On Variations of Harmonic Maps into Spaces
of Constant Curvature (%).

GABOR TotH (Budapest)

Summary. — This paper studies the global geometric properties of geodesic variations of har-
monic maps into spaces of constant curvature, i.e. variations given by translating the maps
along geodesics defined by prescribed wvector fields. Description of variations through hor-
mowic maps is given and an infinitesimal rigidity of harmonic maps is shown.

A map f: M - M’ of a compaet and oriented Riemannian manifold M into a -
complete Riemannian manifold M’ induces a specific 1-form f, on M with values
in the pull-back bundle F = f*(T(M")), i.e. fy € O°(F ® T*(M)). The map § is said
to be harmonie, [1], if it is an extremal of the energy functional

B =3 [ Il vor(an).

The Euler-Lagrange equation associated to the energy functional EF has the form
7(f) = 0, where z(f) € C°(¥F) denotes the trace of the second fundamental form of f.
By developing a Laplace operator A4 on the Riemannian-connected bundle
F @ A*(T*(M)) the map f is harmonic if and only if Af, =0, or equivalently
ofx = 0, where o denotes the adjoint of the exterior differentiation d on
F® A*(T*(M)).

By a famous theorem of J. Eells and J. H. Sampson, [2], if M’ is nonpositively
curved then the heat equation

ofs
'ﬁ == T(ft) ’

with f, = f, deforms an arbitrary map into a harmonic one. The problem of deforming
f: M — M’ into a harmonic map, in case when M’ is positively curved, proved to
be extremely difficult. Although a good many particular results are known, mainly
for low dimensional manifolds, one of the best-known results was achieved by
R. T. SmrTH, [8] and [9], by showing that every map between Euclidean n-spheres
can be deformed into a harmonic one, for n < 7.

(*) Entrata in Redazione il 15 luglio 1980.
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A vector field » along f defines a homotopy of f by
fi(z) = exp’ (tv,), zeM, tcR.

This homotpy is called (geodesic) variation of f by v.

The subject of this paper is to study variations of f through harmonic maps.
In Section 1 we deduce two equations with two initial data which describe the varia-
tion of f: M — M’ by v. The first equation is equivalent to the harmonicity of f,
and the second one, with the two initial data, yields an initial value problem for a
Jacobi equation. If M’ is locally symmetric and negatively eurved then, taking
the first two terms of the Taylor expansion of the solution, we obtain a result of
P. HARTMAN, [3] and [7], as follows:

A nonzero vector field v along f defines a variation of f through harmonic maps
if and only if dv = 0 and either f is constant or f maps onto a closed geodesic y
of M’ and v is tangent to y.

In Section 2 we deal with the case when M’ is a space of constant curvature o.
Then the initial value problem can be solved explicitly and it yields that if f is non-
harmonic and » is nowhere zero and of nonconstant norm then f; is harmonie
only forfinitely many values of i.

Using a result of A. Lichnérowicz, we obtain that if f: M ¢ M' i a totally geodesic
submanifold of M’ and v is a nowhere zero vector field along f which defines a har-
monic variation of f then the projection v" of v onto T'(M) is a Killing vector field
on M and vt = v—" iy a solution of a strongly elliptic equation.

Especially, it follows that the nowhere zero harmonic variations of the identities
of the Euclidean spheres consist of isometries.

As another application we obtain the Eells-Sampson’s homotopy theorem for
flat target manifolds.

Throughout this paper, all manifolds, maps, bundles, ete. will be smooth, i.e. of
clags 0© and [1] will be our general reference for the notions and notations used here.

1. - Equations for variations.

From now on, let M be a compact and oriented Riemannian manifold and M’
be a complete and locally symmetric Riemannian manifold. Given a map f: M — M’
and a vector field v along f we define ¥: MXR, > M' and f,: M — M', t = 0, by
F(x, t) = f(x) = exp’ (iv,), ® € M. (In what follows, we shall restrict ourselves to
nonnegative values of ?.)

