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UNIVERSAL CONSTRAINTS ON THE RANGE OF
EIGENMAPS AND SPHERICAL MINIMAL IMMERSIONS

GABOR TOTH

Abstract. The purpose of this paper is to give lower estimates on the range
dimension of spherical minimal immersions in various settings. The estimates
are obtained by showing that infinitesimal isometric deformations (with respect
to a compact Lie group acting transitively on the domain) of spherical minimal
immersions give rise to a contraction on the moduli space of the immersions
and a suitable power of the contraction brings all boundary points into the
interior of the moduli space.

1. Preliminaries and Statement of Results

An isometric immersion f : Sm
k → SV , m ≥ 2, of the Euclidean m-sphere Sm

k of
constant curvature k into the unit sphere SV of a Euclidean vector space V is said
to be a spherical minimal immersion if f is minimal. By a result of Takahashi [11],
f exists iff k = m/λp for some p ≥ 1, where λp = p(p+m−1) is the p-th eigenvalue
of the spherical Laplacian 4Sm

on Sm := Sm
1 , and, in this case, each component

φ ◦ f , φ ∈ V ∗, of f is a spherical harmonic of order p on Sm; an eigenfunction of
4Sm

with eigenvalue λp. We scale the metric on the domain to curvature one and
call f : Sm → SV a spherical minimal immersion of (algebraic) degree p. Because
of the scaling, f is a homothetic (minimal) immersion with homothety λp/m:

〈f∗(X), f∗(Y )〉 = λp/m〈X, Y 〉,(1)

where X, Y are vector fields on Sm. Let Hp
m denote the Euclidean vector space of

spherical harmonics of order p on Sm endowed with the L2-scalar product (suitably
scaled). The universal example of a spherical minimal immersion is the standard
minimal immersion fm,p : Sm → SHp

m
whose components (relative to an orthonor-

mal basis in Hp
m) are orthonormal. For p = 2, fm,2 : Sm → SH2

m
is the classical

Veronese map. Unless relevant, we suppress m from the notation and write the
standard minimal immersion as fp : Sm → SHp .

A fundamental problem raised by M.DoCarmo and N.Wallach [3] is to find lower
bounds for the range dimension of spherical minimal immersions. The main result
of this paper, Theorem 4, solves this problem by giving lower bounds in terms of
the dimension of the domain, the degree, and differential geometric properties of
the immersions such as symmetries and higher order isotropy.

The only previously known general lower bound was given by J.D.Moore [10]
who proved that, for a spherical minimal immersion f : Sm → SV of degree ≥ 2,
we have dim V ≥ 2m. DoCarmo and Wallach conjectured [3] that the lower bound

Received by the editors April 20, 1997.
1991 Mathematics Subject Classification. Primary 53C42.

c©1999 American Mathematical Society

1423

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1424 GABOR TOTH

can be raised to m(m + 3)/2 (corresponding to the Veronese map) until N.Ejiri
[5] showed the existence of a spherical minimal immersion f : S3 → S6 of degree
6. Subsequently, K.Mashimo [9] gave an explicit example of an SU(2)-equivariant
spherical minimal immersion f : S3 → S6 of degree 6. Extending this example,
a groundbreaking work of DeTurck and Ziller [2] resulted in an extensive list of
new spherical minimal immersions (that gave rise to minimal imbeddings of all
homogeneous space forms into spheres). These spherical minimal immersions are
obtained by the so-called ‘equivariant construction’; thus, they possess large groups
of symmetries acting transitively on the domain. At the other extreme, Ch.Escher
[6, 7] found a necessary and sufficient condition for the existence of imbeddings
of 3-dimensional (inhomogeneous) spherical space forms (covered by lens spaces)
into spheres by spherical minimal immersions. In particular, she showed that the
inhomogeneous lens space L(8, 3) can be imbedded into S190 by a spherical minimal
immersion of degree 32.

Let Mp
m denote the moduli space of congruence classes of full spherical minimal

immersions f : Sm → SV of degree p. Here, fullness of f means that the image
of f is not contained in a great hypersphere of SV , and two spherical minimal
immersions f1 : Sm → SV1 and f2 : Sm → SV2 are said to be congruent if there
is an isometry U : V1 → V2 such that U ◦ f1 = f2. Given a spherical minimal
immersion f : Sm → SV of degree p, the space of components Vf = {φ◦f |φ ∈ V ∗}
is a linear subspace of Hp

m. If f is full, precomposition by f gives an isomorphism
V ∗ ∼= Vf . The points in the interior of Mp

m correspond to spherical minimal
immersions f : Sm → SV with V maximal; that is, Vf = Hp

m. Spherical minimal
immersions corresponding to boundary points of Mp

m are said to be of boundary
type.

In [1], Calabi proved that every full spherical minimal immersion f : S2 → SV

is congruent to the standard minimal immersion. In [3, 17], DoCarmo and Wallach
showed that Mp

m can be identified with a compact convex body of an SO(m + 1)-
submodule Fp

m of the symmetric square S2(Hp
m). They also proved that Fp

m is
trivial for p ≤ 3. By Calabi’s result, Fp

2 is trivial for p ≥ 1, so that Fp
m can only be

nontrivial for m ≥ 3 and p ≥ 4. They verified that this is indeed the case by giving
a lower bound for Fp

m (in terms of irreducible subrepresentations). In [14], the
author proved that the DoCarmo-Wallach lower bound for Fp

m is actually sharp.
Using this, for m ≥ 3 and p ≥ 4, the complexification of Fp

m (denoted by the same
symbol) can be decomposed as

Fp
m
∼=

∑
(a,b)∈4p

2 ; a,b even

V
(a,b,0,... ,0)
m+1 .

Here, 4p
2 ⊂ R2 denotes the closed convex triangle with vertices (4, 4), (p, p) and

(2(p− 2), 4), and V
(u1,... ,ud)
m+1 , d = rank (SO(m + 1)) = [|(m + 1)/2|], stands for the

complex irreducible SO(m + 1)-module with highest weight vector (u1, . . . , ud) ∈
(Z/2)d (relative to the standard maximal torus in SO(m + 1)). For m = 3,
V

(u1,... ,ud)
m+1 actually means V

(u1,u2)
4 ⊕ V

(u1,−u2)
4 .

Disregarding conformality in the definition of a spherical minimal immersion,
one arrives at the concept of an eigenmap. A map f : Sm → SV is said to be a
p-eigenmap if each component of f is a spherical harmonic of order p. An eigenmap
is harmonic in the sense of J.Eells and J.H.Sampson [4]; in fact, a harmonic map
between spheres is an eigenmap iff it has constant energy density. Note also that
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EIGENMAPS AND SPHERICAL MINIMAL IMMERSIONS 1425

an eigenmap is a spherical minimal immersion iff it is conformal, and, in this case,
a p-eigenmap corresponds to a spherical minimal immersion of degree p.

