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Abstract. We describe a general construction of manufacturing new spherical minimal
immersions between round spheres out of old ones. The new immersions have higher
domain dimension and degree and the construction has a precise control on the codimen-
sion. Applied to classified and recent examples, the construction gives an abundance of
new spherical minimal immersions with prescribed codimensions.
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1. Introduction and Statement of Results

Minimal isometric immersions of round spheres into round spheres are notewor-
thy from a geometric point of view as they provide a rich source of examples of
immersed minimal submanifolds in spheres with high degree of symmetry [1–5, 8,
16, 19, 20]. Scaling the domain and range spheres to unit radius, a minimal immer-
sion between round spheres can be viewed as a homothetic minimal immersion f :
Sm →SV into the unit sphere SV of a Euclidean vector space V . We call f a spher-
ical minimal immersion. The value of the homothety can run through only discrete
values λp/m,p � 1, where λp =p(p+m−1) is the pth eigenvalue of the Laplacian
�Sm

. In this case the components α ◦ f,α ∈ V ∗, are eigenfunctions of �Sm
corre-

sponding to λp so that f is a p-eigenmap. We call p the degree of f. We denote
by Hp

m the eigenspace of �Sm
corresponding to λp; this is the space of spherical

harmonics of order p on Sm. If Vf = {α ◦ f |α ∈ V ∗} denotes the space of compo-
nents of f then Vf ⊂Hp

m is the definition relation for a p-eigenmap f . Conversely,
a conformal p-eigenmap f : Sm →SV is automatically a spherical minimal immer-
sion (with conformality λp/m). m=2 or p � 3 correspond to rigid ranges [1, 4, 14,
19], that is for these values, a spherical minimal immersion is given by the classical
and generalized Veronese maps. For m � 3 and p � 4, however, there are infinitely
many geometrically distinct spherical minimal immersions; in fact they fill a mod-
uli space Mp

m, a compact convex body in a finite-dimensional SO(m+ 1)-module.
The exact dimension of Mp

m has been determined in [10]. (For another proof, see
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[20].) The dimension increases rapidly with m and p. The lowest (18-) dimensional
moduli space M4

3 has been completely described in [16].
Little is known in higher domain dimensions m and higher degree p. Opera-

tors that associate to a given spherical minimal immersion other spherical minimal
immersions of lower and higher degrees provided an important technical tool in
calculating dim Mp

m but the operator loses control on the range dimension. The
domain dimension raising operator [14] does have a control on the range dimen-
sion but it does not change the degree. In view of this it is natural to ask if there
are operators that associate to a given spherical minimal immersion new spherical
minimal immersions with higher domain and range dimensions and precise con-
trol on the range dimension. As a generalization of domain dimension raising, the
purpose of this paper is to construct such operators.

THEOREM A. Let f� : Sm → SV�
, �= 0, . . . ,N, be p-eigenmaps and χ� ∈Hq

n−1, �=
0, . . . ,N orthogonal spherical harmonics suitably normalized to a common norm
(depending on m,n,p,q). Then there exists a(p+q)-eigenmap f χ = (f0, . . . , fN)χ0,...,χN :
Sm+n →SV such that for the space of components we have

dimVf χ =
N∑

�=0

Vf�
+dim Hp+q

m+n − (N +1) dim Hp
m. (1)

If f�, �=0, . . . ,N, are spherical minimal immersions of degree p then f χ is a spher-
ical minimal immersion of degree p + q. Finally, f χ also inherits a common degree
of isotropy of f�, �=0, . . . ,N (Section 2.3).

The proof of Theorem A can immediately be generalized to the case when p and
q are both varying but p+q stays constant. For notational simplicity, however, we
kept p and q constant separately.

Let f : Sm →SV be a p-eigenmap, that is, Vf ⊂Hp
m. We call the codimension of

Vf in Hp
m the complementary range dimension of f , and denote it c(f ). With this,

(1) can be written as

c(f χ )=
N∑

�=0

c(f�). (2)

The lowest range dimension for f χ occurs when N +1=dim Hq

n−1.
Several particular cases of Theorem A are of interest. For explicit examples, see

Section 4. For n = 1,Hq

0 is nontrivial iff q = 0,1. In this case N = 0, dim Hq

0 = 1
and χ0 ∈ Hq

0 is unique (up to sign) due to the normalizing condition. Given a
p-eigenmap f0 : Sm →SV0 , for q =0, the associated p-eigenmap f χ : Sm+1 →SV is
given by the domain dimension raising operator applied to f0 [14], and, for q =1,
we obtain a (p + 1)-eigenmap f χ : Sm+1 → SV . In both cases the complementary
range dimensions are preserved: c(f χ )= c(f ).



SPHERICAL MINIMAL IMMERSIONS WITH PRESCRIBED CODIMENSION 147

For n = 2 and q � 1, we have dim Hq

1 = 2, and the spherical harmonics in Hq

1
are restrictions of linear combinations of �(zp) and �(zp) of a complex variable
z ∈ C. Given p-eigenmaps f0 : Sm → SV0 , f1 : Sm → SV1 and χ0 = �(zq), χ1 = J(zq)

suitably normalized then the associated (p +q)-eigenmap f χ : Sm+2 →SV satisfies
c(f χ )= c(f0)+ c(f1).

As noted above, the structure of M4
3 has been completely described in [16].

The possible complementary range dimensions of quartic minimal immersions
f : S3 →SV are c(f ) = 0 − 6,9 − 10,15. (f is SU(2)-or SU(2)′-equivariant iff dim
Vf is divisible by 5.) Combining this with the discussion above we obtain the fol-
lowing:

COROLLARY. There exist spherical minimal immersions f : Sn+3 →SV of degree
q + 4 with complementary range dimensions 0 � c(f ) � 15(dim Hq

n+1 − 1) + 6 and
c(f ) = 15(dim Hq

n−1 − 1) + k, k = 9,10,15, provided that dim Hq

n−1 � 1, i.e. n � 2
or, for n=1, we have q � 1.

