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1. Introduction and preliminaries.

It is well-known that a map $F:Marrow S^{N}$ of a Riemannian manifold $M$ into
the Euclidean $N$-sphere $S^{N}\subset R^{N+1}$ is harmonic [3] iff the induced vector-valued
function $F:Marrow R^{N+1}$ satisfies the equation

$\Delta^{M}F=\mu F$ , (1)

where $\Delta^{M}$ is the Laplacian on $M$ and the scalar $\mu$ is uniquely determined by
$F$, in fact, $\mu$ is nothing but the energy density $e(F)=trace||F_{*}||^{2}$ of F. (We

work in the $C^{\infty}$-category, $i$ . $e.$ , we assume that all manifolds, maps, bundles etc.
are of class $C^{\infty}.$ )

Applying an $(n+1)\cross(N+1)$-matrix $A\in M(n+1, N+1)$ to both sides of (1)

we infer that $f=A\cdot F$ defines a harmonic map of $M$ into $S^{n}$ of energy density
$e(f)=\mu(=e(F))$ provided that $A$ maps the image of $F$ into $S^{n}$ . In this case,
we say that $f$ is derived from $F$ and write $farrow F$. Define a symmetric endo-
morphism $\langle f\rangle$ of $R^{N+1}$ by $\langle f\rangle=A^{\rceil}A-I_{N+1}$ . The condition $|f|^{2}=1$ is equivalent
to that $\langle f\rangle$ is perpendicular to proi $[F(x)]$ for all $x\in M$ with respect to the
usual inner product $\langle C, C’\rangle=trace(C^{\prime T}\cdot C),$ $C,$ $C’\in S^{2}(R^{N+1})$ . Clearly $\langle f\rangle$ de-
pends only on the equivalence class of $f$ , where two maps $f’,$ $f’’$ : $Marrow S^{n}$

(derived from $F$ ) are said to be equivalent if $f’’=U\cdot f’$ for some $U\in O(n+1)$ .
Restricting ourselves from here on to full maps ( $i$ . $e.$ , assuming that the image
always spans the range) we obtain that, given a full harmonic map $F:Marrow S^{N}$ ,
the equivalence classes of full harmonic maps $f:Marrow S^{n}$ that are derived from
$F$ can be parametrized (via $farrow\langle f\rangle$ ) by the convex body

$x_{F}=\{C\in \mathcal{E}_{F}|C+I_{N+1}\geqq 0\}$ (2)

(‘ )‘ stands for positive semidefinite), where

$e_{F}=$ $($span {proj $[F(x)]|x\in M\})^{\perp}\subset S^{2}(R^{N+1})$ . (3)
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(Our main reference for the facts recalled here and below is [11].) It follows
from (2) that $\partial X_{F}=\mathcal{L}_{F}\backslash int\mathcal{L}_{F}$ parametrizes those full harmonic maps $f:Marrow S^{n}$

derived from $F$ for which $n<N$.
The relation $arrow$ is transitive. Hence, if $farrow F$, the moduli space $X_{f}$ can be

thought of as being contained in $\mathcal{L}_{F}$ . More precisely, setting $f=A\cdot F$ as above,

the injective affine map
$c:S^{2}(R^{n+1})arrow S^{2}(R^{N+1})$

defined by
$t(C)=A^{T}(C+I_{n+1})A-I_{N+1}$ , $C\in S^{2}(R^{n+1})$

satisfies
$c(\mathcal{L}_{f})=\ell(\mathcal{E}_{f})\cap \mathcal{L}_{F}$ . (4)

We call $I_{f}=c(intX_{f})\subset \mathcal{L}_{F}$ the (open) cell associated to $f(-F)$ . By (4), $f$ esta-
blishes an affine isomorphism between $\mathcal{L}_{f}$ and the closure of $I_{f}$ in $\mathcal{L}_{F}$ . Clearly,
$I_{f}$ is convex and open in $c(\mathcal{E}_{f})$ . Moreover, $\langle f\rangle\in I_{j}$ and by passing to the
boundary of $I_{f}$ the range dimension decreases. $\mathscr{I}_{F}=\{l_{f}|f-F\}$ is a decomposi-
tion of $\mathcal{L}_{F}$ into disjoint convex sets. We call $\mathscr{I}_{F}$ the natural stratification of $X_{F}$ .

In the most important cases $F:Marrow S^{N}$ posesses symmetries, $i.e.$ , it is equi-
variant with respect to a homomorphism $\rho_{F}$ : $Garrow 0(N+1)$ , where $G$ is a closed
subgroup of the group of isometries of $M$. This means that, for $a\in G$ , we
have

$F\cdot a=\rho_{F}(a)\cdot F$ . (5)

The homomorphism $\rho_{F}$ , which is uniquely determined by fullness of $F$, induces
an orthogonal $G$-module structure on $R^{N+1}$ and hence an orthogonal G-module
structure on $S^{2}(R^{N+1})$ . Using (5) in (2) $-(3)$ , we obtain that $\mathcal{E}_{F}\subset S^{2}(R^{N+1})$ is a
$G$-submodule. In fact, the moduli space $X_{F}\subset \mathcal{E}_{F}$ is $G$ -invariant. More precisely,
for $farrow F$ and $a\in G$ , we have

$a\cdot\langle f\rangle=\langle f\cdot\sigma^{-1}\rangle$ . (6)

The action of $G$ on $\mathcal{L}_{F}$ preserves the natural stratification $\mathscr{I}_{F},$
$i$ . $e.$ , as expected

from (6), we have
$a\cdot I_{f}=I_{f\cdot a^{-1}}$ .

In particular, $G\cdot I_{f}$ is a smooth submanifold of $\mathcal{E}_{F}$ , so that $G\cdot \mathscr{I}_{F}=\{G\cdot I_{f}|farrow F\}$

is a $G$-invariant smooth stratification of $X_{F}$ .

REMARK. A somewhat more involved argument shows [11] that if $\langle$ $f^{\backslash }$ is
the center Of mass of $I_{f}$ then $G\cdot\langle f\rangle$ and $I_{f}$ intersect (weakly) transversally at
$\langle f\rangle$ so that

$\dim(G\cdot I_{f})=\dim I_{f}+\dim G-\dim G_{f}$ ,
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where $G_{f}\subset G$ , the isotropy subgroup of $G$ at $\langle f\rangle$ , is nothing but the symmetry
group of $f,$ $i$ . $e.$ , we have

$G_{f}=$ { $a\in G|there$ exists $A\in O(n+1)$ such that $f\cdot a=A\cdot f$ }.

Our specific interest motivating the general framework lies in the standard
moduli space $X_{\lambda}\subset \mathcal{E}_{\lambda}$ associated to the standard $\lambda$-eigenmap $f_{\lambda}$ : $Marrow S^{n(\lambda)}$ , where
$M=G/K$ is a compact Riemannian homogeneous space and $f_{\lambda}$ is defined by
having its components comprise an orthonormal basis $\{f_{J}^{i}\}_{i=0}^{n(\lambda)}$ in the eigenspace
$V_{\lambda}$ of $\Delta^{M}$ corresponding to $\lambda\in Spec(M)$ . Here, $V_{\lambda}$ is endowed with the
normalized $L^{2}$-scalar product

$\langle\phi, \phi’\rangle=\frac{n(\lambda)+1}{vo1(M)}\int_{M}\phi\phi’\cdot\nu_{M}$ , $\phi,$ $\phi’\in V_{\lambda}$ ,

where $\nu_{M}$ stands for the Riemannian volume element. By the very definition
of $f_{\lambda}$ , the standard moduli space $\mathcal{L}_{\lambda}$ parametrizes the (equivalence classes of)

full $\lambda$-eigenmaPs $f:Marrow S^{n},$ $n\leqq n(\lambda)$ , i. e., whose components belong to $V_{\lambda}$ .
(Equivalently, $f:Marrow S^{n}$ is said to be a $\lambda$-eigenmap if the induced vector-valued
function $f:Marrow R^{n+1}$ satisfies

$\Delta^{M}f=\lambda f$

or, which is the same, $f:Marrow S^{n}$ is a harmonic map of energy density $e(f)=\lambda.)$

Clearly, $f_{\lambda}$ : $Marrow S^{n(\lambda)}$ is equivariant with respect to the homomorphism $\rho_{\lambda}$ : $Garrow$

$O(n(\lambda)+1)$ that defines the orthogonal $G$ -module structure on $V_{\lambda}(\cong R^{n(\lambda)+1})$ . For
$M=G/K$ isotropy irreducible, $f_{\lambda}$ is actually a homothetic (standard) minimal
immersion.

