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ABSTRACT

H. Hopf proved that a topological sphere immersed in E3 with constant mean curvature is a round
sphere. A. D. Aleksandrov subsequently showed that the condition on the genus could be removed if the
immersion were an imbedding, and he conjectured that even this condition is not necessary. However, in
1984 Wente gave an example of an immersed torus in E3 with constant mean curvature. More recently,
Kapouleas constructed closed surfaces in E3 with constant mean curvature for any genus g > 2. In this
paper, the local behavior of the Gaussian curvature ^fnear its zero set Z is studied. Since Kmay be viewed
as the ratio of surface elements with respect to the Gauss map <j>:M-»S2, it follows that Z is the singular
set of <j>. The classification of singularities of harmonic maps given by J. C. Wood is utilized, as is an
analysis of the sinh-Gordon equation to study the critical points of K on and near Z. As a consequence,
the integral J{K2sl/(ri &K*, whose integrand was studied by S.-S. Chern and the first author, is shown to have
interesting properties.

1. Hopfs problem

In 1950, Heinz Hopf proved that a closed (that is, compact without boundary)
orientable surface M of genus zero immersed in Euclidean 3-space E3 with constant
mean curvature is a round sphere S2 [7, 8]. He asked if the condition on the genus
could be removed. In 1955, A. D. Aleksandrov showed that for embedded surfaces it
could [2, 8], and he conjectured that this was valid for immersions as well. It was not
until 1984, when H. Wente [14] gave a striking example of an immersed torus in E3

with constant mean curvature, that this problem was resolved. The construction
required a detailed analysis of the sinh-Gordon equation, that is, the Gauss equation
(cf. also [1]). Using more sophisticated partial differential equation techniques, N.
Kapouleas [9] recently gave infinitely many examples of closed surfaces in E3 with
constant mean curvature for each g > 2. His construction involved piecing together
slices of the classical Delaunay surfaces; this, however, does not work for g = 2. Note
that the Gauss maps of such immersions are harmonic [12]. However, they are not
holomorphic, and by a result of J. Eells and J. C. Wood [6], they have degree at most
g—\. In this paper, the local behavior of the Gaussian curvature K near its zero set
Z is analysed.

The Gauss map gives rise to a non-negative scalar invariant C = ;j|V/?|2, where ft
is the second fundamental form of the immersion and V/? is its covariant derivative
(see §2). If M # S2, then C and VKdo not vanish at the smooth points of Z. (A point
in Z is smooth if a neighborhood of it intersects Z in an arc.) This is the content of
Theorem 1. It is a consequence of the sinh-Gordon equation, the superharmonicity
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of log AT2 away from Z (see [4, p. 143]), the maximum principle for subharmonic
functions, and Lemma 1, which may be looked upon as a maximum principle for
superharmonic functions on a region of the Riemann sphere whose boundary consists
of Jordan arcs. Theorem 1 implies that the critical points of K on Z are isolated. In
addition, those critical points at which K does not have local extrema are isolated
(Theorem 2).

Since the Gauss curvature is the ratio of surface elements with respect to the
Gauss map <j)\M-+S2, it follows that Z is the set of singular points of 0. The
classification of singularities of harmonic maps given by J. C. Wood [15] and the
sinh-Gordon equation imply that any non-smooth point in Z is a C^meeting point
of an even number of general folds (Theorem 3). In particular, in Wente's example,
Z is a union of figure eights, and the non-smooth points are meeting points of two
general folds. Moreover, C vanishes only at the non-smooth points. In the examples
of N. Kapouleas, Z consists of smooth points only and these are located on each
'Delaunay neck' which contributes two closed curves to Z. In both these examples,
the condition that K2 ^ 2C in [4, Proposition 3.4] is not satisfied on Z.

Finally, if M # S2, the integral j{K^1/s}^K2 whose integrand was studied in [4] is
seen to have interesting properties. This is the content of Theorem 4. It is a
consequence of a method developed by S.-S. Chern and S. I. Goldberg in [4], an
analysis of the sinh-Gordon equation, and a classical method of Nevanlinna theory
which uses an appropriate exhaustion function on M\Z. The superharmonicity of
log K2 on M\Z plays an essential role.

We are indebted to Lee A. Rubel for the proof of Lemma 1 which greatly
improved the original manuscript. We also thank the referee who pointed out several
improvements.