In perfect analogy with spherical minimal immersions, the moduli space Lp
m

of congruence classes of full p-eigenmaps f : Sm → SV can be identified with
a compact convex body of an SO(m + 1)-submodule Ep

m of S2(Hp
m). We have

Fp
m ⊂ Ep

m [3] and Mp
m = Lp

m ∩Fp
m. Moreover, Ep

m is nontrivial iff m ≥ 3 and p ≥ 2;
in fact, Calabi’s result applies directly to this more general situation. In this case,
the complexification of Ep

m decomposes as

Ep
m
∼=

∑
(a,b)∈4p

1 ; a,b even

V
(a,b,0,... ,0)
m+1 ,(2)

where 4p
1 ⊂ R2 is the closed convex triangle with vertices (2, 2), (p, p) and

(2(p− 1), 2).
The condition of homothety (1), imposed on an eigenmap, can be viewed as a

condition comparing the effect of the differential, the first fundamental form β1, of
f with that of the standard minimal immersion fp:

〈β1(f)(X), β1(f)(Y )〉 = 〈β1(fp)(X), β1(fp)(Y )〉,
where X, Y are vector fields on Sm. A spherical minimal immersion f : Sm → SV

of degree p is said to be isotropic [8] with order of isotropy k, 1 ≤ k ≤ p, if this
condition holds with the first fundamental forms replaced by the l-th fundamental
forms for all 1 ≤ l ≤ k. Isotropy of order k essentially means that f and fp have
k-th order contact in the sense that, up to degree k, their osculating bundles are
isomorphic. In [8], H.Gauchman and the author proved that, if p ≤ 2k + 1, then a
full isotropic minimal immersion of degree p and order of isotropy k is congruent to
the standard minimal immersion fm,p. Moreover, for m ≥ 4 and p ≥ 2(k + 1), the
space Mp;k

m of congruence classes of full isotropic minimal immersions of degree p
and order of isotropy k can be identified by a compact convex body in the SO(m+1)-
submodule Fp;k

m of S2(Hp
m) whose complexification decomposes as

Fp;k
m

∼=
∑

(a,b)∈4p
k+1; a,b even

V
(a,b,0,... ,0)
m+1 ,(3)

where 4p
k+1 ⊂ R2 is the closed convex triangle with vertices (2(k + 1), 2(k + 1)),

(p, p) and (2(p− k− 1), 2(k + 1)). In particular, for p even and k = p
2 − 1 maximal,

Fp,p/2−1
m

∼= V
(p,p,0,... ,0)
m+1 is irreducible. For p odd and k = (p−1)

2 − 1, Fp,(p−1)/2−1
m

∼=
V

(p−1,p−1,0,... ,0)
m+1 ⊕ V

(p+1,p−1,0,... ,0)
m+1 is the sum of two irreducible components.

We now proceed to describe the main construction. All results stated here will be
proved in the forthcoming sections. Let G ⊂ SO(m +1) be a closed subgroup with
Lie algebra G and assume that G acts transitively on Sm. For each X ∈ G, we denote
by X∗ the vector field induced by X on Sm. Given a p-eigenmap f : Sm → SV , we
define f̂ : Sm → V ⊗ G∗ by

f̂(x)(X) = λ−1/2
p X∗

x(f), X ∈ G, x ∈ Sm.(4)

Note that f̂ may not be full even if f is. To circumvent this minor technical
difficulty, we usually restrict a non full map to the linear span of the image and
denote the full restriction by the same symbol. The full p-eigenmap obtained from
f by applying ˆ n times, n ∈ N, to f : Sm → SV , will be denoted by f̂n.
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1426 GABOR TOTH

Theorem 1. (i) Given a p-eigenmap f : Sm → SV , the image of f̂ is contained
in the unit sphere of V ⊗ G∗, so that, by restriction, f̂ : Sm → SV⊗G∗ is a p-
eigenmap. (ii) On the congruence classes, the correspondence f 7→ f̂ gives rise to a
self-map of Lp

m which is the restriction of a symmetric linear map Am,p : Ep
m → Ep

m.
(iii) All eigenvalues of Am,p are real and contained in [−1, 1]. (iv) With respect
to the G-module structure on Ep

m (by restriction), Am,p is an endomorphism of G-
modules. The eigenspace of Am,p corresponding to the eigenvalue +1 is the fixed
point set FixG(Ep

m) of G on Ep
m (whose intersection with Lp

m parametrizes the full
G-equivariant p-eigenmaps f : Sm → SV ). The eigenspace of Am,p corresponding
to the eigenvalue −1 is contained in the orthogonal complement of FixG(Ep

m) in
Fix[G,G](Ep

m). In particular, −1 is not an eigenvalue if G is semisimple.

By (2), Ep
m has multiplicity one decomposition into irreducible SO(m + 1)-

submodules. Since Am,p is an endomorphism of G-modules, for G = SO(m + 1),
it follows immediately that Am,p maps Fp

m (and thereby Mp
m) into itself. In the

general case of a closed subgroup G ⊂ SO(m + 1) acting transitively on Sm, we
have:

Theorem 2. If f : Sm → SV is a spherical minimal immersion of degree p then
so is f̂ . Equivalently, Am,p maps Mp

m into itself.

We will discuss two particular cases in detail. First, for m = 3, we have the
splitting SO(4) = SU(2) · SU(2)′ and, setting G = SU(2)′, we will consider A3,p

acting on the linear slice FixSU(2)(Lp
3) of Lp

3 by the SU(2)′-submodule FixSU(2)(Ep
3 )

that parametrizes the full SU(2)-equivariant p-eigenmaps f : S3 → SV . In estimat-
ing the range dimensions of full SU(2)-equivariant p-eigenmaps f : S3 → SV , the
following two facts will be important in the sequel: (1) V is an SU(2)-submodule
of Hp

3 (via V ∗ ∼= Vf ⊂ Hp
3) and therefore [2] dim V is divisible by p + 1; (2) The

number of irreducible SU(2)′-submodules of FixSU(2)(Ep
3 ) is [|p/2|] and those of

FixSU(2)(Fp
3 ) is [|p/2|] − 1. (This was established in [2] by a ‘heuristic argument’

and proved in [15].)
Second, for m ≥ 4 and p even, setting G = SO(m+1), we will consider Am,p act-

ing on Fp;p/2−1
m

∼= V
(p,p,0,... ,0)
m+1 whose slice with Mp

m parametrizes the full isotropic
minimal immersions f : Sm → SV of degree p and order of isotropy p/2 − 1.
Similarly, for p odd, Am,p acts on the sum Fp,(p−1)/2−1

m
∼= V

(p−1,p−1,0,... ,0)
m+1 ⊕

V
(p+1,p−1,0,... ,0)
m+1 whose slice with Mp

m parametrizes the full isotropic minimal im-
mersions f : Sm → SV of degree p and order of isotropy (p− 1)/2− 1.

Recall the triangle 4p
1 in (2) whose even coordinate points give the nonzero

components of the highest weights of representations that occur in Ep
m. For p ≤ q,

we have 4p
1 ⊂ 4q

1, so that Ep
m is an SO(m + 1)-submodule of Eq

m. The following
result shows that the eigenvalues of Am,p on Ep

m determine the eigenvalues of Am,q

on Ep
m ⊂ Eq

m.

Theorem 3. Let λ be an eigenvalue of Am,p on an irreducible component of Ep
m.

Then, for p ≤ q, the eigenvalue of Am,q on the same irreducible component of Eq
m

is

Λ(λ, p, q) = 1− (1− λ)
λp

λq
,

where λp = p(p + m− 1) is the p-th eigenvalue of 4Sm

.
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Remark 1.

Λ(Λ(λ, p, q), q, r) = Λ(λ, p, r), p ≤ q ≤ r.(5)

In particular, it is enough to prove Theorem 3 for q = p + 1.

Remark 2. If λ ≥ −1 then, given p ≥ 2, there is a least q ≤ 2p such that Λ(λ, p, q) >
0. In particular, by Theorems 1 and 3, all eigenvalues of Am,2p on Ep

m ⊂ E2p
m are

positive.

Let m = 3. The eigenvalue of A3,p on the irreducible SU(2)′-submodule
FixSU(2)(E2

3 ) of Ep
3 , p ≥ 2, is 1 − 12/(p(p + 2)). This will follow from Theorem 3

by computations for p = 2; in fact, the eigenvalue of A3,2 on FixSU(2)(E2
3 ) is −1/2.