Even more specifically, we will be interested in the case when $M=S^{m}=$

$SO(m+1)/SO(m),$ $m\geqq 2$ , with $\lambda=\lambda_{k}=k(k+m-1)\in Spec(S^{m}),$ $k\geqq 2$ . Then $V_{\lambda_{k}}=$

$\mathcal{H}_{Sm}^{k}$ is the linear space of spherical harmonics of order $k$ on $S^{m}$ and $f_{\lambda_{k}}$ : $S^{m}$

$arrow S^{n(\lambda_{k})}$ is a standard minimal immersion. (For $m=2,$ $f_{\lambda_{k}}$ : $S^{2}arrow S^{2k}$ is nothing
but the classical Veronese map.) The decomposition of $S^{2}(\mathcal{H}_{Sm}^{k})$ into irreducible
$SO(m+1)$-modules has been given by Wallach [15] from which $\mathcal{E}_{\lambda_{k}}$ can be
determined [11]. In particular, we have

$\dim \mathcal{L}_{\lambda_{k}}=\frac{1}{2}(n(\lambda_{k})+1)(n(\lambda_{k})+2)-\sum_{j=0}^{k}(n(\lambda_{2j})+1)$ , (7)

where

$n( \lambda_{k})+1=\dim \mathcal{H}_{S^{m}}^{k}=(m+2k-1)\frac{(m+k-2)1}{k1(m-1)!}$ . (8)

In [11] we showed that, for each $m\geqq 3$ , the cardinality of the stratification
$SO(m+1)\cdot \mathscr{I}_{\lambda_{b}}$ is $\aleph_{1}$ provided that
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$(n( \lambda_{k})+1)(n(\lambda_{k})+2)>2\sum_{j=0}^{k}(n(\lambda_{2f})+1)+(n(\lambda_{k})+1)(m(m+1)+2)$ . (9)

Note that, by (8), for fixed $m\geqq 3$ , there exists $k(m)$ such that (9) is satisfied
for all $k\geqq k(m)$ .

In view of this fact it is natural to ask whether there exists a (cruder)

stratification of $\mathcal{L}_{\lambda_{k}}$ with finitely many strata. Clearly, this is closely related
to the study of smoothness of $\partial X_{\lambda_{k}}$ .

REMARK. In the work of DoCarmo and Wallach [2] the moduli space para-
metrizing the (equivalence classes of) full homothetic minimal immersions
$f:S^{m}arrow S^{n}$ (with homothety constant $\lambda_{k}/m$ ) is the intersection of $\mathcal{L}_{\lambda_{k}}$ with an
appropriate linear subspace of $\mathcal{E}_{\lambda_{k}}$ . The question of determining the ’polyhedral
structure’ of the boundary of the moduli space has been raised there.

The main objective of this paper is to construct and study a finite stratifica-
tion on $X_{\lambda_{k}}$ with almost everywhere smooth strata. On doing this, we will
discover a fascinating relation between the tangent space at the smooth points
of the strata and the linear space of divergencefree Jacobi fields along the $\lambda_{k^{-}}$

eigenmaps the points represent. As a byproduct, we obtain a sharp lower
bound for the nullity of such maps. For $\lambda_{k}$ -eigenmaps corresponding to smooth
points we also obtain a positive solution to the fundamental question whether
any divergencefree Jacobi field along a $\lambda_{k}$ -eigenmap arises from a variation
through $\lambda_{k}$ -eigenmaps.

Since the construction of the stratification is completely general, we, in Sec-
tion 2, prefer the general framework introduced above. In Section 3 we show
that the strata of the stratification are real (semi-) algebraic and obtain a sufficient
condition for a point of $\partial \mathcal{L}_{F}$ to be smooth. This is then specialized and made
very explicit in Section 4 to the standard moduli space $\mathcal{L}_{\lambda_{k}}$ . Finally, we devote
Section 5 to applications to bi-eigenmaps and orthogonal multiplications.

REMARK. One of the main results of [11] is the computation of the dimen-
sion of the moduli space $\mathcal{L}_{\lambda_{p}}$ corresponding to the standard minimal immersion
$f_{\lambda_{p}}$ : $CP^{m}arrow S^{n(\lambda_{P})},$ $\lambda_{p}\in Spec(CP^{m})$ . Though technically more involved, similar
results to those in Section 3 and 4 can be derived for this case in an analogous
way. Same is true for the corresponding moduli spaces parametrizing minimal
immersions. We feel however that the spherical case reveals all the subtlety
involved and thereby confine ourselves only to that.

ACKNOWLEDGEMENT. The author wisbes to thank tbe referee for pointing
out various errors and improvements of the original manuscript.
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2. The rank stratification of the moduli space.

Let $F:Marrow S^{N}$ be a full harmonic map and consider the moduli space $\mathcal{L}_{F}$

associated to $F$ via (2) $-(3)$ . For $1\leqq n- gN$, we define

$\mathcal{L}^{n+1}=$ { $X\in S^{2}(R^{N+1})|X+I_{N+1}\geqq 0$ , rank $(X+I_{N+1})=n+1$ } (10)

and
$\mathcal{L}_{F}^{n+1}=\mathcal{L}^{n+1}\cap e_{F}\subset \mathcal{L}_{F}$ . (11)

By the construction of $\mathcal{L}_{F}$ , the subset $X_{F}^{n+1}\subset \mathcal{L}_{F}$ corresponds to those full
harmonic maps $farrow F$ whose range is $S^{n}$ .

Given a full harmonic map $f:Marrow S^{n}$ we denote by $K(f)$ the linear space
of divergencefree Jacobi fields along $f[13]$ . Using the natural shift $v:T(R^{n+1})$

$arrow R^{n+1}$ , it follows that $v\in K(f)$ iff the vector-valued function V: $Marrow R^{n+1}$

satisfies
$\Delta^{M}v=\mu v\vee\vee$ . (12)

Actually, tbere is a linear isomorphism between $K(f)$ and the linear space of
vector-valued functions V: $Marrow R^{n+1}$ satisfying (12) and $\langle f, \vee v\rangle=0$ . Whenever
convenient, we will identify $K(f)$ with this linear space. Clearly, so$(n+1)$ .
$f\subset K(f)$ is a linear subspace.

We now assume that $farrow F$. A vector field $v$ along $f$ is said to be derived
from $F$, written as $varrow F$, if there exists $B\in M(n+1, N+1)$ such that $\vee v=B\cdot F$.
We set

$K_{F}(f)=\{v\in K(f)|varrow F\}$ .

Notice that, since $f-F$, we have so $(n+1)\cdot f\subset K_{F}(f)$ as a linear subspace.

REMARK. Given a smooth variation $f_{t}$ : $Marrow S^{n},$ $|t|<\delta$ , of $f=f_{0}$ through
harmonic maps, $v=\partial f_{f}/\partial t|_{t=0}$ is a Jacobi field along $f$ . Moreover, $v$ is diver-
gencefree if $e(f_{t})=e(f),$ $|t|<\delta$ . This is because we have

$\frac{\partial e(f_{t})}{\partial t}|_{t=0}=trace\frac{\partial}{\partial t}||(f_{t})_{*}||^{2}|_{t=0}=2$ trace $\langle f_{*}, \nabla v\rangle=2div_{f}v$ .

Since in the construction of $\mathcal{L}_{F}$ we factored out the action of the orthogonal
group on the range, we may intuitively think of $K_{F}(f)/so(n+1)\cdot f$ as being the
’tangent space’ of $X_{F}^{n+1}$ at $\langle f\rangle$ . The key question is of course whether $\mathcal{L}_{F}^{n+1}$

is smooth near $\langle f\rangle$ .

