On Infinitesimal and Local Rigidity of Harmonic Maps
between Spheres Defined by Spherical Harmonics (*).

. D’AmBRA (Cagliari) - G. Tors (Columbus) (¥+)

Sunto. — Si studia la deformabilits infinitesimale e locale di mappe armoniche in sfere dimo-
strando che le immersioni minime stamdard f: 82— 8* (in particolare, la superficie di Ve-
ronese) sono localmente rigide. Si da wn esempio in cui la rigidita locale non implica la rigi-
dite infinitesimale.

1. ~ Introduction and preliminaries.

To any harmonic map f: M — S* [4] of a compact oriented Riemannian mani-
fold M of dimension m into the Huclidean n-sphere S there is associated a finite
dimensional vector space K(f) [12] consisting of all Jacobi fields along f whose
generalized divergence vanishes, i.e. a vector field v along f belongs to K{f) if and
only if

(i) Vio = trace {fx, 00fx— 26(f)v
(ii) div,v = trace {f, Vo) =0

are satisfied, where V and <, denote the canonical connection and metric of the
Riemannian-connected bundle ¥ & A*(T*(M)), F = f*(T(8")), resp., f, is the dif-
ferential of f considered as a section of the bundle F&® T*(M) and e(f) stands for
the energy density of f. Identifying the Lie algebra of Killing vector fields on S»
with so(n 4- 1) we have so(n -+ 1)of ¢ PK(f) [11], where PK(f)c H(f) denotes the
linear subspace of all projectable vector fields along f. The harmonic map f: M — 8»
is said to be infinitesimally rigid if so(n < 1)of = PK(f) [11].
The variation space V(f) of f: M — 8 defined by

V(f) = {ve K(f)||»] = const}
can be geometrically interpreted as the set of vector fields v along f for which

i —f,= expo(t), t€ R, is a variation of f through harmonic maps (i.e. f;: ¥ — 8»

(*) Entrata in Redazione il 18 agosto 1982.
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is harmonic for all e R) [10]. Equivalently, » € V(f) if and only if » is a Jacobi
field along f such that e(f.) = e(f), f;= expo(tv), ¢ R, holds [10]. The harmonie
map f: M — 8 is said o be loeally rigid if for every v € V{(f) N PE(f) there exists a
one-parameter subgroup (¢,) ¢ §0(n -+ 1) of isometries of S” guch that f,= expo(iv) =
= @,of, te R, is valid.

The aim of this note is to continue the earlier studies ([9], [10], [11], [12] and [13])
describing infinitesimal and local behaviour of harmonic maps from the point of
view of rigidity. In Sec. 2, using Calabi’s rigidity theorem [2] we prove that any
full homothetic minimal immersion f: 82— 8 has zero variation space, in par-
ticular, is locally rigid. (This can also be considered as an extension of an earlier
result, settled by elementary computation, for the Veronese surface f: 82— §*[7].)
Finally, in Sec. 3 we prove that fthe harmonic map f: 8% 8¢ arising from the
Hopf-Whitehead construction, [14] or [8], p. 20, applied to the real tensor product
u: REx R?— R* is locally rigid buf non infinitesimally rigid showing that local
rigidity cannot be considered as a local version of infinitesimal rigidity introduced
above,

Throughout this note all manifolds, maps, efe. will be smooth and adopting the
sign conventions of [6], we use the Report [4] and [3] as general references and
background for the theory of harmonic maps.

We wish to thank 4. Lee for giving a matrix theoretical approach for the last
step in proving Theorem 2.

2. - Rigidity of homeothetic minimal immersions f: §° — 8",

A subset H ¢ 87 is said to be full if # € R*t! is not contained in any proper linear
subspace of R™1, A map f: M — 87 is full if f has a full image in 8. The aim of
this section is o prove the following:

THEOREM 1. — Any full homothetic minimal immersion f: 82— S» has zero va-
riation space, in particular, is locally rigid.

REMARK — There is a large supply of full homothetic minimal immersions
f: 8 — 8» provided (partly) by the standard minimal immersions. Namely, if ¥,
s = 2,3,..., denotes the Euclidean vector space of spherical harmonics of order s
on 8=, i.e. the eigenspace of the Laplacian A" corresponding to the eigenvalue
A(s) = s(s + m —1) [1], with

