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Abstract Asymmetry of a compact convex body L ⊂ Rn viewed from an interior point
O can be measured by considering how far L is from its inscribed simplices that contain O.
This leads to a measure of symmetry σ(L, O). The interior of L naturally splits into regular
and singular sets, where the singular set consists of points O with largest possible σ(L, O).
In general, to calculate the singular set of a compact convex body is difficult. In this paper we
determine a large subset of the singular set in centrally symmetric compact convex bodies
truncated by hyperplane cuts. As a function of the interior point O, σ(L, .) is concave on the
regular set. It is natural to ask to what extent does concavity of σ(L, .) extend to the whole
(interior) of L. It has been shown earlier that in dimension two, σ(L, .) is concave on L. In
this paper, we show that in dimensions greater than two, for a centrally symmetric compact
convex body L, σ(L, .) is a non-concave function provided that L has a codimension one
simplicial intersection. This is the case, for example, for the n-dimensional cube, n ≥ 3. This
non-concavity result relies on the fact that a centrally symmetric compact convex body has
no regular points.

Keywords Convex set · Distortion

Mathematics Subject Classification (2000) 52A05 · 52A38 · 52B11

1 Introduction and statement of results

In this paper, we use basic concepts and results in the theory of convex sets and functions
[2,5]. Let E be a Euclidean vector space of dimension n. (As usual, we take E = Rn .) For an
arbitrary subset K of E we define [K] and 〈K〉 the convex hull and the affine span of K. For
K finite, say K = {B0, . . . , Bm}, [K] is a convex polytope. This polytope is an m-simplex if
B0, . . . , Bm are affinely independent, or equivalently, if dim[K] = dim〈K〉 = m. A convex
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set L ⊂ E with nonempty interior is called a convex body. Every convex set is a convex body
in its affine span.
Let L ⊂ Rn be a compact convex body and O an interior point of L. Given C ∈ L, C �= O,
we define the opposite Co of C (with respect to O) to be the unique boundary point of
L with O in the interior of the line segment [C, Co]. For C a boundary point, the ratio
�L(C, O) = �(C, O) of lengths that O splits [C, Co] is called the distortion of C with
respect to O. A configuration of L (with respect to O) is a multi-set of boundary points
{C0, . . . , Cn} (with possible repetitions) such that O is in the convex hull [C0, . . . , Cn]. We
let C(L, O) denote the set of all configurations of L. With this, we define

σ(L, O) = inf{C0,...,Cn}∈C(L,O)

n∑

i=0

1

1 + �(Ci , O)
. (1)

A configuration at which the infimum is attained is called minimal. Since L is compact,
minimal configurations exist since a minimizing sequence of configurations subconverges in
C(L, O). Minimal configurations are by no means unique.

A configuration {C0, . . . , Cn} ∈ C(L, O) is called simplicial if [C0, . . . , Cn] is a simplex
with O in its interior. The set of all simplicial configurations is denoted by S(L, O). Since
S(L, O) ⊂ C(L, O) is dense (in the obvious topology), the infimum in (1) can be restricted
to S(L, O).
Let {C0, . . . , Cn} be a simplicial configuration. We then have

1 =
n∑

i=0

1

1 + �[C0,...,Cn ](Ci , O)
≤

n∑

i=0

1

1 + �L(Ci , O)
, (2)

where the equality follows by an easy exercise in the use of projectivities from the vertices
Ci , i = 0, . . . , n, of the simplex [C0, . . . , Cn], and the inequality follows from the definition
of the distortion. We obtain the lower bound

1 ≤ σ(L, O). (3)

It is clear from (2) via convexity that the lower bound is attained if and only if L is a simplex.
For any C ∈ ∂L, we have

1

1 + �(C, O)
+ 1

1 + �(Co, O)
= 1. (4)

Applying this to the elements of a configuration and taking the corresponding infima, we
obtain the upper bound

σ(L, O) ≤ n + 1

2
. (5)

For n ≥ 2, it is not hard to see that the upper bound is attained if and only if L is centrally
symmetric with respect to O. (The ‘if’ part is obvious; for the ‘only if’ part, see [6].)