THEOREM 1. $\mathcal{L}^{n+1}\subset S^{2}(R^{N+1})$ is a real analytic submanifold of dimension
$(n+1)(N+1-n/2)$ . Moreover, if $f:Marrow S^{n}$ is a full harmonic map with $f-F$

then
$T_{\langle f\rangle}(\mathcal{L}^{n+1})\cap \mathcal{E}_{F}\cong K_{F}(f)/so(n+1)\cdot f$ . (13)
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In Particular, we have

$\dim K_{F}(f)\geqq(n+1)(N+1)-co\dim e_{F}$ . (14)

PROOF. Let $X_{0}\in \mathcal{L}^{n+1}$ and choose $U_{0}\in O(N+1)$ such that $U_{0}X_{0}U_{0}^{T}$ is dia-
gonal. We write

$X_{0}+I_{N+1}=U_{0}^{T}\{\begin{array}{ll}D_{0} 00 0\end{array}\}U_{0}$ ,

where $D_{0}\in M(n+1, n+1)$ is a diagonal matrix with elements $d_{0}\geqq\cdots\geqq d_{n}>0$

along the main diagonal. Choose $\epsilon>0$ such that, for $D\in S^{2}(R^{n+1})$ , the condition
$||D-D_{0}||<\epsilon$ implies that $D$ is positive definite, in particular, $D^{-1}$ exists and is
also positive definite. Finally, Let

$\Re=\{X\in S^{2}(R^{N+1})|X+I_{N+1}=U_{0}^{T}\{\begin{array}{ll}D EE^{T} \tilde{D}\end{array}\}U_{0}, ||D-D_{0}||<\epsilon\}$ . (15)

Clearly, $Jl$ is an open neighborhood of $X_{0}$ in $S^{2}(R^{N+1})$ . Using the identity

$\{\begin{array}{ll}D EE^{T} \tilde{D}\end{array}\}=\{\begin{array}{ll}D 0E^{T} \tilde{D}-E^{T}D^{-1}E\end{array}\}[_{0}^{I_{n+1}}$ $DEI_{N-n}^{-1}]$

we obtain that, for $X\in\Re$ , with $X+I_{N+1}$ decomposed as in (15), rank $(X+I_{N+1})$

$=n+1$ iff $\tilde{D}=E^{T}D^{-1}E$ . Since, in this case, $X+I_{N+1}\geqq 0$ is automatically satisfied,

we have $X\in \mathcal{L}^{n+1}$ . In other words, we have

$\Re\cap \mathcal{L}^{n+1}=\{X\in S^{2}(R^{N+1})|X+I_{N+1}$

$=U_{0}^{T}\{\begin{array}{ll}D EE^{T} E^{T}D^{-1}E\end{array}\}U_{0},$ $||D-D_{0}||<\epsilon\}$ . (16)

We now define
$\Phi$ : $\Re\cap X^{n+1}arrow R^{(n+1)(N+1- n/2)}$

by
$\Phi(X)=[D|E]$ ,

where $X+I_{N+1}$ has the decomposition as in (15). Clearly, $\Phi$ is an analytic
diffeomorphism and defines a local chart of $\mathcal{L}^{n+1}$ around $X_{0}$ .

TO prove the second statement, let $f=A_{0}\cdot F$, where $A_{0}\in M(n+1, N+1)$

(necessarily of maximal rank). By the singular values decomposition of rectan-
gular matrices [6], we have

$A_{0}=V_{0}^{T}[B_{0}|0]U_{0}$ (17)

for some $V_{0}\in O(n+1)$ and $U_{0}\in O(N+1)$ , where $B_{0}\in M(n+1, n+1)$ is a diagonal
matrix with elements $b_{0}\geqq\ldots\geqq b_{n}>0$ along the main diagonal. By (17), the
matrix $\langle f\rangle$ that represents $f:Marrow S^{n}$ in $\mathcal{L}_{F}$ decomposes as
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$\langle f\rangle=A_{0}^{T}A_{0}-I_{N+1}=U_{0}^{T}\{\begin{array}{ll}B_{0}^{2} 00 0\end{array}\}U_{0}-I_{N+1}$ (18)

so that, setting $X_{0}=\langle f\rangle$ and $D_{0}=B_{0}^{2}$ , the construction of the local chart around
$\langle f\rangle$ applies.

NOW let $Y\in T_{\langle f\rangle}(X^{n+1})$ and choose a smooth curve $X:(-\delta, \delta)arrow\Re\cap X^{n+1}$

such that $X(O)=\langle f\rangle$ and $\dot{X}(O)=Y$ . By (16), we can write

$X(t)+I_{N+1}=U_{0}^{T}\{\begin{array}{ll}D(t) E(t)E(t)^{T} E(t)^{T}D(t)^{-1}E(t)\end{array}\}U_{0}$ $|t|<\delta$ ,

with $D(O)=D_{0}$ and $E(O)=0$ . Differentiating at $t=0$ , we obtain the decomposition
of the tangent vector $Y$ as

$Y=U_{0}^{T}\{\begin{array}{ll}D_{0}’ E_{0}’E_{o^{T}} 0\end{array}\}U_{0}$ , (19)

where $D_{0}’=\dot{D}(0)\in S^{2}(R^{n+1})$ and $E_{0}’=\dot{E}(0)\in M(n+1, N-n)$ . Now, for $Y\in$

$T_{\langle f\rangle}(\mathcal{L}^{n+1})$ of the form (19), we define the vector-valued function

$\Psi(Y):Marrow R^{n+1}$

by
$\Psi(Y)=V_{0}^{T}B_{0}^{-1}[D_{0}’|2E_{0}’]U_{0}\cdot F$ . (20)

We claim that $Y\in \mathcal{E}_{F}$ iff $\langle\Psi(Y), f\rangle=0$ . Indeed, using (19) $-(20)$ , we have

$\langle\Psi(Y), f\rangle=\langle B_{0}^{-1}[D_{0}’|2E_{0}’]U_{0}F, [B_{0}|0]U_{0}F\rangle$

$=\langle[D_{0}’|2E_{0}’]U_{0}F, [I_{n+1}|0]U_{0}F\rangle$

$=\langle\{\begin{array}{ll}D_{0}’ 2E_{0}’0 0\end{array}\}U_{0}F, U_{0}F\rangle$

$=\langle\{\begin{array}{ll}D_{0}’ E_{0}’E_{o^{T}} 0\end{array}\}U_{0}F, U_{0}F\rangle$

$=\langle Y\cdot F, F\rangle$

and the claim follows. We obtain that, for $Y\in T_{\langle f\rangle}(X^{n+1})\cap \mathcal{E}_{F}$ , (20) defines a
vector field along $f$ that is automatically in $K_{F}(f)$ . Equivalently, the restric-
tion $\Psi|\mathcal{E}_{F}$ gives rise to a linear map

ZP $|\mathcal{E}_{F}$ : $T_{\langle f\rangle}(X^{n+1})\cap \mathcal{E}_{F}arrow K_{F}(f)$

which, by (19)$-(20)$ , is injective.
We finally claim that the image of $\Psi|\mathcal{E}_{F}$ is transversal to so$(n+1)\cdot f$ . In

fact, using (17), we compute
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so$(n+1)\cdot f=so(n+1)A_{0}F$

$=so(n+1)V_{0}^{T}[B_{0}|0]U_{0}F$

$=V_{0}^{T}so(n+1)[B_{0}|0]U_{0}F$

$=V_{0}^{T}B_{0}^{-\iota}[so(n+1)|0]U_{0}F$ .
On the other hand, by (19)$-(20)$ , the image of $\Psi$ (on $T_{\langle f\rangle}(X^{n+1})$) is

$V_{0}^{T}B_{0}^{-1}[S^{2}(R^{n+1})|M(n+1, N-n)]$

which is transversal to
$V_{0}^{T}B$ I [so$(n+1)|0$] $U_{0}$

in $M(n+1, N+1)$ . Since $K_{F}(f)=e_{f}\oplus so(N+1)\cdot f$ ( $[11$ , p. 16]) we get (13).
Finally, the estimate in (14) is an easy consequence of (13). In fact, we

have
$\dim(K_{F}(f)/so(n+1)\cdot f)=\dim(T_{\langle f\rangle}(\mathcal{L}^{n+1})\cap \mathcal{E}_{F})$

111 $\dim X^{n+1}+\dim \mathcal{E}_{F}-\dim(S^{2}(R^{N+1}))$

$=(n+1)(N+1-n/2)-co\dim \mathcal{E}_{F}$ . $\square$

REMARK. Let $f:Marrow S^{n}$ be a full $\lambda$-eigenmap, where $M=G/K$ is a com-
pact Riemannian homogeneous space and $\lambda\in Spec(M)$ . Then

so$(n+1)\cdot f\neq K(f)$

unless $f$ is equivariant with respect to a homomorphism $\rho_{f}$ : $Garrow O(n+1)$ with
irreducible $G$ -module structure on $R^{n+1}$ . This can be seen as follows. We
think of the elements of the Lie algebra $\mathcal{G}$ of $G$ as being infinitesimal iso-
metries of $M$. Then we have $f_{*}(\mathcal{G})\subset K(f)$ . (In fact, for $X\in \mathcal{G}$ , the vector field
$f_{*}(X)$ along $f$ is clearly a Jacobi field. It is divergencefree iff $Xe(f)=0$ which
is the case.) Now assuming so$(n+1)\cdot f=K(f)$ , we obtain $f_{*}(\mathcal{G})\subset so(n+1)\cdot f$

from which equivariance of $f$ follows. For the irreducibility, if

$R^{n+1}=V_{1}\oplus V_{2}$

is a nontrivial orthogonal $G$ -invariant decomposition then $f=(f^{1}, f^{2})$ with
$f^{j}$ : $Marrow V_{j},$ $j=1,2$ . By equivariance, $||f^{1}||=\cos t$ and $||f^{2}||=\sin t$ for some $0<t$

