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ON NONRIGIDITY OF HARMONIC MAPS

INTO SPHERES

GABOR TOTH

Abstract. This note studies nonrigidity of equivariant harmonic maps /: M -» S"

of a Riemannian homogeneous space M into the Euclidean «-sphere S" via represen-

tation theory applied to the induced module structure on R" and, for specific M,

produces (divergence-free) Jacobi fields along / which do not come from isometric

deformations of/on the range.

1. Introduction. This note, originating from the works of R. T. Smith [5] and

Do Carmo and Wallach [3], continues the studies [7-9] on rigidity of a harmonic

map/: M —> S", n > 2, with constant energy density e(f) = À/2, À g Spec(M), of

a compact Riemannian manifold M into the Euclidean «-sphere S" via the (finite-

dimensional) vector space K(f) of all divergence-free Jacobi fields along/. Recall

[4] that / is harmonic iff AMf = X ■ f. Furthermore, by translating tangent vectors of

S" c Rn + 1 to the origin of R" + 1, a vector field v along / gives rise to a vector

function v: M -* R" + 1, (v, /> = 0. Then [9], v g K(f) iff AMv = X ■ v.

The vector space so(« + 1)°/ of infinitesimal isometric deformations of / is a

linear subspace of K(f) and / is said to be rigid if so(n + 1)°/= K(f). The

importance of K(f) is shown by the generalized Do Carmo-Wallach classification

theorem [9] which states that, for oriented (isotropy) irreducible Riemannian homo-

geneous M, the equivalence classes of full harmonic maps/: M —> S" with e(f) =

X/2 can be parametrized by a compact convex body lying in K(fx)/so(Vx)° fx,

where fx. M -» S"{X) (= unit sphere in Vx) is a standard minimal immersion given

by an orthonormal base in the eigenspace Vx corresponding to X. Though there is no

immediate generalization of this classification to aribitrary Riemannian homoge-

neous M the object of this note is to show that the occurrence of rigidity is rare. In

§2, we reformulate the condition of rigidity in terms of representation theory. This is

then applied in §3 to prove nonrigidity of harmonic maps in various instances.

2. Properties of rigid harmonic maps.

Theorem 1. Let M = G/K be a compact naturally reductive Riemannian homoge-

neous space (with base point o = {K}) and f: M -> S", n > 2, a full rigid harmonic

map with e(f) = X/2, X G Spec(M). Then (a) / is equivariant with respect to an

orthogonal G-module structure on R" + 1; (b) R" + 1 is an irreducible G-submodule of Vx;

-
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(c) dimFix(ÄT, R" + 1) = 1,2 or 4 and R" + 1 is a real, complex or quaternionic G-mod-

ule, accordingly; (à) 52(R" + 1) (= symmetric square o/R" + 1) is the sum of irreducible

G-submodules which are class 1 for (G, K).

Proof, (a) See [9].

(b) Let R" + 1 = V ® W be a nontrivial orthogonal G-invariant decomposition.

Then /= (g, h), where g: M -» V and h: M -» W are equivariant, in particular,

||g||2 and \\h\\2 (= 1 - ||g||2) are constants. As / is full we have ||g|| = cos? and

\\h\\ = sin / for some 0 < t < -n/2. The vector function v = (-tan t ■ g,cot t ■ h):

M —> R" + 1 gives rise to an element v g K(f) which, by fullness of /, does not

belong to so(« + 1)°/. Thus, R" + 1 is irreducible and mapping the /th base vector to

the /'th component off induces a G-module monomorphism R" + 1 -> Vx.

(c) Setting F = Fix(Ä^, R" + 1), we first note that the orthogonal complement /( o )±

of f(o) in F corresponds bijectively to the set of G-invariant vector fields along/.

Assuming that dim F > 2, let í¡0 g f(o)± , \\v0\\ = 1, and denote by v the correspond-

ing G-invariant vector field along /. Then [8] v g K(f) and so v = J ■ f, where

J G so(« + 1). We claim that J is a complex structure on R" + 1, i.e. J1 = -I„ + l

(In + X = identity of R" + 1). Indeed, setting it = (J2 + I„ + x) •/, we have (ù, /> = 0

and so û induces a vector field u along / which automatically belongs to K(f) =

so(« + 1)° /. Thus, by fullness of/, J2 + In + X is skew and hence zero. By G-invari-

ance of v, J commutes with the action of G on R" + 1. For dim F > 3 we proceed

analogously by selecting an orthonormal base {v'0}f=x c f(o)1, dim F = p + 1,

and considering the corresponding anticommuting family {J'}f„x of linearly inde-

pendent skew-symmetric complex structures on R" + 1. By simple argument (involving

J1 ■ J2), it follows thatp > 3. On the other hand, endowing R" + 1 with the complex

structure J1 and applying Schur's lemma to J2J3, we have J2J3 = aln + x + ßJl, a,

ß g R. By simple algebra, a = 0 and ß = ±1. The rest is clear.

(d) The G-submodule Wf = span{/(x)2|x g M) c S2(Rn + 1) splits into the sum

of class 1 subrepresentations for (G, K). We claim that Wf = 5'2(R" + 1). Indeed,

setting B g Wf- c S2(R"+1) the vector function w = B ■ f satisfies (w, /> = 0 and

hence gives rise to an element w of K(f). By rigidity, B is skew and hence zero.