σ(L, O) is invariant under similarity transformations, and is a continuous function on the
space of compact convex bodies with specified interior point. Because of these properties and
(3) and (5), σ(L, O) is a measure of symmetry on convex bodies in the sense of Grünbaum
[1].

A minimizing sequence in S(L, O), does not necessarily subconverge in S(L, O). If it
does not, we call O a singular point. The set of singular points is called the singular set of L.
In the opposite case, that is, if every minimal configuration is simplicial, we call O a regular
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point. The set of regular points R is called the regular set of L. It is easy to see that we always
have

σ(L, O) ≤ σn−1(L, O) + 1

1 + max∂L �(., O)
, (6)

where σn−1 is defined as in (1) with n replaced by n−1. Now, according to a result in [6], O is
a regular point if and only if sharp inequality holds in (6). In particular, the regular set is open
(since σ and σn−1 are continuous in O [7]), therefore, the singular set is relatively closed
in L. By definition, the convex hull [C0, . . . , Cn] of a minimal configuration {C0, . . . , Cn}
for a regular point is a simplex with O contained in its interior. In view of (1), the distortion
function �(., O) has to assume a local maximum at each vertex Ci , i = 0, . . . , n. In general,
if �(., O) assumes a local maximum at a boundary point C then [C, Co] is an affine diameter
[1,3,4] in the sense that at the endpoints C and Co there are parallel supporting hyperplanes
to L. (This follows from the local study of extrema of � in Sect. 7 of [7].) The following
geometric picture emerges: Each regular point is the common intersection of n + 1 (affinely
independent) affine diameters.

Our first result asserts that the two extreme values of σ(L, .) in (3) and (5) correspond to
the entire interior of L consisting of regular or singular points.

Theorem A Let L ⊂ Rn be a compact convex body and O and interior point of L. If
σ(L, O) = 1 then (L is a simplex and) the interior of L consists of regular points only. If
σ(L, O) = (n +1)/2 then (L is centrally symmetric with respect to O and) the entire interior
of L consists of singular points only.

It seems reasonable to conjecture that the converse of both statements in Theorem A are
true.

Conjecture 1 A compact convex body with all interior points regular is a simplex. In fact,
in [9], we showed that this conjecture is true under the additional assumption that L has at
least n isolated extremum points on its boundary.

In view of this, to remove this assumption, one needs to show that every extremum point is
isolated. (By a well-known theorem of Minkowski (see [5]) the convex hull of the extremum
points is the entire convex body. Therefore, there must be at least n + 1 extremum points.)

Another observation related to Conjecture 1 is the following. Let L be a compact convex
body with an isolated extremum point C on the boundary. If the interior of L consists of
regular points only then, away from C , the boundary ∂L is not smooth. To give a quick
proof of this, let B be the set of boundary points B �= C at which a supporting hyperplane
is parallel to a supporting hyperplane at C . Assuming that ∂L is smooth away from C , the
local conical structure of L at C shows that B has a nonempty relative interior B0 in ∂L,
and the convex hull [B0] intersects the interior of L. (See [9].) Each interior point O in this
intersection is a singular point. Indeed, a minimizing simplicial configuration must have a
vertex C0 contained in B0. Since C0 is an end point of an affine diameter that passes through
O, the antipodal of C0 must be C . Since C0 is a smooth point (and C is not), the distortion
function cannot assume a local maximum at C0.