Similarly, the eigenvalue of A3,p on the irreducible SU(2)′-submodule FixSU(2)(F4
3 )

of Fp
3 , p ≥ 4, is 1 − 40/(p(p + 2)). These computations will be carried out in the

last section.
Assume, from now on, that G is semisimple. By Theorem 1, Am,p is the identity

map on FixG(Ep
m) and a contraction on the orthogonal complement of FixG(Ep

m) in
Ep

m. Given a full p-eigenmap f : Sm → SV , we define the critical exponent e(f) of
f as follows: If the congruence class C of f is in the interior of Lp

m, then we define
e(f) to be zero. If C is on the boundary of Lp

m, then we consider the sequence
C,Am,p(C), (Am,p)2(C), . . . . If all these points are on the boundary of Lp

m, then
we define e(f) to be infinite. Otherwise, we define e(f) to be the first integer n ≥ 0
such that (Am,p)n(C) is in the interior of Lp

m. If C is orthogonal to FixG(Ep
m), then

the critical exponent e(f) is clearly finite.
Assume that f : Sm → SV is a full p-eigenmap with 2 ≤ e(f) < ∞. The range

of f̂e(f) is V ⊗ Ue(f)(G)∗, where U(G) is the universal enveloping algebra of G,
and Ud(G) is the linear subspace of elements of degree ≤ d. This is because the
components of f̂d are obtained by applying monomials of degree ≤ d of infinitesimal
isometries to the components of f . By the definition of e(f), 〈f̂e(f)〉 is an interior
point of Lp, so that the components of f̂e(f) span Hp

m. We thus have

dimHp
m ≤ dim V · dim(Ue(f)(G))

and we obtain the lower estimate

dim V ≥ dimHp
m

dim(Ue(f)(G))
=

dimHp
m(

dim G+e(f)
e(f)

)− 1
.(6)

For example, consider the possible range dimensions of full cubic SU(2)-equivariant
eigenmaps f : S3 → SV . As noted above, A3,3 acting on the irreducible SU(2)′-
module FixSU(2)(E3

3 ) has the single positive eigenvalue (1− 12/(3 · 5)). Thus A3,3

maps the entire boundary of L3
3 into the interior of L3

3. We obtain e(f) ≤ 1. By
(6), we have dim V ≥ dimH3

3/3 = 16/3. On the other hand, dim V is divisible by
4 and we obtain dim V ≥ 8.

The following example (due to H.Gauchman) shows that an arbitrary large power
of a linear contraction A with distinct eigenvalues may map boundary points of an
A-invariant compact convex body L to boundary points.

Example 1. For n ∈ N, let L ⊂ R2 be the convex polygon with vertices (1,±1),
(1/3k,±1/2k), k = 1, . . . , n, and (−1/3n, 0), and let A be the diagonal matrix
with diagonal entries 1/3 and 1/2. Clearly, A,A2, . . . ,An map some points of the
boundary of L to boundary points of L and An+1 maps the entire L into its interior.
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1428 GABOR TOTH

The lower bound in (6) can be significantly improved when the congruence class
corresponding to the eigenmap in question is contained in a limited number of
irreducible components of Ep

m. For example, Am,p restricted to an irreducible com-
ponent has a unique eigenvalue so that (Am,p)2 maps the entire slice of Lp

m by this
component into the interior of Lp

m. A more careful argument will establish the main
result of this paper:

Theorem 4. Let G be semisimple and assume that the congruence class of a full
p-eigenmap f : Sm → SV is contained in an Am,p-invariant G-submodule V of Ep

m

orthogonal to FixG(Ep
m). Let d be the number of distinct eigenvalues of Am,p on V.

If d = 1, then e(f) ≤ 2 and we have

dim V ≥ dimHp
m

1 + dimG
.

If d ≥ 2, then e(f) ≤ d so that we have

dim V ≥ dimHp
m

dimUd(G)
=

dimHp
m(

dimG+d
d

)− 1
.

Remark. The eigenvalues of Am,p on Ep
m can be computed, at least theoretically,

since Ep
m is a factor of S2(Hp

m).

For quartic and quintic SU(2)-equivariant spherical immersions, we have d = 1,
and we recover the lower estimates of Moore [10] and DeTurck-Ziller [2]:

Corollary 1. Let f : S3 → SV be an SU(2)-equivariant spherical minimal immer-
sion of degree p. (a) If p = 4, then dim V ≥ 10. (b) If p = 5, then dim V ≥ 12.

It is revealing to look at the connection between the existence of the SU(2)-
equivariant spherical minimal immersion f : S2 → S6 of degree 6 mentioned above
and the geometry of M6

3. Indeed, the SU(2)′-module FixSU(2)(F6
3 ) has two ir-

reducible components: FixSU(2)(F4
3 ) and its complement. As noted above, the

eigenvalue of A3,6 on FixSU(2)(F4
3 ) is positive (1− 40/(6 · 8)). Let f : S3 → SV be

a full SU(2)-equivariant minimal immersion of degree 6. If the congruence class of
f belongs to FixSU(2)(F4

3 ), then e(f) ≤ 1 so that dim V ≥ 49/3. Since 7| dimV ,
we obtain dim V ≥ 21. If the congruence class of f belongs to the complement of
FixSU(2)(F4

3 ), then, by Theorem 4, dim V ≥ 49/(1 + 3), so that dim V ≥ 14. We
conclude that the congruence class of the minimal example f : S3 → S6 cannot
be contained in the convex hull of these two irreducible components. (It is also
clear that A3,6 has two distinct eigenvalues on FixSU(2)(F6

3 ) and, by Theorem 4,
e(f) = 2.) This and many other examples [2] show that Mp

m, p ≥ 6, is not the
convex hull of its slices by irreducible components of Fp

m. This is in sharp con-
trast with a result of Ziller and the author [15] that asserts that M4

3 is the convex
hull of the slices FixSU(2)(M4

3) and FixSU(2)′(M4
3) that correspond to SU(2) and

SU(2)′-equivariant quartic spherical minimal immersions.

Remark. The example f : S3 → S6 above can easily be generalized. In fact,
for p ≥ 6 even, the ‘equivariant construction’ [2] applied to an irreducible SU(2)-
submodule of Hp

3 gives spherical minimal immersions f : S3 → Sp of degree p (since
the system of equations for minimality is solvable for p ≥ 6). For G = SU(2)′, the
lower estimate (6) (dimHp

3 = (p + 1)2) and Theorem 4 give

ln(p + 1)/ ln 3 ≤ e(f) ≤ [|p/2|]− 1.
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Corollary 2. Let m ≥ 4 and p even. Let f : Sm → SV be an isotropic minimal
immersion of degree p and order of isotropy p/2− 1. Then, we have

dim V ≥ dimHp
m

1 + dimSO(m + 1)
=

2(m + 2p− 1)(m + p− 2)!
p!(m− 1)!(m(m + 1) + 2)

.

Corollary 2 is a direct application of Theorem 4 since the stated full isotropic
minimal immersions are parametrized by the slice of Mp

m with the SO(m + 1)-
submodule Fp;p/2−1

m of Fp
m which, by (3), is irreducible, and isomorphic with

V
(p,p,0,... ,0)
m+1 . Although they are abundant, no explicit construction is known for

minimal immersions of degree ≥ 6 and order of isotropy ≥ 2. By Corollary 2,
the minimum range for an isotropic minimal immersion of degree 6 and order of
isotropy 2 from S4 is S12 and from S5 is S20.

Corollary 3. Let m ≥ 4 and p odd. Let f : Sm → SV be an isotropic minimal
immersion of degree p and order of isotropy (p− 1)/2− 1. Then, we have

dim V ≥ dimHp
m

(dim SO(m + 1))2
=

4(m + 2p− 1)(m + p− 2)!
p!m(m + 1)(m + 1)!

.