It is a difficult and largely unsolved problem to give suitable lower and upper
bounds for the (complementary) range dimension of spherical minimal immersions
f : Sm →SV . In 1976, J.D. Moore [8] gave the lower bound 2m+1 � dim Vf (�V ).
The tetrahedral minimal immersion Tet: S3 →S6 [2, 3, 14, 16] shows that this lower
bound is sharp. Using a technique of moduli spaces, the author gave various lower
bounds depending on both the domain dimension and the degree [12, 13]. For
eigenmaps many partial results exist [6, 14, 17, 21].

The construction of f χ can also be used to obtain an insight of the structure
of the respective moduli spaces as follows:

THEOREM B. We have the isometry

r∏

q=0

(
Mr−q

m

)dim Hq

n−1 ∼=Mr
m+n ∩

r⊕

q=0

S2
0

(
Hr−q

m ·Hq

n−1

)
, (3)

where Hr−q
m ·Hq

n−1 is the linear subspace of Hr
m+n consisting of finite sums of prod-

ucts of spherical harmonics in Hr−q
m and Hq

n−1, and, for a Euclidean vector space
H, S2

0 (H) is the space of traceless symmetric endomorphisms of H.

Once again two particular cases are of interest. For n=1, (3) reduces to

Mr
m ×Mr−1

m
∼=Mr

m+1 ∩S2
0

(Hr
m

)⊕S2
0

(
Hr−1

m ·H1
0

)
,

and, for n=2, we have

r∏

q=0

(
Mr−q

m

)2 ∼=Mr
m+2 ∩

r⊕

q=0

S2
0

(
Hr−q

m ·Hq

1

)
.
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Remark. The treatment of the case n = 1 can be extended to prove that∏r
q=4 Mq

m, r � 4, is the intersection of Mr
m+1 with a certain linear subspace of

S2
0

(Hr
m+1

)
(see [11]).

2. Preliminaries

2.1. spherical harmonics

Consider the ring of polynomials R[x] = R[x0, . . . , xm] with real coefficients in
x = (x0, . . . , xm)∈ Rm+1. Precomposing polynomials with linear transformations of
Rm+1 gives rise to a GL(m+ 1,R)-module structure on R[x]. In addition, R[x] is
graded by the degree and the grading is preserved by this action. We denote by
R[x]p the GL(m+ 1,R)-submodule of R[x] consisting of homogeneous polynomi-
als of degree p. The Laplacian

�x =
m∑

i=0

�2

�x2
i

gives the decomposition

R[x]p =H[x]p ⊕R[x]p−2 · |x|2,

where the kernel H[x]p is the space of harmonic homogeneous polynomials of
degree p in x ∈ Rm+1. This decomposition is orthogonal with respect to the L2-
scalar product (defined by integration over Sm ⊂Rm+1). Comparison of �x and the
spherical Laplacian �Sm

shows that the restrictions of the polynomials in H[x]p

to Sm are precisely the spherical harmonics of order p on Sm, the eigenfunctions
of �Sm

corresponding to the pth eigenvalue λp = p(p + m − 1). Suppressing the
variable x, we denote this eigenspace by Hp

m. We will identify H[x]p and Hp
m (by

restriction or extension); for example, a spherical harmonic will also be viewed as
a harmonic homogeneous polynomial of degree p on Rm+1. Since the Laplacian
in invariant under orthogonal transformations, Hp

m is an SO(m+1)-submodule of
R[x]p.

We now consider the ring of polynomials

R[x, y]=R[x0, . . . , xm, y1, . . . , yn]∼=R[x]⊗R[y]=R[x0, . . . , xm]⊗R[y1, . . . , yn]

with real coefficients in the variables x = (x0, . . . , xm)∈Rm+1 and y = (y1, . . . , yn)∈
Rn. The isomorphism is given by multiplication ξ ⊗ χ �→ ξ · χ, ξ ∈ R[x] and χ ∈
R[y].R[x, y] is also a GL(m+ 1,R)× GL(n,R)-module in a natural way. In addi-
tion, R[x, y] is bigraded by the bidegree, and the bigrading is preserved by this
action. We denote by R[x, y]p,q the GL(m+1,R)×GL(n,R)-submodule of R[x, y]
of polynomials that are homogeneous of degree p in x and homogeneous of degree
q in y. Clearly, R[x, y]p,0 =R[x]p and R[x, y]0,q =R[y]q . We also have
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R[x]p ⊗R[y]q ∼=R[x, y]p,q ⊂R[x, y]p+q,

where the isomorphism is again given by multiplication.
We consider the Laplacians

�x =
m∑

i=0

�2

�x2
i

and �y =
n∑

j=1

�2

�y2
j

.

The joint kernel

H[x, y]p,q =ker(�x |R[x, y]p,q)∩ker(�y |R[x, y]p,q)

is an SO(m+ 1)× SO(n)-module in a natural way. Clearly, H[x, y]p,0 =H[x]p and
H[x, y]0,q =H[y]q . We have

H[x]p ⊗H[y]q ∼=H[x, y]p,q ⊂H[x, y]p+q .

As before, restricting to the respective spheres (and suppressing the variables x

and y), we have H[x]p =Hp
m,H[y]q =Hq

n−1,H[x, y]p+q =Hp+q
m+n, and we obtain the

SO(m+1)×SO(n)-submodule

Hp
m ⊗Hq

n−1
∼=Hp

m ·Hq

n−1 ⊂Hp+q
m+n,

where the isomorphism is given by multiplication and Hp
m ·Hq

n−1 consists of finite
sums of products of spherical harmonics in Hp

m and Hq

n−1. In particular, for any
0 �=χ ∈Hq

n−1,H
p
m ·χ is a linear subspace of Hp+q

m+n.
Finally, varying p and q, we get the direct sum

r∑

q=0

Hr−q
m ⊗Hq

n−1
∼=

r∑

q=0

Hr−q
m ·Hq

n−1 ⊂Hr
m+n (4)

as an SO(m+ 1)× SO(n)-submodule. The second sum is orthogonal (Corollary in
Section 2.4).

