
On Variations of Harmonic Maps into Spaces 
of Constant Curvature (*). 

G~Bo~ T6~E (Budapest) 

S u m m a r y .  - This paper studies the global geometric properties of geodesic variations of har- 
monic maps into spaces of constant curvature, i.e. variations given by translating the maps 
along geodesics defined by prescribed vector fields. Description of variations through har- 
monio maps is given and an infinitesimal rigidity of harmonic maps is shown. 

A map ]: M -+ M'  of a compact  and oriented Riemannian  manifold M into a 
complete Riemannian  manifold M'  induces a specific 1-form ] .  on M with values 
in the  pull-back bundle ~- ---- ]*(T(M')), i.e. ], e C~(.7"-| T*(M)). The map ] is said 
to be harmonic,  [1], if it  is an ex t remal  of the  energy funct ional  

zf E(f) : Ilt,[I v o l ( M ) .  
M 

The Euler-Lagrange equat ion associated to the  energy funct ional  E has the  form 
7(]) ---- 0, where 7(1) E C~($ -) denotes the  t race of the  second fundamenta l  form of f. 
B y  developing a Laplace operator  A on the  ~iemannian-connected  bundle 
5"|  the  map ] is harmonic if and only if zJ]. = 0, or equivalent ly  
3]. = 0, where ~ denotes the  adjoint  of the exterior  differentiation d on 
Y |  A*(T*(M)).  

B y  a famous theorem of J.  Eells "and J. H. Sampson, [2], if M'  is nonposit ively 
curved then  the  heat  equat ion 

with ]o ~ ], deforms an a rb i t ra ry  map into a harmonic one. The problem of deforming 
]: M -> M'  into a harmonic map,  in case when M'  is posit ively curved, proved to 
be ex t remely  d i~cul t .  Al though a good m a n y  part icular  results are known, mainly  
for low dimensional manifolds, one of the  best-known results was achieved by  
t~. T. S~zm~, [8] and [9], by  showing r every  map between Eucl idean n-spheres 
can be deformed into a harmonic  one, for n g 7. 

(*) Entrata in Redazione il 15 luglio 1980. 
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A vector  field v along ] defines a homotopy  of ] b y  

/~(x) = exp'  (tv~) , x ~ M,  t ~ I t .  

This homotpy  is called (geodesic) var ia t ion  of / by  v. 
The subject of this  paper  is to s tudy  variat ions of ] th rough harmonic maps. 

I n  Section 1 we deduce two equations with two initial data  which describe the  varia- 
t ion of ]: M -* M'  by  v. The first equat ion is equivalent  to  the  harmonic i ty  of ]~ 
and the  second one, with the  two initial data,  yields an initial value problem for a 
Jacobi  equation. I f  M'  is locally symmetr ic  and negat ively curved then,  taking 
the  first two terms of the  Taylor  expansion of the  solution, we obtain a result  of 
P. ttA~r~A:N, [3] and [7], as follows: 

A nonzero vector  field v along ] defines a var ia t ion of ] th rough harmonic maps 
if and only if dv ~ 0 and ei ther  ] is constant  or ] maps onto a closed geodesic 
of M'  and v is t angent  to ~. 

I n  Section 2 we deal with the  case when M'  is a space of constant  curvature  ~. 
Then the  initial value problem can be solved explicit ly and it  yields tha t  if ] is non- 
harmonic  and v is nowhere zero and of noncons tant  norm then  ]~ is harmonic  
only for finitely man~ values of t. 

Using a result  of A. Lichndrowicz, we obtain tha t  if ]: M c M t is a to ta l ly  geodesic 
submanifold of M'  and v is a nowhere zero vector  field along ] which defines a har- 
monic var ia t ion of ] then  the  project ion v T of v onto T ( M )  is a Killing vector  field 
on M and v ~ ~- v -  v T is a solution of a s trongly elliptic equation. 

Especially, i t  follows t ha t  the  nowhere zero harmonic variat ions of the  identities 
of the  Eucl idean spheres consist of isometrics. 

