Tôhoku Math. J. 41 (1989), 259-262

ADDENDUM TO: TORSION AND DEFORMATION OF CONTACT METRIC STRUCTURES ON 3-MANIFOLDS

(Tôhoku Math. J. 39 (1987), 365-372)

SAMUEL I. GOLDBERG¹ AND GABOR TOTH

(Received December 17, 1987)

Chern and Hamilton [1] introduced the torsion invariant $|\tau|$ on a compact contact Riemannian 3-manifold (M, g), where $\tau = L_{X_0}g$, and they conjectured that for fixed contact form ω , with X_0 inducing a Seifert foliation, there exists a complex structure $\varphi \mid B$ on $B = \ker \omega$ with the property that the Dirichlet energy

(1)
$$E(g) = \frac{1}{2} \int_{M} |\tau|^2 \operatorname{vol}(M, g)$$

is critical over all CR structures. A CR structure on a manifold is a contact structure together with a complex structure on *B*. Since dim M=3, *B* has dimension 2, so a complex structure on *B* is equivalent to a conformal structure, i.e., knowing how to rotate through 90°. Hence, a Riemannian metric on a contact 3-manifold gives rise to a CR structure.

Let M be a contact manifold with a fixed contact form ω . Denote the space of all associated Riemannian metrics to the contact form ω by $\mathcal{M}(\omega)$. Since E(g) vanishes, if and only if τ vanishes, this implies that X_0 is a Killing vector field. Can E have a critical point which is not a zero of E? Let g be a point of \mathcal{M} , and $\{g(t)\}$ be a curve in \mathcal{M} with g(0) = g. Tanno [5] showed that g is a critical point of E, i.e., (dE/dt)(0) = 0, if and only if

(2)
$$\nabla_{X_0} \tau = 2\tau \cdot \varphi \; .$$

Thus, following [1], E(g) is critical over all CR structures if and only if (2) is satisfied. This is different from the condition $\nabla_{X_0} \tau = 0$ incorrectly obtained in [1, Theorem 5.4]. The reason for this discrepancy is given by Tanno in [5, p. 15]. The statement of the Theorem in [3] should therefore be modified by replacing the phrase "and critical torsion" by the phrase "such that $\nabla_{X_0} \tau = 0$ ". (The condition $\nabla_{X_0} \tau = 0$ is equivalent to the statement that the sectional curvature of all planes at a given point perpendicular to *B* are equal (see [1] and [5]).)

In the sequel, a critical point of E will be called a *critical metric*. If g is a critical metric, then by [3, Proposition 1, formula (ii)], $\nabla_{X_0} \tau = -2\psi$, where $\psi(X, Y) =$

¹ Supported by the Natural Sciences and Engineering Research Council of Canada.

260 S. I. GOLDBERG AND G. TOTH

 $g((L_{\chi_0}\varphi)X, Y)$. Formula (4) of [3] with n=1 and $b=a^2-a$ then reduces to

(3)
$$\widetilde{S} = S + 2(1-a)g + 2(a-1)(a+2)\omega \otimes \omega$$

which is somewhat surprising since the torsion terms cancel. (This formula is the same as the one obtained in [2, p. 654], where it is assumed that X_0 is a Killing vector field.) With several important modifications, the method of proof of the Theorem in [3] also gives rise to the following:

THEOREM. Let M be a compact orientable 3-manifold with contact metric structure $(\varphi, X_0, \omega, g)$ where g is critical. If there exists a constant a, 0 < a < 1, such that c < 2a, and if

(4)
$$|\sigma|^2 < 2\left(a^2 - \frac{c^2}{4}\right)\left(\frac{r}{2} + \frac{c^2}{4} + 1 - 2a - c\right),$$

then M admits a contact metric of positive Ricci curvature. If, in addition, M is simply connected, it is diffeomorphic with the standard 3-sphere S^3 .

PROOF. We show that $\tilde{S} > 0$ at each $x \in M$. To this end, we determine the matrix \tilde{S} in (3) with respect to a suitable adapted basis $\{E, \varphi E, X_0\}$ of $T_x M$, and compute the respective subdeterminants along the main diagonal. Assume $\sigma \neq 0$. (If $\sigma = 0$, the same argument applies.) Since σ is a linear form on B, ker $\sigma \neq 0$. Choose E such that $\sigma(E) = 0$ and $\sigma(\varphi E) = |\sigma|$. Then,

$$\tilde{S} = \begin{bmatrix} S(E, E) + 2(1-a) & S(E, \varphi E) & 0 \\ S(\varphi E, E) & S(\varphi E, \varphi E) + 2(1-a) & |\sigma| \\ 0 & |\sigma| & S(X_0, X_0) + 2(a^2 - 1) \end{bmatrix}.$$

By [3, p. 370], $S(X_0, X_0) = 2(1 - c^2/4)$. By [5, Lemma 7.1], the sectional curvatures $K(X_0, X)$ and $K(X_0, \varphi X)$ are related by

$$K(X_0, X) - K(X_0, \varphi X) = -(\nabla_{X_0} \tau)(X, X) = 2\psi(X, X)$$

for any unit vector $X \in B$. Thus,

$$S(E, E) = S(\varphi E, \varphi E) + 2\psi(E, E) .$$

By polarization,

$$S(E, \varphi E) = \psi(E, \varphi E)$$
.

