ORIGINAL PAPER

On the structure of convex sets with symmetries

Gabor Toth

Received: 16 August 2008 / Accepted: 3 April 2009 / Published online: 18 April 2009 © Springer Science+Business Media B.V. 2009

Abstract Asymmetry of a compact convex body $\mathcal{L} \subset \mathbb{R}^n$ viewed from an interior point \mathcal{O} can be measured by considering how far \mathcal{L} is from its inscribed simplices that contain \mathcal{O} . This leads to a measure of symmetry $\sigma(\mathcal{L}, \mathcal{O})$. The interior of \mathcal{L} naturally splits into regular and singular sets, where the singular set consists of points \mathcal{O} with largest possible $\sigma(\mathcal{L}, \mathcal{O})$. In general, to calculate the singular set of a compact convex body is difficult. In this paper we determine a large subset of the singular set in centrally symmetric compact convex bodies truncated by hyperplane cuts. As a function of the interior point $\mathcal{O}, \sigma(\mathcal{L}, .)$ is concave on the regular set. It is natural to ask to what extent does concavity of $\sigma(\mathcal{L}, .)$ extend to the whole (interior) of \mathcal{L} . It has been shown earlier that in dimension two, $\sigma(\mathcal{L}, .)$ is concave on \mathcal{L} . In this paper, we show that in dimensions greater than two, for a centrally symmetric compact convex body $\mathcal{L}, \sigma(\mathcal{L}, .)$ is a non-concave function provided that \mathcal{L} has a codimension one simplicial intersection. This is the case, for example, for the *n*-dimensional cube, $n \geq 3$. This non-concavity result relies on the fact that a centrally symmetric compact convex body has no regular points.

Keywords Convex set · Distortion

Mathematics Subject Classification (2000) 52A05 · 52A38 · 52B11

1 Introduction and statement of results

In this paper, we use basic concepts and results in the theory of convex sets and functions [2,5]. Let \mathcal{E} be a Euclidean vector space of dimension *n*. (As usual, we take $\mathcal{E} = \mathbb{R}^n$.) For an arbitrary subset \mathcal{K} of \mathcal{E} we define $[\mathcal{K}]$ and $\langle \mathcal{K} \rangle$ the *convex hull* and the *affine span* of \mathcal{K} . For \mathcal{K} finite, say $\mathcal{K} = \{B_0, \ldots, B_m\}, [\mathcal{K}]$ is a convex *polytope*. This polytope is an *m-simplex* if B_0, \ldots, B_m are *affinely independent*, or equivalently, if dim $[\mathcal{K}] = \dim \langle \mathcal{K} \rangle = m$. A convex

G. Toth (🖂)

Department of Mathematics, Rutgers University, Camden, NJ 08102, USA e-mail: gtoth@crab.rutgers.edu

set $\mathcal{L} \subset \mathcal{E}$ with nonempty interior is called a *convex body*. Every convex set is a convex body in its affine span.

Let $\mathcal{L} \subset \mathbf{R}^n$ be a compact convex body and \mathcal{O} an interior point of \mathcal{L} . Given $C \in \mathcal{L}, C \neq \mathcal{O}$, we define the *opposite* C^o of C (with respect to \mathcal{O}) to be the unique boundary point of \mathcal{L} with \mathcal{O} in the interior of the line segment $[C, C^o]$. For C a boundary point, the ratio $\Lambda_{\mathcal{L}}(C, \mathcal{O}) = \Lambda(C, \mathcal{O})$ of lengths that \mathcal{O} splits $[C, C^o]$ is called the *distortion* of C with respect to \mathcal{O} . A *configuration* of \mathcal{L} (with respect to \mathcal{O}) is a multi-set of boundary points $\{C_0, \ldots, C_n\}$ (with possible repetitions) such that \mathcal{O} is in the convex hull $[C_0, \ldots, C_n]$. We let $\mathcal{C}(\mathcal{L}, \mathcal{O})$ denote the set of all configurations of \mathcal{L} . With this, we define

$$\sigma(\mathcal{L}, \mathcal{O}) = \inf_{\{C_0, \dots, C_n\} \in \mathcal{C}(\mathcal{L}, \mathcal{O})} \sum_{i=0}^n \frac{1}{1 + \Lambda(C_i, \mathcal{O})}.$$
 (1)

A configuration at which the infimum is attained is called *minimal*. Since \mathcal{L} is compact, minimal configurations exist since a minimizing sequence of configurations subconverges in $\mathcal{C}(\mathcal{L}, \mathcal{O})$. Minimal configurations are by no means unique.

A configuration $\{C_0, \ldots, C_n\} \in C(\mathcal{L}, \mathcal{O})$ is called *simplicial* if $[C_0, \ldots, C_n]$ is a simplex with \mathcal{O} in its interior. The set of all simplicial configurations is denoted by $S(\mathcal{L}, \mathcal{O})$. Since $S(\mathcal{L}, \mathcal{O}) \subset C(\mathcal{L}, \mathcal{O})$ is dense (in the obvious topology), the infimum in (1) can be restricted to $S(\mathcal{L}, \mathcal{O})$.

Let $\{C_0, \ldots, C_n\}$ be a simplicial configuration. We then have

$$1 = \sum_{i=0}^{n} \frac{1}{1 + \Lambda_{[C_0, \dots, C_n]}(C_i, \mathcal{O})} \le \sum_{i=0}^{n} \frac{1}{1 + \Lambda_{\mathcal{L}}(C_i, \mathcal{O})},$$
(2)

where the equality follows by an easy exercise in the use of projectivities from the vertices C_i , i = 0, ..., n, of the simplex $[C_0, ..., C_n]$, and the inequality follows from the definition of the distortion. We obtain the lower bound

$$1 \le \sigma(\mathcal{L}, \mathcal{O}). \tag{3}$$

It is clear from (2) via convexity that the lower bound is attained if and only if \mathcal{L} is a simplex. For any $C \in \partial \mathcal{L}$, we have

$$\frac{1}{1+\Lambda(C,\mathcal{O})} + \frac{1}{1+\Lambda(C^o,\mathcal{O})} = 1.$$
(4)

Applying this to the elements of a configuration and taking the corresponding infima, we obtain the upper bound

$$\sigma(\mathcal{L},\mathcal{O}) \le \frac{n+1}{2}.$$
(5)

For $n \ge 2$, it is not hard to see that the upper bound is attained if and only if \mathcal{L} is centrally symmetric with respect to \mathcal{O} . (The 'if' part is obvious; for the 'only if' part, see [6].)