It is also tempting to consider a limiting argument and try to derive a statement for the
existence of singular points for compact convex bodies with smooth boundary. Being a mea-
sure of symmetry, σ(L, O) continuously depends on the boundary ∂L and the interior point
O. In a convergent sequence of compact convex bodies, the regular set, however, may display
discontinuous behavior. The following example shows this.
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Fig. 1 Regular and singular sets in odd sided regular polygons

Example Let P� = {�} ⊂ R2, � ≥ 3, be a regular �-sided polygon. By the first statement of
Theorem A, for � = 3, the interior of the triangle P3 consists of regular points only. By the
second statement of Theorem A, for � = 2m even, the interior of P2m = {2m} consists of
singular points only. In contrast, for � = 2m + 1 odd, in Sect. 2 we will show that the regular
set of P2m+1 = {2m + 1} is the interior of the star-polygon { 2m+1

m }. Figure 1 depicts the first
six cases. (The shaded regions correspond to the singular sets.) It is interesting to note that
the ratio of the areas of { 2m+1

m } and {2m + 1} tends to 2/3 as m → ∞ whereas the limiting
polygon is a disk with no regular points. More specifically, in each polygon P2m+1 the open
central disk D of radius 1/3 is contained in the regular set R, whereas in the limiting disk
each point of D becomes singular.

Although natural, the following conjecture seems much more difficult.

Conjecture 2 A compact convex body with all interior points singular is centrally symmetric.

The last statement of Theorem A is a much simplified case of a more general result that
gives an insight as well as a variety of examples to the structure of the set of regular points.

Theorem B Let L ⊂ Rn be a compact convex body obtained from a centrally symmetric
compact convex body L0 ⊂ Rn by truncation with an affine hyperplane K ⊂ Rn. Assume
that the center of symmetry O0 of L0 is contained in the interior of L. Let F = K ∩ L0, and
F ′ the set of boundary points of L away from F at which a supporting hyperplane passes
through parallel to K. Then every interior point of L away from the convex hull [F, F ′] is
singular.

In many applications (for example, if L0 is strictly convex), F ′ reduces to a point. In this
case, Theorem B asserts that the set of regular points R is contained in the interior of a cone
whose base is the slice F cut out from L0 by the truncating hyperplane K.
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As the example above shows, the interior of the convex hull [F ′, F ′] is not necessarily
contained in R, so that the converse of Theorem B is false. For n = 2, a partial converse is
as follows:

Theorem C Let L ⊂ R2 be a compact convex body with a maximal line segment F =
[C0, C1] on the boundary of L. Assume that the set F ′ defined in Theorem B consists of a
single point C0. Then the set

T = {O ∈ int [C0, C1, C2] | �(C0, O) ≤ max(�(C1, O),�(C2, O))}
is contained in the regular set R.

Remark The set T has nonempty interior. Indeed, if M1 ∈ [C0, C1] and M2 ∈ [C0, C2] are
the midpoints of the respective line segments then

[C0, M1, M2] ∩ int [C0, C1, C2] ⊂ T .

In addition to the behavior of points with regard to the infimum in (1), it is equally inter-
esting to study the properties of σ(L, .) as a function of the interior point O. In [7] we proved
that σ(L, .) is continuous, and

lim
d(O,∂L)→0

σ(L, O) = 1. (7)

The latter implies that σ(L, .) extends continuously (to 1) to the boundary of L.
In [7] we also proved that σ(L, .) is concave on the regular set R. Using this, and a detailed
study of this function at singular points, we also showed that, for n = 2, σ(L, .) is a concave
on the entire interior of L. In contrast, in [8] we constructed a four-dimensional cone such that
near the base σ(L, .) was not concave. Although concavity still holds for three-dimensional
cones, the question remained unsettled in dimension 3.

The last result of this paper resolves this problem negatively in any dimension ≥ 3. In fact,
for centrally symmetric compact convex bodies the situation is much simpler. For example,
as the theorem below shows, for the n-dimensional cube, n ≥ 3, σ(L, .) is not concave.

Theorem D Let L ⊂ Rn be a centrally symmetric compact convex body with O0 the center
of symmetry. The measure of symmetry σ(L, .) attains its unique absolute maximum at O0. If
σ(L, .) is a concave function then it is linear on all line segments with O0 as one end-point.
In particular, if n ≥ 3 and L contains a codimension one simplicial intersection then σ(L, .)

is not concave.

2 Proofs

Proof of Theorem A By [7], we need only to prove the last statement: If L is centrally sym-
metric then every interior point of L is singular.