2.2. eigenmaps

Recall that a map f : Sm →SV into the unit sphere SV of a Euclidean vector space
V is said to be a p-eigenmap if the space of components Vf = {α ◦ f |α ∈ V ∗} is
contained in Hp

m. Any p-eigenmap can thus be viewed as a harmonic homoge-
neous polynomial map f : Rm+1 → V of degree p. f is said to be full if it has
no nonzero component, that is α ◦f �= 0 if α �= 0. Restricting f to the linear span
of its image, it becomes full. For full f , we have V ∼=V ∗ ∼=Vf .

Two full p-eigenmaps f1: Sm →SV1 and f2: Sm →SV2 are said to be congruent
if there exists an isometry U : V1 →V2 such that f2 =U ◦f1.
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We endow Hp
m with the scaled L2-scalar product

〈ξ, ξ ′〉= dim Hp
m

vol(Sm)

∫

Sm

ξξ ′vSm, ξ, ξ ′ ∈Hp
m,

where

dim Hp
m = (2p +m−1)

(p +m−2)!
p!(m−1)!

,

vSm is the volume form of Sm and

vol(Sm)=
∫

Sm

vSm = 2π
m+1

2

�
(

m+1
2

)

is the volume of Sm.
The standard p-eigenmap fm,p : Sm →S(Hp

m)∗ is the Dirac delta defined by eval-
uating spherical harmonics at points of Sm. With respect to an orthonormal basis
{f j

m,p}N(p,m)

j=0 ⊂Hp
m,dim Hp

m =N(m,p)+1, that identifies Hp
m and (Hp

m)∗, we have

fm,p(x)=
N(m,p)∑

j=0

f
j
m,p(x)f

j
m,p.

Clearly, fm,p is full since Vfm,p =Hp
m.

The complementary range dimension of a p-eigenmap f : Sm → SV is defined
as c(f )= dim Hp

m − dim Vf . It is clear that c(fm,p)= 0. For f full, we have c(f )

=dim Hp
m −dim V .

Let f : Sm →SV be a p-eigenmap. By construction of fm,p, there is a (unique)
linear map A : Hp

m →V such that f =A◦fm,p. f is full iff A onto.
We associate to f the symmetric linear endomorphism 〈f 〉=A�A− I ∈S2(Hp

m)

of Hp
m. It follows that 〈f 〉 is traceless and it depends only on the congruence class

of f . (See Lemma 2.3.2 in [14], p. 113.) For the complementary range dimension
of a full p-eigenmap f : Sm →SV we have c(f )= corank(〈f 〉+ I ).

The map f �→ 〈f 〉 then gives rise to a parametrization of the space of congru-
ence classes of a full p-eigenmaps f : Sm → SV (for various V ). The range of
the parametrization is S2

0 (Hp
m), the space of traceless symmetric endomorphisms of

Hp
m. Since f maps to the unit sphere, 〈f 〉 is contained in the linear subspace

Ep
m ={fm,p(x)�fm,p(x) |x ∈Sm}⊥ ⊂S2(Hp

m),

where � denotes the symmetric tensor product and the orthogonal complement is
taken with respect to the natural scalar product

〈C,C′〉= trace(CC′), C,C′ ∈S2(Hp
m).
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(See Theorem 2.3.1 in [14], p. 111.) Since A�A is always positive semi-definite, the
image of the parametrization is contained in the set

Lp
m ={C ∈Ep

m |C + I � 0}.

It turns out that the image is the entire Lp
m. Clearly Lp

m is a convex body in
Ep

m, and it is also compact as the eigenvalues of the endomorphisms in Lp
m are

bounded. For more details, see [14]. Lp
m is called the standard moduli space for

eigenmaps.

2.3. spherical minimal immersions and isotropy

Recall that a spherical minimal immersion of degree p is a homothetic minimal
immersion f : Sm →SV with homothety λp/m. The condition of homothety is

〈f∗(X), f∗(Y )〉= λp

m
〈X,Y 〉,

for any vector fields X,Y on Sm.
Since Sm is isotropy irreducible, the standard p-eigenmap fm,p : Sm →SHp

m
is a

spherical minimal immersion.
As noted above a homothetic minimal immersion f : Sm →SV is automatically a

p-eigenmap. The construction of the moduli space above carries over to spherical
minimal immersions. We obtain that the space of congruence classes of spherical
minimal immersions. f : Sm →SV of degree p can be parametrized by a compact
convex body Mp

m in a linear subspace Fp
m ⊂Ep

m, where

Fp
m ={(fm,p)∗(X)� (fm,p)∗(Y ) |X,Y ∈T (Sm)}⊥

and

Mp
m =Lp

m ∩Fp
m ={C ∈Fp

m |C + I � 0}.

Mp
m is called the standard moduli space for spherical minimal immersions.
Let f : Sm → SV be a spherical minimal immersion of degree p. We denote by

βk(f ) and Ok
f , k � p, the (densely defined) kth fundamental form and the kth oscu-

lating bundle of f . f is said to be isotropic of order k,2 � k � p, if, for 2 � l � k,
we have

〈βl(f )(X1, . . . ,Xl), βl(f )(Xl+1, . . . ,X2l )〉
=〈βl(fm,p)(X1, . . . ,Xl), βl(fm,p)(Xl+1, . . . ,X2l )〉,

where X1, . . . ,X2l are vector fields on Sm [14]. This condition implies that the
osculating bundles Ol

f and Ol
fm,p

are isomorphic for 2 � l � k.
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If p � 2k + 1 then an isotropic minimal immersion of order k is standard. For
p � 2(k +1), the space of congruence classes of full isotropic minimal immersions
of order k can be parametrized by the intersection

Mp;k
m =Mp

m ∩Fp;k
m ={C ∈Fp;k

m |C + I � 0},

where Fp;k
m ⊂Fp

m is a linear subspace. The dimension Mp;k
m has been calculated in

[14]. (See also [20].)