 $\sigma(\mathcal{L}, \mathcal{O})$ is invariant under similarity transformations, and is a continuous function on the space of compact convex bodies with specified interior point. Because of these properties and (3) and (5), $\sigma(\mathcal{L}, \mathcal{O})$ is a *measure of symmetry* on convex bodies in the sense of Grünbaum [1].

A minimizing sequence in $S(\mathcal{L}, \mathcal{O})$, does not necessarily subconverge in $S(\mathcal{L}, \mathcal{O})$. If it does not, we call \mathcal{O} a *singular point*. The set of singular points is called the *singular set* of \mathcal{L} . In the opposite case, that is, if *every* minimal configuration is simplicial, we call \mathcal{O} a *regular*

point. The set of regular points \mathcal{R} is called the *regular set* of \mathcal{L} . It is easy to see that we always have

$$\sigma(\mathcal{L}, \mathcal{O}) \le \sigma_{n-1}(\mathcal{L}, \mathcal{O}) + \frac{1}{1 + \max_{\partial \mathcal{L}} \Lambda(., \mathcal{O})},\tag{6}$$

where σ_{n-1} is defined as in (1) with *n* replaced by n-1. Now, according to a result in [6], \mathcal{O} is a regular point if and only if sharp inequality holds in (6). In particular, the regular set is open (since σ and σ_{n-1} are continuous in \mathcal{O} [7]), therefore, the singular set is relatively closed in \mathcal{L} . By definition, the convex hull $[C_0, \ldots, C_n]$ of a minimal configuration $\{C_0, \ldots, C_n\}$ for a regular point is a simplex with \mathcal{O} contained in its interior. In view of (1), the distortion function $\Lambda(., \mathcal{O})$ has to assume a local maximum at each vertex C_i , $i = 0, \ldots, n$. In general, if $\Lambda(., \mathcal{O})$ assumes a local maximum at a boundary point C then $[C, C^o]$ is an *affine diameter* [1,3,4] in the sense that at the endpoints C and C^o there are *parallel* supporting hyperplanes to \mathcal{L} . (This follows from the local study of extrema of Λ in Sect. 7 of [7].) The following geometric picture emerges: Each regular point is the common intersection of n + 1 (affinely independent) affine diameters.

Our first result asserts that the two extreme values of $\sigma(\mathcal{L}, .)$ in (3) and (5) correspond to the entire interior of \mathcal{L} consisting of regular or singular points.

Theorem A Let $\mathcal{L} \subset \mathbb{R}^n$ be a compact convex body and \mathcal{O} and interior point of \mathcal{L} . If $\sigma(\mathcal{L}, \mathcal{O}) = 1$ then (\mathcal{L} is a simplex and) the interior of \mathcal{L} consists of regular points only. If $\sigma(\mathcal{L}, \mathcal{O}) = (n+1)/2$ then (\mathcal{L} is centrally symmetric with respect to \mathcal{O} and) the entire interior of \mathcal{L} consists of singular points only.

It seems reasonable to conjecture that the converse of both statements in Theorem A are true.

Conjecture 1 A compact convex body with all interior points regular is a simplex. In fact, in [9], we showed that this conjecture is true under the additional assumption that \mathcal{L} has at least n isolated extremum points on its boundary.

In view of this, to remove this assumption, one needs to show that every extremum point is isolated. (By a well-known theorem of Minkowski (see [5]) the convex hull of the extremum points is the entire convex body. Therefore, there must be at least n + 1 extremum points.)

Another observation related to Conjecture 1 is the following. Let \mathcal{L} be a compact convex body with an isolated extremum point C on the boundary. If the interior of \mathcal{L} consists of regular points only then, away from C, the boundary $\partial \mathcal{L}$ is not smooth. To give a quick proof of this, let \mathcal{B} be the set of boundary points $B \neq C$ at which a supporting hyperplane is parallel to a supporting hyperplane at C. Assuming that $\partial \mathcal{L}$ is smooth away from C, the local conical structure of \mathcal{L} at C shows that \mathcal{B} has a nonempty relative interior \mathcal{B}_0 in $\partial \mathcal{L}$, and the convex hull $[\mathcal{B}_0]$ intersects the interior of \mathcal{L} . (See [9].) Each interior point \mathcal{O} in this intersection is a singular point. Indeed, a minimizing simplicial configuration must have a vertex C_0 contained in \mathcal{B}_0 . Since C_0 is an end point of an affine diameter that passes through \mathcal{O} , the antipodal of C_0 must be C. Since C_0 is a smooth point (and C is not), the distortion function cannot assume a local maximum at C_0 .

It is also tempting to consider a limiting argument and try to derive a statement for the existence of singular points for compact convex bodies with smooth boundary. Being a measure of symmetry, $\sigma(\mathcal{L}, \mathcal{O})$ continuously depends on the boundary $\partial \mathcal{L}$ and the interior point \mathcal{O} . In a convergent sequence of compact convex bodies, the regular set, however, may display discontinuous behavior. The following example shows this.