Let O0 be the center of symmetry for L. Then O0 is an interior point of L and the distortion
�(., O0) is identically one. Clearly, any configuration in C(L, O0) is minimal, and O0 is a
singular point.

Let O be another interior point, O �= O0, and assume that O is regular. In what fol-
lows, the opposite of a boundary point C with respect to O will be denoted by Co. Let
{C0, . . . , Cn} ∈ C(L, O) be a minimal configuration for σ(L, O). By regularity, [C0, . . . , Cn]
is an n-simplex with O in its interior. At each Ci , i = 0, . . . , n, the distortion �(., O) attains
a relative maximum. As noted above, the line segment [Ci , Co

i ] is an affine diameter. This
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means that there exist parallel supporting hyperplanes Hi and Ho
i passing through Ci and

Co
i , respectively.

Let A ∈ ∂L be the opposite of O with respect to O0. We claim that [A, Ci ] ⊂ ∂L, provided
that Ci /∈ 〈O, O0〉.

For simplicity, we suppress the subscript, assume that �(., O) attains a local maximum at
a point C /∈ 〈O, O0〉 of a minimal configuration, and the affine diameter [C, Co] has parallel
supporting hyperplanes H and Ho at the endpoints. Let Co

0 ∈ ∂L be the opposite of C with
respect to O0. By central symmetry at O0, the hyperplane parallel to H and passing through
Co

0 must support L0. Hence, it must coincide with Ho. We obtain that [Co, Co
0 ] ⊂ ∂L. We

now define a sequence of points {A j } j≥1 ⊂ ∂L as follows. Let A1 be the opposite of Co

with respect to O0. With A j defined, we let A j+1 be the opposite of Ao
j with respect to O0.

We now claim that [A j , C] ⊂ ∂L, j ≥ 1. First, since [Co, Co
0 ] is on the boundary, taking

antipodals with respect to O0, symmetry implies that [A1, C] ⊂ ∂L. Proceeding inductively,
assume that, for some j ≥ 1, the line segment [A j , C] is on the boundary of L. Consider a
point C ′ moving continuously from C to A j along [A j , C]. Since H and Ho are parallel, we
have

�(C ′, O) ≥ �(C, O). (8)

Hence, for every specific C ′, we can replace C by C ′ in the configuration {C0, . . . , Cn}
as long as the condition O ∈ [C0, . . . , Cn] stays intact. In this case, by minimality, we also
have �(C ′, O) = �(C, O). We now observe that this replacement does keep the condition
O ∈ [C0, . . . , Cn] intact for any C ′ since otherwise we would get a minimizing configuration
with O on the boundary of its convex hull, contradicting to the regularity of O. We obtain
that the distortion �(., O) is constant along [A j , C], or equivalently, [Ao

j , Co] is parallel to
[A j , C]. This means that [Ao

j , Co] is contained in Ho, therefore lies on the boundary of L.
Reflecting [Ao

j , Co] to the center of symmetry O0, we see that [A j+1, A1] ⊂ H is also on
the boundary of L. Since the entire construction takes place in the plane 〈O, O0, C〉, we see
that C, A1, A j+1 are collinear and [A j+1, C] ⊂ ∂L. The claim follows.

The sequence {A j } j≥1 converges to A. (In fact, as elementary computation shows, the
distance between A j and A is geometric.) As a byproduct, we also see that 〈O, O0〉 cannot
be parallel to H. Taking the limit, we obtain that [A, C] is on the boundary of L.

As in the proof, we can replace C by A in the minimal configuration as long as C /∈
〈O, O0〉.

Since [C0, . . . , Cn] is a simplex, there must be at least two points in the configuration
away from the line 〈O, O0〉. When we replace these two points with A we obtain a minimal
configuration whose convex hull is not a simplex. This contradicts to regularity of O. Theo-
rem A follows. �
Proof of Theorem B We will use the notations introduced in Theorem B. In particular, L is
truncated from a centrally symmetric L0 via truncation along a hyperplane K. Without loss
of generality, we may assume that the truncation is proper in the sense that L �= L0, or
equivalently, the relative interior of F (the interior of L0 intersected with K) is nonempty. (If
the truncation is not proper then we land in the last statement of Theorem A already proved.)