2.4. an integral formula

PROPOSITION. Let

ξ ∈R[x]p, x = (x0, . . . , xm)∈Rm+1, and χ ∈R[y]q, y = (y1, . . . , yn)∈Rn.

Then we have
∫

Sm+m

ξχvSm+n = 1
2
β

(
p +m+1

2
,
q +n

2

)∫

Sm

ξvSm

∫

Sn−1
χvSn−1 , (5)

where the β-function is given by

β(a, b)=2
∫ π/2

0
sin2a−1 φ cos2b−1 φ dφ.

Proof. Consider the map γ : [0, π/2]×Rm+1 ×Rn →Rm+n+1 defined by

γ (φ, x, y)= sin φ ·x + cosφ ·y, x ∈Rm+1, y ∈Rn.

We denote the restriction γ : [0, π/2] × Sm × Sn−1 → Sm+n by the same symbol.
Clearly, γ is a diffeomeorphism between (0, π/2)× Sm × Sn−1 and Sm+n with the
great spheres Sm × {0} and {0} × Sn−1 deleted. Transforming the integral on the
left-hand side of (5) by γ , and using homogeneity, we obtain

∫

Sm+m

ξχvSm+n =
∫ π/2

0
sinp φ cosq φ

∫

Sm

ξ

∫

Sn−1
χ | Jac(γ )|vSn−1vSm dφ.

It remains to calculate the determinant of the Jacobian of γ at a point (φ, x, y)∈
(0, π/2) × Sm × Sn−1. To do this, we first calculate the Jacobian of γ as a map
(0, π/2)×Rm+1 ×Rn →Rm+n+1 and then restrict it to R×Tx(S

m)×Ty(S
n−1). Tak-

ing partial derivatives, we obtain

Jac(γ )(φ, x, y)=
[

cosφ ·x sin φIm+1 0
− sin φ ·y 0 cosφIn

]
.

Here x ∈ Rm+1 and y ∈ Rn are column vectors and the dimension of the identity
matrix is indicated by a subscript. We now evaluate this on (t, u, v)∈R×Tx(S

m)×
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Ty(S
n−1), where u∈Tx(S

m) is viewed as a vector in Rm+1 with 〈x,u〉=0, and v ∈
Ty(S

n−1) as a vector in Rn with 〈y, v〉=0. We obtain

Jac(γ )(φ, x, y)(t, u, v)=(cosφ ·x − sin φ ·y)t+sin φ ·u+cosφ ·v ∈Tγ (φ,x,y)(S
m+n).

An orthonormal basis

(1,0,0), (0, u1,0), . . . , (0, um,0), (0,0, v1), . . . , (0,0, vn−1)

is mapped by the Jacobian to the orthogonal basis

cosφ ·x − sin φ ·y, sin φ ·u1, . . . , sin φ ·um, cosφ ·v1, . . . , cosφ ·vn−1.

Thus the determinant is

|Jac(γ )(φ, x, y)|=± sinm φ cosn−1 φ.

The integral formula (5) follows (since the sign is positive by inspection).

COROLLARY. If χ ∈Hq

n−1 and χ ′ ∈Hq ′
n−1 are orthogonal spherical harmonics then

the linear subspaces Hr−q
m ·χ and Hr−q ′

m ·χ ′ are orthogonal in Hr
m+n. This holds, in

particular, if q �=q ′, so that the sum
∑r

q=0 Hr−q
m ·Hr−q

n−1 in (4) is orthogonal.

2.5. construction of f χ

A spherical harmonic χ ∈Hq

n−1 is said to be normalized if

|χ |2 =ν(m,n,p, q),

where

ν(m,n,p, q)=
β
(

m+1
2 , n

2

)

β
(
p + m+1

2 , q + n
2

)
dim Hp

m dim Hq

n−1

dim Hp+q
m+n

. (6)

For �=0, . . . ,N,N � N(n−1, q), let f� : Sm →SV�
be p-eigenmaps, and χ� ∈Hq

n−1
mutually orthogonal normalized spherical harmonics. Without loss of generality
we may assume that f�, �=0, . . . ,N , are full. We define the map

f χ = (f0, . . . , fN)χ0,...,χN : Rm+n →Vχ

as follows

f χ(x, y)= (f0(x)χ0(y), . . . , fN(x)χN(y),πχ(fm+n,p+q(x, y))), (x, y)∈Rm+n

(7)
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where πχ is the orthogonal projection in Hp+q
m+n to the linear subspace(∑N

�=0 Hp
m ·χ�

)⊥. We thus have

Vχ =
N∑

�=0

V� ⊕
(

N∑

�=0

Hp
m ·χ�

)⊥
.

It is clear that f χ is a harmonic polynomial map of degree p +q.

Remark. For n = 1 and q = 0,H0
0 = R. Setting N = 0, we recover the domain

dimension raising operator in [14]. Note that ν(m,1, p,0) is the normalizing con-
stant cm,p,p in (2.8.6) of [14], p. 150. (Note that the right-hand side of (2.8.6) gives
c2
m,p,q rather than cm,p,q .)

3. Proofs

We begin with the proof of Theorem A. We first show that f χ is spherical in the
sense that it maps Sm+n to SVχ . It will then follow that the restriction is a (p+q)-
eigenmap f χ : Sm+n →SVχ .

