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Chern and Hamilton [1] introduced the torsion invariant |τ | on a compact contact
Riemannian 3-manifold (M, g), where τ = LXog, and they conjectured that for fixed
contact form ω, with Xo inducing a Seifert foliation, there exists a complex structure
φ\B on J9 = kerω with the property that the Dirichlet energy

(1) m=\ ί |τ|2vol(M,0)

is critical over all CR structures. A CR structure on a manifold is a contact structure
together with a complex structure on B. Since dimM=3, B has dimension 2, so a
complex structure on B is equivalent to a conformal structure, i.e., knowing how to
rotate through 90°. Hence, a Riemannian metric on a contact 3-manifold gives rise to a
CR structure.

Let M be a contact manifold with a fixed contact form ω. Denote the space of all
associated Riemannian metrics to the contact form ω by M(ω). Since E(g) vanishes, if
and only if τ vanishes, this implies that Xo is a Killing vector field. Can E have a critical
point which is not a zero of EΊ Let g be a point of M, and {g(t)} be a curve in Jί with

) = g. Tanno [5] showed that g is a critical point of E, i.e., (dE/dt)(0) = 0, if and only if

(2) VXoτ = 2τ-φ.

Thus, following [1], E{g) is critical over all CR structures if and only if (2) is satisfied.
This is different from the condition VXoτ = 0 incorrectly obtained in [1, Theorem 5.4].
The reason for this discrepancy is given by Tanno in [5, p. 15]. The statement of the
Theorem in [3] should therefore be modified by replacing the phrase "and critical
torsion" by the phrase "such that VXoτ = 0'\ (The condition V^oτ = 0 is equivalent to
the statement that the sectional curvature of all planes at a given point perpendicular
to B are equal (see [1] and [5]).)

In the sequel, a critical point of E will be called a critical metric. If g is a critical
metric, then by [3, Proposition 1, formula (ii)], VXoτ = —2ψ, where φ(X,Y) =
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g((LXoφ)X, Y). Formula (4) of [3] with n = 1 and b = a2 — a then reduces to

(3) S=S+2(l-a)g + 2(a-\)

which is somewhat surprising since the torsion terms cancel. (This formula is the same

as the one obtained in [2, p. 654], where it is assumed that Xo is a Killing vector field.)

With several important modifications, the method of proof of the Theorem in [3] also

gives rise to the following:

THEOREM. Let M be a compact orientable ^-manifold with contact metric structure

(φ, Xo, ω, g) where g is critical. If there exists a constant a, 0<a< 1, such that c<2a, and

if

(4) | σ | 2 <

then M admits a contact metric of positive Ricci curvature. If in addition, M is simply

connected, it is diffeomorphic with the standard 3-sphere S3.

PROOF. We show that S> 0 at each x e M. To this end, we determine the matrix S

in (3) with respect to a suitable adapted basis {E, φE, Xo} of TXM, and compute the

respective subdeterminants along the main diagonal. Assume σΦO. (If σ = 0, the same

argument applies.) Since σ is a linear form on B, ker σΦO. Choose E such that σ(E) = 0

and σ(φE) = \σ\. Then,

S(E,φE) 0

S(φE, E) S(φE, φE) + 2(\-a) \σ

0 |σ|

S =

By [3, p. 370], S(X0, Xo) = 2(\ -c2/4). By [5, Lemma 7.1], the sectional curvatures

K(X0, X) and K(X0, φX) are related by

K(X09 X) - K(X09 φX) = - <yXoτ)(X, X) = 2ψ(X, X)

for any unit vector XeB. Thus,

S(E, E) = S(φE, φE) + 2φ(E, E).

By polarization,

S(E, φE) = ψ(E, φE).

For,

S(E+φE, E+φE)-S(φE-E, φE-E) = 2ψ(E+φE, E+φE),

from which 4S(£, φE) = 2[φ(E, E) + ψ(E, φE) + φ(φE, E) + ψ(φE, φE)] =4φ(E, φE)
since by [3, Proposition 1], trace φ = 0 and φ is symmetric with respect to φ.
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Now, the scalar curvature r=trace S, so that

r = S(E, E) + S(φE, φE) + S(X0, Xo)

from which

and

= S(E, E) + S(E, E)-2φ(E, E) + 2[ 1 - —

It follows that

S= Φ(φE, E)

0

S(φE, ΨE)=^-+^--1 - ψ(E, E).

Φ(E,φE)

- 2 α - φ(E,E)

The inequalities c<2a and (4) ensure that S>0 at xeM. Indeed, since c2

ψ(E, E)2 + ψ(E, φE)\ S(E, £)>0, and

S(E, E)S(φE9 φE)-S(E, φ£) 2 = ( _ + _ + I-2a) - ψ(E, E)2-φ(E9 φE)2

r c2

— + —
2 4

- c 2 > 0 .

Moreover,

r c*
2~ + T
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This completes the proof. The last part is a consequence of a theorem of Hamilton [4].

COROLLARY. Let M be a compact oriented ^-manifold with K-contact metric

structure (φ, Xo, ω, g). If r> — 2, then M admits a contact metric of positive Ricci

curvature.

REMARK. The quantity r/2 + c 2 /4+l in (4) is equal to r*/2, where r* is the

generalized Tanaka-Webster scalar curvature defined in [5, p. 21].
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