Remark. If f : Sm → SV , m ≥ 3, is a full isotropic minimal immersion of degree
p and order of isotropy k, then the l-th osculating bundle, l = 1, . . . , k, has fibres
isomorphic with Hl

m−1 [8]. Thus, we have

dim V ≥ dim(H0
m−1 ⊕ . . .⊕Hk

m−1) = dimHk
m.

In particular, if p is even and k = p/2− 1, then the weaker lower estimate dimV ≥
dimHp/2−1

m follows.

Since spherical minimal immersions are isotropic of order 1, a special case of
Corollary 2 (p = 4) is the following:

Corollary 4. Let m ≥ 4 and f : Sm → SV a quartic minimal immersion. Then,
we have

dim V ≥ m(m + 1)(m + 2)(m + 7)
12(m(m + 1) + 2)

.

Note that the lower bound here is O(m2); a significant improvement (for m ≥ 15)
of Moore’s (linear) lower bound in the quartic case.

For isotropic minimal immersions, the first notable improvement in the lower
estimate on the range dimension is O(m3) in degree 7:

Corollary 5. Let m ≥ 4 and f : Sm → SV be a minimal immersion of degree 7
and order of isotropy 2. Then, we have

dim V ≥ (m + 2)(m + 3)(m + 4)(m + 5)(m + 13)
1260m(m + 1)

.
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2. Infinitesimal Rotations of an Eigenmap

A spherical harmonic h of order p on Sm; that is, an eigenfunction of 4Sm

with
eigenvalue λp, is the restriction of a harmonic p-homogeneous polynomial in m + 1
variables [16]. In what follows, we identify these two representations of spherical
harmonics. In particular, a p-eigenmap f : Sm → SV is the restriction of a harmonic
p-homogeneous polynomial map f : Rm+1 → V to the respective spheres.

Let G ⊂ SO(m + 1) be a closed subgroup acting transitively on Sm. (For
classification results, cf. [18].) Let G be the Lie algebra of G and endow G with
the bi-invariant Riemannian metric which induces the standard (curvature one)
Riemannian metric on Sm. Given an orthonormal basis {Ei}s

i=1 ⊂ G, we have
4Sm

= −∑s
i=1(E

∗
i )2 [17]. Let f : Sm → SV be a p-eigenmap. In terms of the dual

basis {φi}s
i=1 ⊂ G∗, the map f̂ : Sm → V ⊗ G∗ in (4) is given by

f̂ = λ−1/2
p

s∑
i=1

E∗
i (f)⊗ φi.

Since each X∗, X ∈ G, is an infinitesimal isometry on Sm, the components of f̂ are
spherical harmonics of order p on Sm. To prove that f̂ maps into the unit sphere
of V ⊗ G∗, we first note that

4Sm |f |2 = 2〈4Sm

f, f〉 − 2
s∑

i=1

|E∗
i (f)|2

= 2λp|f |2 − 2
s∑

i=1

|E∗
i (f)|2

and this is zero since |f |2 = 1 on Sm. Thus, we have

|f̂ |2 = 1/λp

s∑
i=1

|E∗
i (f)|2 = |f |2 = 1.

The first statement (i) of Theorem 1 follows.
We now recall the construction of the moduli space Lp

m. Unless relevant, we
suppress m from the notation and write Lp, etc. Let Hp denote the vector space of
spherical harmonics of order p on Sm with L2-scalar product

〈h, h′〉 =
n(p) + 1
vol (Sm)

∫
Sm

hh′vSm , h, h′ ∈ Hp,

where

dimHp = n(p) + 1 = (m + 2p− 1)
(m + p− 2)!
p!(m− 1)!

.

In terms of an orthonormal basis {f j
p}n(p)

j=0 ⊂ Hp, the standard minimal immersion
fp : Sm → SHp is given by

fp(x) =
n(p)∑
j=0

f j
p (x)f j

p .

The DoCarmo-Wallach parametrization of Lp [3] is given as follows: Given a full
p-eigenmap f : Sm → SV , the space of components Vf = {φ ◦ f |φ ∈ V ∗}(∼= V ∗) is
contained in Hp. Thus, there exists a linear map A : Hp → V such that f = A◦ fp.
Notice that A is uniquely determined and, since it is onto, rank A = dim V . We now
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associate to (the congruence class of) f the symmetric endomorphism 〈f〉 = A>A−I
of Hp; an element of S2(Hp). The image of the correspondence f 7→ 〈f〉 is the
moduli space Lp. Its linear span Ep is given by

Ep = {C ∈ S2(Hp) | 〈C, f(x) � f(x)〉 = 〈Cf(x), f(x)〉 = 0, x ∈ Sm},
where S2(Hp) carries the usual scalar product defined by 〈C, C′〉 = trace (CC′),
C, C ′ ∈ S2(Hp), and � denotes the symmetric tensor product. Since A>A is
positive semidefinite for all A, we have

Lp = {C ∈ Ep
m |C + I ≥ 0}.

The interior of Lp is defined replacing ≥ by sharp inequality, so that the interior
points correspond to those full p-eigenmaps f : Sm → SV for which V ∼= V ∗

f is
maximal. This follows since rank (A>A) = rank A = dim V . A full p-eigenmap
f : Sm → SV is said to be of boundary type if 〈f〉 ∈ ∂Lp; that is, dimV < dimHp.
The following simple lemma follows almost directly from the definitions (cf. [15]).

Connecting Lemma. Let f1 : Sm → SV1 and f2 : Sm → SV2 be incongruent full
p-eigenmaps. Let c1, c2 > 0 with c1 + c2 = 1. Then the point

c1〈f1〉+ c2〈f2〉 ∈ Lp

on the segment connecting 〈f1〉 and 〈f2〉 is represented by the p-eigenmap f : Sm →
SV , V = V1 × V2, defined by f = (

√
c1f1,

√
c2f2) and made full. In particular, for

the spaces of components, we have

Vf = Vf1 + Vf2 .

To realize the correspondence f 7→ f̂ on the moduli space Lp, we first introduce
the linear map

αp : Hp → Hp ⊗ G∗
defined by

αp(h)(X) = λ−1/2
p X∗(h), h ∈ Hp, X ∈ G.

Lemma 1. We have
α>p ◦ αp = I.

In particular, αp : Hp → Hp ⊗ G∗ is a linear isometric imbedding.

Proof. The vector field X∗, X ∈ G, is an infinitesimal isometry on Sm, so that its
action on Hp is skew-symmetric. It follows that the transpose α>p is given by

α>p (h⊗ φi) = −λ−1/2
p E∗

i (h), h ∈ Hp, i = 1, . . . , s.

We use this to compute

(α>p ◦ αp)(h) = α>p (λ−1/2
p

s∑
i=1

E∗
i (h)⊗ φi)

= −1/λp

s∑
i=1

(E∗
i )2h = 1/λp4Sm

h = h.

The next lemma asserts that f̂p, made full, is congruent to fp.

Lemma 2. For x ∈ Sm, we have

f̂p(x) = αp(fp(x)).
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Proof. We have

f̂p(x) = λ−1/2
p

s∑
i=1

n(p)∑
j=0

f j
p (x)E∗

i (f j
p )⊗ φi

=
n(p)∑
j=0

f j
p(x)αp(f j

p ) = αp(fp(x)).

Let f : Sm → SV be a full p-eigenmap with 〈f〉 = A>A−I ∈ Lp, where A : Hp → V
is a linear map with f = A ◦ fp. We have

f̂ = (A⊗ I) ◦ f̂p = (A⊗ I) ◦ αp ◦ fp.

Using Lemma 1, we compute

〈f̂〉 = α>p (A> ⊗ I)(A⊗ I)αp − I

= α>p ((A>A− I)⊗ I)αp

= α>p (〈f〉 ⊗ I)αp.

In view of this, we define the linear map

Ap : S2(Hp) → S2(Hp)

by
Ap(C) = α>p ◦ (C ⊗ I) ◦ αp, C ∈ S2(Hp).