As another  application we obtain the Eells-Sampson's homotopy  theorem for 

flat ta rge t  manifolds. 
Throughout  this paper,  all manifolds,  maps, bundles, etc. will be smooth, i.e. of 

class C ~ and [1] will be our general  reference for the  notions and notat ions used here. 

1. - Equat ions  for variat ions .  

From now on, let  M be a compact  and oriented Riemannian  manifold and M'  
be a complete and locally symmetr ic  Riemannian  manifold. Given a map  1: M -* M'  
and a vector  field v along ] we define •: M • -* M'  and f~: M --, M ' ,  t ~ O, by  
~ ( x ,  t) ~ ]~(x) ~- exp'  (tv~), x e M. (In what  follows, we shall restr ict  ourselves to  

nonnegat ive values of t.) 
Le t  ~-* = (]~)*(T(M')) be the pull-back of the  tangent  bundle of M'  via ],. The  

canonical connection and metr ic  of ~ will be denoted b y  V ~ and <,>~, resp. I f  
0 ----- t ' ~  t" t hen  there  is a canonical bundle isomorphism ~:: ~-~'-* 5~" induced by  
the  parallel  t ranspor t  along the  geodesic segments t --~ ]~(x), t'~-- t <_ t" and x e M. 
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The canonical extension 

r | id: ~ '  | A*(T*(M)) --> ~~"| A*(T*(M)) 

will also be denoted by  ~: and we omit O's in fo, ~ ,  etc. 
~ o t e  t ha t  v e C| and ] .  e C~(:F@ T*(M)). 

Lv.~v~ 1. - I f  w is a vector field along ] and X is a vector field on M then  

t 

0 

holds for t ~ O, (We adopt the sign convention used by K. 5To~zu.) 

P~OOF. -- I f  #:  [a, b] --> M'  is a curve then  denote 

T ( ~ ) :  T , < a , ( M ' )  ---> T#(b)(l~' ) ~- ) 

the parallel t ransport  along #. Let  x e M and choose a curve ~: [-- ~, s] -~ M with 
~(0) ---- x and ~,(0) = X~ e T~(M). Then ~ defines a one-parameter family of curves 

~ :  I - -e ,  e] -+ M',  t ~ 0, by  (~t(s) : f~(~(s)), is] ~ e. Define 

Q : R+ ---> Ts(,)(M') 

by 

Q(t) = l im 1_ {(z,)_lo~(~l[0, r])_~o~oT(~o[[O ' r ] ) (w~) -  w~} = 
r--~O r 

- 1 0  ' 0 

Then 

aQ(t) 
dt 

(~,)-IR,((t ,) ,x~, ~A%))TAw~) = --R'((~,)  -1 (/,),X~, v~)w~ 

which accomplishes the proof. 
Using the formula, [10], 

~ ?  ---- - - t r a ce  {(X, Y) -+ V ~ v ~ } ,  c f eO|174  

we have 

0 
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The map ft is harmonic if and only if ~*(]~). = 0, i.e. if 

t 

0 

where P~(t) = (~)-~(]~), e C~(~-| T*(M)), t >  0. 
On the other hand,  using the notations of the proof of Lemma 1, H = / ~ o ( y  • id) 

is a geodesic variat ion and hence, [5], ~H(s, t)/~s [8=0 = (]~).X, is a gacobi field along 
the geodesic t--~ exp' (tv~). Thus we have 

v~,v~((/~),x) + • ' ( ( l , ) , x ,  ~(v)),,(v) = o .  

Transforming both sides into C=(~) by (~t) -~ we get 

d~P,(t)x R'(P~(t)x, v)v, 
(B) dt~ -- 

where X is a vector field on M and t ~ 0. 

tO L v . m ~  2. - Vd/d$=o(eX p (tv)),X = Vzv. 

P~oo~. - Le t  e: M ___>/~N be an isometric embedding and denote i :  T(R ~) 
To(R N) = R ~v and V the identification map and the s tandard connection of /~:v, 

resp. Le t  x e  M an4 choose a curve y:  (--e,  e) --~ M with y(0) = x an4 I)(0) = X, .  

d [ �9 r 
= = 

d d d d 
: ~It=o ~ 8=o exp' (tv,(8)) ~ 8=o~It=o (exp' (tv,(8))) --- 

and  hence 

~, v ~ , = .  ( exp 'o ( tv ) ) ,x~  = (%~i ,=.~ , ( (exp'o(tv)) ,X~)  ~ = (%~,=~ = ~,V~o v ,  

where T denotes projection to T(e(M')). Thus the 1emma is proved. 
By  the previous 1emma the initial conditions for P~ are 

(C) P~(0) = / ,  ~nd dP~(t)dt t=o= dr. 