. ] ) (s +m—2)!
dim ;= n{s) + 1, n(s) = (28 +m— 1) m
, a(s)+1 .
then fixing an orthonormal base {f',..., ¥} c ¥, we have 3 (f)*= const [3]
=1

and hence, by a normalizing factor N >0, the standard minimal immersion
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f: 8™ — 8"® is defined by f(w) = (NfYz), ..., Nf"9* (), € 8™ Then [1] f is a full
homothetic minimal immersion and different choices of the base give rise to maps
that differ by performing isometries of the codomain 8™, In contrast to Theorem 1
we proved in [13] that for m >3 odd the standard minimal immersion f: 8™ — §*®
is non locally rigid for all s >2. Combining this with the rigidity theorem of M. Do
CARMO - N, WALLACH [3] to the effect that, for s<3, full homothetic minimal im-
mersions f: 8™ — 8" are standard we obtain, in case $<3, the existence of a har-
monic variation v € V(f) such that the deformed harmonic maps f,= expo(tv) will
not be in general homothetic. Further, according to a result in [13], in case s = 2,
the standard minimal immersion f: §™— §7® is infinitesimally rigid if and only if
m == 2 and, moreover, local rigidity of the Veronese surface f: §2— S (i.e. case
n == n(2) = 4 of Theorem 1) was proved in [7] by matrix computation.
The proof of Theorem 1 is preceded by the following:

LEMMA 1. — Let H c 8 be a full subset and. ¢: (—e, &) - 80(n 1), e >0, 2
curve with @, = I,,., (= identity) such that for y e H the curve t -»g,(y)e S~
it| < e, is & geodesic segment parametrized by the arc-length. Then X = dg /di],_ €

ig=
€ so(n -+ 1) is a complex structure on R**?, in particular, n is odd. Moreover, ¢ is a
loeal one-parameter subgroup of SO(n + 1) and. can then be extended to a (global)
one-parameter subgroup all of whose trajectories are closed geodesics on S

ProoF. — Identifying X, as usual, with the corresponding Killing vector field
on 87, for y e H, we have

@Y = @(y) = exp (X,) = cosi-y +sint-Xy, Jti<e,

where the maftrices ¢, and X are considered to act on the vector y € R*7! by the
usual multiplication. As H c 8" is full we get

(1) p;=cost I, ,+sint- X, Jt|<e,

in particular, the orthogonality relation ¢, ¢! = I, ,, with skew-symmetricity of X,
implies

(cos tl,,, + sintX)(cos il, —sintX) =1, ,.

Differentiating twice at t = 0 we obtain X2—= — I, le. X is a complex strue-
ture on R-*'. Further, for s, 2 e R with |s], |t], |s + t|< &, by (1), we get

@5 pe= (€08 81, - sin eX)(cos t1,, -+ sin tX) =

= €08 (8 + ) Ippy -+ 8in (8 + )X = @y
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i.e. g is a local one-parameter subgroup of SO(n + 1). Denoting by ¢: R — 80(n 4 1)
the ecanonical extension, the Killing vector field X is clearly induced by ¢ and
(VzX)|H = 0 holds. The connected compounents of Zero (VyX), being the intersec-
tions of the eigenspaces in R™! of the matrix X2 with 8 (cf. proof of Th. 2 in [12]),
are totally geodesic submanifolds and so fullness of H implies that VzX = 0 on S»,
i.e. all the integral eurves of ¢ are closed geodesics of 8" and the lemma follows.

Proo¥ or THEOREM 1. — Suppose, on the contrary, that there exists a nonzero
element v € V(f) and consider the deformed harmonic maps f,: 82— 8" te R. As
there is no holomorphice quadratic differential on S2 [5] the map f, is conformal for
all te R, i.e. there exists a scalar p,: 82— R with ||(f)«X[2= u| X|?, X € L(S?).
Conservation of the energy density along a harmonic variation, mentioned in Sec. 1,
yields

e =} trace [(f)«]? = e(f;) = e(f) = o, t€R,

and we obtain that the deformed harmonic maps f,: 82— 8, ¢ € R, are homothetic
(and hence minimal [4]) immersions with the same homothety constant u,. Further,
fullness of f being expressed by open relations, there exists ¢ > 0 such that

fo: 82— 87 is full for |t|<e.

Then [2] CALABY’s rigidity theorem applies to the full homothetic minimal immer-
gions f and f,, || < ¢, yielding the existence of an isometry ¢.€ O(n 4 1) such that

(2) fi=q@wf, ftj<e,

holds. As a linear transformation, ¢,: Rvt! —» Rvt is defermined by its values on a
base of R**, in particular, ¢, occuring in (2) is uniquely determined. We claim that
the curve ¢: (—e¢, &) — O(n - 1) is smooth. Indeed, again by fullness of f, there
eXist @y, ..., ¥,,1€ 8% such that {f(@), ..., f(@s,1)} c Rt is a base and, for ¢ =1, ...,
wey 1, the curve t — g,(f(x,)) = f{x.), |t| < e, being smooth, the matrix func-
tion ¢ — ¢, O(n - 1), [t|<< g, is also smooth. Now the preceding lemma applies
(with H = im f) yielding that » is odd. On the other hand, according to CALABI’S
rigidity theorem [2] any full homothetic minimal immersion f: 82 — 8* has even
dimensional codomain which is a contradietion.
Thus the theorem is proved.