Before the proof we make some preparations.
First, we observe that

O0 ∈ [F, F ′]. (9)

Indeed, consider L0 and K. By symmetry of L0, the center O0 is the midpoint of an affine
diameter of L0 with supporting hyperplanes passing through its endpoints both parallel to K.
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On the one hand, this affine diameter has an endpoint in F ′. On the other hand, it intersects
K and the intersection point must be in F . Thus, (9) follows.

We now let O ∈ int L\[F, F ′]. By (9), O �= O0.
Second, we consider a boundary point C ∈ ∂L at which �L(., O) assumes a local maxi-

mum. We claim that

Co ∈ F ⇒ C ∈ F ′, (10)

where (as in the previous proof) Co is the opposite of C with respect to O.
If Co is in the relative interior of F then the only supporting hyperplane at Co to L is

K, and, since [C, Co] is an affine diameter, the hyperplane passing through C and parallel
to K must also support L. Thus, C ∈ F ′. Assume now that Co is on the relative boundary
of F , therefore also on ∂L0. Let K′ be the hyperplane passing through C and parallel to K.
As before, we need to show that K′ supports L. Since [C, Co] is an affine diameter, there
exist parallel supporting hyperplanes H and Ho passing through C and Co, respectively. We
may assume that H �= K′ (since otherwise we are done). Since H and K′ meet at C they
also meet at a codimension two affine subspace. The same holds for the pair Ho and K. We
know that H, Ho and K support L, and need to show that K′ also supports L. Consider an
oriented plane τ that contains [C, Co] and intersects H and K′ transversally. Let α = ατ (C)

and α′ = α′
τ (C) be the two asymptotic angles of the boundary of L ∩ τ at C (as defined in

Sect. 7 of [7]). Similarly, let αo and α′o be the asymptotic angles at Co. Since �L∩τ (., O)

has a local maximum at C , by [7] (Corollary 1 in Sect. 7), we have α ≤ αo and α′ ≤ α′o.
Since Ho ∩ τ and K ∩ τ support L ∩ τ at Co, the angular sector of this intersecting pair of
supporting lines that contains C also contains the entire L∩ τ . The angle comparisons above
show that the corresponding parallel angular sector formed by H ∩ τ and K′ ∩ τ must also
contain the entire L ∩ τ . Hence, K′ ∩ τ supports L ∩ τ . Since τ was (generically) arbitrary,
we obtain that K′ supports L at C . Thus, C ∈ F ′.

Third, let A be as in the previous proof, that is, the unique intersection of the ray emanating
from O and passing through O0 with the boundary of L. Assume that Ao /∈ F ∪ F ′. We
need to perform a technical step that will make sure that if a simplicial minimal configuration
point happens to be Ao then it can be moved away from Ao. In fact, we claim that if �(., O)

assumes a local maximum at Ao then it is locally constant near Ao.
To prove this, we first observe that, by the previous step (applied to C = Ao), we have

A /∈ F . Thus the affine diameter [A, Ao] is away from K. We can now disregard K and
consider [A, Ao] in the centrally symmetric L0, with the note that the distortion �L0(., O)

also assumes a local maximum at Ao.
We now need the simple fact that, for L0, absolute maximum of the distortion with respect

to O occurs at A (and hence absolute minimum of the distortion occurs at Ao). A quick proof
of this is as follows. Let C be any boundary point away from 〈O, Oo〉. Let A1 be the opposite
of Co with respect to O0. By central symmetry with respect to O0, the lines 〈A, A1〉 and
〈Ao, Co〉 are parallel. Let C ′ be the unique intersection point of 〈A, A1〉 and 〈C, Co〉. Then
O splits the segment [C ′, Co] in the ratio �(A, O). By convexity of L, C is contained in the
line segment [O, C ′]. Therefore, we have