For fixed v, equation (B) with (C) is an initial value problem with unique solution. 
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t ~ w~ A~ .  - Le t  1: M - *  M r be  a m a p  and consider a var ia t ion  1~ ~ exp'o(tv) 
defined b y  a vec tor  field a l o n g / .  The  init ial  value p rob lem (B) and  (C) yields 

t 

~ ~ o 

dt 
0 

Thus we h a v e  

0 t 

0 

= <dr, ~.p,(t)> + <~(v,  t), v> - -  <~.eo(t), v> 
and  so 

l d  
<~(v, t), v> = ~ ~([[P.(t)[l~) + t ( -  <Wv, v> -[tavll9 + <~]., v> - </., av>. 

Especial ly,  in tegra t ing  over  M we ob ta in  the  first var ia t ion  of the  energy funct ional  

at = ~ {IP~(t){I~ vol(M) = <~(v, t), v> vol(M) = @~q~),, ~(v)> v o l ( ~ ) .  
M M M 

Exs  1. I f  M ~ is flat t hen  the  de l~ham decomposi t ion of ] ,  ~ C~(57~ T*(M))  
has the  fo rm [ ,  ~- du -~ ~ ,  where ~ is harmonic .  Hence  

v =- - -  u and  /)~(t) = d(1 - -  t)u § ,(2 

are the  solutions of ~(v,  1 ) ~  0 and  (B) wi th  (C). 

O a  the  other  hand,  T(v,  t) = 2], ~ V~vt, where V2v = t race  {(X,  :Y) -~VzVrv) ,  [6]. 
Thns we ob ta in  the  following 

P ~ o ~ o s I ~ o ~  1. - I f  M r is flat t hen  every  m a p  [: M - *  M r is homotop ic  to 

ha rmonic  one. A vector  field v along f defines a va r ia t ion  of ] t h rough  harmonic  

maps  if and  only if f is harmonic  and  dv ~ O. 

Tm~oRv,~ 1. - Le t  ]: M -> M r be a ha rmonic  m a p  and suppose t h a t  a vec tor  
field v ~long ] defines a va r ia t ion  of / th rough  harmonic  maps .  Then 

(1) t race  Rr( / , ,  v ) [ .  = V~v, 

(2) t race  R ' ( [ , ,  v)dv = O. 
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P~ooF. - I f  v defines a var ia t ion of ] th rough harmonic  maps then  T(v, t) = O, 
especially 

d~(v, t) I d ~ ( v '  t) I = O . 
dt t=o = dt 2 t=o 

From equat ion (B) with (C) we have 

dp.(t) d,Po(t) 
P.(o) = ] , ,  dt t = o  = dv and  d-~ t=o : - - R ' ( f * '  v)v .  

l~ow, a simple calculation yields equations (1) and (2). 

I~E~A~K. - Equa t ion  (1) can also be obta ined by  s tudying the  second var ia t ion 

of the energy funct ional  B, [1]. 
l~ow suppose tha t  M'  is negat ively  curved, i.e. all the  sectional curvatures  of M 

are negative. Using equat ion (1) we have 

o =>f<Wv, v> vol (_~) = --ftrace <W(/,, v)v,/,> vol (_~) >__ o 
M M 

and hence dv -= O. I f  v=/= 0 then  l]vH = const. ~= 0 and so r a n k / ~ 1  on M. By  a 
theorem of ft. H. Sampson, [7], ei ther ] is constant  or ] maps  onto a closed geodesic y 

of M'.  Thus we have  

P~oPoslTIO~ 2. - Le t  ]: M -> M'  be a harmonic  map,  where M'  is a negatively 
curved Riemannian  manifold,  i f  the  vector  field v along ] is not  identically zero 
and if v defines a var ia t ion of f th rough  harmonic  maps then  dv -= 0 and either ] 
is constant  or / maps onto a closed geodesic ~ of M'  and v is t angent  to  y. 