3. — An example of a locally rigid but non infinitesimally rigid harmonic map f: §*— §4.

The Hopf-Whitehead construction [8] applied to the real tensor product u: R2X
X R2— R* gives rise to a (full) harmonic polynomial map f: S* — 8¢ defined com-
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ponentwise by spherical harmonics of order 2 as
(3) = (@14 @a— @s— Pay 2013, 2¢14; 2Q05, 2024)

where () = @}, @iu(2) = @25, ¢ = (@1, ..., x) R, E=1,...,4,1<i<j<4. In this
section we prove the following:

THEOREM 2, — For the harmonic map f: S%— 8% we have
dim PE(f) =11 and V(f)n PE(f) = {0},

in particular, as dim so(3) = 10, f is non infinitesimally rigid but loeally rigid.
The proof of Theorem 2 is broken up into two steps.

1. Infinitesimal behaviour. — Translating the vectors tangent to §*c R° to the
origin of R’ any vector field v: 85— T(S*) along f gives rise to a vector-valued

function #: 83— R5 with (f, #> = 0, where f is considered to take its values in RS,
Then, by [7], » € K(f) if and only if

is satisfied, i.e. as e(f) = 4, the components &', » = 0, ..., 4, are spherical harmonics
of order 2 on 83. Hence [1]

4
67:2%%+zb§5%“ /"=0,...,4,
k=1 i <i
4
holds for some a;, b€ R, k=1, ..., 4, 1<i < j<4, such that > ar=0.
k=1
As the projectable elements of K(f) are to be determined we state the following:

LEMMA 2. — A scalar u: 8 — R of the form

4 ' 4
#zz“k¢k+zb55¢15, Zak=0,
E=1

k=1 <<

with a,, bye R, k=1,...,4,1<i<j<4, is projectable along f (i.e. f(z) = f(2'),
x, »'e 8%, implies u(x) = p(z')) if and only if

(4) M= Oy= —a;=—a, and b,=20,=20

are valid.
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Proor. — The first coordinate function ¢, 4 @,—¢@s;— @, of f suggests to use
H. CARTAN’g isoparametric coordinates of degree 2, i.e. we write

@ = (1, Xy, ¥, #,) = (CO81 CO8 ¢, CO8 ¥ 8in @, 8in? cos v, sintsin y) € 82,
where 0<%, ¢, ¥ << 2a. Then we have

f(z) = (cos (21), sin (2¢) cos ¢ cos p, sin (2¢) cos ¢ sin ¥,

sin (2%) sin g cos ¥, sin (2¢) sin ¢ sin ),

in particular, the focal varieties of 8% parametrized by (0, ¢, 0) and (#/2, 0, v), 0<gp,
< 27, are mapped by f o (1,0,0,0,0) and (—1, 0,0, 0, 0), respectively. Assum-
ing that u is projectable we obiain

H(cos @, sing, 0,0) = const  and  u(0, 0, cos p, sin p) = const ,

Expanding these equations into Fourier polynomials the relations (4) are easily
obtained. The converse being obvious the statement follows.

By Lemma 2 a vector field » along f belongs to PK(f) if and only if there exist
a’, be R, 1<i<j<4, r = 0,..., 4, such that

(8) b= (@1 + @2— @z— @a) -+ blap1s + bla@is+ bisPas~t bia@as, T =0,...,4,
holds or eguivalently
(6) §=144-f,

where the r-th row of 4 is (2a7, bls, bly, bis, biy), 7 = 0, ..., 4, and in (6) the matrix 4
acts on the vector f (given in (3)) by the usual multiplication. Hence, to compute
dim PK(f), we have to determine the vector space of functions 4: 82 = R® of the
form (6) satisfying the equation {f, %> = 1 <{f, 4-f) = 0. The scalar {f, 4-f> is a
fourth-order homogeneous polynomial whose coefficients have to vanish.

Computing these coefficients we obtain that {f, 4-f> = 0 holds if and only if 4,
with new variables, has the form

0 N oy s Oy
—_ 22 0 /3)1 ﬁz M1
M A= —a _ﬁl 0 Va2 53

&3 _ﬁz — Vs 0 ‘84

—ay —ys —fPs —fs O
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with
(8) Vit V2= Ya-+ Va-

(The only relation to be taken into acecount among the spherical harmonies involved
18 @uu@15 = @aapr, Which results (8), apart from this 4 is skew-symmetric.) In par-
ticular, dim PE(f) == 11 which completes the proof of the first step.