Let 5t = (f,)*(T(M')) be the pull-back of the tangent bundle of M’ via f;. The
canonical connection and metric of ¢ will be denoted by V* and {, )¢, resp. If
0 <#'< 1" then there is a canonical bundle isomorphism z}: 5~ ¥ induced by
the parallel transport along the geodesic segments ¢ — f(z), <t =<1" and v e M.
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The canonical extension
h®id: F' @ A*(T*(M)) — F' @ A*(T*(M))

will also be denoted by <% and we omit 0’s in f,, 7, ete.
Note that » € C°(F) and f, € C°(F ® T*(M)).

LemmA 1. — If w is a vector field along f and X is a vector field on M then

[

((z) ToViot) (W) —Vzw = — R’U(rs)'l(]‘s)*de, v)w

0
holds for t=0. (We adopt the sign convention used by K. Nomizu.)
ProoF. — If u:[a,b] — M’ is a curve then denote

T(u): Tﬂ\a)(M’) = Tpy(M')

the parallel transpért along u. Let z € M and choose a curve y:[—¢, ] — M with
»(0) = « and $(0) = X, € T,(M). Then y defines a one-parameter family of curves
8i:[—e, 6] — M, t=0, by 8:(s) = fi(p(s)), |s|= e Define

Q: By — Tyy(I')

by

Q) = im 3 {(z)3or(3410, 1 orior(A[0, rian) — 1.} =

= ((Tt)‘loVLo‘L',)w — Vg, w.

Then

= = — () R (e Xy T02)) Twa) = — B/((7)7 (f )Xy 0a) 0

which accomplishes the proof.
Using the formula, [10],

otp = —trace {(X, ¥) - Vit ¢}, Qe O"’(J“"t@)/l*(T*(M))) y

we have
t

(i = (ri0dot)(fu + 7o trace { (X, ) > B [(w) (X @5, ) (20 F0: T .

0
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The map f, is harmonie if and only if 2¢(f,), = 0, i.e. if

(A) (v, t) = 0P,(t) -} trace {(X, Y) »R’(va(s)de, v)Pﬂ(t)Y} =0,

where P,(t) = (v,)"(f)x € O=(F @ T*(M)), 1= 0.

On the other hand, using the notations of the proof of Lemma 1, H = Fo(y Xid)
is a geodesic variation and hence, [5], 0H(s, £)/9s],_, = (f)+ X, is a Jacobi field along
the geodesic ¢ — exp’ (fv,). Thus we have

Vd/dtvd/dt((ft)*x) + R’((ft)*X, n(’lJ)) T(v) =0.
Transforming both sides into C®(F) by (z.)~* we get

(B) TEOX_ _ r(ewx, o,

where X is a vector field on M and ¢ = 0.
LEMMA 2. = Vg, o(€xp’o ()4 X = Vyo.
ProoF. — Let ¢: M — RY be an isometric embedding and denote ¢: T(RY) —>

— To(R¥) = R¥ and V the identification map and the standard connection of R¥,
resp. Let # € M and choose a curve y: (— g, ¢) — M with 9(0) == # and 9(0) = X,.

i(ﬁd/d”m(exp’o(tv))*Xm) 2% (i(exp’o(t?}))*Xm) =

ji=0

d o ,
=7 e ! = = e t =
di t=0d8 s=06Xp (tUV(s)) ds s=0dt 1m0 (eXp ( ’07(8)))

d . L~
= ds o (V) = @(Vd/ds]5=ovy(3)) .

and hence
€s Vajatloo, (eXP'°(W))*Xm = (~Vd/dth=oe*((eXP'°(t”))*Xw)T = (%d/ds]hn(e*v)l(s))r = 6xVx, ¥,

where T. denotes projection to T(e(M’)). Thus the lemma is proved.
By the previous lemma the initial conditions for P, are

dP,(t)

7 t=0= dv .