2.  - H a r m o n i c  m a p s  in to  s p a c e s  o f  c o n s t a n t  curvature .  

Throughout  this section M'  will denote a complete manifold of constant  curva- 

ture  ~ r O. 
Then equations (A) and (B) with initial conditions (C) have the  forms 

t 

(A~) ~(v, t) = ~Po(t) + ~ tr~ee {(X, ~) ~ <Po(t)X, v>fP~(s)~'~-- 
0 t 

and 

~.P~(t)x_ 
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w i t h  

dPo(t)[ 
-P~,(O) = J ,  a n d  dt [t=o = dr. 

L v . ~  3. - L e t  Po, P~ ~ C=(Y@ T*(M)) a n d  v e 0 ~ ( 5 ) .  

e q u a t i o n  (B~) w i th  in i t ia l  condi t ions  

(C') P J O )  = -Po 

has  t h e  f o r m  

dP.(t)  
a n d  ~ t=o =_P~ 

v. (t~/~ilv~ll)" 

s in  (t ~/~[[%']) t  [ P,(X.)  - (P,(X.) ,  v. v. 

..II< N}N)' + 

and 

_P~(t)X~ = Po(X.) @ tP I (X~) ,  if  v~ = O, 

T h e n  t h e  so lu t ion  of 

if  v ~ # O ,  

whe re  X~ e T~(M). 

PROOF. - S imple  ca lcu la t ion .  

R v . ~ K .  - I f  a < 0 t h e n  t h e  f o r m u l a  a b o v e  m a k e s  sense  because  of t h e  re la t ions  

sin (iz) = i s inh (z) a n d  cos (iz) = eosh (z), 

whe re  i e C is t h e  c o m p l e x  uni t .  
Ply= dv in  t h e  so lu t ion  of (B~) a n 4  s u b s t i t u t i n g  i t  in to  t he  T a k i n g  Po = / ,  and 

express ion  of ~ ( v ,  t) we o b t a i n  t h e  fo l lowing f o r m u l a  

T(v,  t) = cos (at) ~1, sin (at) V~ v + sin (at) t r a c e  R'(],, v) ], + 
Of a 

+ 2t s in  (at) t r a c e  R'(J., v) dv + 2 sin (at) - -  2at  cos (at) t r a c e  R'(dv, v) dv --  
r162 a 8 

cos (at) - - 1  s in (at) - -  at  <V~v ' v>v -{- 
- -  a a~ @I*, v> v + a as 

s in  (2at) - -  2 sin ( a t )  
+ 2allvll" trace <R'(1,, v)t,, v>v + 

- -  cos (2at) - -  2at s in (at) -J-- 1 
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�9 t race  <R'(1,, v) dr, v>v + - -  sin (2at) - -  4 sin (at) q- 4at cos (at) -+- 2at .  

�9 t race  <R'(dv, v)dv, v>v, 

where = = ~/aIIvI] and  if v~ ~-- 0 at  x e M then  we take  the  corresponding limits. 
I n  ease when M '  is a space of cons tant  curva ture  Theorem 1 can be sharpened 

as follows 

T~mo~E~ 2. - L e t / :  M --> M '  be a ha rmonic  m a p  and  v be a vec tor  field a l o n g / .  

Then  v defines a var ia t ion  of / t h rough  ha rmonic  maps  if and  only if the  following 
equat ions are val id :  

(1) t race  R ' ( / . ,  v) / .  = V2v, 

(2) t race  R ' ( / , ,  v)dv : O, 

(3) t race  R'(dv, v)dv : a<V~v, v>v. 

PI~o0F. - Tak ing  the  Tay lo r  expansion of T(v, t) = 0 in t up to  the  four th  degree, 

by  a simple calculation, equat ions (1)-(2)-(3) can be obtained.  Subs t i tu t ing  these 
eqnat ions into the  expression of T(% t) above  we get  t h a t  ~(v,  t) is ident ical ly zero. 