Fig. 1 Regular and singular sets in odd sided regular polygons

Example Let $\mathcal{P}_{\ell} = \{\ell\} \subset \mathbb{R}^2, \ell \geq 3$, be a regular ℓ -sided polygon. By the first statement of Theorem A, for $\ell = 3$, the interior of the triangle \mathcal{P}_3 consists of regular points only. By the second statement of Theorem A, for $\ell = 2m$ even, the interior of $\mathcal{P}_{2m} = \{2m\}$ consists of singular points only. In contrast, for $\ell = 2m + 1$ odd, in Sect. 2 we will show that the regular set of $\mathcal{P}_{2m+1} = \{2m+1\}$ is the interior of the star-polygon $\{\frac{2m+1}{m}\}$. Figure 1 depicts the first six cases. (The shaded regions correspond to the singular sets.) It is interesting to note that the ratio of the areas of $\{\frac{2m+1}{m}\}$ and $\{2m+1\}$ tends to 2/3 as $m \to \infty$ whereas the limiting polygon is a disk with no regular points. More specifically, in each polygon \mathcal{P}_{2m+1} the open central disk D of radius 1/3 is contained in the regular set \mathcal{R} , whereas in the limiting disk each point of D becomes singular.

Although natural, the following conjecture seems much more difficult.

Conjecture 2 A compact convex body with all interior points singular is centrally symmetric.

The last statement of Theorem A is a much simplified case of a more general result that gives an insight as well as a variety of examples to the structure of the set of regular points.

Theorem B Let $\mathcal{L} \subset \mathbb{R}^n$ be a compact convex body obtained from a centrally symmetric compact convex body $\mathcal{L}_0 \subset \mathbb{R}^n$ by truncation with an affine hyperplane $\mathcal{K} \subset \mathbb{R}^n$. Assume that the center of symmetry \mathcal{O}_0 of \mathcal{L}_0 is contained in the interior of \mathcal{L} . Let $\mathcal{F} = \mathcal{K} \cap \mathcal{L}_0$, and \mathcal{F}' the set of boundary points of \mathcal{L} away from \mathcal{F} at which a supporting hyperplane passes through parallel to \mathcal{K} . Then every interior point of \mathcal{L} away from the convex hull $[\mathcal{F}, \mathcal{F}']$ is singular.

In many applications (for example, if \mathcal{L}_0 is strictly convex), \mathcal{F}' reduces to a point. In this case, Theorem B asserts that the set of regular points \mathcal{R} is contained in the interior of a cone whose base is the slice \mathcal{F} cut out from \mathcal{L}_0 by the truncating hyperplane \mathcal{K} .

As the example above shows, the interior of the convex hull $[\mathcal{F}', \mathcal{F}']$ is not necessarily contained in \mathcal{R} , so that the converse of Theorem B is false. For n = 2, a partial converse is as follows:

Theorem C Let $\mathcal{L} \subset \mathbf{R}^2$ be a compact convex body with a maximal line segment $\mathcal{F} = [C_0, C_1]$ on the boundary of \mathcal{L} . Assume that the set \mathcal{F}' defined in Theorem B consists of a single point C_0 . Then the set

$$\mathcal{T} = \{\mathcal{O} \in \operatorname{int} [C_0, C_1, C_2] \mid \Lambda(C_0, \mathcal{O}) \le \max(\Lambda(C_1, \mathcal{O}), \Lambda(C_2, \mathcal{O}))\}$$

is contained in the regular set \mathcal{R} .

Remark The set \mathcal{T} has nonempty interior. Indeed, if $M_1 \in [C_0, C_1]$ and $M_2 \in [C_0, C_2]$ are the midpoints of the respective line segments then

$$[C_0, M_1, M_2] \cap \text{ int } [C_0, C_1, C_2] \subset \mathcal{T}.$$

In addition to the behavior of points with regard to the infimum in (1), it is equally interesting to study the properties of $\sigma(\mathcal{L}, .)$ as a function of the interior point \mathcal{O} . In [7] we proved that $\sigma(\mathcal{L}, .)$ is continuous, and

$$\lim_{\mathcal{U}(\mathcal{O},\partial\mathcal{L})\to 0} \sigma(\mathcal{L},\mathcal{O}) = 1.$$
(7)

The latter implies that $\sigma(\mathcal{L}, .)$ extends continuously (to 1) to the boundary of \mathcal{L} .

In [7] we also proved that $\sigma(\mathcal{L}, .)$ is concave on the regular set \mathcal{R} . Using this, and a detailed study of this function at singular points, we also showed that, for n = 2, $\sigma(\mathcal{L}, .)$ is a concave on the *entire* interior of \mathcal{L} . In contrast, in [8] we constructed a four-dimensional cone such that near the base $\sigma(\mathcal{L}, .)$ was not concave. Although concavity still holds for three-dimensional cones, the question remained unsettled in dimension 3.

The last result of this paper resolves this problem negatively in any dimension ≥ 3 . In fact, for centrally symmetric compact convex bodies the situation is much simpler. For example, as the theorem below shows, for the *n*-dimensional cube, $n \geq 3$, $\sigma(\mathcal{L}, .)$ is not concave.

Theorem D Let $\mathcal{L} \subset \mathbb{R}^n$ be a centrally symmetric compact convex body with \mathcal{O}_0 the center of symmetry. The measure of symmetry $\sigma(\mathcal{L}, .)$ attains its unique absolute maximum at \mathcal{O}_0 . If $\sigma(\mathcal{L}, .)$ is a concave function then it is linear on all line segments with \mathcal{O}_0 as one end-point. In particular, if $n \geq 3$ and \mathcal{L} contains a codimension one simplicial intersection then $\sigma(\mathcal{L}, .)$ is not concave.

2 Proofs

Proof of Theorem A By [7], we need only to prove the last statement: If \mathcal{L} is centrally symmetric then every interior point of \mathcal{L} is singular.

Let \mathcal{O}_0 be the center of symmetry for \mathcal{L} . Then \mathcal{O}_0 is an interior point of \mathcal{L} and the distortion $\Lambda(., \mathcal{O}_0)$ is identically one. Clearly, any configuration in $\mathcal{C}(\mathcal{L}, \mathcal{O}_0)$ is minimal, and \mathcal{O}_0 is a singular point.