©) P,0)=Ffx and

For fixed v, equation (B) with (0) is an initial value problem with unique solution.
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REMARK. — Let f: M — M’ be a map and consider a variation f, = exp’o(iv)
defined by a vector field along f. The initial value problem (B) and (0) yields

i

aPH) X = Vv — R’(f—Pﬂ(s)de’ 'l]) v
(V]

dt

Thus we have

o JAP(Y) B
5 sl = (52, pw) = o Py —

—(® ( f Py(s) ds, w,)v, P1) = v, P(t)> +

0 t
+ (traee R ( f P,(s)ds, Q;)P,,(t), @) -
0

= <dv, Py(t)> + <{¥(v, 1), 0> — COP,(t), v

and so

L (IPAO) -+ t{— Voo, 0> —[d0]2) + Gy v> = Chuy dod

L\”H—*

Flv, 1), 0) =
Especially, integrating over M we obtain the first variation of the energy functional

"J" = fﬂPn(t (2 vol (M) ——f<¥’(v, t), v> vol (M —f(@f %, To(0)> vol (M) .

Examere 1. If M is flat then the de Rham decomposition of f, € C°(F @ T*(M))
has the form f, = du + £, where Q is harmonic. Hence

v=—u and P,@)=dl—Hu-}Q

are the solutions of ¥(v,1) = 0 and (B) with (C).
On the other hand, ¥(v,t) = df, — V20t, where V20 = trace {(X, Y) »Vzvyv}, [6].
Thus we obtain the following

ProprosITION 1. — If M' is flat then every map f: M — M’ is homotopie to a
harmonic one. A vector field v along f defines a variation of f through harmonie
maps if and only if f is harmonic and dv = 0.

THROREM 1. — Let f: M — M’ be a harmonic map and suppose that a vector
fleld » along f defines a variation of f throngh harmonic maps. Then
(1) trace B'(fy, v)fx = Vv,
(2) trace R'(fy, v)dv == 0.
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Proor. — If v defines a variation of f through harmonic maps then ¥(v,¢) = 0,
especially

dPv, )| d*¥P(v,1) 0
dt im0 A8 1o ’
From equation (B) with (C) we have
N aP,(t) . apE) ,
.P,,(O)—f*, dt t=0_dﬂ and atz t___o"—R(:f*;'v)'v-

Now, a simple caleulation yields equations (1) and (2).

REMARK. — BEquation (1) can also be obtained by studying the second variation
of the energy functional B, [1].

Now suppose that M’ is negatively curved, i.e. all the sectional curvatures of M
are negative. Using equation (1) we have

0= f (Vav, v vol (M) = — J' trace (B! (fx, ©)0, f5> vol (M) = 0
M M

and hence dv = 0. If v3£ 0 then |v| = const. = 0 and so rank f<1 on M. By a
theorem of J. H. Sampson, [7], either f is constant or f maps onto a closed geodesic y
of M'. Thus we have

PROPOSITION 2. — Let f: M -> M’ be a harmonic map, where M’ is a negatively
curved Riemannian manifold. If the vector field v along f is not identically zero
and if » defines a variation of f through harmonic maps then dv = 0 and either f
is constant or f maps onto a closed geodesic ¥ of M' and v is tangent to y.

2, — Harmonic maps into spaces of constant curvature.

Throughout this seetion M’ will denote a complete manifold of constant curva-
ture o #% 0.
Then equations (A) and (B) with initial conditions (C) have the forms

i
(Ao) Y(v, 1) = 0P,(t) -} o trace {(X, Y) > (P, X, v)fP,,(s)Yds —
[¢]

—(royx, f P;(s)Yds>o} =0

and
a*P,(X

(Bo) ds

= — o0 2P, (1) X + o {P,(}) X, v)o
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with

AP,(t)

(Co) P,(0) =f. and =

=dv.

t=0

LeMuMA 3. ~ Let Py, P;e C°(F® T*(M)) and ve C°(F). Then the solution of
equation (B,) with initial conditions

dP,(t)