$<\pi/2$ . The vector-valued function $v\vee=(-\tan tf^{1}, f^{2}):Marrow R^{n+1}$ gives rise to an
element of $K(f)$ which obviously does not belong to so$(n+1)\cdot f$ . Much stronger
results can be proved when $M=G/K$ is naturally reductive. Then so$(n+1)\cdot f$

$=K(f)$ implies that. $\dim$ Fix $(K, R^{n+1})=1,2$ or 4 and $R^{n+1}$ is a real, complex or quaternionic
$G$ -module, accordingly.
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. If $M=M_{1}\cross M_{2}$ then $f$ factors through one of the projections $\pi_{j}$ : $Marrow M_{j}$ ,
$j=1,2$ .. If $M=G/K$ is isotropy irreducible then $f:Marrow S^{n}$ is a homothetic minimal
immersion (with trivial moduli space). In particular, in the spherical
case, $f$ is standard and $m=2$ .

(For further results cf. [13] [14].)

REMARK. For $n=N$, equality holds in (14). In fact, for $f=F$, we have

$K_{F}(F)=so(N+1)\cdot F\oplus \mathcal{E}_{F}\subset S^{2}(R^{N+1})$ .

Moreover, if $f:Marrow S^{N}$ is a full harmonic map with $farrow F$ then $f=A\cdot F$ with $A$

invertible and $\check{v}->A^{T}\cdot\vee v$ gives rise to an isomorphism between $K_{F}(f)$ and $K_{F}(F)$ .
We will also see in Section 4 that the lower bound in (14) is the best possible
in a number of nontrivial examples.

We now return to the general situation and consider $\mathcal{L}_{F}^{n+1}$ in (10) $-(11)$ .
Since $X^{n+1}$ is real analytic Weierstrass preparation [7] applies yielding that
any point $X_{0}\in \mathcal{L}_{F}^{n+1}$ has a neighborhood $\Re_{0}$ in $\mathcal{E}_{F}$ such that $e\mathfrak{R}_{0}\cap X_{F}^{n+1}$ is a finite
union of real analytic (in fact, affine algebraic) submanifolds of $\mathcal{E}_{F}$ . If $\Re_{0}$ can
be chosen such that $\Re_{0}\cap \mathcal{L}_{F}^{n+1}$ is a single submanifold then $X_{0}$ is said to be a
smooth point. Otherwise, $X_{0}$ is a singular point. The set $\mathcal{O}_{F}^{n+1}$ of smooth points
is clearly open and dense in $X_{F}^{n+1}$ , in fact, the singular set $S_{F}^{n+1}=\mathcal{L}_{F}^{n+1}\backslash \mathcal{O}_{F}^{n+1}$ is
at least of codimension 1. We set $O_{F}= \bigcup_{n=1}^{N}\mathcal{O}_{F}^{n+1}$ and $S_{F}= \bigcup_{n=1}^{N}S_{F}^{n+1}$ . Clearly,
$\mathcal{O}_{F}$ contains the interior of $X_{F}$ and $S_{F}$ is at least of codimension 1 in $\partial X_{F}$ .

We call
$\sigma_{F}=\{\mathcal{L}_{F}^{n+1}|1\leqq n\leqq N\}$

the rank stratification of $\mathcal{L}_{F}$ . By the above, each stratum of $\xi\tau_{F}$ is real analytic
almost everywhere. Clearly, $q_{F}$ is also $G$ -invariant. By the rank condition,
we have

$\partial \mathcal{L}_{F}^{n+1}=c1\mathcal{L}_{F}^{n+1}\backslash \mathcal{L}_{F}^{n+1}\subset\bigcup_{n^{i}<n}\mathcal{L}_{F’}^{n+1}$

Moreover, for a full harmonic map $f:Marrow S^{n},$ $farrow F$, we have $I_{f}\subset X_{F}^{n+1}$ and
$\partial I_{f}\cap \mathcal{L}_{F}^{n+1}=\emptyset$ . We express this by saying that $G\cdot \mathscr{I}_{F}$ is a substratification of $g;_{F}$ .

REMARK. In the spherical case, for $m\geqq 3$ , we have (with obvious notation)

$SO(m+1)\cdot \mathscr{I}_{\lambda_{k}}\neq\xi\tau_{\delta_{k}}$

provided that (9) holds. This is because the L. H. S. has cardinality $\aleph_{1}$ as
mentioned in Section 1.

REMARK. Let $f:Marrow S^{n}$ be a full harmonic map with $f-F$. If

$\dim K_{F}(f)\leqq(n+1)(N+1)-co\dim \mathcal{E}_{F}$
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then $\langle f\rangle$ is a smooth point (and equality holds). (This is clear since $\mathcal{L}^{n+1}$ and
$\mathcal{E}_{F}$ intersect transversally at $\langle f\rangle.)$

It is a general fact that on the boundary of a compact convex body (in a
finite dimensional linear space) the set of smooth points forms an open and
dense subset [1]. In our case, let $N_{0}<N$ be the largest range dimension $n$ on
$\partial X_{F}$ for which $\mathcal{L}_{F}^{n+1}\neq\emptyset$ . Clearly, $\mathcal{L}_{F}^{N_{0}+1}$ and hence $O_{F}^{N_{0}+1}$ are open in $\partial \mathcal{L}_{F}$ .
If $N_{0}=N-1$ , we can say more:

PROPOSITION. Assume that there exists a full harmonic map $f:Marrow S^{N-1}$

with $farrow F$. Then $\mathcal{L}_{F}^{N}\subset\partial \mathcal{L}_{F}$ is real analytic everywhere.

PROOF. The condition guarantees that $X_{F}^{N}$ is nonempty. For $X_{0}\in \mathcal{L}_{F}^{N}$ , we
have

$T_{x_{0}}(\mathcal{L}^{N})\oplus R\cdot X_{0}=S^{2}(R^{N+1})$ .

This follows by comparing (18) and (19). Hence $\mathcal{L}^{N}$ and $\mathcal{E}_{F}$ intersect transver-
sally. $\square$

REMARK. AS we will see in Section 4, the assumption of the Proposition
is satisfied in the spherical case for $m\geqq 5$ .

Continuing as above, let $N_{0}>\cdots>N_{\iota}$ be those range dimensions $n$ for
which the interior int $\mathcal{L}_{F}^{n+1}$ in $\partial \mathcal{L}_{F}$ is nonempty. (An example in Section 4
shows that $X_{F}^{n+1}$ is not necessarily dense in $\partial \mathcal{L}_{F}$ so that $\mathcal{L}_{F}^{N_{1}+1}$ may exist.)

AS noted above, for $j=0$ , $\cdot$ . , $l,$ $O_{F}^{N_{j^{+1}}}$ is open and dense in $\mathcal{L}_{F}^{N_{j}+1}$ and so is
int $O_{F}^{N_{j}+1}$ in int $\mathcal{L}_{F}^{N_{j^{+1}}}$ . Hence

$\bigcup_{j=0}^{\iota}$ int $O_{F^{j^{+1}}}^{N}\subset\partial \mathcal{L}_{F}$

is an open and (by the Baire Category theorem) dense subset of smooth points
in $\partial \mathcal{L}_{F}$ .

According to the remark before Theorem 1, for a smooth variation
$f_{t}$ : $Marrow S^{n}$ , $t|<\delta$ , consisting of full harmonic maps derived from $F$, the vector
field $v=\partial f_{t}/\partial t|_{t=0}$ along $f_{0}$ belongs to $K_{F}(f_{0})$ . For the converse, we have:

THEOREM 2. Let $f:Marrow S^{n}$ be a full harmonic map with $farrow F$ and assume
that $\langle f\rangle$ is a smooth point in $X_{F}$ . Then, for any $v\in K_{F}(f)$ , there exists a smooth
vanation $f_{t}$ : $Marrow S^{n},$ $|t|<\delta$ , of full harmonic maps derived from $F$ such that
$f_{0}=f$ and $\partial f_{t}/\partial t|_{t=0}=v$ .