�(A, O) ≥ �(C, O)

and the claim follows.
We now return to the main line and recall that at Ao the distortion �L0(., O) assumes a

local maximum. Since, at the same time, it is also an absolute minimum, the distortion has to
be constant near Ao. Thus, if C ′ ∈ ∂L0\〈O, O0〉 is close to Ao then, being locally constant,
�L0(., O) also assumes a local maximum at C ′ with �(Ao, O) = �(C, O).
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After these preparations we now turn to the proof of Theorem B. Assume, on the con-
trary, that O is a regular point of L. Let [C0, . . . , Cn] be a simplicial minimal configuration
for σ(L, O). We will prove now that each configuration point can be replaced by another
which is either equal to A or is contained in F ∪ F ′. Our argument here mimics the proof of
Theorem A above. Let C = Ci be a configuration point. As before, being a point in a sim-
plicial minimal configuration for the regular point O, �(., O) assumes a local maximum at
C . We may assume that C /∈ F ∪ F ′ and C �= A. If C = Ao then, by what we just proved,
we can move C away from Ao to a nearby point. Thus, retaining C /∈ F ∪ F ′, we may
assume that C /∈ 〈O, O0〉. This is exactly the situation in the proof of Theorem A. Repeating
the argument there (working in L0), the only problem is when the moving point C ′ or its
opposite C ′o

0 (with respect to L0) leaves L. When this happens, however, then C ′ first hits F
and we are done, or C ′o

0 leaves F in which case (8) still holds in L0 and even more so in L.
Summarizing, C can be moved to A or to F ∪ F ′.

Finally, we show that the convex hull of F ∪ F ′ and the point A does not contain O. With
this we will get a contradiction to {C0, . . . , Cn} being a configuration for σ(L, O), and the
proof of Theorem B will be complete.

Recall that O �= O0, O /∈ [F, F ′], O0 ∈ [F, F ′], and O0 ∈ [A, O]. Assume, on the
contrary, that O ∈ [F, F ′, A]. This means that

O = αA + µF, α + µ = 1, 0 < α,µ < 1, F ∈ [F, F ′]. (11)

Writing O0 = α0 A + λO with α0 + λ = 1 and 0 < α0, λ < 1, after eliminating A, (11)
rewrites as

O = α

α0 + λα
O0 + µα0

α0 + λα
F.

For the coefficients on the right-hand side, we have

α

α0 + λα
+ µα0

α0 + λα
= α + (1 − α)α0

α0 + (1 − α0)α
= 1.

Since O0 ∈ [F, F ′], we obtain O ∈ [F, F ′]. This is a contradiction. �
Proof of Theorem C Let L ⊂ R2 be as in Theorem C and O ∈ T . We first claim that

max[C1,C2] �(., O) = max(�(C1, O),�(C2, O)).

Let C ′
1 ∈ [Co

0 , C1]. Then, with obvious notations, we have

�(C ′
1, O) ≤ �[C0,C1,Co

0 ,Co
1 ](C ′

1, O) ≤ �(C1, O),

where the second inequality is because at C0 there is a supporting line to L parallel to (C1, C2).
Similarly, for C ′

2 ∈ [Co
0 , C2], we have �(C ′

2, O) ≤ �(C2, O). The claim follows.
Let G be the opposite of [C1, C2] (with respect to O ∈ T ). Then G is a (connected)

continuous curve on the boundary of L with endpoints Co
1 and Co

2 .
Once again the existence of a supporting line to L at C0 parallel to (C1, C2) implies

max
G

�(., O) = �(C0, O).

By the definition of T , we thus have

max
G

�(., O) ≤ max(�(C1, O),�(C2, O)).
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These observations imply that the maximum of �(., O) is attained on one of the two con-
nected components of ∂L\([C1, C2] ∪ G).

Without loss of generality, we may assume that the maximum is attained at a point C̄ which
belongs to the component with endpoints C1 and Co

2 . Since O ∈ [C0, C1, C2] and (automat-
ically) O ∈ [C0, C2, Co

2 ], by convexity, we also have O ∈ [C0, C̄, C2]. Thus, {C0, C̄, C2} is
a configuration. We thus have

σ(L, O) ≤ 1

1 + �(C0, O)
+ 1

1 + �(C2, O)
+ 1

1 + max∂L �(., O)
.