(C2) P,(0)=P, and =

t=0

has the form

(1) X = (Pl0) + P, ) ooy o+ cos (1 o)

(o — (oo ) g+

sin (¢v/0]|v,]) Vg \ Vg .
+ W ( (X)) — <P1(Xw)7 m) m)y it v,#0,

and

P,() X, = Py(X,) +-tPy(X.), if 0,=0,
where X, e T (M).
Proor. — Simple calculation.
REMARK. - If o < 0 then the formula above makes sense because of the relations
sin (iz) = ¢sinh () and  cos (¢2) = cosh (2),

where i€ C is the complex unit.
Taking P, = f5 and P,*= dv in the solution of (B,) and substituting it into the
expression of (v, t) we obtam the following formula

sin (oct) sin (o)

P(v, t) = cos (at) Of g — ———

V2o - ———trace R'(f«, v) f«

2 gin (ect) — 20ct cos (af)

2t sin ()
o

-+ trace R'(fy, v)dv + trace R'(dv, v) dv —

a:}
cos (oct) <8f*, w0+ sin (oct) <V%, 250 +
sin (2at) — 2 sin (o) , — co8 (2at) — 20 8in (af) + 1
2o trace (B'(fu, ¥) fs, OV + “2"0“2 .
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— 8in (2o8) — 4 sin (at) + 4ot cos (at) - 2o:t.

-trace (B'(fx, v) dv, vpv +- 20|02

-trace {R'(dv, v)dv, v>v,

where @ = V/¢||v| and if v, = 0 at € M then we take the corresponding limits.
In case when M’ is a space of constant curvature Theorem 1 can be sharpened
as follows

THEOREM 2. ~ Let f: M — M’ be a harmonic map and ¢ be a vector field along f.
Then v defines a variation of f through harmonic maps if and only if the following
equations are valid:

(1) trace R'(fx, ) fx = V2o,
(2} trace R'(fi, v)dv = 0,
(3) trace R'(dv, v)dv = a(VZv, oy,
PROOF. — Taking the Taylor expansion of ¥(v, ) = 0 in ¢ up to the fourth degree,

by a simple calculation, equations (1)-(2)-(3) can be obtained. Substituting these
equations into the expression of ¥(v, t) above we get that ¥(v, ) is identically zero.

THEOREM 3. — Let f: M — M’ be a map and suppose that » is a nowhere zero
vector field along f for which ||v| is not identically constant on M. Then there are
only finitely many parameter values ¢ =0 for which f, = exp’o(fv) is harmonie.

PROOF. — Suppose that the set {¢t= 0|f; is harmonic} is infinite. Then

f(?l’(fu, 1), v> vol (M) = — tf(VZb, 2> vol (M) — tf(dv, dvy vol (M) -+
M

M

M
-+ tf ﬁztrace {dw, v>2 vol{M) 4 0(1)
M

holds, i.e. f 1/[v|}® trace {dv, v>2 vol (M) == 0. Thus trace {dv, v)? =0 identically
M

on M and choosing an orthonormal frame {e;} c T,(M), € M, we obtain
1 N
trace {(dv, v)2 = i z (ei([]v”z))2 =0,

ie. [v] is constant which accomplishes the proof.
REMARK. — If o] is constant on M then ¥(»,1) is bounded in .

COROLLARY 1. — Let f: M — M’ be a harmonic map and v be a nowhere zero
vector field along f. Then v defines a variation of f through harmonic maps if and
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only if |v] is constant on M and

trace R'(f4, 0)fe = V20 and (fy,dvd =0

are satisfied.
Now suppose that f: M c M’ is a totally geodesic submanifold and let » be a
nowhere zero vector field along f which defines a variation of f through harmonic maps.
There is an orthogonal decomposition » = v+ 4 ¢", where v* is orthogonal to M
and v" is tangent to M. Because M is a totally geodesic submanifold of M’, Corol-
lary 1 yields the following equations

Vigt Logmet =0, V2 +~om—1)vT =0 and <{fe,dv™> =0,

where m = dim M. The first equation for v* is strongly elliptic and has uniqueness
in the Cauchy problem, [6], i.e. if 9| = 0 where U c M is an open set, then v+ = 0
identically on M. :

In what follows we shall rewrite the equations for »7. Denote « the 1-form of M
which corregsponds to »7 by duality. Because f is harmonie

gy T ?—3a=0.