The computation above implies that Ap(〈f〉) = 〈f̂〉; in particular, Lp is Ap-
invariant. The linear span Ep of Lp is also Ap-invariant since Ap is linear. The
second statement (ii) of Theorem 1 will follow if we prove the following:

Lemma 3. Ap : S2(Hp) → S2(Hp) is symmetric.

Proof. Given C, C′ ∈ S2(Hp), we compute

〈Ap(C), C ′〉 =
n(p)∑
j=0

〈Ap(C)(f j
p ), C′(f j

p)〉

=
n(p)∑
j=0

〈(C ⊗ I)αp(f j
p ), αp(C ′(f j

p))〉

= 1/λp

s∑
i=1

n(p)∑
j=0

〈C(E∗
i (f j

p)), E∗
i (C ′(f j

p ))〉

= −1/λp

s∑
i=1

n(p)∑
l=0

〈C(f l
p), E

∗
i (C ′(E∗

i (f l
p)))〉

= 1/λp

s∑
i=1

n(p)∑
l=0

〈E∗
i C(f l

p), C
′(E∗

i (f l
p))〉

= 〈C,Ap(C ′)〉,
where we used the fact that infinitesimal isometries are skew on Hp and replaced
E∗

i (f j
p ) with −∑n(p)

l=0 〈f j
p , E∗

i (f l
p)〉f l

p. The lemma follows.
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Since Ap is symmetric on S2(Hp), it is diagonalizable and has real eigenvalues.
Since Ep is Ap-invariant, the same holds for the action of Ap on Ep. Moreover,
since Lp ⊂ Ep is compact and Ap-invariant, all eigenvalues of Ap|Ep are in [−1, 1].
The third statement (iii) of Theorem 1 follows.

Precomposition with the inverse of isometries of the orthogonal group SO(m+1)
defines an (orthogonal) action on Hp; that is, we set g ·h = h◦g−1, g ∈ SO(m+1),
h ∈ Hp. This action extends to the symmetric square S2(Hp). The linear subspaces
(Fp;k ⊂) Fp ⊂ Ep ⊂ S2(Hp) are SO(m + 1)-submodules. In fact, if f : Sm → SV

is a full p-eigenmap then g · 〈f〉 = 〈f ◦ g−1〉, g ∈ SO(m + 1).
Let G ⊂ SO(m+1) be a closed subgroup. The linear slice FixG(Lp) parametrizes

the (congruence classes of) full p-eigenmaps that are G-equivariant; the homomor-
phism ρ : G → SO(V ) corresponding to G-equivariance of f : Sm → SV depends
on f . We have

f ◦ g = ρ(g) ◦ f, g ∈ G.(7)

From now on, let G ⊂ SO(m + 1) be a closed subgroup acting transitively on Sm

and let G be the Lie algebra of G. We define αp : Hp → Hp ⊗ G∗ as above. For
g ∈ G, h ∈ Hp and X ∈ G, we have

αp(g · h)(X) = λ−1/2
p X∗(h ◦ g−1)

= λ−1/2
p (g−1)∗X∗(h)

= (λp)−1/2( ad (g−1)X)∗(h) ◦ g−1

= g · αp(h)( ad (g−1)X).

Here (g−1)∗ denotes the differential of g−1 considered as a self-map of Sm. This
shows that αp is a homomorphism of G-modules, where the module structure onHp

is given by restriction, and on G∗ by the adjoint representation. As an immediate
consequence, we also see that Ap is an endomorphism of the G-module S2(Hp).

Lemma 4. FixG(Ep) is equal to the +1 eigenspace of Ap.

Proof. We first show that Ap is identity on FixG(Ep). Being a homomorphism
of G-modules, Ap leaves FixG(Ep) invariant. By Lemma 3, it remains to show
that all eigenvalues of Ap on FixG(Ep) are equal to one. Let C ∈ FixG(Ep) be an
eigenvector of Ap with eigenvalue λ ∈ [−1, 1]. We may assume that C = 〈f〉 ∈ ∂Lp,
where f : Sm → SV is a full p-eigenmap of boundary type. Since 〈f〉 ∈ FixG(Ep),
f is equivariant with respect to a homomorphism ρ : G → SO(V ). Let X ∈ G.
Substituting g = exp (tX), t ∈ R, into (7) and differentiating (at t = 0), we obtain

X∗(f) = −R(X) ◦ f,

where R : G → so(V ) is the differential of ρ. Viewing R as a linear map R : V →
V ⊗ G∗, we have

f̂ = −λ−1/2
p R ◦ f.

It follows that Vf̂ ⊂ Vf holds for the corresponding spaces of components. In

particular, f̂ is of boundary type. Since 〈f̂〉 = Ap(〈f〉) = λ〈f〉 this is possible only
if λ = 1 or if λ < 0. The latter, however, contradicts to the Connecting Lemma.

For the converse, we assume that FixG(Ep) is properly contained in the +1
eigenspace of Ap. Let f : Sm → SV be a full p-eigenmap of boundary type such
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that 〈f̂〉 = Ap(〈f〉) = 〈f〉 and assume that 〈f〉⊥ FixG(Ep). Since 〈f̂〉 = 〈f〉, there
exists a linear homothety R : V → V ⊗ G∗ such that

X∗(f) = −R(X) ◦ f, X ∈ G.

In particular, the space of components Vf = Vf̂ is a G-submodule of Hp. Thus,
Vf ⊂ Hp is also a G-submodule.

Let {f l
0}n

l=0 ⊂ Vf , n+1 = dim Vf , be an orthonormal basis and define f0 : Sm →
Vf by

f0(x) =
n∑

l=0

f l
0(x)f l

0.

By construction, f0 is G-equivariant (with respect to the G-module structure on Vf )
and, since G acts transitively on Sm, up to scaling, f0 maps Sm to the unit sphere
of Vf . After scaling, we obtain a full p-eigenmap f0 : Sm → SVf

. By definition, we
have Vf0 = Vf . Since f0 is G-equivariant, 〈f0〉 is fixed by G.

Consider the ray emanating from 〈f〉 through 〈f0〉. Since Lp is compact and
convex, this ray intersects Lp in a segment with endpoint beyond 〈f0〉 represented
by a full p-eigenmap f ′ : Sm → SV ′ . Since f and f0 have the same range dimension,
dim V ′ < dim V ; in particular, f0 and f ′ are incongruent. (We are implicitly using
here the stratification of Lp induced by the inclusion relation among the spaces of
components of eigenmaps; for details, cf. [13].)

Let C be the center of mass of the G-orbit through 〈f〉. Clearly, C is G-fixed.
Moreover, since 〈f〉 is orthogonal to the G-module FixG(Ep), so is C. Thus, C = 0.

Let C ′ be the center of mass of the G-orbit through 〈f ′〉. As before, C ′ ∈
FixG(Ep). Moreover, by convexity, C′ ∈ Lp. Since 〈f0〉 is G-fixed and is between
〈f〉 and 〈f ′〉, the point 〈f0〉 is between C = 0 and C′ in Lp. Thus, f0 cannot be of
boundary type; a contradiction. The lemma follows.

The last statement of Theorem 1 follows from the following:

Lemma 5. The +1 eigenspace of (Ap)2 is contained in Fix[G,G](Ep).

Proof. Assume that (Ap)2 fixes C ∈ ∂Lp. Let f : Sm → SV be a full p-eigenmap
of boundary type that represents C. By construction, Vf is invariant under the
second order differential operators X∗Y ∗, X, Y ∈ G. In particular, Vf is a [G,G]-
submodule of Hp. As before, Vf is a [G, G]-submodule. Since G acts transitively
on Sm, so does [G, G]. The previous proof now applies.