2. The singular set of the Gauss map and the critical points of K

Let M be a closed surface immersed in E3 with constant mean curvature which is
normalized to be | . Since this latter condition is expressed by an absolutely elliptic
equation [8], it follows from Bernstein's theorem that M is analytic in E3. Hence, all
data derived from the metric, such as the Gaussian curvature K, are (real) analytic.
In particular, Z = Zero(K) is an analytic set in M, and so applying the Weierstrass
preparation theorem [10], it consists of finitely many analytic curves.

Let /? = (htj), ij = 1,2, denote the second fundamental form of the immersion,
and let V/? be its covariant derivative. Here V/? is a symmetric tensor whose
components are denoted by hijk. Let (Htj) denote the adjoint matrix of (ht}). Then
C = £ Hi} Hkl hilm hjkm is an (analytic) scalar invariant. Since 0: M -> S2 is a harmonic
mapping by the Ruh-Vilms theorem [12], £ hw = 0. Thus, hni and hll2 are essentially
the only components of V/?, so

Diagonalizing /? at a point, we get

K K
Hn 4- H22

 ==y~"t~7~==^i~l~^2= 1
Ay A2

at that point, where k^ and k2 are the principal curvatures of M. Consequently,

c = \m2.
Note that C = 0 if and only if M is a round sphere.
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In the sequel, it is assumed that M ̂  S2. The following global formulas will be
required (see [4, p. 143]):

\AK2 = (\-4K){2C-K2)-C, (1)

and on M\Z,
|A log*2 = - ( 1 -4K)-CK~2. (2)

Formula (2) says that \ogK2 is superharmonic away from Z, since 1 — 4K ^ 0 (with
equality at the umbilics); this is an important fact in the proof of Theorem 4. From
(1) and (2) and the identities

(i) \Au2 = uAu + \du\\ and

(ii) A log u = - u~2\du\2 + u~l&u, u # 0,

we obtain \dK\2 = (\-4K)C (3)

and, on M\Z,

&K = -4C-(\-4K)K. (4)

For, by (1) and (i) with u = K,

(Hi) KkK+\dK\2 = (\-4K)(2C-Ki)-C,

and by (2) and (ii) with u = K,

(iv) KAK-\dK\2 = -{\-4K)K2-C.

Subtracting (iv) from (iii) gives (3). Substituting for \dK\2 from (3) in (iii) yields
(4).

It follows from (3) that Zero(C) c= Zero(dK) and Zero(dK)\Zero(C) consists of
umbilics. In particular, #{Zero(dK)\Zero(C)} S 4g—4. For, each umbilic has strictly
negative half-integral index and the sum of the indices is 2 — 2g, the Euler
characteristic of M [7]. Away from umbilics, M is given locally by a conformal
representation F which is determined by a solution of the sinh-Gordon equation

Aw + \ sinh 2co = 0,

where e~2o) corresponds, via F, to the (positive) difference A2 —Ax of the principal
curvatures [1]. Since ^ + ̂ 2 = 1, the Gaussian curvature K corresponds to \{\ — e"4<0).
Using this, (4) is easily seen to be equivalent to the sinh-Gordon equation.

A point zoeZ is said to be smooth if there is a neighborhood U of z0 such that
U 0 Z is a single analytic arc. A non-smooth point zoeZ is said to be a Cl-meeting
point of q general folds if a neighborhood U of z0 is C1 diffeomorphic to a
neighborhood of the origin in E2 with U (] Z corresponding to q (> 1) line segments
meeting at the origin [15; 5, p. 53].

THEOREM 1. If M # S2, then C and dK do not vanish at the smooth points of Z.

Proof We first show that Z = d{K > 0}. Indeed, if it were not true, there would
be an open set U a M free of umbilics such that ^ ^ O o n U and UC\Z ^ 0 . Then
co ^ 0 with co = 0 on UOZ, so by the sinh-Gordon equation, Aco ^ 0. By the
maximum principle for subharmonic functions, co must vanish, and this implies that
K = 0 on U; this is a contradiction.

Let zoeZ be a smooth point and a zero of C By what we have just shown, there
is a component D of the set {K > 0} such that z0 e dD. By (4), K is superharmonic on
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D and, clearly, vanishes on 3D <= Z. Moreover, D ^ M, and hence 3D is the union of
finitely many piecewise analytic closed curves, since otherwise K would vanish
identically, which is a contradiction.