Let \mathcal{O} be another interior point, $\mathcal{O} \neq \mathcal{O}_0$, and assume that \mathcal{O} is regular. In what follows, the opposite of a boundary point C with respect to \mathcal{O} will be denoted by C^o . Let $\{C_0, \ldots, C_n\} \in \mathcal{C}(\mathcal{L}, \mathcal{O})$ be a minimal configuration for $\sigma(\mathcal{L}, \mathcal{O})$. By regularity, $[C_0, \ldots, C_n]$ is an *n*-simplex with \mathcal{O} in its interior. At each C_i , $i = 0, \ldots, n$, the distortion $\Lambda(., \mathcal{O})$ attains a relative maximum. As noted above, the line segment $[C_i, C_i^o]$ is an affine diameter. This

means that there exist parallel supporting hyperplanes \mathcal{H}_i and \mathcal{H}_i^o passing through C_i and C_i^o , respectively.

Let $A \in \partial \mathcal{L}$ be the opposite of \mathcal{O} with respect to \mathcal{O}_0 . We claim that $[A, C_i] \subset \partial \mathcal{L}$, provided that $C_i \notin \langle \mathcal{O}, \mathcal{O}_0 \rangle$.

For simplicity, we suppress the subscript, assume that $\Lambda(., \mathcal{O})$ attains a local maximum at a point $C \notin \langle \mathcal{O}, \mathcal{O}_0 \rangle$ of a minimal configuration, and the affine diameter $[C, C^o]$ has parallel supporting hyperplanes \mathcal{H} and \mathcal{H}^o at the endpoints. Let $C_0^o \in \partial \mathcal{L}$ be the opposite of C with respect to \mathcal{O}_0 . By central symmetry at \mathcal{O}_0 , the hyperplane parallel to \mathcal{H} and passing through C_0^o must support \mathcal{L}_0 . Hence, it must coincide with \mathcal{H}^o . We obtain that $[C^o, C_0^o] \subset \partial \mathcal{L}$. We now define a sequence of points $\{A_j\}_{j\geq 1} \subset \partial \mathcal{L}$ as follows. Let A_1 be the opposite of C^o with respect to \mathcal{O}_0 . With A_j defined, we let A_{j+1} be the opposite of A_j^o with respect to \mathcal{O}_0 .

We now claim that $[A_j, C] \subset \partial \mathcal{L}, j \geq 1$. First, since $[C^o, C_0^o]$ is on the boundary, taking antipodals with respect to \mathcal{O}_0 , symmetry implies that $[A_1, C] \subset \partial \mathcal{L}$. Proceeding inductively, assume that, for some $j \geq 1$, the line segment $[A_j, C]$ is on the boundary of \mathcal{L} . Consider a point C' moving continuously from C to A_j along $[A_j, C]$. Since \mathcal{H} and \mathcal{H}^o are parallel, we have

$$\Lambda(C',\mathcal{O}) \ge \Lambda(C,\mathcal{O}). \tag{8}$$

Hence, for every specific C', we can replace C by C' in the configuration $\{C_0, \ldots, C_n\}$ as long as the condition $\mathcal{O} \in [C_0, \ldots, C_n]$ stays intact. In this case, by minimality, we also have $\Lambda(C', \mathcal{O}) = \Lambda(C, \mathcal{O})$. We now observe that this replacement does keep the condition $\mathcal{O} \in [C_0, \ldots, C_n]$ intact for any C' since otherwise we would get a minimizing configuration with \mathcal{O} on the boundary of its convex hull, contradicting to the regularity of \mathcal{O} . We obtain that the distortion $\Lambda(., \mathcal{O})$ is constant along $[A_j, C]$, or equivalently, $[A_j^o, C^o]$ is parallel to $[A_j, C]$. This means that $[A_j^o, C^o]$ is contained in \mathcal{H}^o , therefore lies on the boundary of \mathcal{L} . Reflecting $[A_j^o, C^o]$ to the center of symmetry \mathcal{O}_0 , we see that $[A_{j+1}, A_1] \subset \mathcal{H}$ is also on the boundary of \mathcal{L} . Since the entire construction takes place in the plane $\langle \mathcal{O}, \mathcal{O}_0, C \rangle$, we see that C, A_1, A_{j+1} are collinear and $[A_{j+1}, C] \subset \partial \mathcal{L}$. The claim follows.

The sequence $\{A_j\}_{j\geq 1}$ converges to A. (In fact, as elementary computation shows, the distance between A_j and A is geometric.) As a byproduct, we also see that $\langle \mathcal{O}, \mathcal{O}_0 \rangle$ cannot be parallel to \mathcal{H} . Taking the limit, we obtain that [A, C] is on the boundary of \mathcal{L} .

As in the proof, we can replace C by A in the minimal configuration as long as $C \notin \langle \mathcal{O}, \mathcal{O}_0 \rangle$.

Since $[C_0, \ldots, C_n]$ is a simplex, there must be at least two points in the configuration away from the line $\langle \mathcal{O}, \mathcal{O}_0 \rangle$. When we replace these two points with *A* we obtain a minimal configuration whose convex hull is not a simplex. This contradicts to regularity of \mathcal{O} . Theorem A follows.

Proof of Theorem B We will use the notations introduced in Theorem B. In particular, \mathcal{L} is truncated from a centrally symmetric \mathcal{L}_0 via truncation along a hyperplane \mathcal{K} . Without loss of generality, we may assume that the truncation is *proper* in the sense that $\mathcal{L} \neq \mathcal{L}_0$, or equivalently, the relative interior of \mathcal{F} (the interior of \mathcal{L}_0 intersected with \mathcal{K}) is nonempty. (If the truncation is not proper then we land in the last statement of Theorem A already proved.)

Before the proof we make some preparations.

First, we observe that

$$\mathcal{O}_0 \in [\mathcal{F}, \mathcal{F}']. \tag{9}$$

Indeed, consider \mathcal{L}_0 and \mathcal{K} . By symmetry of \mathcal{L}_0 , the center \mathcal{O}_0 is the midpoint of an affine diameter of \mathcal{L}_0 with supporting hyperplanes passing through its endpoints both parallel to \mathcal{K} .

On the one hand, this affine diameter has an endpoint in \mathcal{F}' . On the other hand, it intersects \mathcal{K} and the intersection point must be in \mathcal{F} . Thus, (9) follows.