3. Eigenmaps and Spherical Minimal Immersions

A p-eigenmap f : Sm → SV is a spherical minimal immersion of degree p iff it is
homothetic; that is, it satisfies (1). Thus, to prove Theorem 2, we need to show that
f : Sm → SV homothetic implies that f̂ : Sm → SV⊗G∗ is also homothetic. We now
recall some results from [14] that will greatly reduce the amount of computations.
Let f : Sm → SV be a full p-eigenmap. We define the symmetric 2-tensor Ψ(f) on
Sm by

Ψ(f)(X, Y ) = 〈f∗(X), f∗(Y )〉 − λp/m〈X, Y 〉
= 〈f∗(X), f∗(Y )〉 − 〈(fp)∗(X), (fp)∗(Y )〉,

where X, Y are vector fields on Sm (and vectors tangent to Sm are identified with
their translates to the origin of Rm+1). By definition, f is homothetic iff Ψ(f) = 0.
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We restrict Ψ(f) to conformal vector fields on Sm; given a ∈ Rm+1, the conformal
vector field Xa on Sm is defined by

Xa
x = a− 〈a, x〉, x ∈ Sm.

Since conformal vector fields span each tangent space in Sm, we see that f is
conformal iff Ψ(a, b) := Ψ(f)(Xa, Xb) = 0 for all a, b ∈ Rm+1. We now extend all
objects to Rm+1; the spherical harmonics to harmonic p-homogeneous polynomials
in m + 1 variables, the p-eigenmaps to harmonic p-homogeneous polynomial maps
f : Rm+1 → V (that map the unit sphere to the unit sphere), the conformal vector
field Xa, a ∈ Rm+1, to Rm+1 by

Xa
x = a− 〈a, x〉

ρ2
x, ρ2 = |x|2, x ∈ Rm+1,

and Ψ(f) to Rm+1 by

Ψ(f)(a, b) = 〈f∗(Xa), f∗(Xb)〉 − λp/m〈Xa, Xb〉ρ2(p−1), a, b ∈ Rm+1.

Computations show [14] that Ψ(f)(a, b) is a homogeneous polynomial of degree
2(p− 1); in fact, we have

Ψ(f)(a, b) = 〈∂af, ∂bf〉(8)

+ (λp/m− p2)〈a, x〉〈b, x〉ρ2(p−2) − λp/m〈a, b〉ρ2(p−1),

where ∂a denotes the directional derivative at the direction a ∈ Rm+1.
Let G ⊂ SO(m + 1) be a closed subgroup acting transitively on Sm and let G

denote its Lie algebra. The elements of G will be considered as skew-symmetric
matrices acting on Rm+1. By (8), to prove Theorem 2, we need to show that, for
f : Sm → SV homothetic, |∂af̂ |2, a ∈ Rm+1, is independent of f , so that it is then
equal to |∂af̂p|2 and thereby cancel in Ψ(f̂)(a, a).

Lemma 6. For a ∈ Rm+1 and X ∈ G, we have

[∂a, X∗] = ∂Xa.

Proof. Let xk : Rm+1 → R, k = 0, . . . , m, denote the k-th projection. We have
∂axk = ak and, for x ∈ Rm+1,

X∗
x = ∂Xx =

m∑
k=0

xk∂Xek
,

where {ek}m
k=0 ⊂ Rm+1 is the standard basis. With these, we compute

[∂a, X∗] = ∂aX∗ −X∗∂a

=
m∑

k=0

∂a(xk∂Xek
)−

m∑
k=0

xk∂Xek
∂a

=
m∑

k=0

(∂axk)∂Xek
= ∂Xa.

Lemma 7. For a ∈ Rm+1 and X ∈ G, we have

X∗∂Xa = 1/2(−∂X2a + ∂a(X∗)2 − (X∗)2∂a).
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Proof. By Lemma 6, [X∗, ∂Xa] = −∂X2a. Using this and Lemma 6 repeatedly, we
compute

X∗∂Xa + ∂X2a = ∂XaX∗

= [∂a, X∗]X∗

= ∂a(X∗)2 −X∗∂aX∗

= ∂a(X∗)2 −X∗([∂a, X∗] + X∗∂a)
= ∂a(X∗)2 −X∗∂Xa − (X∗)2∂a.

Lemma 7 follows.

We now turn to the main computation. Let {Ei}s
i=1 ⊂ G be an orthonormal

basis as before. We have

λp|∂af̂ |2 =
s∑

i=1

|∂aE∗
i (f)|2

=
s∑

i=1

|[∂a, E∗
i ]f + E∗

i ∂af |2

=
s∑

i=1

|∂Eiaf + E∗
i ∂af |2

=
s∑

i=1

|∂Eiaf |2 + 2
s∑

i=1

〈∂Eiaf, E∗
i ∂af〉+

s∑
i=1

|E∗
i ∂af |2.

We write the result as I + 2 II + III. Assume now that f is homothetic so that
Ψ(f) = 0. In particular,

∑s
i=1 Ψ(f)(Eia, Eia) = 0 so that, by (8), I is independent

of f . Using skew symmetry of X∗, X ∈ G, on Hp−1 and Lemma 7, we have

II = −
s∑

i=1

〈E∗
i ∂Eiaf, ∂af〉

= 1/2
s∑

i=1

〈∂E2
i af, ∂af〉

− 1/2〈∂a

s∑
i=1

(E∗
i )2f, ∂af〉+ 1/2〈

s∑
i=1

(E∗
i )2∂af, ∂af〉

= 1/2〈∂β(a)f, ∂af〉+ (λp − λp−1)/2〈∂af, ∂af〉,
where β(a) =

∑s
i=1 E2

i a, a ∈ Rm+1. Every term here is independent of f since
Ψ(f) = 0. Finally, we have

III = −〈
s∑

i=1

(E∗
i )2∂af, ∂af〉 = λp−1〈∂af, ∂af〉

and this is also independent of f . Theorem 2 is proved.

4. Raising the Degree

As noted in Section 1, it is enough to prove Theorem 3 for q = p + 1. We first
define an SO(m+1)-equivariant imbedding of Lp into Lp+1, that extends to a linear
inclusion Ep ⊂ Ep+1 via (2). The imbedding is given on the level of eigenmaps by
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the degree raising operator [14] as follows: Given a full p-eigenmap f : Sm → SV ,
we define f+ : Sm → SV⊗H1 by

f+ =
√

λ2p/(2λp)
m∑

k=0

H(xkf)⊗ yk,

where H is the harmonic projection operator [16] and f is considered as a harmonic
polynomial map f : Rm+1 → V . The correspondence f 7→ f+ gives rise to the linear
imbedding of the moduli spaces in question; in fact, it extends to a linear SO(m+1)-
module monomorphism Φ+

p : S2(Hp) → S2(Hp+1). By definition, Φ+
p (〈f〉) = 〈f+〉.

To make Φ+
p more explicit, we first note that Hp+1 is contained in Hp ⊗H1 as an

SO(m + 1)-submodule via the inclusion ιp : Hp+1 → Hp ⊗H1 given by

ιp(h) = cp

m∑
k=0

∂kh⊗ yk, h ∈ Hp+1,

where ∂k denotes the k-th partial derivative. The value of the constant cp is deter-
mined by the condition

ι>p ◦ ιp = I.(9)

We have
Φ+

p (C) = ι>p ◦ (C ⊗ I) ◦ ιp, C ∈ S2(Hp).