Now, on Z, (3) reduces to \dK\2 = C from which (dK)(z0) = 0. That this is
impossible is the content of the following lemma whose proof works only for n = 2,
and is a special case of the well-known strong maximum principle of E. Hopf (cf. [11,
p. 65]). For completeness, we include a short and simple geometric proof.

LEMMA 1. Let D c= E2 be a domain bounded by piecewise C1 closed curves. Let u
be a superharmonic function on D, continuous on D, u\8D = 0, and the normal
derivative du/dn = 0 at a point z0e8D at which 3D is C1. Then u = 0 on D.

Proof. By the minimum principle u > 0 on D (or u = 0 on D, in which case there
is nothing further to prove). Let V be a simply connected neighborhood of z0 in D
such that d V consists of a C1 arc F = V() 3D and a Jordan arc F'. Let T" be a subarc
properly contained in F'. Map Kconformally to the unit disk A so that Y" is mapped
onto the upper semicircle of A. Now u must have a positive minimum, say 5, on T".
Then the harmonic function u that takes the value S on the upper semicircle and 0 on
the lower semicircle of A is a harmonic minorant of the transformed u which we
designate by u. Since u(z0) = ii(z0) = 0, we have

3u . . dw

Thus, it is enough to show that (du/dn)(z0) > 0. Scaling to 3 = 1, u can be realized on
the upper half-plane as the (harmonic) function H(z) = 6/n. Now, 6 = arc tan (y/x),
and so dd/dy = x/(x2 + / ) > 0 for x > 0.

REMARKS, (a) The converse of Theorem 1 is also true and boils down to the
implicit function theorem, namely, ifzoeZ with C(z0) ^ 0, then z0 is a smooth point
ofZ. For, \dK\2 = C on Z.

(b) Theorem 1 implies that the critical points of K on Z are isolated on Z. In fact,
they are also isolated on M. Indeed, if zoeZ, {dK){z^) = 0, were not isolated there
would be an analytic arc T <= Zero(dK) across z0. Then F <=. 2T, which is a
contradiction. In particular, if M ^ S2 smooth points always exist.

THEOREM 2. The critical points of K at which K does not have local extrema are
isolated.

Proof. First note that the possible values of K at critical points form a finite set.
This follows from the analyticity of the set Zero(dK) <= M and the fact that K is
constant on any arc F c Zero{dK). Now, let z0 be a critical point of K and assume
that K does not attain a local extremum at z0. Since, by Theorem 1, K has isolated
critical points on Z, we may assume that K(z0) = c # 0.

Case 1, in which c> 0. Since c is not a local extremum, there exists a component
D of {K> c) such that zoedD. By (4), K is superharmonic on D, so repeating the
proof for K—c. (dK)(z0) = 0 is possible only at the non-smooth points of 3D. There
are only finitely many non-smooth points of {K = c) (by analyticity), so z0 is
isolated.
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Case 2, in which c < 0. Instead of K, consider — | log (X2 — AJ which corresponds
to co by the local conformal representation F away from umbilics. Now K does not
attain a local extremum at z0, so there exists a component D of {K < c) such that
zoedD. Clearly, D does not contain any umbilics, so —J log(A2—Ar) is defined on D
and is non-positive. Moreover, by the sinh-Gordon equation, it is subharmonic on
D. Hence, we can repeat the proof of Theorem 1 with the appropriate modifications.

THEOREM 3. If M # S2, any non-smooth point zoeZ is a ^-meeting point of an
even number of general folds.

Proof K is the ratio of surface elements with respect to the Gauss map
0: M -> S2. Thus, Z is the set of singular points of 0. We can then use the classification
of such points given by Wood [15]. Using his terminology, the smooth points of Z
comprise the good singular points of 0 by Theorem 1. Now, assume that z0 e Z is not
a smooth point. Then, 0 is clearly not degenerate at z0, and z0 is not a good
point for 0. Moreover, z0 is not a branch point of 0. Otherwise, z0 would be isolated
in the set Z so that K would have a local extremum at z0. This would imply that
co has a local extremum at z0 with co(z0) = 0. Since co satisfies the sinh-Gordon
equation, this contradicts the maximum principle. The result now follows from
the classification given in [15].