Furthermore, V2a + o(m —1) = 0 holds and so « satisfies the equation

Ao —20(m — 1)t + d 0 = 0.

By a result of A. Lichnérowicz, [4], it means that »™ is a Killing vector field. Thus
we obtain the following

THEOREM 4. — Let f: M c M’ be a totally geodesic submanifold of M’ and let v
be a nowhere zero vector field along f which defines a variation of f through har-
monic maps. By the orthogonal decomposition v = v+ -+ v the vector field o7
along f satisfies the strongly elliptic equation

Vot 4+ emot =0,

where m = dim M, and v" is a Killing vector field on M.

If » is a nowhere zero vector field on S™ then » can be considered as a vector field
along the identity. If v defines a variation of the identity through harmonic maps
then ||v] is constant and v is a Killing vector field on 8. Thus the integral curves
of v are geodesics and 80 f, = exp’o(fv) is an isometry for every ¢ = 0.

Now, assume that ¢ > 0 and let » be a vector field along f: M — M’ for which
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0 < o] <a/(2V¢) holds everywhere on M. By a simple calculation we have

L0, 1) + Wi, ), 0 = By + T trace (R, 0)de, 55 =
= (0fx, v) — ||v]|(1 — cos («2)) {f*, d(ﬁﬂ» .
Thus
J‘2||'u]](1 ——lcos @) o, t) + P(—o, t), v) vol (M) =
i

f 1i°§o§°tlt (ot o 1\>V°1(M

Thus we obtain the following

ProposITION 3. — Let f: M — M’ be a map, with ¢ > 0, and suppose that v is
a vector field along f for which 0 < |o| < #/(2V/¢) holds.

(i) 1f fI%exp’ov and f_, = expo(—9) are harmonic then <{ofy,v)> has a
zero on M.

(ii) If <9f4, v> is not identically zero and does not change its sign on M then
at least one of the mappings f, and f_, is nonharmonic.

ExXAMPLE 2. — Let f: 81 — 82 c R? be the canonical embedding onto the equator
circle of §2. If v is the vector field along f defined by a unit section of the normal
bundle of f then dv = 0 and the mappings f, and f,, are harmonic while f; is non-
harmonic for 0 <t < m/2. This situation can be generalized as follows

THEOREM 5. — Let f: M — M’ be a nonconstant harmonic map, with o > 0,
and suppose that v is a nonzero, parallel vector field along f. Then one of the fol-
lowing is valid:

(i) The map f, is harmonic for all { = 0 and f maps onto a closed geodesic y
of M’ and » is tangent to y.

(ii) The map f, is nonharmonic for 0 <¢ <z/24/c[v].
PROOF. — Because dv = 0 the map f, os harmonic for some ¢ = 0 if and only if

sin (2ef) — 2 sin {«f)
2av[*

Sm(“t) trace (B (fx, 0) fx, 000 = 0 .

(v, t) =

trace E'(f«, o) fs +

Suppose that f, is harmonic for some 0 <t,<n/2+/c|v]. Then

sin (2u,)
20

Flo, ), 0) = trace CB'(fx, 0) fx, 0> =0
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and hence the bilinear form <{R'(f«, v)f4, ¥> is zero. Thus rank f=1 and the re-
maining part of the proof follows from a result of J. H. Sampson, [7].

REMARK. — If M — M’ is a map, with ¢ > 0, and v is a nonzero parallel vector
field along f such that <{f.(X,),v,> = 0 hold for every tangent vector X,e T, (M),
ze M, then

Plo, 1) = — sm 2oct ﬂf*sz,

i.e. f is homotopic to a harmonic map.
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