PROOF. We retain the notation in the proof of Theorem 1. We work
modulo so$(n+1)\cdot f$ and assume that $v\in K_{F}(f)$ is actually contained in the image
of $\Psi|\mathcal{E}_{F}$ , i. e., $\Psi(Y)=v\vee$ for some $Y\in T_{\langle f\rangle}(\mathcal{L}_{F}^{n+1})$ . Since $\mathcal{L}_{F}^{n+1}$ is smooth near
$\langle f\rangle$ , we can choose a smooth curve $X:(-\delta, \delta)arrow X_{F}^{n+1}$ with $X(O)=\langle f\rangle$ and
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$\dot{X}(0)=Y$ .
We first claim that $(X(i)+I_{N+1})^{1/2}$ : $(-\delta, \delta)arrow S^{2}(R^{N+1})$ is smooth. Indeed,

for $|t|<\delta$ , the rank of $X(t)+l_{N+1}$ is constant $(=n+1)$ and hence $K(t)=$

$ker(X(t)+I_{N+1})$ is a smooth curve in the Grassmannian $Gr_{N-n}(R^{N+1})$ . Now,
$X(t)+I_{N+1}$ restricted to the orthogonal complement $L(t)=K(t)^{\perp}$ , which is a
smooth curve in $Gr_{n+1}(R^{N+1})$ , is positive definite so that $(X(t)+I_{N+1})^{1/2}>0$ is
also smooth on $L$ . Extending to zero on $K(t)$ the claim follows.

Let $U:(-\delta, \delta)arrow 0(N+1)$ be a smooth curve such that, for $|t|<\delta$, we have
$U(t)\cdot L(t)=R^{n+1}\subset R^{N+1}$ with $U(O)=U_{0}$ , where $U_{0}$ is given in (18). Using (18),

we define the full harmonic map $f_{t}$ : $Marrow S^{n}$ by

$f_{t}=V_{0}^{T}[I_{n+1}|0]U(t)(X(2t)+I_{N+1})^{1/2}F$ , $|t|<\delta$ . (21)

Since $f_{t}arrow F$, it remains to show that $\partial f_{t}/\partial t|_{t=0}=v\vee(mod (so(n+1)\cdot f))$ . Differ-
entiating (21) at $t=0$ , we obtain

$\frac{\partial f_{t}}{\partial t}|_{t=0}=V_{0}^{T}[I_{n+1}|0]\dot{U}(0)(\langle f\rangle+I_{N+1})^{1/2}F$

$+V_{0}^{T}[l_{n+1}|0]U_{0} \frac{d}{dt}(X(2t)+I_{N+1})^{1/2}|_{t=0}F$ .

The first term on the R. H. S. rewrites as

$V_{0}^{T}[I_{n+1}|0]U_{0}’U_{0}^{T}\{\begin{array}{ll}B_{0} 00 0\end{array}\}U_{0}F=V_{0}^{T}[I_{n+1}|0]U_{0}’U_{0}^{T}\{\begin{array}{l}I_{n+1}0\end{array}\}V_{0}f$ ,

where $U_{0}’=\dot{U}(0)$ . This term belongs to so$(n+1)\cdot f$ , since $U_{0}’U_{0}^{T}$ is skew sym-
metric (which can be seen by differentiating $U(t)U(t)^{T}=I_{N+1},$ $|t|<\delta$).

For the second term on the R. H. S. we first write

$\frac{d}{dt}(X(2t)+I_{N+1})^{1/2}|_{t=0}=U_{0}^{T}\{\begin{array}{ll}P QQ^{T} \tilde{P}\end{array}\}U_{0}$ .

By (18) and (19), we have

$2Y=2U_{0}^{T}\{\begin{array}{ll}D_{0}’ E_{0}’E_{o^{T}}’ 0\end{array}\}U_{0}$

$=U_{0}^{T}\{\begin{array}{ll}P QQ^{T} \tilde{P}\end{array}\}\{\begin{array}{ll}B_{0} 00 0\end{array}\}U_{0}$

$+U_{0}^{T}\{\begin{array}{ll}B_{0} 00 0\end{array}\}\{\begin{array}{ll}P QQ^{T} \tilde{P}\end{array}\}U_{0}$

so that
$D_{0}’=(1/2)(PB_{0}+B{}_{0}P)$

and
$E_{0}’=(1/2)B_{0}Q$
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follow. Hence the second term rewrites as

$V_{0}^{1}[I_{n+1}|0]\{\begin{array}{ll}P QQ^{T} \tilde{P}\end{array}\}U_{0}F=V_{0}^{T}B_{0}^{-1}[B{}_{0}P|B_{0}Q]U_{0}F$

$=V_{0}^{T}B_{0}^{-1}[(1/2)(B_{0}P+PB_{0})|B_{0}Q]U_{0}F+V_{0}^{T}B_{0}^{-1}[(1/2)(B_{0}P-PB_{0})|0]U_{0}F$

$=V_{0}^{T}B_{0}^{-1}[D_{0}’|2E_{0}’]U_{0}F+V_{0}^{T}B_{0}^{-1}[(1/2)(B{}_{0}P-PB_{0})|0]U_{0}F$ .
Here, by (20), the first term on the R. H. S. is $v\vee$ and the second belongs to
so$(n+1)\cdot f$ . $\square$

REMARK. R. T. Smith constructed a 1-parameter family of nonharmonic
diffeomorphisms $f_{t},$ $t\in R$ , of $R^{3}$ such that $\partial f_{t}/\partial t|_{t=0}$ is a Jacobi field along $f_{0}$

[10]. Theorem 2 shows that in our case the positive solution to this ‘inverse
problem’ depends on the nonexistence of nonsmooth points on the boundary of
the moduli space.

3. A criterion for smoothness.

TO get more precise information about the structure of the stratum $X_{F}^{n+1}$

near $\langle f\rangle$ we now return to the general setup given at the beginning of the
proof of Theorem 1. To simplify the discussion of the forthcoming examples
we, however, require only that

$X_{0}+I_{N+1}=U_{0}^{T}\{\begin{array}{ll}D_{0} E_{0}^{T}E_{0} \tilde{D}_{0}\end{array}\}U_{0}$

holds for some permutation matrix $U_{0}\in O(N+1)$ with $D_{0}\in S^{2}(R^{n+1})$ positive de-
finite. Choose $\epsilon>0$ such that, for $D\in S^{2}(R^{n+1})$ , the condition $||D-D_{0}||<\epsilon$ im-
plies that $D$ is positive definite. Finally, we define the open neighborhood $y\iota$

of $X_{0}$ in $S^{2}(R^{N+1})$ by (15). For the next lemma we also introduce the follow-
ing notation: Given any matrix $Z\in M(N+1, N+1)$ , the matrix obtained from
$Z$ by deleting the $i_{1},$ $\cdots$ , $i_{p}$ rows and $j_{1},$ $\cdots$ , $j_{q}$ columns of $Z$ will be denoted by

$Z_{J_{1}^{1}:J_{q}^{p}}^{i\cdot.i}::..\in M(N-p+1, N-q+1)$ . (22)

If $p=q$ we denote its (minor) determinant by

$|Z_{J_{1}^{1}:.J_{q}^{p|}}^{i\cdot i}::.\cdot$ .

(Note that (22) is usually called the complementary minor. Nevertheless, for
our purposes it is more preferable to keep track of the entries that are deleted
from $Z.$ )

LEMMA. Let $X\in 7l$ . Then rank $(X+I_{N+1})=n+1$ iff
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$|(U_{0}(X+I_{N+1})U_{0}^{T})^{n+2...\cdot.\cdot n_{\bigwedge_{n+2.,n+j+1..N+1}}^{\bigwedge_{+i+1,.\cdot..N+1}}}’|=0$ , $i,$ $j=1,$ $\cdots N-n$ . (23)

(Here $\wedge$ means that the corresponding term is absent.)