We first consider the case when f� = fm,p : Sm → S(Hp
m)∗ , is the standard

p-eigenmap for each �=0, . . . ,N . We fix and orthonormal basis {f j
m,p}N(m,p)

j=0 ⊂Hp
m

whose elements constitute the components of fm,p. In the integral formula (5) we
set ξ = (f i

m,p)2 and χ =χ2
� . Using (6), we calculate

∣∣f j
m,pχ�

∣∣2 = 1
2
β

(
p + m+1

2
, q + n

2

)
dim Hp+q

m+n

vol(Sm+n)

∫

Sm

(
f

j
m,p

)2
vSm

∫

Sn−1
χ2

� vSn−1

= 1
2
β

(
p + m+1

2
, q + n

2

)
dim Hp+q

m+n

dim Hp
m dim Hq

n−1

vol(Sm)vol(Sn−1)

vol(Sm+n)
|χ�|2

= 1
2
β

(
m+1

2
,
n

2

)
vol(Sm)vol(Sn−1)

vol(Sm+n)
=1,

where the last equality follows from the volume formula for the sphere along with
the identity

β(a, b)= �(a)�(b)

�(a +b)
.

(For the last step we can also use the integral formula (5) for p = q = 0 and ξ =
1, χ =1.)

The calculation above and the integral formula (5) shows that the polynomials
f

j
m,pχ� ⊂Hp+q

m+n, j = 0, . . . ,N(m,p), �= 0, . . . ,N , form an orthonormal basis in the
linear subspace

∑N
�=0 Hp

m ·χ�. We can extend this to an orthonormal basis to the
entire Hp+q

m+n by adjoining the elements of an orthonormal basis in the orthogonal
complement (

∑N
�=0 Hp

m ·χ�)
⊥. The elements of the extended basis can be used as
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components of the standard (p+q)-eigenmap fm+n,p+q : Sm+n →SHp+q
m+n

. Therefore,
we have

N∑

�=0

|fm,p(x)χ�(y)|2 +|πχ(fm+n,p+q(x, y))|2

=|fm+n,p+q(x, y)|2 = (|x|2 +|y|2)p+q,

where πχ is the orthogonal projection in Hp+q
m+n with kernel

∑N
�=0 Hp

m ·χ�, and the
last equality is because fm+n,p+q is spherical. Since fm,p is also spherical, the first
term can be written as

N∑

�=0

|fm,p(x)χ�(y)|2 =|x|2p
N∑

�=0

χ�(y)2.

We now replace the N + 1 copies of fm,p by f0, . . . , fN . Since f� is spherical, we
have |f�(x)|2 =|x|2p as a homogeneous polynomials of degree 2p. Hence, we have

N∑

�=0

|f�(x)χ�(y)|2 =|x|2p
N∑

�=0

χ�(y)2.

The computation just carried out gives

N∑

�=0

|f�(x)χ�(y)|2 +|πχ(fm+n,p+q(x, y))|2 = (|x|2 +|y|2)p+q

as homogeneous polynomials of degree p+q. The left-hand side is |f χ(x, y)|2 and
sphericality of f χ follows. It is also clear that f χ is full.

To derive (1), we work with the complementary range dimension and show (2).
We have

c(f χ )=dimHp+q
m+n −




N∑

�=0

dimV� +dim

(
N∑

�=0

Hp
m ·χ�

)⊥



=dimHp+q
m+n −

(
N∑

�=0

dimV� +dimHp+q
m+n − (N +1)dimHp

m

)

= (N +1)dimHp
m −

N∑

�=0

dimV� =
N∑

�=0

c(f�).

Assume now that f� : Sm →SV�
, �=0, . . . ,N , are spherical minimal immersions of

degree p.
We now need to introduce an important tool of checking whether a p-eigenmap

f :Sm →SV is homothetic as follows [10, 14]. For a ∈ Rm+1, we denote by Xa the
conformal vector field on Sm defined by a. Xa is the uniform extension of a along
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the inclusion Sm ⊂ Rm+1 followed by projection to the tangent bundle of Sm : Xa

naturally extends to a vector field on Rm+1 by setting

Xa
x =a − 〈a, x〉

|x|2 x, x ∈Rm+1.

For a, b∈Rm+1, we now introduce the function

�(f )(a, b)=�(f )(Xa,Xb)

=〈f∗(Xa), f∗(Xb)〉− λp

m
〈Xa,Xb〉|x|2(p−1)

=〈f∗(Xa), f∗(Xb)〉−〈(fm,p)∗(Xa), (fm,p)∗(Xb)〉.

Since the conformal fields span each tangent space of Sm,f is homothetic iff �(f )

vanishes for all a, b∈Rm+1. As computation shows, �(f )(a, b) is a homogeneous
polynomial of degree 2(p −1). We will use the following formula for �(f ):

�(f )(a, b)=〈�af,�bf 〉+
(

λp

m
−p2

)
a∗b∗|x|2(p−2) − λp

m
〈a, b〉|x|2(p−1).

Here ∂a is the directional derivative with respect to a and a∗ is the linear func-
tional corresponding to a. Since the last two terms on the right-hand side do not
depend on f and �(fm,p)=0, we also have

�(f )(a, b)=〈∂af, ∂bf 〉−〈∂afm,p, ∂bfm,p〉. (8)

We now return to the proof. By assumption, �(f�)= 0, �= 0, . . . ,N . We need to
calculate �(f χ). Using (7) in (8), for a, b∈Rm+n+1, we obtain

�(f χ)(a, b)=
N∑

�=0

〈∂a′f�, ∂b′f�〉∂a′′χ�∂b′′χ� − (N +1)〈∂a′fm,p, ∂b′fm,p〉∂a′′χ�∂b′′χ�

=
N∑

�=0

�(f�)(a
′, b′)∂a′′χ�∂b′′χ� =0,

where a=a′ +a′′ and b=b′ +b′′ with a′, b′ ∈Rm+1 and a′′, b′′ ∈Rn. (Notice that the
projection component in (7) cancels. Notice also that in case a′ or b′ vanish, the
formula still holds.) Thus, f χ is a spherical minimal immersion of degree p +q.
It remains to do the same computation for isotropy. For this we use the fact that
a spherical minimal immersion f : Sm →SV is isotropic of order k iff it is isotropic
of order k −1 and

�k(f )(a1, . . . , a2k)=〈∂a1 . . . ∂ak
f, ∂ak+1 . . . ∂a2k

f 〉−
−〈∂a1 . . . ∂ak

fm,p, ∂ak+1 . . . ∂a2k
fm,p〉=0.



