν ≤ n. Let λ1, . . . , λn−ν denote the non-minimal
and non-maximal eigenvalues. The condition that C is traceless can be written as

νλmax +
n−ν∑
i=1

λi = h − n.

Finally, since −1 < λi < λmax, we obtain (21).
By Theorem 4, in either case of (4)–(5), for the minimum range-dimensional map f :

M → SVmin , we have

dim Hλ

dim Vmin
≤ �(〈 f 〉, 0) + 1 ≤ max �(., 0) + 1,

and Theorem 1 follows.

5 SU(2)-equivariant eigenmaps and their moduli

The irreducible complex SU (2)-modules are parametrized by their dimension, and they
can be realized as submodules appearing in the (multiplicity one) decomposition of the
SU (2)-module of complex homogeneous polynomials C[z, w] in two variables [3,16]. For
k ≥ 0, the k-th submodule Wk, dimC Wk = k + 1, comprises the homogeneous poly-
nomials of degree k. With respect to the L2-scalar product (suitably scaled) the standard
orthonormal basis for Wk is {zk− jw j/

√
(k − j)! j !}k

j=0. For k odd, Wk is irreducible as
a real SU (2)-module. For k even, the fixed point set Rk of the complex anti-linear self
map z jwk− j �→ (−1) j zk− jw j , j = 0, . . . , k, of Wk is an irreducible real submodule with
Wk = Rk ⊗R C.
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Given a (nonzero) polynomial

ξ =
k∑

j=0

c j z
k− jw j ∈ Wk (22)

the orbit map fξ : S3 → Wk, fξ (g) = g · ξ = ξ ◦ g−1, g ∈ SU (2), (through ξ ) is (up to
scaling) a spherical λk-eigenmap [23]. In coordinates, we have

fξ (a, b)(z, w) = ξ(āz + b̄w,−bz + aw), a, b ∈ C, |a|2 + |b|2 = 1, z, w ∈ C. (23)

Here g = (a, b) ∈ S3 ⊂ C2 is identified with

[
a −b̄
b ā

]
∈ SU (2), or equivalently, the unit

quaternion a + jb ∈ S3 ⊂ H. (On the right-hand side the inverse g−1 = (ā,−b) = ā − jb
acts on (z, w) = z + jw by multiplication.) fξ is a spherical minimal immersion if and only
if the coefficients in (22) satisfy the following

k∑
j=0

(k − j)! j !|c j |2 = 1

k∑
j=0

(2 j − k)2(k − j)! j !|c j |2 = k(k + 2)

3
,

k−2∑
j=0

( j + 2)!(k − j)!c j c̄ j+2 = 0,

k−1∑
j=0

(k − 2 j − 1)( j + 1)!(k − j)!c j c̄ j+1 = 0.

(The first equation means that fξ maps into the unit sphere of Wk . The last three equations
are conformality conditions on the tangent space of S3 at 1 [5–7].)

In the examples of Sect. 1, up to congruence, the Hopf map Hopf : S3 → SR2 is the SU (2)-
orbit of the polynomial ξ = i zw ∈ R2, and the quartic minimal immersion I : S3 → SW4

is the SU (2)-orbit map of the polynomial ξ = (
√

6/24)(z4 − w4) + (
√

2/4)z2w2 ∈ W4.
(As noted in Sect. 1, there is no minimal SU (2)-orbit in R4. Note that, even though W4 is
reducible as a real SU (2)-module, I still has L2-orthonormal components.)

To prove Theorem 2, we first note that Theorem 3 (with G = SU (2)′) applies to SU (2)-
equivariant moduli and gives

σ((Lk
3)

SU (2), 0) = dim(Lk
3)

SU (2) + 1

1 + max∂(Lk
3)SU (2) �(., 0)

≤ Vmin

(k + 1)2 ([k/2](2[k/2] + 3) + 1), (24)

and [23]

σ((Mk
3)

SU (2), 0)= dim(Mk
3)

SU (2) + 1

1 + max∂(Mk
3)SU (2) �(., 0)

≤ Vmin

(k + 1)2 ((2[k/2] + 5)([k/2]−1) + 1),

(25)

where we used dim Hk
3 = (k + 1)2 and (12)–(13).

According to the next lemma, equality holds if and only if Vmin is the minimum range
dimension among the respective SU (2)-equivariant eigenmaps or spherical minimal immer-
sions:
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Lemma Let f0 : S3 → SV0 be an SU (2)-equivariant λk-eigenmap. V0 with its natural
SU (2)-module structure (given by the equivariance of f ) is irreducible if and only if, within
the moduli (Lk

3)
SU (2), the range dimension dim V0 is minimal. In this case, the distortion

�(〈 f0〉, 0) = (k + 1)2

dim V0
− 1

is maximal. The same statement holds for spherical minimal immersions.