We now let $\mathcal{O} \in \operatorname{int} \mathcal{L} \setminus [\mathcal{F}, \mathcal{F}']$. By (9), $\mathcal{O} \neq \mathcal{O}_0$.

Second, we consider a boundary point $C \in \partial \mathcal{L}$ at which $\Lambda_{\mathcal{L}}(., \mathcal{O})$ assumes a local maximum. We claim that

$$C^{o} \in \mathcal{F} \Rightarrow C \in \mathcal{F}', \tag{10}$$

where (as in the previous proof) C^o is the opposite of C with respect to \mathcal{O} .

If C^o is in the relative interior of \mathcal{F} then the *only* supporting hyperplane at C^o to \mathcal{L} is \mathcal{K} , and, since $[C, C^o]$ is an affine diameter, the hyperplane passing through C and parallel to \mathcal{K} must also support \mathcal{L} . Thus, $C \in \mathcal{F}'$. Assume now that C^o is on the relative boundary of \mathcal{F} , therefore also on $\partial \mathcal{L}_0$. Let \mathcal{K}' be the hyperplane passing through C and parallel to \mathcal{K} . As before, we need to show that \mathcal{K}' supports \mathcal{L} . Since $[C, C^o]$ is an affine diameter, there exist parallel supporting hyperplanes \mathcal{H} and \mathcal{H}^{o} passing through C and C^o, respectively. We may assume that $\mathcal{H} \neq \mathcal{K}'$ (since otherwise we are done). Since \mathcal{H} and \mathcal{K}' meet at C they also meet at a codimension two affine subspace. The same holds for the pair \mathcal{H}^o and \mathcal{K} . We know that $\mathcal{H}, \mathcal{H}^o$ and \mathcal{K} support \mathcal{L} , and need to show that \mathcal{K}' also supports \mathcal{L} . Consider an oriented plane τ that contains $[C, C^o]$ and intersects \mathcal{H} and \mathcal{K}' transversally. Let $\alpha = \alpha_{\tau}(C)$ and $\alpha' = \alpha'_{\tau}(C)$ be the two asymptotic angles of the boundary of $\mathcal{L} \cap \tau$ at C (as defined in Sect. 7 of [7]). Similarly, let α^o and α'^o be the asymptotic angles at C^o . Since $\Lambda_{\mathcal{L}\cap \tau}(., \mathcal{O})$ has a local maximum at C, by [7] (Corollary 1 in Sect. 7), we have $\alpha \leq \alpha^{o}$ and $\alpha' \leq \alpha'^{o}$. Since $\mathcal{H}^{o} \cap \tau$ and $\mathcal{K} \cap \tau$ support $\mathcal{L} \cap \tau$ at C^{o} , the angular sector of this intersecting pair of supporting lines that contains C also contains the entire $\mathcal{L} \cap \tau$. The angle comparisons above show that the corresponding parallel angular sector formed by $\mathcal{H} \cap \tau$ and $\mathcal{K}' \cap \tau$ must also contain the entire $\mathcal{L} \cap \tau$. Hence, $\mathcal{K}' \cap \tau$ supports $\mathcal{L} \cap \tau$. Since τ was (generically) arbitrary, we obtain that \mathcal{K}' supports \mathcal{L} at C. Thus, $C \in \mathcal{F}'$.

Third, let *A* be as in the previous proof, that is, the unique intersection of the ray emanating from \mathcal{O} and passing through \mathcal{O}_0 with the boundary of \mathcal{L} . Assume that $A^o \notin \mathcal{F} \cup \mathcal{F}'$. We need to perform a technical step that will make sure that if a simplicial minimal configuration point happens to be A^o then it can be moved away from A^o . In fact, we claim that if $\Lambda(., \mathcal{O})$ assumes a local maximum at A^o then it is locally constant near A^o .

To prove this, we first observe that, by the previous step (applied to $C = A^o$), we have $A \notin \mathcal{F}$. Thus the affine diameter $[A, A^o]$ is away from \mathcal{K} . We can now disregard \mathcal{K} and consider $[A, A^o]$ in the centrally symmetric \mathcal{L}_0 , with the note that the distortion $\Lambda_{\mathcal{L}_0}(., \mathcal{O})$ also assumes a local maximum at A^o .

We now need the simple fact that, for \mathcal{L}_0 , absolute maximum of the distortion with respect to \mathcal{O} occurs at A (and hence absolute minimum of the distortion occurs at A^o). A quick proof of this is as follows. Let C be any boundary point away from $\langle \mathcal{O}, \mathcal{O}^o \rangle$. Let A_1 be the opposite of C^o with respect to \mathcal{O}_0 . By central symmetry with respect to \mathcal{O}_0 , the lines $\langle A, A_1 \rangle$ and $\langle A^o, C^o \rangle$ are parallel. Let C' be the unique intersection point of $\langle A, A_1 \rangle$ and $\langle C, C^o \rangle$. Then \mathcal{O} splits the segment $[C', C^o]$ in the ratio $\Lambda(A, \mathcal{O})$. By convexity of \mathcal{L} , C is contained in the line segment $[\mathcal{O}, C']$. Therefore, we have

$$\Lambda(A,\mathcal{O}) \ge \Lambda(C,\mathcal{O})$$

and the claim follows.

We now return to the main line and recall that at A^o the distortion $\Lambda_{\mathcal{L}_0}(., \mathcal{O})$ assumes a *local maximum*. Since, at the same time, it is also an absolute minimum, the distortion has to be constant *near* A^o . Thus, if $C' \in \partial \mathcal{L}_0 \setminus \langle \mathcal{O}, \mathcal{O}_0 \rangle$ is close to A^o then, being locally constant, $\Lambda_{\mathcal{L}_0}(., \mathcal{O})$ also assumes a local maximum at C' with $\Lambda(A^o, \mathcal{O}) = \Lambda(C, \mathcal{O})$.