SPHERICAL MINIMAL IMMERSIONS WITH PRESCRIBED CODIMENSION 157

Assume now that f� : Sm → SV�
are isotropic of order k for all � = 0, . . . ,N . We

prove by induction with respect to k that f χ is also isotropic of order k.
(The first step is clear by noting that isotropy of order 1 is actually homothety.)

Since f�, �=0, . . . ,N , are isotropic of order k−1, the induction hypothesis implies
that f χ is also isotropic of order k−1. For a1, . . . , a2k ∈Rm+n+1, we now calculate

�k(f χ)(a1, . . . , a2k)

=〈∂a1 . . . ∂ak
f χ , ∂ak+1 . . . ∂a2k

f χ 〉−〈∂a1 . . . ∂ak
f χ

m,p, ∂ak+1 . . . ∂a2k
f χ

m,p〉

=
N∑

�=0

〈∂a′
1
. . . ∂a′

k
f�, ∂a′

k+1
. . . ∂a′

2k
f�〉∂a′′

1
. . . ∂a′′

k
χ� · ∂a′′

k+1
. . . ∂a′′

2k
χ� −

−(N +1)〈∂a′
1
. . . ∂a′

k
fm,p, ∂a′

k+1
. . . ∂a′

2k
fm,p〉∂a′′

1
. . . ∂a′′

k
χ� · ∂a′′

k+1
. . . ∂a′′

2k
χ�

=�k(f )(a′
1, . . . , a

′
2k)∂a′′

1
. . . ∂a′′

k
χ�∂a′′

k+1
. . . ∂a′′

2k
χ�,

where al =a′
l +a′′

l , a′
l ∈Rm+1, a′′

l ∈Rn, l =1, . . . ,2k. This vanishes since f� are iso-
tropic of order k for �=0, . . . ,N . Theorem A follows.

We now turn to the proof of Theorem B. Since Mp
m is the intersection of Lp

m

with a linear subspace of S2
0 (Hp

m), it is enough to prove Theorem B for eigenmaps.
Note that the result also holds for Mp;k

m , that is, for isotropic minimal immersions.
Recall that the parameter point 〈f 〉 that corresponds to f in the moduli space

Lp
m is given by 〈f 〉=A�A−1, where A : Hp

m →V is the linear surjection satisfying
f =A◦fm,p.

Assume that f� : Sm → SV�
, � = 0, . . . ,N , are full p-eigenmaps. We have 〈f�〉 =

A�
� A� −I ∈Hp

m where A� : Hp
m →V� is linear and onto with f� =A� ◦fm,p. We need

to work out 〈f χ 〉∈Lp+q
m+n. Comparing (7) for f� and fm,p, we obtain

f χ = (A0 ⊕· · ·⊕AN ⊕0)◦f χ
m,p,

where 0 is the zero endomorphism of (
∑N

�=0 Hp
m ·χ�)

⊥. On the other hand, by con-
struction, we have f

χ
m,p =fm+n,p+q . We obtain

〈f χ 〉=〈f0〉⊕ · · ·⊕ 〈fN 〉⊕0.

In terms of the moduli spaces this means that

(Lp
m)dimHq

n−1 ∼=Lp+q
m+n ∩S2

0 (Hp
m ·Hq

n−1).

The general case now follows from the Corollary in Section 2.4.

4. Examples

In this section we give a variety of explicit examples of eigenmaps and spherical
minimal immersions and apply Theorem A to derive the Corollary in Section 1.

We first introduce the equivariant construction that produces a large number of
examples of eigenmaps and spherical minimal immersions of S3. (For details, see
Section 1.4 in [14].)
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The identification R4 =C2, (R4 � (x, y, u, v) �→ (x + iy, u+ iv)= (z,w)∈C2), gives
rise to the local product decomposition SO(4)=SU(2) ·SU(2)′, where SU(2) is the
special unitary group and SU(2)′ is its conjugate (within SO(4)) by z �→z, w �→ w̄.
We further identify C2 with H, the skew-field of quaternions, via (z,w)�C2 �→z+
jw∈H, where {1, i, j, k}⊂H is the canonical basis. This identification gives rise to
the isomorphism of SU(2) with the group of unit quaternions S3 ⊂ H. With this,
SU(2)=S3 acts on S3 by left-translations.

Let Wp be the complex (irreducible) SU(2)-module of complex homogeneous
polynomials of degree p in z,w. Then dimCWp = p + 1, and a typical element
ξ ∈Wp can be expanded as

ξ =
p∑

q=0

cqzp−qwq, (9)

where the coefficients cq , q =0, . . . , p, are complex constants. The equivariant con-
struction simply assigns to ξ �=0 the orbit map fξ : S3 →Wp through ξ :

fξ (g)=g · ξ = ξ ◦Lg−1 , g ∈SU(2)=S3.

In coordinates, for g =a + jb∈S3, a, b∈C, we have

fξ (a + jb)(z,w)= ξ(āz+ b̄w,−bz+aw), z,w ∈C.