For further details, cf. [14]. The partial differentiation ∂k, as a linear map Hp+1 →
Hp has transpose H(xk·) : Hp → Hp+1 multiplied by (p + 1)λ2p/(2λp) [14]. Simple
computation shows that

ι>p (h′ ⊗ yk) =
√

λ2p/(2λp)H(xkh′), h′ ∈ Hp, k = 0, . . . , m.(10)

The normalizing condition (9) now gives

cp =
1√

p + 1

√
2λp

λ2p
.(11)

Theorem 3 will follow if we prove the following:

Lemma 8. Let G ⊂ SO(m + 1) be a closed subgroup acting transitively on Sm.
Then, for C ∈ S2(Hp), we have

λp+1(Ap+1(Φ+
p (C)) − Φ+

p (C)) = λp(Φ+
p (Ap(C)) − Φ+

p (C)).

Proof. Given C ∈ S2(Hp), we work out

λp+1Ap+1(Φ+
p (C))− λpΦ+

p (Ap(C)).(12)

For h ∈ Hp+1, we have

λp+1Ap+1(Φ+
p (C))(h) = λp+1α

>
p+1(Φ

+
p (C)⊗ I)αp+1(h)

= −
s∑

i=1

E∗
i (Φ+

p (C)E∗
i h)

= −cp

s∑
i=1

m∑
k=0

E∗
i (ι>p (C ⊗ I)∂k(E∗

i h)⊗ yk)

= −(p + 1)−1/2
s∑

i=1

m∑
k=0

H(E∗
i (xkC(∂k(E∗

i h)))),
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where we used (10)–(11). On the other hand, we have

λpΦ+
p (Ap(C))(h) = λpι

>
p (Ap(C) ⊗ I)ιp(h)

= λpcp

m∑
k=0

ι>p (Ap(C)⊗ I)(∂kh⊗ yk)

= λp(p + 1)−1/2
m∑

k=0

H(xkAp(C)(∂kh))

= −(p + 1)−1/2
s∑

i=1

m∑
k=0

H(xkE∗
i C(E∗

i (∂kh))).

The difference (12) of these two terms is

−(p + 1)−1/2
s∑

i=1

m∑
k=0

(H(E∗
i (xkC(∂kE∗

i h)))−H(xkE∗
i C(E∗

i ∂kh))).

Performing differentiation in the first term, the double sum (without the coefficient)
rewrites as

s∑
i=1

m∑
k=0

H(E∗
i (xk)C(∂kE∗

i h)) +
s∑

i=1

m∑
k=0

H(xkE∗
i C[∂k, E∗

i ]h).(13)

We write this as I + II and work out each term separately. Using the standard
basis {ek}m

k=0 ⊂ Rm+1, we have

I =
s∑

i=1

m∑
k=0

H(〈Eix, ek〉C(∂kE∗
i h))

=
s∑

i=1

m∑
k,l=0

H(xl〈Eiel, ek〉C(∂kE∗
i h))

=
s∑

i=1

m∑
l=0

H(xlC(∂Eiel
E∗

i h)).

By Lemmas 6-7, the second-order operator

∂Eiel
E∗

i = [∂Eiel
, E∗

i ] + E∗
i ∂Eiel

= 1/2(∂E2
i el

+ ∂l(E∗
i )2 − (E∗

i )2∂l)

Summing up with respect to i = 1, . . . , s, and using that
∑s

i=1(E
∗
i )2 = −λpI on

Hp, we arrive at

I = 1/2
m∑

l=0

H(xlC∂β(el)h)− (λp+1 − λp)/2
m∑

l=0

H(xlC∂lh),(14)

where β(a) =
∑s

i=1 E2
i a, a ∈ Rm+1. Using Lemma 6, the second sum in (13)

rewrites as

II =
s∑

i=1

m∑
k=0

H(xkE∗
i C[∂k, E∗

i ]h) =
s∑

i=1

m∑
k=0

〈Eiek, el〉H(xkE∗
i C∂lh).

For l = 0, . . . , m fixed, consider the operator

Kl : h′ 7→
s∑

i=1

m∑
k=0

〈Eiek, el〉H(xkE∗
i h′), h′ ∈ Hp.
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The simplest way to work this out is to simplify its transpose. As noted above,
up to a constant multiple, the transpose of H(xk·) is ∂k, so that, by Lemma 7, for
h′′ ∈ Hp, we have

K>l (h′′) = 2(p + 1)λp/λ2p

s∑
i=1

m∑
k=0

〈ek, Eiel〉E∗
i ∂kh′′

= 2(p + 1)λp/λ2p

s∑
i=1

E∗
i ∂Eiel

h′′

= 2(p + 1)λp/λ2p(−∂β(el)h
′′ + (λp − λp+1)∂lh

′′).

Taking transpose again, we obtain

Kl(h′) = −(1/2)H(〈β(el), x〉h′)− (1/2)(λp+1 − λp)H(xlh
′), h′ ∈ Hp.

Using this, we have

II = −(1/2)
m∑

l=0

H(〈β(el), x〉C∂lh)− (1/2)(λp+1 − λp)
s∑

i=1

m∑
l=0

H(xlC∂lh).

Combining this with (14), we arrive at

I + II = −(λp+1 − λp)
m∑

l=0

H(xlC∂lh).

since the first terms in I and II cancel by symmetry of β. We finally obtain that
the difference in (12) is equal to

(λp+1 − λp)/
√

p + 1
m∑

l=0

H(xlC∂lh) = (λp+1 − λp)Φ+
p (C)(h)

and Theorem 3 follows.

5. Estimates on the Range Dimension

Let G be semisimple and f : Sm → SV a full p-eigenmap of boundary type.
Assume that C = 〈f〉 is contained in an Ap-invariant G-submodule V of Ep.
Let λ1, . . . , λd denote the distinct eigenvalues of Ap|V . Since V is orthogonal to
FixG(Ep), we have λj ∈ (−1, 1), j = 1, . . . , d. Let Ck = (Ap)k(C), k = 0, . . . , d;
C0 = C. We may assume that Cd ∈ ∂Lp since otherwise e(f) ≤ d and the lower
estimate (6) applies.

We claim that the entire simplex with vertices C1, . . . , Cd is contained in the
boundary of Lp. This can be seen as follows. The space Vf̂ of components of f̂

is spanned by the components of X∗(f), X ∈ G. Similarly, Vf̂2 is spanned by the
components of X∗Y ∗(f), X, Y ∈ G. Since G is semisimple, it follows that Vf̂ ⊂ Vf̂2 .
By the Connecting Lemma, the segment joining C1 and C2 is on the boundary of
Lp provided that C2 ∈ ∂Lp. Iterating ,̂ we have

Vf̂ ⊂ Vf̂2 ⊂ . . . ⊂ Vf̂d

and, since f̂k corresponds to Ck, k = 1, . . . , d, by the Connecting Lemma, Vf̂d

contains the spaces of components of all eigenmaps that correspond to points in
the simplex with vertices C1, . . . , Cd.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1440 GABOR TOTH

Next we claim that the simplex with vertices C = C0 and C1, . . . , Cd inter-
sects the interior of Lp. To prove this, we first notice that C0, . . . , Cd are linearly
dependent. More specifically, we have

d∑
k=0

(−1)ksk(λ1, . . . , λd)Cd−k = 0,(15)

where sk is the k-th elementary symmetric polynomial in d variables. To show
this, we write C =

∑d
j=1 Xj , where Xj is an eigenvector of Ap with eigenvalue λj .

Applying (Ap)d−k to both sides, we have Cd−k =
∑d

j=1 λd−k
j Xj . Now (15) follows

from the identity
d∑

k=0

(−1)ksk(λ1, . . . , λd)λd−k
j = (x− λ1) . . . (x− λd)|x=λj = 0.

We now rearrange (15) into convex linear combinations. For simplicity, we set
ak = (−1)ksk(λ1, . . . , λd). Let

I+ = {k | ak > 0}, I− = {k | ak < 0}
and

S+ =
∑

k∈I+

ak, S− =
∑

k∈I−
(−ak).