Remarks. (1) If K acts on T0(M) (via the isotropy representation) without

nonzero fixed vectors (e.g. if M is irreducible) then dim F = dim Fix( K, R"+1 ) = 1.

Indeed, assume that v0 g/(o)_l , ||j50|| = 1, exists and consider the corresponding

G-invariant vector field v and complex structure J on Rn + 1. Choose a Killing vector

field A on M such that /*(A") = Y°f for a nonzero y g so(« + 1). Setting

it = J ■ Y ■ f, as v is orthogonal to im(/) c S", we have (û, /) = -(Y ■ f, J ■ /) =

-(f*(X) ,v)=0. Hence û induces a vector field u g K(f) along/and, by rigidity,

J ■ Y = Z g so(« + 1). Taking transposes, it follows that J and Y anticommute. On

the other hand, /, being a G-module automorphism, commutes with Y, i.e. / • Y = 0.

This implies Y = 0, a contradiction.

(2) As Professor Joseph A. Wolf has informed the author, for M = G/K compact

irreducible symmetric with rank M = rank G, the symmetric square of every irre-

ducible component of Vx, X g Spec(M), is the sum of class 1 subrepresentations for

(G, K).
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A partial converse of Theorem 1 is given as follows:

Theorem 2. Let M = G/K be a compact irreducible Riemannian homogeneous

space and X G Spec( M ) such that Vx is irreducible, the K-module Vx \ K has multiplic-

ity 1 decomposition into irreducible components and S2(VX) is the sum of class 1

subrepresentations for (G, K). Then the standard minimal immersion fx: M -* S"(X) is

rigid.

Proof. Given » e i(/k) we have v = B ■ fx for some matrix B since the compo-

nents of fx form a basis in Vx. We may assume that B is symmetric (by splitting B

into symmetric and skew-symmetric parts if necessary). As 0 = (v, fx) =

(B -fx> A>> we have B e wh > wnere wh = span{A(x)2|x g M) c S2(VX). On

the other hand, as VX\K has multiplicity 1 decomposition, we can apply the

argument of Do Carmo and Wallach in the proof of 4.2. Lemma in [3, pp. 50-51],

and it follows that W^ is the sum of all class 1 subrepresentations of (G, K) in

S2(VX). Then, by hypothesis, Wfx = S2(VX) which implies that B = 0.

Remark. For M rank 1 symmetric and X g Spec(M) the first two assumptions on

Vx are automatically satisfied (cf. [1,6]) and so fx is rigid iff S2(VX) is the sum of

class 1 subrepresentations for (G, K). In particular, for

(G,K) = (SO(m + l),SO(m)),

fx is rigid iff m = 2 (Calabi's rigidity [2]) or fx is of degree 1 (isometry [9]). For

(G, K) = (SU(m + 1), S(U(m)X 1/(1))), m > 2, and (G, K) = (Sp(3), Sp(2) X

Sp(l)), any standard minimal immersion fx of degree > 4 is nonrigid by the results

of Urakawa in [10].

3. Applications.

Theorem 3. Let f: Mx X M2 -* S" be a full harmonic map with constant energy

density of the Riemannian product of compact naturally reductive Riemannian homoge-

neous spaces Mx and M2. If f does not factor through the canonical projections w,:

Mx X M2 -* M¡, i = 1,2, then fis nonrigid.

Proof. Assuming that/is rigid, by Theorem l, fis equivariant with respect to an

irreducible Gx X G2-module structure on R" + 1, where the compact Lie group G¡ acts

transitively on M, by isometries. Then R" + 1 = Vx 8> V2, where Vi is an irreducible

G,-module over R, C, or H according as dim Fix( K, R"+' ) = 1,2 or 4. In particular,

f(o) = vx ® v2, v¡ g V., and, by equivariance, f(xx, x2) = fx(xx) ®/2(x2), x, g M,,

where /: M, -» V¡. As / does not factor through 77,, we have dim Vt ̂  2 so that we

can select nonzero matrices Ai g so(F¡). Define the vector function w: Mx X M2 -*

R" + l by u(xx, x2) = (Ax ® A2), (fx(xx) ®/2(x2)), x, g M,. Then (û, /> = 0 and ù

induces a vector field u g K(f) along/. By rigidity and fullness of /, Ax <8> A2 is

skew, a contradiction.

Example. As an easy computation (involving the spectrum of S2 X S3) shows, the

canonical projection -nx: S2 X S3 -* S2 followed by the Veronese map/Ai: 52 -» 54

is rigid.
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Theorem 4. Given a compact naturally reductive Riemannian homogeneous space M

and X G Spec(M), the number of equivalence classes of full rigid harmonic maps f:

M —» S" with e(f) = X/2 does not exceed the number of inequivalent irreducible

components of Vx.

Proof. Given an irreducible component R" + 1 in Vx we have to show that any two

full rigid equivariant harmonic maps /, /': M -> S" with e(f) = e(f') = X/2 are

equivalent. This is done by using the uniqueness of Ä^-fixed vectors over R, C or H.
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