Tm~o~E~ 3. - Le t  /:  M --> M '  be a m a p  and  suppose t h a t  v is a nowhere  zero 
vector  field along / for which []vii is not  ident ical ly cons tant  on M. Then there  are 
only  finitely m a n y  p a r a m e t e r  values  t ~ 0 for which f, = exp'o(tv) is harmonic.  

t)~OOF. - Sltppose t h a t  the  set {t ~ 0If, is harmonic} is infinite. Then 

f< ~(v,  t), v> vol  (M) = - -  t f ( v ~ ,  v> 
M, M 

vol  (M) - -  tf<dv, dr> vol  (M) + 

M 

17~- t race  <dr, v> ~ vo l (M)  + 0(1) 

M 

holds, i.e. f l/Hvlt ~ t race  <dr, v> ~ vol  (M) ~ 0. Thus t race  <dr, v> ~ = 0 identically 
M 

on 21/ and  choosing a a  o r thonormal  f r ame  {e~} c T~(M), x e M, we obta in  

t race  <dr, v) 2 = 1 ~ (e~(Ilvll~))2_ ~ O, 

i.e. [IvIl is cons tant  which accomplishes the  proof. 

I~_AtCK. -- I f  Ilvll is cons tan t  on M then  T(v,  t) is bounded in t. 

C o E o ~ y  1. - Le t  / :  M-->  M '  be a ha rmonic  m a p  and  v be a nowhere zero 
vec tor  field a l o n g / .  Then v defines a var ia t ion  of / th rough  harmonic  maps  if and  
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on ly  if []vii is c o n s t a n t  on  M a n d  

t r ace  R ' ( / . ,  v ) ] ,  = V~v a n d  </ , ,  dr> = 0 

are  satisfied. 

N o w  suppose  t h a t  ] :  M c M '  is a t o t a l l y  geodesic subman i fo ld  and  let  v be  a 

nowhere  zero vec to r  field a long  ] which  defines a vur ia t ion  of ] t h r o u g h  h a r m o n i c  maps .  

There  is an  o r t h o g o n a l  decompos i t ion  v = v • -~ v T, where  v • is o r t hogona l  to  M 

a n d  v T is t a n g e n t  to  M.  Because  M is a t o t a l l y  geodesic subman i fo ld  of M ' ,  Corol- 

l a ry  i yields t he  fo l lowing equa t ions  

V2v • -~ (rmv • = 0 ,  V~v -r + (r(m - - 1 ) v  T : O and  <f , ,  drr> = O , 

where  m = d im M. The  first equa t ion  for  v z is s t rong ly  elliptic and  has  uniqueness  

in  t h e  Cauehy  p rob lem,  [6], i.e. if v •  ---- 0 where  U c M is an  open  set,  t h e n  v z = 0 

iden t ica l ly  on M.  

I n  w h a t  follows we shal l  rewri te  the  equa t ions  for  v T. D e n o t e  ~ t he  1 - form of M 

which  cor responds  to  v T b y  dua l i ty .  Because  ] is h a r m o n i c  

( ] . ,  4v T> = - - @ ~ = O .  

F u r t h e r m o r e ,  V ~  ~- a ( m - - 1 ) ~  = 0 holds  and  so ~ satisfies t he  equa t ion  

A ~ - - 2 a ( m - - 1 ) ~  ~- dS~ = O. 

B y  a resul t  of A. Lichn6rowicz,  [4], i t  means  t h a t  v T is a Ki l l ing vec to r  field. Thus  

we ob t a in  t he  fol lowing 

T]{EOBE~ 4. -- L e t  ] :  M c M '  be  a t o t a l l y  geodesic subman i fo ld  of M '  and  let v 

be  a nowhere  zero vec to r  field a long  ] which  defines a va r i a t ion  of ] t h r o u g h  har -  

m o n i c  maps .  B y  t he  o r t h o g o n a l  decompos i t ion  v - - - - v •  v T the  vec to r  field v T 

a long  ] satisfies t he  s t rong ly  el l ipt ic equa t ion  

V~v • -~ (rmv ~ = 0 ,  

where  m ---- d i m  M,  a n d  v T is a Ki l l ing  vec to r  field on  M. 