By construction, fξ is SU(2)-equivariant. We endow Wp with the SU(2)-invariant
scalar product with respect to which {((p − q)!q!)−1/2zp−qwq}q=0,...,p is an ortho-
normal basis. With a suitable normalization of ξ , fξ maps into the unit sphere of
Wp = Cp+1 = R2p+2, and we obtain a (not necessarily full) p-eigenmap fξ : S3 →
S2p+1. For p even, suitable choices of the coefficients cq , q =0, . . . , p, ensure that
the image of fξ lies in the real SU(2)-submodule Rp ⊂Wp, where dimRp =p +1.
The resulting p-eigenmap maps into the p-sphere SRp =Sp.

Nonequivariant examples can be obtained using the Connecting Lemma ([16],
p. 90) as follows. Given any two incongruent p-eigenmaps f1 : Sm → SV1 and f2 :
Sm → SV2 and λ1, λ2 > 0, λ1 + λ2 = 1, the definition f = (

√
λ1f1,

√
λ2f2) gives a

p-eigenmap f : Sm → SV1×V2 . (Clearly, f is not necessarily full even if f1 and f2

are. The name comes from the fact that the point 〈f 〉∈Lp
m is on the segment con-

necting 〈f1〉 and 〈f2〉.)
We now let p =2 and discuss quadratic eigenmaps of S3. (This is the first non-

trivial case for eigenmaps.) First let c0 = c1 = 0 and c2 = 1/
√

2. Then, up to an
isometry on the range, the equivariant construction gives the complex Veronese
map VerC :S3 →S5. In coordinates, we have

VerC(z,w)= (z2,
√

2zw,w2), (z,w)∈S3 ⊂C2.

Second, for c0 = c2 = 0 and c1 = i, fξ maps into R2 ⊂W2, and, up to an isometry
on the range, we obtain the Hopf map Hopf : S3 →S2, given by

Hopf(z,w)= (|z2|− |w|2,2zw̄), (z,w)∈S3.
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Note that, up to isometries on the domain and the range, the Hopf map is the
unique lowest range-dimensional eigenmap. (See Corollary 2.7.2 in [14], p. 143.)
The Connecting Lemma applied to V erC ◦g and Hopf ◦g, for various g ∈ SO(4),
now produces a large number of full quadratic eigenmaps f : S3 →Sn, where the
possible range dimensions are n=2,4−8. As a sample, using real coordinates, we
have

f (x,y,u,v)=






(x2 +y2 −u2 −v2,2(xu+yv),2(xv−yu)), n=2

(x2 +y2 −u2 −v2,2xu,2xv,2yu,2yv), n=4

(x2 −y2,u2 −v2,2xy,
√

2(xu−yv),
√

2(xv+yu),2uv), n=5

(1/
√

5(x2 +y2 −u2 −v2),2/
√

5(x2 −y2),2/
√

5(u2 −v2),

4/
√

5xy,4/
√

5uv,2
√

3/
√

5(xu−yv),2
√

3/
√

5(xv+yu)), n=6

(x2 −y2,u2 −v2,2xy,
√

2xu,
√

2xv,
√

2yu,
√

2yv,2uv), n=7

f3,2(x,y,u,v), n=8

Here n=2 and n=5 just give the Hopf and complex Veronese maps in real coordi-
nates while n=8 corresponds to the standard quadratic eigenmap. (This sample is
not as arbitrary as it seems. The corresponding points on the moduli L2

3 are crit-
ical points of the distortion function on the boundary; for details, see Theorem F
in [15].) Note that the complementary range dimensions are c(f )=0−4,6.

To apply Theorem A, we let f0, . . . , fN be quadratic eigenmaps of S3 chosen
from the list above. Then formula (7) defines a (q + 2)-eigenmap f χ : Sn+3 → SV

with complementary range dimension given by (2). We claim that the possible val-
ues of c(f ) are given by the following constraints

0 � c(f ) � 6(dimHq

n−1 −1)+4 or c(f )=6 dimHq

n−1, (10)

provided that Hq

n−1 is nontrivial, i.e., for n=1, we have q � 1.
To show this, we first let n= 1. If Hq

0 is nontrivial then q = 0,1 with dimH0
0 =

dimH1
0 =1. Thus, in both cases, N =0.

If q =0 then χ0 is a constant. We have the branching

H2
4 =H2

3 ⊕H1
3 ·y ⊕H0

3 ·H(y2),

where H is the harmonic projection operator (cf. formula (2.1.15) in [14]), so that
H(y2)=y2 − (|x|2 +y2)/5. We see that the image of the orthogonal projection πχ :
H2

4 → (H2
3)

⊥ is H1
3 ·y ⊕H0

3 ·H(y2), and we can write (7) as

f χ(x, y)= (a0f0(x), a1yx, a2H(y2)),

where x = (x0, x1, x2, x3) ∈ R4, y ∈ R, and |x|2 + y2 = 1. This is because H1
3 con-

sists of linear functions. Since f χ maps into the unit sphere, we have |f χ(x, y)|2 =
(|x|2 +y2)2. Thus, using |f0(x)|2 =|x|4, a simple computation gives the coefficients:

a0 =
√

15
4

, a1 =
√

5
2
, a2 = 5

4
.
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Since c(f χ )= c(f0), (10) clearly holds in this case.
Let q = 1. As noted above, a typical function in H1

3 is linear. We have the
branching:

H3
4 =H3

3 ⊕H2
3 ·y ⊕H1

3 ·H(y2)⊕H0
3 ·H(y3).

The image of the orthogonal projection πχ : H3
4 → (H2

3 ·y)⊥ is the direct sum H3
3 ⊕

H1
3 ·H(y2)⊕H0

3 ·H(y3). An orthonormal basis in H3
3 is given by the components

of the cubic standard eigenmap f3,3 : S3 → SH3
3
, which, in turn, are orthonormal

ultraspherical (Gegenbauer) polynomials. (For an explicit basis, see Vilenkin [18].)
With this, the defining formula (7) for the cubic eigenmap f χ : S4 → SV can be
written as

f χ(x, y)= (a0yf0(x), a1f3,3(x), a2H(y2)x, a3H(y3)),

where x ∈ R4, y ∈ R, and |x|2 + y2 = 1. Since H(y3) = y3 − (3/7)(|x|2 + y2)y,
|f0(x)|2 =|x|4 and |f3,3(x)|2 =|x|6, a simple computation gives

a0 = 5
√

3
4

, a1 =
√

23

4
√

2
, a2 = 15

4
√

2
, a3 = 7

4
.