To prove that O is a regular point, by the characterization of regular points using (6), we need
to show that

1

1 + �(C0, O)
+ 1

1 + �(C2, O)
< 1 (12)

(Note that (4) implies σ1(L, O) = 1.) Rewriting (12), we have

1

1 + �(C2, O)
<

1

1 + �(Co
0 , O)

.

By the existence of a supporting line to L at C0 parallel to (C1, C2), non-strict inequality cer-
tainly holds. Finally, if �(C2, O) = �(Co

0 ) then (C0, Co
2 ) is parallel to (C2, Co

0 ) = (C1, C2).
This means that C0 is not unique in F ′. This contradicts to our assumption. Theorem C fol-
lows.

We now let P ⊂ R2 be a convex plane polygon and O a regular point in the interior
of P . Then the convex hull of a minimal configuration is a triangle with O in its interior.
Since �(., O) assumes local maxima at the configuration points, we may assume that these
configuration points are vertices of P . (This follows easily from regularity, see also [9].) In
what follows we will always assume that this is the case. As noted in Sect. 1, the three con-
figuration points connected with their antipodals form three affine diameters passing through
O. Finally, as noted above, O is regular if and only if

σ(P, O) < 1 + 1

1 + max �(., O)
. (13)

Here the maximum is taken either on the entire boundary or on the set of vertices of P . (See
the corollary in Sect. 7 of [6].)
Let V0, V1, V2, V3 be four consecutive vertices on the boundary of P . Let W be the inter-
section of [V0, V2] and [V1, V3]. We first make the following observation: Let α1 and α2 be
the (interior) angles of P at V1 and V2, respectively. If α1 + α2 > π then the interior of the
triangle [V1, V2, W ] is contained in the singular set of P .

Indeed, if O were a regular point in the interior of [V1, V2, W ] then a minimizing config-
uration would contain either V1 or V2. Clearly, V o

1 ∈ [V2, V3] and V o
2 ∈ [V0, V1]. Due to the

angle condition, however, [V1, V o
1 ] and [V2, V o

2 ] are not affine diameters.
As an immediate application of this observation, we can determine the set of regular points

for a quadrilateral. Figure 2 depicts the three possible cases (with the singular sets shaded).
The case when P is a parallelogram is covered by Theorem A.
If P is a trapezoid (but not a parallelogram), then the fact that the shaded region in the

middle of Fig. 2 is contained in the singular set follows from Theorem B since P can be
considered as a truncated parallelogram by each of the non-parallel sides. Let the consecu-
tive vertices of P be denoted by V0, V1, V2, V3 with [V1, V2] corresponding to the shorter
parallel side, and let W = [V0, V2] ∩ [V1, V3]. Assume that O ∈ [V0, W, V3] (not in the
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Fig. 2 Regular and singular sets in quadrilaterals

shaded region). We must show that O is regular. Indeed, a minimizing configuration must
contain V0 and V3 and either of the top vertices V1 or V2. (Note that �(V1, O) = �(V2, O).)
Now a simple case-by-case check (depending on at which vertex does �(., O) assume its
maximum) gives (13).

Finally, let P be a general quadrilateral whose opposite sides are not parallel. We view
P as the intersection of two angular domains. The fact that the shaded regions in Fig. 2
are contained in the singular set follows by the observation above (applied twice). That the
non-shaded region consists of regular points follows by a case-by-case verification.