🖄 Springer

After these preparations we now turn to the proof of Theorem B. Assume, on the contrary, that \mathcal{O} is a *regular point of* \mathcal{L} . Let $[C_0, \ldots, C_n]$ be a simplicial minimal configuration for $\sigma(\mathcal{L}, \mathcal{O})$. We will prove now that each configuration point can be replaced by another which is either equal to A or is contained in $\mathcal{F} \cup \mathcal{F}'$. Our argument here mimics the proof of Theorem A above. Let $C = C_i$ be a configuration point. As before, being a point in a simplicial minimal configuration for the regular point $\mathcal{O}, \Lambda(., \mathcal{O})$ assumes a local maximum at C. We may assume that $C \notin \mathcal{F} \cup \mathcal{F}'$ and $C \neq A$. If $C = A^o$ then, by what we just proved, we can move C away from A^o to a nearby point. Thus, retaining $C \notin \mathcal{F} \cup \mathcal{F}'$, we may assume that $C \notin \langle \mathcal{O}, \mathcal{O}_0 \rangle$. This is exactly the situation in the proof of Theorem A. Repeating the argument there (working in \mathcal{L}_0), the only problem is when the moving point C' or its opposite C'_0 (with respect to \mathcal{L}_0) leaves \mathcal{L} . When this happens, however, then C' first hits \mathcal{F} and we are done, or C'_0 leaves \mathcal{F} in which case (8) still holds in \mathcal{L}_0 and even more so in \mathcal{L} . Summarizing, C can be moved to A or to $\mathcal{F} \cup \mathcal{F}'$.

Finally, we show that the convex hull of $\mathcal{F} \cup \mathcal{F}'$ and the point *A* does *not* contain \mathcal{O} . With this we will get a contradiction to $\{C_0, \ldots, C_n\}$ being a configuration for $\sigma(\mathcal{L}, \mathcal{O})$, and the proof of Theorem B will be complete.

Recall that $\mathcal{O} \neq \mathcal{O}_0, \mathcal{O} \notin [\mathcal{F}, \mathcal{F}'], \mathcal{O}_0 \in [\mathcal{F}, \mathcal{F}']$, and $\mathcal{O}_0 \in [A, \mathcal{O}]$. Assume, on the contrary, that $\mathcal{O} \in [\mathcal{F}, \mathcal{F}', A]$. This means that

$$\mathcal{O} = \alpha A + \mu F, \quad \alpha + \mu = 1, \quad 0 < \alpha, \mu < 1, \quad F \in [\mathcal{F}, \mathcal{F}']. \tag{11}$$

Writing $\mathcal{O}_0 = \alpha_0 A + \lambda \mathcal{O}$ with $\alpha_0 + \lambda = 1$ and $0 < \alpha_0, \lambda < 1$, after eliminating A, (11) rewrites as

$$\mathcal{O} = \frac{\alpha}{\alpha_0 + \lambda \alpha} \mathcal{O}_0 + \frac{\mu \alpha_0}{\alpha_0 + \lambda \alpha} F.$$

For the coefficients on the right-hand side, we have

$$\frac{\alpha}{\alpha_0 + \lambda\alpha} + \frac{\mu\alpha_0}{\alpha_0 + \lambda\alpha} = \frac{\alpha + (1 - \alpha)\alpha_0}{\alpha_0 + (1 - \alpha_0)\alpha} = 1.$$

Since $\mathcal{O}_0 \in [\mathcal{F}, \mathcal{F}']$, we obtain $\mathcal{O} \in [\mathcal{F}, \mathcal{F}']$. This is a contradiction.

Proof of Theorem C Let $\mathcal{L} \subset \mathbf{R}^2$ be as in Theorem C and $\mathcal{O} \in \mathcal{T}$. We first claim that

$$\max_{[C_1,C_2]} \Lambda(.,\mathcal{O}) = \max(\Lambda(C_1,\mathcal{O}),\Lambda(C_2,\mathcal{O}))$$

Let $C'_1 \in [C'_0, C_1]$. Then, with obvious notations, we have

$$\Lambda(C_1',\mathcal{O}) \leq \Lambda_{[C_0,C_1,C_0',C_1']}(C_1',\mathcal{O}) \leq \Lambda(C_1,\mathcal{O}),$$

where the second inequality is because at C_0 there is a supporting line to \mathcal{L} parallel to (C_1, C_2) . Similarly, for $C'_2 \in [C_0^o, C_2]$, we have $\Lambda(C'_2, \mathcal{O}) \leq \Lambda(C_2, \mathcal{O})$. The claim follows.

Let \mathcal{G} be the opposite of $[C_1, C_2]$ (with respect to $\mathcal{O} \in \mathcal{T}$). Then \mathcal{G} is a (connected) continuous curve on the boundary of \mathcal{L} with endpoints C_1^o and C_2^o .

Once again the existence of a supporting line to \mathcal{L} at C_0 parallel to (C_1, C_2) implies

$$\max_{\mathcal{G}} \Lambda(., \mathcal{O}) = \Lambda(C_0, \mathcal{O}).$$

By the definition of \mathcal{T} , we thus have

$$\max_{\mathcal{G}} \Lambda(., \mathcal{O}) \leq \max(\Lambda(C_1, \mathcal{O}), \Lambda(C_2, \mathcal{O})).$$

🖉 Springer

These observations imply that the maximum of $\Lambda(., \mathcal{O})$ is attained on one of the two connected components of $\partial \mathcal{L} \setminus ([C_1, C_2] \cup \mathcal{G})$.