II. Local behaviour. — Assuming v € V(f) N PK(f), with |o] = 1, the funection ¢
has the form (6)-(7) such that
4

> (6r=GA-f, 34-f = 1

r=0

is valid on S All the functions 47, r = 0, ..., 4, can also be considered as second-
order homogeneous (harmonic) polynomials en R2, i.e. the last equation translates
into

(9) CA-fy A-f> = CATA, ) = Moo+ @a -+ @+ )%

which is valid on R¢ Denoting by

4 0 0 0 o0
0 4 0 0 ¢
(10) H{ey={0 0 4 —¢ 0|, c¢eR,
0 0 —c¢ 4 0
0 ¢ 0 0 4‘

and taking into account (3) it follows that (9) is equivalent to the relation A%7A =
= H(c) for some ¢ € R. To accomplish the proof of Theorem 2 we need to show the
following:

‘LEMMA 3. — There are no constants o, f,, y,€ R with y, + v, = 9,4+ v, such
that the matrix A in (8) satisfies

11) ATA = H(c)
for some ce R.

REMARK. — Writing out (11) componentwise we obtain an overdetermined system
of 14 quadratic equations for the variables o, 8;,7.€R, i =1,...,4. Using ele-
mentary computation a tedious discussion shows that this system has no solution
proving Lemma 3. Nevertheless, to reduce the amount of computations involved
we first use a matrix theoretical approach due to A, LEE.

2 - Annali di Matematica
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Proor. - Denote by M(p, q), p, ¢ € N, the vector space of (p Xgq) matrices and
I e M(p,p) the identity., We write, with obvious notations,

4 B U B 41, o[— €3¢6,]
Sloyr o WE HO=| a4,

where B eso(3), C€s0(2) and {e, e, ¢,} C R® is the da,nonieal base. In terms of
these decompositions (11) is equivalent to the system

(12) BTB L VVT=4I,,
sy BTU — VO = o[—e;8,],
(14) Ury + 070 =4I, .

As B eso(3) the matrices B and BTB are singular and have a joint eigenvector
0 = X € R® corresponding to the zero eigenvalue. Thus, BTBX = BX =0 and so,
by (12), we obtain VVTX = 4X, ie. X is an eigenvector of the matrix VV7e
e M(3, 3) with eigenvalue 4. Further, V being of size (3 X 2), rank (VV?) = rank V<2
and hence there exists 0 = Y € R® guch that VV?Y(= VTY) =0 and (X, Y) = 0.
Again by (12) we get BTBY = 4Y, ie. ¥ is an eigenvector of BB with eigen-
value 4. As B is skew, this eigenvalue must have multiplicity 2 which implies the
existence of a vector 0 Z € R* with <X, Z> =0 such that {X,Y,Z}cR? is a
base and Span {Y, Z} c R? is the eigenspace of B”B corresponding to the eigen-
value 4, Applying (12) to Z we get B7BZ 4+ VVTZ = 4Z + VV?Z = 4Z, i.e.
Span {¥, Z} c R® is the nullspace of VV7.

In particular, rank (VV?) = rank V =1, i.e. the coloumns of V are linearly
dependent. We may suppose that the first coloumn («s, 2, ;) of V is nonzero since
the other case can be treated similarly. Then there exists p € R such that

(15) oy=pay, Va=7pPs, Pfa=2DpYs

hold, On the other hand, the vector (— f, o, — v;) is in the nullspace of B and
nonzero since B = 0. So, we may choose X as

X = (= fyy gy, —o11) .
Then, by (12), we get
VVIX = (1 + p*)(— aafs + wafa— ways)(os oy vs) = 4(—fr, o, — o) = 44X,
ie. putting ¢ = H1 + p2)(— asfs + ouflo— ays) (7% 0) we obtain

(186) fr=—qots, =GB, m=-—qp
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and hence
(1 +p)og+ ot vy = 4.
Further, a direet computation shows that (13) is equivalent to the system
(17) (LA pP) oo, @) = 4qB(py —1) .
Moreover, from (11) it follows that
o0+ ooty (fr— B)(B— ) = 0
and multiplying this with ¢ and using (15)-(16)-(17) we get

(18) Bp—1)=0.

Again, by making use of (15)-(16), we ean write (11) componentwise is terms of the
variables o, 85, fay V15 Vey Vs, Py 4 € R and, by (18), an easy discussion of the pos-
sible cases leads to contradiction.
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