Once again (10) clearly holds in this case.
Finally, let n = 2 and q � 1. Then, Hq

1 is two-dimensional and is spanned by
R(zq) and J(zq), where z∈C is a complex variable. We let N =1 and choose qua-
dratic eigenmaps f0 : S3 →SV0 and f1 : S3 →SV1 . Formula (7) gives the (q +2)-ei-
genmap f χ : S5 →SV by

f χ(x, z)= (a0R(zq)f0(x), a1J(zq)f1(x),πχ (f5,q+2(x, z))),

where x ∈R5, z∈C, and |x|2 +|z|2 =1. The image of the orthogonal projection

πχ : Hq+2
5 → (H2

3 ·R(zq)⊕H2
3 ·J(zq))⊥

can be obtained from Hq+2
5 by branching twice, and once again, choosing concrete

bases, an explicit formula for πχ(f5,q+2) can be obtained. Now, c(f χ ) = c(f0) +
c(f1), and, varying f0 and f1, we see that all possible sums of the corresponding
numbers c(f0) and c(f1) with ranges 0–4, 6 give c(f0)+ c(f1)= 0−10,12. This is
(10) for n=2. The general case, n � 2, follows by a similar argument setting N +
1 = dim Hp

n−1 and examining the possible ranges in (2), where c(f�)= 0−4,6, for
each �=0, . . . ,N .

The condition of minimality imposed on an orbit map fξ of the equivariant
construction gives a set of quadratic equations for the coefficients cq , q =0, . . . , p

in (9). (See (1.4.13) in [14], p. 59.)
We now let p=4 and discuss quartic spherical minimal immersions of S3. (This

is the first nontrivial case for spherical minimal immersions.) First, we let

c0 =
√

6
24

, c1 =0, c2 =
√

2
4

, c3 =0, c4 =−
√

6
24

.
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With the identifications we have made, we obtain the full quartic minimal immer-
sion I : S3 →S9 which, in complex coordinates, is given by

I(z,w)= (1/
√

2(z4 − w̄4),
√

6z2w̄2,
√

2(z3w + z̄w̄3),
√

6(zz̄2w − z̄w2w̄),√
3/2(z2w2 − z̄2w̄2),1/

√
2(|z|4 −4|z|2|w|2 +|w|4)), (z,w)∈S3.

Note that, up to isometries on the domain and the range, I is the unique lowest
dimensional quartic minimal immersion. (This result is due to DeTurck and Ziller
[2, 3].) The next lowest range dimensional example J : S3 →S14 is obtained from I
by the Connecting Lemma. (For details, see [14], p. 224.) In complex coordinates,
we have

J (z,w)= (1/
√

2)(z4,w4,2
√

3z2w̄2,2z3w,2zw3,√
3(zz̄2w − z̄w2w̄),

√
6z2w2, |z|4 −4|z|2|w|2 +|w|4), (z,w)∈S3.

As before, the Connecting Lemma gives a variety of examples of nonequivariant
full quartic spherical minimal immersions f : S3 → Sn, where the possible range
dimensions are n = 9;14−15,18−24. The complementary range dimensions are
c(f )=0−6,9−10,15. The entire boundary of the moduli M4

3 can be mapped out
by using these examples; for details, see [14, 16].

The construction of f χ with source maps f�, � = 0, . . . ,N , is the same for
eigenmaps and spherical minimal immersions. To prove the Corollary in Section 1
we assume that f� : S3 →SV�

, �=0, . . . ,N , are quartic minimal immersions chosen
from the examples above with complementary range dimensions c(f�) = 0−6,9−
10,15. Then f χ : Sn+3 → SV is a spherical minimal immersion of degree q + 4,
where χ0, . . . , χN ∈Hq

n−1 are orthogonal and suitably normalized. Let n=1. If q =0
then the branching

H4
4 =H4

3 ⊕H3
3 ·y ⊕H2

3 ·H(y2)⊕H1
3 ·H(y3)⊕H0

3 ·H(y4).

Formula (7) specialized to the following

f χ(x, y)= (a0f0(x), a1yf3,3(x), a2H(y2)f3,2(x), a3H(y3)x, a4H(y4)).

The coefficients a0, a1, a2, a3, a4 can be determined from the condition that |f χ |2 =
(|x|2 +y2)4. Once again, the standard minimal immersions f3,3 and f3,2 have cubic
and quadratic ultraspherical polynomial components, orthonormal in H3

3 and H2
3.

Since c(f χ )= c(f0), the Corollary follows in this case.
For q =1, the appropriate branching gives

f χ(x, y)=(a0yf0(x), a1f3,5(x), a2H(y2)f3,3(x),

a3H(y3)f3,2(x), a4H(y4)x, a5H(y5)).

The Corollary of Section 1 follows again in this case.
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For n=2 and q � 1 we choose N =1. With a choice of quartic minimal immer-
sions f0 : S3 →SV0 and f1 : S3 →SV1 formula (7) can be written as

f χ(x, z)= (a0R(zq)f0(x), a1J(zq)f1(x),πχ (f5,q+4(x, z))).

The complementary range dimensions c(f0), c(f1) = 0−6,9−10,15 give c(f χ ) =
c(f0)+ c(f1)=0−21,24−25,30.

The general case, n � 2, follows by a similar argument setting N +1=dimHp

n−1
and examining the possible ranges in (2), where c(f�)=0−6,9−10,15, for each �=
0, . . . ,N .
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