PROOF. Recall that the upper left block $D\in S^{2}(R^{n+1})$ of $U_{0}(X+I_{N+1})U_{0}^{T}$ in
(15) is positive definite, in particular, its rows are linearly independent (in
$R^{n+1})$ . Given $i=1$ , $\cdot$ . , $N-n$ , consider the $(n+i+1)th$ row of $U_{0}(X+I_{N+1})U_{0}^{T}$ .
Subtracting appropriate multiples of the first $n+1$ rows of $U_{0}(X+I_{N+1})U_{0}^{T}$ we
can achieve the first $n+1$ entries of this row to become zero. By (23) which
we assume now, the $(n+]+1)th$ entry of this resulting row must also become
zero for $j=1,$ $\cdots$ , $N-n$ . Since $i$ and $j$ were arbitrary, rank $(X+I_{N+1})=n+1$

follows. The converse is obvious. $\square$

By the Lemma, the polynomial equations (23) define $\mathcal{L}^{n+1}$ in the neighbor-
hood su of $X_{0}$ in $S^{2}(R^{N+1})$ . Note that, by symmetry, we can assume that $1\leqq i$

$\leqq j\leqq N-n$ , so that the number of distinct equations in (23) is $(N-n)(N-n+1)/2$ .
If $f:Marrow S^{n}$ is a full harmonic map with $farrow F$ then, setting $X_{0}=\langle f\rangle$ , to

describe $X_{F}^{n+1}=\mathcal{L}^{n+1}\cap \mathcal{E}_{F}$ , we have to add $co\dim \mathcal{E}_{F}$ homogeneous linear equa-
tions to (23).

We now determine the gradient of the polynomial in the L. H. S. of (23).

For notational simplicity, we omit the conjugation by the permutation matrix
$U_{0}$ . If $X_{0}=\langle f\rangle$ then the effect of conjugation by $U_{0}$ can always be achieved
by permuting the components of F. (In any case, it is clear that we could have
done without $U_{0}$ on the first place by giving up the position of $D_{0}$ in the upper
left corner and sacrificing the notational simplicity.) First let $\{e_{kl}\}_{1\leq k\leq\iota\leq N+1}\subset$

$S^{2}(R^{N+1})$ be the standard orthonormal basis given by

$e_{kl}=\{$

$(f_{kl}+f_{lk})/\sqrt{2}$ , if $k<l$

$f_{kl}$ , if $k=l$ ,

where $f_{kl}\in M(N+1, N+1)$ is the matrix with 1 at the $kl$ position and zeros
elsewhere. Differentiating the L. H. S. of (23) in the direction of $e_{kl}$ , for $k<l$ ,

we obtain

$e_{kl}|(X+I_{N+1})^{n+2^{\wedge}}n+2||_{n+J+1}^{n_{\wedge^{+t+1}}}||_{N+1}N+1|_{X_{0}}$

$= \frac{(-1)^{k(i)+l(j)}}{\sqrt{2}}|(X_{0}+I_{N+1})^{n+2}n+2|.]..n+j+1.N+1|_{\iota}^{1}\bigwedge_{\wedge}\ldots$.

$+ \frac{(-1)^{l(i)+k(j)}}{\sqrt{2}}|(X_{0}+I_{N+1})^{n+2}n+2|.|_{n+J+1}^{n+i+1}||..|\begin{array}{l}N+1N+1\end{array}||$ ,

where $|(X_{0}+I_{N+1}):::^{f\cdots f}|=|(X_{0}+I_{N+1}):::_{\iota\cdots\iota}\ldots|=0$ and $k(i)=(-1)^{k-\nu(k,i)}$ with $\nu(k, i)$

being the number of indices preceding $k$ in the set
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$n+2,$ $\cdots$ , $n+i+1\wedge,$
$\cdots$ , $N+1$ .

In a similar vein, for $k=l$ , we have

$e_{kk}|(X+I_{N+1})^{n+2,n_{\wedge|.||_{N+1}}^{\bigwedge_{+i+1}}}n+2||||_{n+j+1’}, \cdot N+1||_{X_{0}}=|(X_{0}+I_{N+1})^{n+2}n+2|..\bigwedge_{n+j+1,}^{n+i+1}/\backslash$.
(Note that $k(i)+k(])$ is even provided that the minor determinant on the R.H.S.
is nonzero.) Using these derivatives as coefficients of the gradient, we finally
obtain

$grad|(X+I_{N+1})^{n+2}n+2|.|_{n^{\bigwedge_{+j+1}}}||_{N+1}\bigwedge_{n+i+1N+1}|_{X_{0}}$

$=S \{((-1)^{k(i)+t(j)}|(X_{0}+l_{N+1})^{n+2}n+2|||.|_{n+j+1}^{n+i+1}|||||\begin{array}{l}N+1N+1\end{array}||)_{kl}\}\bigwedge_{\wedge}$ , (24)

where $S(Z)=(Z+Z^{T})/2$ stands for symmetrization. (Note that, for $i=j,$ $S$ can
be omitted.)

THEOREM 3. The set of matrices

$\{grad|(X+I_{N+1})^{n+2}n+2|.||_{n+j+1}n+i+1|.|.|_{N+1}\bigwedge_{\wedge}\cdot\cdot N+1||_{X_{0}}\}_{1\leq i\leq j\leq N-n}$ (25)

is linearly independent in $S^{2}(R^{N+1})$ . Moreover, for $X_{0}=\langle f\rangle$ with $f\sim F$, the pro-
jection of

$grad|(X+I_{N+1})_{n}^{n}\ddagger_{3:::_{iN+1}}^{3.N+1}||_{X_{0}}$ (26)

to $\mathcal{E}_{F}$ is nonzero. If (25) projected to $\mathcal{E}_{F}$ is linearly independent then $\langle f\rangle$ is a
smooth poznt and, around $\langle f\rangle$ , we have

$\dim X_{F}^{n+1}=(n+1)(N+1-n/2)-co\dim \mathcal{E}_{F}$ . (27)

PROOF. The $(n+i+1, n+j+1)th$ entry of (24) is

$\frac{1}{2-\delta_{ij}}|(X_{0}+I_{N+1})_{n}^{n}\ddagger_{2:::::N+1}^{2N+1}|=\frac{1}{2-\delta_{ij}}|D_{0}|>0$

while the $(n+i’+1, n+j’+1)th$ entry is zero for $i\neq i’$ or $j\neq j’$ . This proves
the first statement. To prove the second, we compute

$\langle X_{0}, grad|(X+l_{N+1})_{n}^{n}\ddagger^{3N+1}\S:::::N+1||_{x_{0}}\rangle$

$= \sum_{k.l=1}^{N+1}x_{kl}^{0}(-1)^{k(1)+l(1)}|(X_{0}+I_{N+1})_{n}^{n}\ddagger_{3}^{s_{i}N}::::N\ddagger^{1k}1:\iota|$

$= \sum_{k.l=}^{n+}(x_{k\iota}^{0}+\delta_{kl})(-1)^{k+l}|(X_{0}+I_{N+1})_{\iota;::::N}^{kn+3,N}n+3.\ddagger^{1}1|$

$- \sum_{k=1}^{n+2}|(X_{0}+l_{N+1})_{k:;:::_{iN+1}}^{kn+3N+1}n+3|$
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$=(n+2)|(X_{0}+I_{N+1})_{n+3}^{n+3\cdot N+1}:::\cdot:N+1|$

$- \sum_{k=1}^{n+2}|(X_{0}+I_{N+1})_{k}^{kn}in\ddagger^{3}.:::^{N+1}|$ .

NOW, by the rank condition and $X_{0}+I_{N+1}\geqq 0$ , we have $|(X_{0}+I_{N+1})_{n+3:::\cdot:N+1}^{n+3\cdot N+1}|=0$

and the principal minor determinants $|(X_{0}+I_{N+1})_{k}^{kn+3\cdot N+1}:n+3::\cdot::N+1|$ are all nonnegative
with at least one positive. Thus (26) projects to $X_{0}\in \mathcal{E}_{F}$ nontrivially and the
claim follows. Finally, the last statement is a reformulation of the implicit
function theorem. $\square$

REMARK. Notice that, for $n=N-1$ , the set (25) consists of the single
matrix $grad|X+I_{N+1}||_{X_{0}}=adj(X_{0}+I_{N+1})$ so that Theorem 3 reduces to the pro-
position in Section 2. In the next section we give an example showing that
the projection of (25) to $\mathcal{E}_{F}$ may well be a linearly dependent set.

REMARK. The usual way of reformulating the positive semidefiniteness of
$X+I_{N+1}$ is to require all principal minor determinants to be nonnegative. This,
however, does not work here as the gradient of a principal minor determinant
of order $\geqq n+3$ is zero even in $S^{2}(R^{N+1})$ .