Without loss of generality, we may assume that the maximum is attained at a point \overline{C} which belongs to the component with endpoints C_1 and C_2^o . Since $\mathcal{O} \in [C_0, C_1, C_2]$ and (automatically) $\mathcal{O} \in [C_0, C_2, C_2^o]$, by convexity, we also have $\mathcal{O} \in [C_0, \overline{C}, C_2]$. Thus, $\{C_0, \overline{C}, C_2\}$ is a configuration. We thus have

$$\sigma(\mathcal{L}, \mathcal{O}) \leq \frac{1}{1 + \Lambda(C_0, \mathcal{O})} + \frac{1}{1 + \Lambda(C_2, \mathcal{O})} + \frac{1}{1 + \max_{\partial \mathcal{L}} \Lambda(., \mathcal{O})}.$$

To prove that O is a regular point, by the characterization of regular points using (6), we need to show that

$$\frac{1}{1 + \Lambda(C_0, \mathcal{O})} + \frac{1}{1 + \Lambda(C_2, \mathcal{O})} < 1$$
(12)

(Note that (4) implies $\sigma_1(\mathcal{L}, \mathcal{O}) = 1$.) Rewriting (12), we have

$$\frac{1}{1 + \Lambda(C_2, \mathcal{O})} < \frac{1}{1 + \Lambda(C_0^o, \mathcal{O})}$$

By the existence of a supporting line to \mathcal{L} at C_0 parallel to (C_1, C_2) , non-strict inequality certainly holds. Finally, if $\Lambda(C_2, \mathcal{O}) = \Lambda(C_0^o)$ then (C_0, C_2^o) is parallel to $(C_2, C_0^o) = (C_1, C_2)$. This means that C_0 is not unique in \mathcal{F}' . This contradicts to our assumption. Theorem C follows.

We now let $\mathcal{P} \subset \mathbf{R}^2$ be a convex plane polygon and \mathcal{O} a regular point in the interior of \mathcal{P} . Then the convex hull of a minimal configuration is a triangle with \mathcal{O} in its interior. Since $\Lambda(., \mathcal{O})$ assumes local maxima at the configuration points, we may assume that these configuration points are *vertices* of \mathcal{P} . (This follows easily from regularity, see also [9].) In what follows we will always assume that this is the case. As noted in Sect. 1, the three configuration points connected with their antipodals form three affine diameters passing through \mathcal{O} . Finally, as noted above, \mathcal{O} is regular if and only if

$$\sigma(\mathcal{P}, \mathcal{O}) < 1 + \frac{1}{1 + \max \Lambda(., \mathcal{O})}.$$
(13)

Here the maximum is taken either on the entire boundary or on the set of vertices of \mathcal{P} . (See the corollary in Sect. 7 of [6].)

Let V_0 , V_1 , V_2 , V_3 be four consecutive vertices on the boundary of \mathcal{P} . Let W be the intersection of $[V_0, V_2]$ and $[V_1, V_3]$. We first make the following observation: Let α_1 and α_2 be the (interior) angles of \mathcal{P} at V_1 and V_2 , respectively. If $\alpha_1 + \alpha_2 > \pi$ then the interior of the triangle $[V_1, V_2, W]$ is contained in the singular set of \mathcal{P} .

Indeed, if \mathcal{O} were a regular point in the interior of $[V_1, V_2, W]$ then a minimizing configuration would contain either V_1 or V_2 . Clearly, $V_1^o \in [V_2, V_3]$ and $V_2^o \in [V_0, V_1]$. Due to the angle condition, however, $[V_1, V_1^o]$ and $[V_2, V_2^o]$ are not affine diameters.

As an immediate application of this observation, we can determine the set of regular points for a quadrilateral. Figure 2 depicts the three possible cases (with the singular sets shaded).

The case when \mathcal{P} is a parallelogram is covered by Theorem A.

If \mathcal{P} is a trapezoid (but not a parallelogram), then the fact that the shaded region in the middle of Fig. 2 is contained in the singular set follows from Theorem B since \mathcal{P} can be considered as a truncated parallelogram by each of the non-parallel sides. Let the consecutive vertices of \mathcal{P} be denoted by V_0, V_1, V_2, V_3 with $[V_1, V_2]$ corresponding to the shorter parallel side, and let $W = [V_0, V_2] \cap [V_1, V_3]$. Assume that $\mathcal{O} \in [V_0, W, V_3]$ (not in the

Fig. 2 Regular and singular sets in quadrilaterals

shaded region). We must show that \mathcal{O} is regular. Indeed, a minimizing configuration must contain V_0 and V_3 and either of the top vertices V_1 or V_2 . (Note that $\Lambda(V_1, \mathcal{O}) = \Lambda(V_2, \mathcal{O})$.) Now a simple case-by-case check (depending on at which vertex does $\Lambda(., \mathcal{O})$ assume its maximum) gives (13).

Finally, let \mathcal{P} be a general quadrilateral whose opposite sides are not parallel. We view \mathcal{P} as the intersection of two angular domains. The fact that the shaded regions in Fig. 2 are contained in the singular set follows by the observation above (applied twice). That the non-shaded region consists of regular points follows by a case-by-case verification.

We now turn to the example in Sect. 1. For simplicity, we may assume that $\mathcal{P}_{2m+1} = \{2m+1\}$ has vertices $V_k = (\cos(2\pi k/(2m+1)), \sin(2\pi k/(2m+1))), k = 0, \ldots, 2m$. Let \mathcal{O} be any interior point of \mathcal{P}_{2m+1} and assume that, for some $j = 0, \ldots, 2m$, $[V_j, V_j^o]$ is an affine diameter (passing through \mathcal{O}). Comparing supporting lines, we see that V_j^o must be in the opposite side to V_j , that is, we have $V_j^o \in [V_{j+m}, V_{j+m+1}]$. Thus, \mathcal{O} must be contained in the triangle $[V_j, V_{j+m}, V_{j+m+1}]$. The intersection of any *three* of these triangles (corresponding to three different indices $j = 0, \ldots, 2m$) is contained in the star-polygon $\{\frac{2m+1}{m}\}$. Thus, any interior point \mathcal{O} of \mathcal{P}_{2m+1} complementary to this star-polygon must be singular.

It remains to show that the interior points of the star-polygon are regular. Let

$$X_k = [V_k, V_{m+k}] \cap [V_{k+1}, V_{m+k+1}],$$

where the indices are counted modulo 2m + 1. We now let $C_0 = V_k$, $C_1 = V_{m+k}$ and $C_2 = V_{m+k+1}$ and apply Theorem C. We obtain that

$$\mathcal{T} = [V_k, X_k, 0] \cup [V_k, X_{m+k}, 0].$$

The union of these for k = 0, ..., 2m is the star polygon $\{\frac{2m+1}{m}\}$ and we are done.