We now turn to the example in Sect. 1. For simplicity, we may assume that P2m+1 =
{2m + 1} has vertices Vk = (cos(2πk/(2m + 1)), sin(2πk/(2m + 1))), k = 0, . . . , 2m. Let
O be any interior point of P2m+1 and assume that, for some j = 0, . . . , 2m, [Vj , V o

j ] is an
affine diameter (passing through O). Comparing supporting lines, we see that V o

j must be in
the opposite side to Vj , that is, we have V o

j ∈ [Vj+m, Vj+m+1]. Thus, O must be contained
in the triangle [Vj , Vj+m, Vj+m+1]. The intersection of any three of these triangles (corre-
sponding to three different indices j = 0, . . . , 2m) is contained in the star-polygon { 2m+1

m }.
Thus, any interior point O of P2m+1 complementary to this star-polygon must be singular.

It remains to show that the interior points of the star-polygon are regular. Let

Xk = [Vk, Vm+k] ∩ [Vk+1, Vm+k+1],
where the indices are counted modulo 2m + 1. We now let C0 = Vk , C1 = Vm+k and
C2 = Vm+k+1 and apply Theorem C. We obtain that

T = [Vk, Xk, 0] ∪ [Vk, Xm+k, 0].
The union of these for k = 0, . . . , 2m is the star polygon { 2m+1

m } and we are done.
To calculate the area A2m+1 of the singular set, the complement of the star-polygon { 2m+1

m }
in P2m+1, is elementary. A simple computation gives

A2m+1 = (2m + 1) sin

(
2m

2m + 1
π

) ⎛

⎝ 1

2 cos
(

2m
2m+1π

)
− 1

− cos

(
2m

2m + 1
π

)⎞

⎠ .

The limit as m → ∞ is clearly 2π/3.
The minimum distance of the singular set from the center is

1

1 − 2 cos
(

2m
2m+1π

) .

As m → ∞, this decreases to 1/3. Thus, the regular set of P2m+1 contains the open disk with
center at the origin and radius 1/3. In the limit, each point of this disk will turn singular. �
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Proof of Theorem D We now return to the centrally symmetric compact convex body L ⊂
Rn . As usual, let O �= O0 be an interior point, and A its opposite. Note first that during the
course of proving Theorem B we showed that �(., O) assumes its absolute maximum at A.
Writing O as Oλ = (1 − λ)O0 + λO1, where O1 = Ao ∈ ∂L and 0 ≤ λ < 1, we thus we
have

1

1 + max∂L �(., Oλ)
= 1 − λ

2
.

Consider the configuration {A, . . . , A, Ao}, where A is repeated n-times. Evaluating the sum
in (1) on this configuration, we obtain

σ(L, Oλ) ≤ 1 + (n − 1)
1 − λ

2
. (14)

On the other hand, equality holds for λ = 0 (by central symmetry with respect to O0), and
also for λ = 1 in the limiting sense by (7).

Assume now that σ(L, .) is concave. Since it is concave on each line segment, equality
must hold in (14) and the function λ �→ σ(L, Oλ) must be linear. Clearly, the configuration
{A, . . . , A, Ao} is minimal.

Assume, in addition, that L has a codimension one simplicial intersection across Oλ. By
Theorem A, Oλ is a singular point so that equality holds in (6). We thus have

σ(L, Oλ) = σn−1(L, Oλ) + 1

1 + max∂L �(., Oλ)
= σn−1(L, Oλ) + 1 − λ

2
. (15)

Moreover, just like in (3), 1 ≤ σn−1 [6]. In our situation, equality holds since there is a
simplicial intersection across Oλ. We obtain that

σ(L, Oλ) = 1 + 1 − λ

2
.

Comparing this with (14) (with the equality sign), we obtain n = 2. Thus, for n ≥ 3, σ(L, .)

cannot be concave. Theorem C follows. �
Example Let L ⊂ Rn be an n-dimensional cube. Let O0 be the center of symmetry and O1 a
vertex of L. With the notations above, we see that for 1 − 2/n ≤ λ < 1, the (parallel) vertex
figures at O1 provide (n − 1)-dimensional simplicial intersections of L passing through Oλ.
Thus, σ(L, Oλ) = (3 − λ)/2 is a linear function for 1 − 2/n ≤ λ ≤ 1. On the other hand,
σ(L, O0) = (n + 1)/2. In particular, σ(L, .) cannot be concave.
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