4. Harmonic eigenmaps between spheres.

This section is devoted to examples that all belong to the spherical case
so that we put $M=S^{m}=SO(m+1)/SO(m)$ and $\lambda_{k}=k(k+m-1)\in Spec(S^{m})$ . We
consider the standard moduli space $X_{\lambda_{k}}$ associated to a standard minimal im-
mersion $f_{\lambda_{k}}:S^{m}arrow S^{m(\lambda_{k)}}$ . (To simplify the notation, we write $X_{\lambda_{k}}=X_{f_{\lambda_{k}}}$ ,
$\mathcal{E}_{\lambda_{k}}=\mathcal{E}_{f_{\lambda_{k}}}$ etc.) As noted in Section 1, $X_{\lambda_{k}}$ parametrizes the equivalence classes
of full $\lambda_{k}$ -eigenmaps $f:S^{m}arrow S^{n}$ . Since the components of $f_{\lambda_{k}}$ comprise an
orthonormal basis in $\mathcal{H}_{S^{m}}^{k}$ , a divergencefree Jacobi field along $f$ is automatically
derived from $f_{\lambda_{k}}$ so that

$K_{\lambda_{k}}(f)=K(f)$ .
By (7), for $m\geqq 3$ and $k\geqq 2$ , we have

$co\dim \mathcal{E}_{\lambda_{k}}=\sum_{j=0}^{k}(n(\lambda_{2j})+1)$

and so (14) specializes to

$\dim K(f)\geqq(n+1)(n(\lambda_{k})+1)-\sum_{j=0}^{k}(n(\lambda_{2j})+1)$ . (28)

The lowest dimensional nontrivial standard moduli space occurs when $m=3$

and $k=2$ . Since the complete description of this moduli space has been given
in [12] we first apply the results of Sections 2 and 3 to this particular case.
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Setting, $m=3$ , first of all we note that full $\lambda_{2}$-eigenmaps $f:S^{3}arrow S^{n}$ exist iff
$2\leqq n\leqq 8$ and $n\neq 3$ . (In particular, $x_{\lambda_{2}}^{4}=\emptyset.$ ) Moreover, given $f:S^{3}arrow S^{n}$ , we have

$O(4)\cdot I_{f}=X_{\lambda_{2}}^{n+1}$ (29)

and hence
$O(4)\cdot \mathscr{I}_{\lambda_{2}}=\xi r_{\lambda_{2}}$ .

(In contrast, as noted in Section 1, this is definitely false for $k$ large.) Since
the L. H. S. of (29) is smooth, we conclude that no singular points exist on $\mathcal{L}_{\lambda_{2}}$ ,
$i$ . $e.,$ $s_{\lambda_{2}}=\emptyset$ . In particular, Theorem 2 applies to any full $\lambda_{2}$ -eigenmap $f:S^{3}arrow S^{n}$

(a fact that has been established by a case-by-case verification in [12]). Specific
representatives of full $\lambda_{2}$-eigenmaps have been given in [12] in each admissible
range dimension ( $e$ . $g$ . the Hopf map for $n=2$) and using these a tedious com-
putation leads to

$\dim K(f)/so(n+1)\cdot f=|_{4}^{2}|_{10}^{7}59$ $ififififififn=5n=2n=4n=6n=7n=8$

.

Since $co\dim \mathcal{E}_{\lambda_{2}}=35$ we see that the lower estimate in (28) becomes equality for
$n\geqq 5$ . Massive computation shows that, for $n\geqq 5$ , the projection of (25) to $\mathcal{E}_{\lambda_{2}}$

is a linearly independent set so that Theorem 3 applies.
The fact that $\dim K(f)/so(n+1)\cdot f$ does not increase with $n$ provides the

following interesting:

EXAMPLE. Let F. $S^{3}arrow S^{6}$ be the full $\lambda_{2}$ -eigenmap defined by

$F(z, w)=( \frac{1}{\sqrt{2}}(|z|^{2}-|w|^{2}),$ $\frac{1}{\sqrt{}\overline{2}}z^{2},$ $\sqrt{3}z\overline{w},$ $\frac{1}{\sqrt{2}}w^{2})$ ,

where we used complex coordinates $z,$ $w\in C$ and $|z|^{2}+|w|^{2}=1$ specifies $S^{3}\subset C^{2}$ .
Computation shows that $C\in e_{F}\subset S^{2}(R^{7})$ iff $C=C(a, b, c),$ $a,$ $b,$ $c\in R$, where

$C(a, b, c)=[_{0}^{a}00000-a_{C}0000b$ $-a_{C}-b0000$ $(a-b)/3-c_{0}0000^{/3}$ $(a+b)/3-c_{0}/30000-a0b00c0$ $-a-b00c00)$ .

Using $(a, b, c)$ as coordinates on $\mathcal{E}_{F}\cong R^{3}$ and evaluating $C(a, b, c)+I_{7}\geqq 0$ we
obtain that $X_{F}\subset \mathcal{E}_{F}$ is a finite solid cone. The vertex is at $(1, 0,0)$ and the
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base disk has radius 2, center at $(-1,0,0)$ and is perpendicular to the a-axis.
The rank stratification has 2 open strata in $\partial \mathcal{L}_{F}$ : $X_{F}^{6}$ making up the base disk
of the cone and $X_{F}^{5}$ that corresponds to the nappe of the cone (that is further
stratified by the natural stratification whose strata are the segments connecting
the points of the base circle with the vertex). $X_{F}^{3}$ is disconnected; it consists
of the base circle and the vertex of the cone. We now pick $(0,0,1)$ with cor-
responding full $\lambda_{2}$-eigenmap $f:S^{3}arrow S^{4}$ and work out (24) for $X_{0}=\langle f\rangle$ . The set
(23) reduces to

$|(X+I_{7})_{7}^{7}|=0$ , $|(X+I_{7})_{6}^{7}|=0$ and $|(X+I_{7})_{6}^{6}|=0$ .

Using the orthonormal basis $\{e_{kl}\}_{1\leq k\xi l\leq 7}$ introduced in Section 3, by (24), we
obtain

$grad|(X+I_{7})_{7}^{7}||_{X_{0}}=\frac{8}{9}(e_{33}-\sqrt{2}e_{36}+e6)$ ,

$grad|(X+I_{7})_{6}^{7}||_{X_{0}}=\frac{4\sqrt{}}{9}(e_{23}-e_{26}-e_{37}+e_{67})$

and

$grad|(X+I_{7})_{6}^{6}||_{X_{0}}=\frac{8}{9}(e_{22}-\sqrt{}\overline{2}e_{27}+e_{77})$ .

Combining these with $C(a, b, c)$ above, we have

$\langle grad|(X+I_{7})_{7}^{7}||_{X_{0}}, C(a, b, c)\rangle=\langle grad|(X+I_{7})_{6}^{6}||_{X_{0}}, C(a, b, c)\rangle=-\frac{16}{9}(a+c)$

and

$\langle grad|(X+I_{7})_{6}^{7}||_{X_{0}}, C(a, b, c)\rangle=0$ .

Hence the condition of Theorem 3 is not satisfied.
Higher dimensional examples involve tedious computations. We mention

here only the full $\lambda_{2}$-eigenmap

$f_{\otimes}:$ $S^{5}arrow S^{9}$

associated to the tensor product

$\otimes:R^{3}\cross R^{3}arrow R^{9}$

by the Hopf-Whitehead construction [3], $i$ . $e.$ ,

$f_{\otimes}(x, y)=(|x|^{2}-|y|^{2},2x\otimes y)$ , $x,$ $y\in R^{3}$ , $|x|^{2}+|y|^{2}=1$ .
By (8), $co\dim \mathcal{E}_{\lambda_{2}}=126$ so that the lower bound in (28) is 74. On the other
hand, massive computation shows that $\dim K(f_{\otimes})=81$ .
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Returning to the general situation, we wish to show that the assumption
of the Proposition is satisfied for $m\geqq 5$ .

THEOREM 4. For $m\geqq 5$ there exist full $\lambda_{k}$ -eigenmaps

$f:S^{m}arrow S^{n(\lambda_{k})-1}$ .
PROOF. $\mathcal{H}_{S^{3}}^{2}$ is 9-dimensional and, using the variables $(x, y, u, v)\in R^{4},1S$

spanned by

$\sqrt{\frac{2}{3}}(\frac{1}{\sqrt{2}}(x^{2}+y^{2}-u^{2}-v^{2}),$ $x^{2}-y^{2},$ $u^{2}-v^{2},2xy,$ $2xu,$ $2xv,$ $2yu,$ $2yv,$ $2uv)$ . (30)

These quadratic spherical harmonics actually form an orthonormal basis (so

that they are the components of a standard minimal immersion $f_{\lambda_{2}}$ : $S^{3}arrow S^{8}$).