I f  v is a nowhere  zero vec to r  field on S m t h e n  v can  be cons idered  as a vec to r  field 

a long  t he  ident i ty .  I f  v defines a va r i a t i on  of the  i d e n t i t y  t h r o u g h  h a r m o n i c  m a p s  

t h e n  I]v]] is c o n s t a n t  a n d  v is a Ki l l ing  vec to r  field on S ~. Thus  t he  in tegra l  curves  

of v are  geodesics a n d  so It ---- exp 'o( tv)  is an  i s o m e t r y  for  eve ry  t >= 0. 

1Wow, assume t h a t  a > 0 a n d  let v be  a vec to r  field a long  ] :  M -> M t fo r  which  
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0 < ]Iv[] < ~/(2V/~) holds everywhere on M. By  a simple calculation we have 

1_ <W(v, t) q- W(-- v, t), v> = <3],, v> --}- 
2 

Thus 

1 - -  cos (~t) 
t race  <R'(],, v) dv, v> = 

= <at, ,  v>-IIq(z-cos( t)){t,, e N " 

f 1 211q(1 - - c o s  (~t)) <~(~' t) + ~ ( - - v ,  t), ~> voX(M) = 
M 

q 
M 

Thus we obtain the  following 

cos(~t) < [[~l~> 
l - -  cos (cot) ~]*~ vol (M) .  

PI~OPOSITION 3. -- Le t  ]: M --> M'  be a map,  with a > 0~ and suppose tha t  v is 
a vector  field along / for  which 0 < I[vll <~/ (2%/~)  holds. 

(i) I f  /1 = exp 'ov and /_~ = expo( - -v )  are harmonic then  <3f., v> has a 

zero on M. 

(if) I f  <~],, ~> is not  identically zero and does not  change its sign on M then  

at  least one of the  mappings ]1 and /_~ is nonharmonic.  

EXA~PT,E 2. -- Le t  ]: S 1 ---> S 2 c/~8 be the  canonical  embedding onto the  equator  
circle of S ~. I f  v is the vector  field along ] defined b y  a uni t  section of the  normal  
bundle of ] then dv = 0 and the  mappings ]0 and ]~rz are harmonic  while ]t is non- 
harmonic for 0 < t < 7~/2. This s i tuat ion can be generalized as follows 

TtmORE~ 5. - Le t  1: M - +  M'  be a n o , c o n s t a n t  harmonic  map,  wi th  a > 0, 
and suppose tha t  v is a nonzero, paral lel  vector  field along ]. Then  one of the  fol- 

lowing is val id:  

(i) The map /, is harmonic  for all t ~ 0 and ] maps onto a closed geodesic y 

of M'  and v is t angent  to  y. 

(if) The map ]~ is nonharmonic  for 0 < t  < ~ / 2 ~ H v l l .  

P~OOF. -- Because dv = 0 the  map ft os harmonic  for some t ~ 0 if and only if 

T(v,  t) sin (~t) t race  R,(] , ,  v ) f ,  q- sin (2~t) - -  2 sin (~t) = �9 t race  (R ' ( ] . ,  v ) ] . ,  v )v  = 0 .  

Suppose tha t  ft. is harmonic  for some 0 < t o < z/2 ~/~]IvI]. Then  

( T ( v ,  to) ,  v> - -  - -  
sin (2~to) 

t race </~'(l*, v) ]., v> = 0 
2zr 
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and  hence the  bi l inear  fo rm ( I t ' ( f . ,  v ) / . ,  v)  is zero. Thus r~nk ] g l  and  the  re- 
mMning p a r t  of the  proof  follows f rom ~ result  of J .  I t .  Sampson,  [7]. 

Rv,~L~K. -- I f  M -+ M '  is a map ,  wi th  a > O, and  v is ~ nonzero p~rallel vector  

field along ] such t h a t  ( ] . (X , ) ,  %)  = 0 hold for every  t angen t  vector  X ,  ~ T , (M) ,  

x ~ M, t hen  

sin (2at)ll/,il~v T ( v ,  t )  = - -  ~ 2--~--  ' 

i.e. ] is homotopic  to a ha rmonic  map .  
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