To calculate the area A_{2m+1} of the singular set, the complement of the star-polygon $\{\frac{2m+1}{m}\}$ in \mathcal{P}_{2m+1} , is elementary. A simple computation gives

$$\mathcal{A}_{2m+1} = (2m+1)\sin\left(\frac{2m}{2m+1}\pi\right)\left(\frac{1}{2\cos\left(\frac{2m}{2m+1}\pi\right) - 1} - \cos\left(\frac{2m}{2m+1}\pi\right)\right).$$

The limit as $m \to \infty$ is clearly $2\pi/3$.

The minimum distance of the singular set from the center is

$$\frac{1}{1-2\cos\left(\frac{2m}{2m+1}\pi\right)}.$$

As $m \to \infty$, this decreases to 1/3. Thus, the regular set of \mathcal{P}_{2m+1} contains the open disk with center at the origin and radius 1/3. In the limit, each point of this disk will turn singular. \Box

Proof of Theorem D We now return to the centrally symmetric compact convex body $\mathcal{L} \subset \mathbb{R}^n$. As usual, let $\mathcal{O} \neq \mathcal{O}_0$ be an interior point, and A its opposite. Note first that during the course of proving Theorem B we showed that $\Lambda(., \mathcal{O})$ assumes its absolute maximum at A. Writing \mathcal{O} as $\mathcal{O}_{\lambda} = (1 - \lambda)\mathcal{O}_0 + \lambda\mathcal{O}_1$, where $\mathcal{O}_1 = A^o \in \partial \mathcal{L}$ and $0 \le \lambda < 1$, we thus we have

$$\frac{1}{1 + \max_{\partial \mathcal{L}} \Lambda(., \mathcal{O}_{\lambda})} = \frac{1 - \lambda}{2}.$$

Consider the configuration $\{A, \ldots, A, A^o\}$, where A is repeated *n*-times. Evaluating the sum in (1) on this configuration, we obtain

$$\sigma(\mathcal{L}, \mathcal{O}_{\lambda}) \le 1 + (n-1)\frac{1-\lambda}{2}.$$
(14)

On the other hand, equality holds for $\lambda = 0$ (by central symmetry with respect to \mathcal{O}_0), and also for $\lambda = 1$ in the limiting sense by (7).

Assume now that $\sigma(\mathcal{L}, .)$ is concave. Since it is concave on each line segment, equality must hold in (14) and the function $\lambda \mapsto \sigma(\mathcal{L}, \mathcal{O}_{\lambda})$ must be linear. Clearly, the configuration $\{A, \ldots, A, A^o\}$ is minimal.

Assume, in addition, that \mathcal{L} has a codimension one simplicial intersection across \mathcal{O}_{λ} . By Theorem A, \mathcal{O}_{λ} is a singular point so that equality holds in (6). We thus have

$$\sigma(\mathcal{L}, \mathcal{O}_{\lambda}) = \sigma_{n-1}(\mathcal{L}, \mathcal{O}_{\lambda}) + \frac{1}{1 + \max_{\partial \mathcal{L}} \Lambda(., \mathcal{O}_{\lambda})} = \sigma_{n-1}(\mathcal{L}, \mathcal{O}_{\lambda}) + \frac{1 - \lambda}{2}.$$
 (15)

Moreover, just like in (3), $1 \le \sigma_{n-1}$ [6]. In our situation, equality holds since there is a simplicial intersection across \mathcal{O}_{λ} . We obtain that

$$\sigma(\mathcal{L}, \mathcal{O}_{\lambda}) = 1 + \frac{1-\lambda}{2}.$$

Comparing this with (14) (with the equality sign), we obtain n = 2. Thus, for $n \ge 3$, $\sigma(\mathcal{L}, .)$ cannot be concave. Theorem C follows.

Example Let $\mathcal{L} \subset \mathbf{R}^n$ be an *n*-dimensional cube. Let \mathcal{O}_0 be the center of symmetry and \mathcal{O}_1 a vertex of \mathcal{L} . With the notations above, we see that for $1 - 2/n \le \lambda < 1$, the (parallel) vertex figures at \mathcal{O}_1 provide (n - 1)-dimensional simplicial intersections of \mathcal{L} passing through \mathcal{O}_{λ} . Thus, $\sigma(\mathcal{L}, \mathcal{O}_{\lambda}) = (3 - \lambda)/2$ is a linear function for $1 - 2/n \le \lambda \le 1$. On the other hand, $\sigma(\mathcal{L}, \mathcal{O}_0) = (n + 1)/2$. In particular, $\sigma(\mathcal{L}, .)$ cannot be concave.

Acknowledgment The author wishes to thank the referee for the careful reading and suggestions which led to the improvement of the original manuscript.

References

- 1. Grünbaum, B.: Measures of symmetry for convex sets. In: Proc. Sympos. Pure Math., vol. VII, pp. 233–270. American Mathematical Society, Providence (1963)
- 2. Grünbaum, B.: Convex Polytopes. Springer, Berlin (2003)
- 3. Koziński, A.: On involution and families of compacta. Bull. Acad. Polon. Sci. Cl. III 5, 1055–1059 (1954)
- 4. Koziński, A.: On a problem of Steinhaus. Fundam. Math. 46, 47–59 (1958)
- 5. Roberts, A., Varberg, D.: Convex Functions. Academic Press, London (1973)
- Toth, G.: Simplicial intersections of a convex set and moduli for spherical minimal immersions. Mich. Math. J. 52, 341–359 (2004)

- Toth, G.: On the shape of the moduli of spherical minimal immersions. Trans. Am. Math. Soc. 358(6), 2425– 2446 (2006)
- Toth, G.: On the structure of convex sets with applications to the moduli of spherical minimal immersions. Contrib. Algebra Geom. 49(2), 491–515 (2008)
- Toth, G.: Asymmetry of convex sets with isolated extreme points. Proc. Am. Math. Soc. 137(1), 287– 295 (2009)