We now choose a complex variable $z\in C$ and multiply the spherical harmonics
in (30) by $z^{k-2}$ . We obtain a set of spherical harmonics of order $k$ that are,
by homogeneity, mutually orthogonal and have the same norm. Up to a com-
mon scaling factor, they can be considered to be part of an orthonormal basis
in $\mathcal{H}_{S^{m}}^{k}$ , for $m\geqq 5$ . Extending this set to an orthonormal basis, we obtain the
components of a standard minimal immersion $f_{\lambda_{k}}$ : $S^{m}arrow S^{n(\lambda_{k)}}$ .

We now change the picture and consider the following 8 quadratic spherical
harmonics

$x^{2}-y^{2},$ $u^{2}-v^{2},2xy,$ $\sqrt{2}xu,$ $\sqrt{2}xv,$ $\sqrt{2}yu,$ $\sqrt{2}yv,$ $2uv$ . (31)

These are in fact the components of a full $\lambda_{2}$-eigenmap of $S^{3}$ into $S^{7}$ . We now
multiply these by $z^{k-2}$ and arrive in $\mathcal{H}_{S^{m}}^{k}$ as before. Then we scale and use
the same elements as in the previous extension to get $f\cdot S^{m}arrow S^{n(\lambda_{k)-1}}$ . (Note

that the sum of squares of (30) and (31) are the same so that $f$ is well-
defined.) $\square$

REMARK. Let $f:S^{3}arrow S^{5}$ be a full $\lambda_{2}$-eigenmap. Then [8] $X_{f}$ is a disk
with $X_{f}^{3}$ making up the boundary circle. This shows that Theorem 4 cannot
be generalized to arbitrary moduli spaces.

REMARK. Using the explicit forms of the representatives of full $\lambda_{2^{-}}eigen-$

maps $f:S^{3}arrow S^{n},$ $5\leqq n\leqq 10$ , the same proof shows that, for $n\geqq 5$ , there exist
full $\lambda_{k}$ -eigenmaps $f:S^{m}arrow S^{n(\lambda_{k)-C}}$ , where $0\leqq c\leqq 4$ .

5. Bi-eigenmaps and orthogonal multiplications.

A map $f:M_{1}\cross M_{2}arrow S^{n}$ of a product $M_{1}\cross M_{2}$ of Riemannian manifolds into
the Euclidean $n$ -sphere $S^{n}$ is said to be a $bi$-eigenmap if $f$ is harmonic map of
constant energy density with respect to each variable separately, $i$ . $e.$ , for each
$x_{j}\in M_{j},$ $j=1,2$ , we have $e(f(\cdot, x_{2}))=\lambda_{1}\in Spec(M_{1})$ and $e(f(x_{1}, ))=\lambda_{2}\in Spec(M_{2})$ .
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In this case $f$ is said to have eigenvalues $\lambda_{1},$ $\lambda_{2}$ . If $M_{j}=G_{j}/K_{j},$ $j=1,2$ , are
compact Riemannian homogeneous spaces then $f$ is a bi-eigenmap with eigen-
values $\lambda_{1}$ and $\lambda_{2}$ iff $f-f_{\lambda_{1}}\otimes f_{\lambda_{2}}$ , where

$f_{\lambda_{1}}\otimes f_{\lambda_{2}}$ : $M_{1}\cross M_{2}arrow S^{(n(\lambda_{1})+1)(n(\lambda_{2)}+1)-1}$

is defined by

$(f_{\lambda_{1}}\otimes f_{\lambda_{2}})(x_{1}, x_{2})=f_{\lambda_{1}}(x_{1})\otimes f_{\lambda_{2}}(x_{2})$ , $x_{j}\in M_{j},$ $j=1,2$ .

Hence the moduli space $\mathcal{L}_{f_{\lambda_{1}}\otimes f_{\lambda_{2}}}$ parametrizes the equivalence classes of full
bi-eigenmaps with eigenvalues $\lambda_{1}$ and $\lambda_{2}$ . We have [11]

$\mathcal{E}_{f_{\lambda_{1}^{\otimes f_{\lambda_{2}}}}}=so(V_{\lambda_{1}})\otimes so(V_{\lambda_{2}})+\mathcal{E}_{\lambda_{1}}\otimes S^{2}(V_{\lambda_{2}})+S^{2}(V_{\lambda_{1}})\otimes \mathcal{E}_{\lambda_{2}}$ (32)

as $G_{1}\cross G_{2}$ -modules, where $V_{\lambda_{j}}$ is the eigenspace of $\Delta^{M_{j}}$ associated to $\lambda_{j},$ $j=1,2$ .
In particular, we have

$\dim X_{f_{\lambda_{1}}\otimes f_{\lambda_{2}}}=(1/4)n(\lambda_{1})(n(\lambda_{1})+1)n(\lambda_{2})(n(\lambda_{2})+1)$

$+(1/2)(n(\lambda_{1})+1)(n(\lambda_{1})+2)\dim \mathcal{L}_{\lambda_{2}}$

$+(1/2)(n(\lambda_{2})+1)(n(\lambda_{2})+2)\dim \mathcal{L}_{\lambda_{1}}$ . (33)

It follows that all the previous constructions, $e$ . $g$ . the rank stratification applies
to $\mathcal{L}_{f_{\lambda_{1}}\otimes f_{\lambda_{2}}}$ .

Specializing, from here on, to the spherical case $M_{j}=S^{m_{j}}=SO(m_{j}+1)/SO(m_{j})$ ,

$j=1,2$ , the dimension formula (33) combined with (7) $-(8)$ gives the exact dimen-
sion of the moduli space of bi-eigenmaps with eigenvalues $\lambda_{k_{1}}$ and $\lambda_{k_{2}}$ . The
importance of bi-eigenmaps is twofold. First, for $k_{1}=k_{2}=1$ , $i$ . $e.,$ $f_{\lambda_{j}}=I_{m_{j^{+1}}}$ ,

$j=1,2$ , a bi-eigenmap is nothing but an orthogonal multiplication, $i.e.$ , a bilinear
map

$f:R^{m_{1^{+1}}}\cross R^{m_{2}+1}arrow R^{n+1}$

satisfying
$|f(x_{1}, x_{2})|=|x_{1}|\cdot|x_{2}|$ , $x_{j}\in R^{m_{j^{+1}}}$ , $j=1,2$ .

The moduli space $\mathcal{L}_{I_{m_{1^{+}1}}\otimes I_{m_{2}+_{1}}}\subset so(m_{1}+1)\otimes so(m_{2}+1)$ parametrizes the equi-
valence classes of full orthogonal multiplications. The stratum $X_{I_{m_{1}+1^{\otimes I}m_{2}+1}}^{m_{2^{+1}}}$

which is a real analytic manifold almost everywhere corresponds to those
orthogonal multiplications that give rise to $m_{1}$ linearly independent vector fields
on $S^{m_{2}}$ . (For the relation to Clifford modules cf. [5].) By a result of Hurwitz,
this stratum is nonempty iff $m_{1}\leqq 2^{p}+8q-1$ and $m_{2}=2^{p+4q}(2r+1)-1$ , for integers
$p,$ $q,$ $r$ , such that $0\leqq p\leqq 3,0\leqq q,$ $r$ .

AS a specific example, consider $\mathcal{L}_{I_{2}\otimes I_{3}}\subset so(2)\otimes so(3)\cong R^{3}$ . Little computa-
tion shows that this moduli space is a solid ball around the origin (of radius
2) and the boundary is a single smooth stratum corresponding to the range



522 G. TOTH

dimension 4. (For $m_{1}=m_{2}=2$ , the rank stratification is still smooth and has 3
non-empty strata corresponding to the range dimensions 4, 7 and 8 [8].)

Second, Ratto [9] recently used bi-eigenmaps to manufacture harmonic maps
between spheres by applying a homotopy method to the Hopf-Whitehead con-
struction (assuming some damping conditions). In view of the fact that
$\dim X_{f_{\lambda_{k_{1}}}\otimes f\lambda_{k_{2}}}$ in (33) is huge, it is expected that the ranges $k_{1},$ $k_{2}\geqq 2$ will

provide further harmonically represented homotopy classes of maps between
spheres.
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