By Theorem 1, we have

S+ − S− =
d∑

k=0

ak = (1− λ1) . . . (1 − λd) > 0.

Clearly, 0 ∈ I+. We may assume that I− is nonempty. Indeed, if I− = ∅ then, by
(15), we have ∑

k∈I+

ak

S+
Cd−k = 0.

This equality shows that a convex linear combination of the vertices Cd−k, k ∈ I+,
gives the origin; an interior point of Lp.

Assuming I± 6= ∅, we have S± > 0. Rewriting (15), we have

S+

S−
∑

k∈I+

ak

S+
Cd−k =

∑
k∈I−

(−ak)
S−

Cd−k.

The right-hand-side is a point in the simplex with vertices Cd−k, k ∈ I−. By the
inequality above, S+/S− > 1, so that the sum on the left-hand-side must be in the
interior of Lp. But this sum is a point in the simplex with vertices Cd−k, k ∈ I+.
The claim follows.

Let d = 1. Since the segment joining C0 = 〈f〉 and C1 = 〈f̂〉 contains a point in
the interior of Lp, by the Connecting Lemma, we have Vf + Vf̂ = Hp. Since

dimHp ≤ dim Vf + dim Vf̂

≤ dim V + dim V · dimG∗
= dim V (1 + dim G)

the first statement of Theorem 4 follows.
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Let d ≥ 2. We first notice that, with respect to an orthonormal basis {Ei}s
i=1 ⊂

G, we have

f = 1/λp4Sm

f = −1/λp

s∑
i=1

(E∗
i )2f.

Taking components, we obtain Vf ⊂ Vf̂2 . By the Connecting Lemma, the entire
simplex with vertices C0, . . . , Cd is contained in the boundary of Lp. This contra-
dicts to the previous claim and shows that Cd must be in the interior of Lp. Thus
e(f) ≤ d and Theorem 4 follows.

6. Examples

Let m = 3. We have the standard splitting SO(4) = SU(2) · SU(2)′, where
SU(2) ∩ SU(2)′ = {±I} and SU(2)′ is obtained from SU(2) by conjugating with
the diagonal matrix in SO(4) with diagonal entries 1, 1, 1,−1. We will use the
following notation: If W is an SU(2)-module, then W ′ denotes the SU(2)′-module
obtained from W by conjugating SU(2)′ to SU(2) within SO(4) with the diagonal
matrix above, and then applying the SU(2)-module structure to W . If, in addition,
−I acts on W ′ trivially, then W ′ is also considered as an SO(4)-module with trivial
action of SU(2) on W ′. We use similar notation when the roles of SU(2) and SU(2)′

are switched.
Let Wp denote the complex irreducible SU(2)-module of dimension p + 1. For p

even, Wp is the complexification of a real irreducible SU(2)-module Rp. For p odd,
Wp, considered as a real SU(2)-module, is irreducible. For p even, we have

Hp ∼= Rp ⊗R′
p

as real SO(4)-modules.
In [15] Ziller and the author proved that, for u ≥ v ≥ 1 and u + v even, V

(u,v)
4

(cf. (2)) contains the trivial SU(2)-module iff u = v. In this case, V
(u,u)
4 is the

complexification of the SO(4)-module R2u ⊕R′
2u. Combining this with (2), we see

that

FixSU(2)(Ep) ∼=
[|p/2|]∑
k=1

R′
4k,

as real SU(2)′-modules. As noted above, Lp intersected with this linear subspace
parametrizes the congruence classes of full SU(2)-equivariant p-eigenmaps.

Let p = 2 and G = SU(2)′. As shown in [12], the moduli space L2 is the
convex hull of the slices FixSU(2)(L2) and FixSU(2)′(L2). By Theorem 1, A2 acts
on the irreducible SU(2)′-module FixSU(2)(E2) as multiplication by a real number
λ ∈ (−1, 1), and as identity on FixSU(2)′(E2). We claim that λ = −1/2. To
show this, consider the Hopf map, Hopf : S3 → S2, given, in complex variables
z = x1 + ix2 and w = x3 + ix4, x = (z, w) = (x1, x2, x3, x4) ∈ C2 = R4, by

Hopf(z, w) = (|z|2 − |w|2, 2zw̄), |z|2 + |w|2 = 1.

(As shown in [12], FixSU(2)(L2) is the convex hull of the orbit SU(2)′(〈Hopf〉),
that is a minimally imbedded projective plane in its respective 4-sphere.) The
standard basis of the Lie algebra so(4) is given by the vectors Aik = xi∂k − xk∂i,
0 ≤ i < k ≤ 3. The Lie subalgebra su(2) ⊂ so(4) is spanned by

X =
[

0 1
−1 0

]
, Y =

[
0 i
i 0

]
, Z =

[
i 0
0 −i

]
.
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We have
X∗ = A13 −A24, Y ∗ = A14 + A23, Z∗ = A12 + A34.

Using complex coordinates and ∂z = 1/2 (∂1 − i∂2), ∂z̄ = 1/2 (∂1 + i∂2) etc., we
have

X∗ = −w̄∂z − w∂z̄ + z̄∂w + z∂w̄,

Y ∗ = i(−w̄∂z + w∂z̄ + z̄∂w − z∂w̄),
Z∗ = i(z∂z − z̄∂z̄ + w∂w − w̄∂w̄).

Now, easy computation shows that Ĥopf is congruent to the complex Veronese map
VerC : S3 → S5 given by VerC(z, w) = (z2,

√
2zw, w2), (z, w) ∈ C2. Since 〈Hopf〉

and 〈VerC〉 are both contained in FixSU(2)(L2), we see that they are opposite
points on the boundary of L2 and λ is negative. Both quadratic eigenmaps have
the property that their components are orthogonal with the same norm. Thus, the
diagonal (9 × 9)-matrix 〈Hopf〉 consists of a diagonal (3 × 3)-block with entries 2
and another diagonal (6× 6)-block with entries −1. Similarly, 〈VerC〉 consists of a
diagonal (3×3)-block with entries −1 and a diagonal (6×6)-block with entries 1/2.
We obtain that |〈Hopf〉| = 3

√
2 and |〈VerC〉| = 3/

√
2. The ratio gives λ = −1/2.

The iteration formula (5) immediately gives that, for p ≥ 2, the eigenvalue of Ap

on R′
4 ⊂ Ep is 1− 12/(p(p + 2)).

Let p = 4 and G = SU(2)′. The moduli space M4 is the convex hull of the slices
FixSU(2)(F4) and FixSU(2)′(F4) [15]. By Theorem 1, A4 acts on the irreducible
SU(2)′-module FixSU(2)(F4) as multiplication by a real number λ ∈ (−1, 1), and
as identity on FixSU(2)′(F4). We claim that λ = −2/3. The verification of this is
completely analogous to the case of quadratic eigenmaps. The role of the Hopf map
is played by the SU(2)-equivariant minimal immersion I : S3 → S9 [2, 15] given
by

I(z, w) = (1/
√

2(z4 − w̄4),
√

6z2w̄2,√
2(z3w − z̄w̄3),

√
6(zz̄2w − z̄w2w̄),√

3/2(z2w2 − z̄2w̄2), 1/
√

2(|z|4 − 4|z|2|w|2 + |w|4)).
The components of I are orthogonal with the same norm. (The SU(2)′-orbit of
〈I〉 is a minimally imbedded octahedral manifold in the respective 8-sphere [15].)
Computation shows that Î, made full, is a spherical minimal immersion with range
S14, and 〈I〉 and 〈Î〉 are opposite points on the boundary of M4 and λ is negative.
Computing lengths as before, we obtain λ = −2/3. By the iteration formula (5),
Ap on R′

8 ⊂ Fp, p ≥ 4, has eigenvalue 1− 40/(p(p + 2)).
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