Proof Let f : S3 → SV be any full SU (2)-equivariant λk-eigenmap. Depending on the
parity of k, as an SU (2)-module, V is the sum of finitely many copies of Wk (k odd) or Rk

(k even) (while V0 is a single copy). In fact, V = ⊕N
i=1Vi , and each irreducible component

Vi is isomorphic with Wl (l odd) or Rl (l even). Since f is a k-homogeneous polynomial
map, so are its components fi : S3 → Vi , i = 1, . . . , N . Then, SU (2)-equivariance gives
fi = fξi , ξi = fi (1), so that l = k. The first statement follows.

Due to equivariance, the multiplicity of each eigenvalue of 〈 f 〉, including the maximal
one, is a multiple of 2(k + 1) (k odd) or k + 1 (k even). In particular, using the notations in
Theorem 4, we have ν(〈 f 〉) ≥ ν(〈 f0〉) = dim V0, and we obtain

�(〈 f 〉) + 1 ≤ (k + 1)2

ν(〈 f 〉) ≤ (k + 1)2

dim V0
≤ �(〈 f0〉) + 1.

The lemma follows.

Any (nontrivial) SU (2)-orbit map for Wk (k odd) and Rk (k even) gives a full λk-eigenmap
of minimum range dimension among the SU (2)-equivariant eigenmaps:

dim Vmin =
{

k + 1 if k is even
2(k + 1) if k is odd.

Since these eigenmaps have SU (2)-irreducible ranges, the lemma above applies, and we
obtain (10).

To prove (9), we need to decompose the space of real spherical harmonics Hk
3|SU (2) into

real SU (2)-irreducible components. We have Hk
3|SU (2) = (k+1)Rk (k even) and Hk

3|SU (2) =
(k + 1)/2 Wk (k odd). Mimicking the construction of the Dirac delta δ : S3 → S(Hk

3)∗ , in

each irreducible component Vj ⊂ Hk
3, j = 0, . . . , dk, dk = d((Lk

3)
SU (2)), we select an

(appropriately scaled) L2-orthonormal basis, and define an SU (2)-equivariant λk-eigenmap
f j : S3 → SVj by declaring these basis elements as its components (with respect to the
orthonormal basis). On the moduli, the Dirac delta corresponds to the origin, and we obtain

0 ∈ [〈 f0〉, . . . , 〈 fdk 〉].
This convex hull is a dk-simplex whose faces are contained in the boundary of (Lk

3)
SU (2).

This is because any interior point of the j-th face (opposite to 〈 f j 〉) corresponds to a λk-ei-
genmap whose space of components does not contain the components of f j . Therefore this
λk-eigenmap must be of boundary type. We obtain that [〈 f0〉, . . . , 〈 fdk 〉] is a dk-dimensional
simplicial intersection of (Lk

3)
SU (2). Now, (9) follows from Corollary to Theorem 3.

The tetrahedral, octahedral, and icosahedral immersions Tet : S3 → SR6 , Oct : S3 →
SR8 , and Ico : S3 → SR12 [5–7,23] have minimal range dimensions and maximal distortions
(again by the lemma above):

�(〈Tet〉, 0) = 6, �(〈Oct〉, 0) = 8, �(〈Ico〉, 0) = 12.

These cover the cases k = 6, 8, 12 in (11).
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In general, the minimal SU (2)-orbits of polynomials invariant under the cyclic or binary
dihedral groups give SU (2)-equivariant minimal immersions with SU (2)-irreducible range
(and minimal imbeddings of the corresponding lens spaces and dihedral manifolds into
sphere). A quick check of Table 1 in [7] (or [24], page 65) shows that, for k even, all values
k ≥ 8 are covered. It remains to treat the case when k ≥ 5 is odd, that is, we need to construct
an SU (2)-equivariant minimal immersion f : S3 → SWk . The table cited above covers a
particular case k ≡ 3 (mod 6) (giving an imbedding of the lens space L(k/3, 1) into S2k+1).
In general, the polynomial ξ = c0zk + c3w

k−3w3 ∈ C[z, w] satisfies the conformality con-
ditions imposed on the orbit map fξ : S3 → SWk (with unique real c0 and c3). (Because
of the gap between the coefficients, the last two conformality conditions are automatically
satisfied.) Then fξ defines an SU (2)-equivariant minimal immersion. Theorem 2 follows.
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