3. The Laplacian of K2 near Z

The following result is a consequence of Propositions 1 and 2 below.

THEOREM 4. Let M be a closed surface immersed in E3 with constant mean
curvature, and let y be the function defined by

y(s) = s( a AK2, s > 0, (5)

where {K2 ^ 1 /s} is the set of all xeM such that K\x) ^ 1 /s. Then, either M is a round
sphere {and therefore y = 0) or

\\my{s) = oo, (6)

and the derivative of y is eventually strictly positive.

COROLLARY. Let M be a closed surface immersed in E3 with constant mean
curvature. Then, if

AK2 = o(-) for s - o o ,

M is a round sphere.

If M # S2, then by Theorem 1, C does not vanish identically on Z.

PROPOSITION 1. If C is not identically zero on Z, then

lim y{s) = oo.
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Proof By(l),

y{s) = 2s\ (\-SK)C-2s \ (\-4K)K2.

The second term approaches zero as s -* oo. As for the first term, for large s,

f f C
2s (\-SK)C>s\ C = s\ C.

To show that the right-hand side diverges, we first note that, by hypothesis, C does
not vanish on an arc F c Z . The proposition is then a consequence of the following
elementary lemma applied to a tubular neighborhood of F in M.

LEMMA 2. Let u be a C1 function on [0,1] x [ - 1,1] wi//r Zero{u) = [0,1] x {0}.
7V/e/*, /or some a > 0,

Area{|«| ^ e} ^ a-e
uniformly for e -*• 0.

The last statement in Theorem 4 is the content of the following.

PROPOSITION 2. Given M as in Theorem 4, the function y is eventually non-
decr easing. If the derivative ofy vanishes on a divergent sequence sn -*• oo, then M is a
round sphere.

For the proof we shall require the following two lemmas, where M is considered
as a compact Riemann surface.

LEMMA 3. Let x be an exhaustion function on M\Z. Then, for r large,

\ogK*-d% (7)

where dc = i(d — d) (see [3, p. 18] for notation).

Proof. For any scalar p on M\Z,

dx A dcp-dp A dcx = 2i(dp Adx-dpA dx) = 0.

Since dp A dcx = (dp/dx) dx A dcx, we obtain

dp = ^-
ox

Putting p = log/:2,

A\ogK2=\ ddc\ogK2=\ </clog*:2= f
J<T^r} J{T-r} J {

where the last equality is a consequence of the fact that dx — 0 along {x = r}. Now,
since the integral and d/dx can be interchanged (cf. [3, pp. 86-87]), formula (7)
follows.

LEMMA 4. The function K2 has no critical points in M\Z near Z.
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Proof. The set Zero(d(K2)) is analytic. It is, therefore, the union of finitely many
analytic curves. If T <= Zero(d(K2)) is an analytic arc and if T n Z # 0 , then T a Z
since A'2 is constant along T.

Proof of Proposition 2. If M ^ S2, then by Lemma 4, we can choose

T = log log(l/K2)

near Z. We may then extend it to an exhaustion function x on the whole of M\Z.
Along {T = r), for r large,

and so (7) becomes
I Alog*2 = -^-Ler «/

J(r^r) <H J<r-r»
By a change of variable ^ = e6' we obtain, for s large,

slogs JlK2^1/s) ds{ J{K2_1/S(

) - / (* ) , (8)

where in the second equality Stokes's theorem is used. Now, by the superharmonicity
of log K2, y is eventually non-decreasing. Finally, if y'(sn) = 0 for some sequence
sn -*• oo then, again by the superharmonicity of log K2 and (8), it follows that
A \ogK2 = 0 on M\Z; this is a contradiction.

REMARKS, (a) If M # S2, then by l'Hospital's rule

lim ( f &K2) > 0.
However,

lim -^-1 AK2 = 0.

(b) The possibility of immersing closed surfaces of genus 2 into E3 with constant
mean curvature remains unsolved. One of the principal difficulties here, as was
already pointed out by Hopf, is the presence of umbilical points at which the
sinh-Gordon equation becomes singular. (This does not occur in Wente's example.)
For g = 2, the analytic behavior of the Gaussian curvature near its critical points may
give rise to a Morse type topological restriction for the immersion to exist. The reason
that the construction due to Kapouleas fails for g = 2 is that the required balancing
condition is violated in this case.
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