For,

$$S(E+\varphi E, E+\varphi E) - S(\varphi E-E, \varphi E-E) = 2\psi(E+\varphi E, E+\varphi E),$$

from which $4S(E, \varphi E) = 2[\psi(E, E) + \psi(E, \varphi E) + \psi(\varphi E, E) + \psi(\varphi E, \varphi E)] = 4\psi(E, \varphi E)$ since by [3, Proposition 1], trace $\psi = 0$ and φ is symmetric with respect to ψ . Now, the scalar curvature r = trace S, so that

$$r = S(E, E) + S(\varphi E, \varphi E) + S(X_0, X_0)$$

= $S(E, E) + S(E, E) - 2\psi(E, E) + 2\left(1 - \frac{c^2}{4}\right)$

from which

$$S(E, E) = \frac{r}{2} + \frac{c^2}{4} - 1 + \psi(E, E)$$

 $\quad \text{and} \quad$

$$S(\varphi E, \varphi E) = \frac{r}{2} + \frac{c^2}{4} - 1 - \psi(E, E)$$

It follows that

$$\tilde{S} = \begin{bmatrix} \frac{r}{2} + \frac{c^2}{4} + 1 - 2a + \psi(E, E) & \psi(E, \varphi E) & 0 \\ \\ \psi(\varphi E, E) & \frac{r}{2} + \frac{c^2}{4} + 1 - 2a - \psi(E, E) & |\sigma| \\ \\ 0 & |\sigma| & 2\left(1 - \frac{c^2}{4}\right) + 2(a^2 - 1) \end{bmatrix}.$$

The inequalities c < 2a and (4) ensure that $\tilde{S} > 0$ at $x \in M$. Indeed, since $c^2 = \psi(E, E)^2 + \psi(E, \varphi E)^2$, $\tilde{S}(E, E) > 0$, and

$$\tilde{S}(E, E)\tilde{S}(\varphi E, \varphi E) - \tilde{S}(E, \varphi E)^2 = \left(\frac{r}{2} + \frac{c^2}{4} + 1 - 2a\right)^2 - \psi(E, E)^2 - \psi(E, \varphi E)^2$$
$$= \left(\frac{r}{2} + \frac{c^2}{4} + 1 - 2a\right)^2 - c^2 > 0.$$

Moreover,

$$\begin{split} &-|\sigma|\left\{|\sigma|\left(\frac{r}{2}+\frac{c^{2}}{4}+1-2a\right)+\psi(E,E)\right\}\\ &+\left\{2\left(1-\frac{c^{2}}{4}\right)+2\left(a^{2}-\frac{c^{2}}{4}\right)\right\}\left\{\left(\frac{r}{2}+\frac{c^{2}}{4}+1-2a\right)^{2}-c^{2}\right\}\\ &>-|\sigma|^{2}\left(\frac{r}{2}+\frac{c^{2}}{4}+1-2a+c\right)+2\left(a^{2}-\frac{c^{2}}{4}\right)\left\{\left(\frac{r}{2}+\frac{c^{2}}{4}+1-2a\right)^{2}-c^{2}\right\}\\ &=\left(\frac{r}{2}+\frac{c^{2}}{4}+1-2a+c\right)\left\{2\left(a^{2}-\frac{c^{2}}{4}\right)\left(\frac{r}{2}+\frac{c^{2}}{4}+1-2a-c\right)-|\sigma|^{2}\right\}>0\,. \end{split}$$

S. I. GOLDBERG AND G. TOTH

This completes the proof. The last part is a consequence of a theorem of Hamilton [4].

COROLLARY. Let M be a compact oriented 3-manifold with K-contact metric structure (φ , X_0 , ω , g). If r > -2, then M admits a contact metric of positive Ricci curvature.

REMARK. The quantity $r/2 + c^2/4 + 1$ in (4) is equal to $r^*/2$, where r^* is the generalized Tanaka-Webster scalar curvature defined in [5, p. 21].

References

- S. S. CHERN AND R. S. HAMILTON, On Riemannian metrics adapted to three-dimensional contact manifolds, Lecture Notes in Math., Springer-Verlag, Berlin and New York, Vol. 1111, 1985.
- [2] S. I. GOLDBERG, Nonnegatively curved contact manifolds, Proc. Amer. Math. Soc. 96 (1986), 651-656.
- [3] S. I. GOLDBERG AND G. TOTH, Torsion and deformation of contact metric structures on 3-manifolds, Tohoku Math. J. 39 (1987), 365–372.
- [4] R. S. HAMILTON, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255-306.

[5] S. TANNO, Variational problems on contact Riemannian manifolds, preprint.

DEPARTMENT OF MATHEMATICS AND DEPARTMENT OF MATHEMATICS **RUTGERS UNIVERSITY** UNIVERSITY OF ILLINOIS 1409 West Green Street CAMDEN, N.J. 08102 URBANA, ILLINOIS 61801 U.S.A. U.S.A. AND DEPARTMENT OF MATHEMATICS AND STATISTICS **OUEEN'S UNIVERSITY** KINGSTON, ONTARIO K7L 3N6 CANADA