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Abstract

DoCarmo-Wallach theory and its subsequent refinements assert the rich
abundance of spherical minimal immersions, minimal immersions of round
spheres into round spheres. A spherical minimal immersion can be written
as a conformal minimal immersion f : Sm → SV with domain the Euclidean
m-sphere Sm and range the unit sphere SV of a Euclidean vector space V .
Takahashi’s theorem then implies that the conformality constant of f can only

1This work was carried out during the sabbatical leave of the first author at Rutgers University,
Camden, New Jersey, USA.
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attain discrete values, λp/m, where λp is the pth eigenvalue of the Laplace op-
erator (acting on functions on Sm), and then the components of f are spherical
harmonics of order p on Sm. The dimension and complexity of the moduliMp

m

of degree p spherical minimal immersions of Sm increase rapidly with p (and
m). In this paper we impose the additional condition of (partial) isotropy ex-
pressed in terms of the higher fundamental forms of such immersions. In view
of Tsukada’s rigidity theorem for fully isotropic minimal immersions, this is a
convenient condition to reduce the moduli to smaller slices,Mp;k

m for isoptropy
of order k, 2 ≤ k ≤ p, and, at the same time, to retain some important ex-
amples. Sakamoto’s study of “helical” minimal immersions gives a transparent
geometric characterization of the moduliMp;k

m (Theorem A) in terms of partial
helicality, that is, (universal) constancy of initial sequences of curvatures of the
image curves of geodesics under the respective spherical minimal immersions.
As shown by the works of DeTurck and Ziller, a rich subclass of spherical min-
imal immersions is comprised by minimal SU(2)-orbits in spheres (of various
dimensions). The main result of this paper (Theorem B) gives a full character-
ization of isotropic SU(2)-equivariant spherical minimal immersions of S3 into
the unit sphere of real and complex SU(2)-modules. As a specific example and
immediate byproduct, we recover a result of Escher and Weingart which asserts
that the icosahedral minimal immersion Ico : S3 → S12 (giving a minimal em-
bedding of the isosahedral manifold S3/I∗ by the binary icosahedral group I∗

into S12) is isotropic whereas its tetrahedral and octahedral cousins are not.

1 Preliminaries and Statement of the Results

1.1 Spherical Minimal Immersions and Moduli

Minimal isometric immersions of round spheres into round spheres form a rich and
subtle class of objects in differential geometry studied by many authors; see [3, 6, 7,
9, 10, 13, 17, 20, 21, 22, 23, 24, 26, 33, 34, 37, 38]; and, for a more complete list, the
bibliography at the end of the second author’s monograph [29]. Such immersions can
be written as f : Smκ → SV of a round m-sphere Smκ of (constant) curvature κ > 0
into the unit sphere SV of a Euclidean vector space V (where κ = 1 is suppressed
from the notation); or, scaling the domain sphere Smκ to unity, as minimal immersions
f : Sm → SV with homothety constant 1/κ. By minimality, the components α ◦ f ,
α ∈ V ∗ (the dual of V ), of f are necessarily eigenfunctions of the Laplacian 4 of Sm

corresponding to the (same) eigenvalue λ = m/κ. Setting λ = λp = p(p + m − 1),
p ≥ 1, the pth eigenvalue, and Hp

m ⊂ C∞(Sm), the corresponding eigenspace of spher-
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ical harmonics of order p on Sm, a homothetic minimal immersion f : Sm → SV with
homothety constant λp/m is called a spherical minimal immersion of degree p. (For
the standard results recalled here and below, see [29, Appendix 2], or [37] as well as
the summary in [34].)

It is well-known that spherical harmonics of order p are precisely the restrictions
(to Sm) of harmonic homogeneous polynomials (of m+1 variables) of degree p. Thus,
algebraically a spherical minimal immersion f : Sm → SV of degree p can be viewed
as a harmonic p-homogeneous polynomial map Rm+1 → V restricted to the ambient
unit spheres.

A spherical minimal immersion f : Sm → SV is full if the image of f in SV is not
contained in any great sphere of SV , or equivalently, if the image of f in V spans the
entire space V . In this case the map V ∗ 3 α 7→ α ◦ f ∈ Hp

m is a linear isomorphism
of V ∗ onto a linear subspace Vf ⊂ Hp

m, the space of components of f . Since V is
Euclidean, we have V ∼= V ∗, so that V is naturally isomorphic with Vf .
Restricting to the linear span of the image, a spherical minimal immersion can always
be made full.

The special orthogonal group SO(m+1) acts on Sm by isometries, and thereby also
on Hp

m via precomposition (with the inverse). This makes Hp
m a linear SO(m+1) rep-

resentation space. In addition, the L2-scalar product on Hp
m is SO(m+ 1)-invariant,

and with this Hp
m becomes an (irreducible) SO(m + 1)-module. (For basic facts on

representations of the (special) orthogonal group used here and below, we refer to [2]
or the more modern treatment in [11, 14]; see also the summary in [37].)

The archetype of all spherical minimal immersions is the Dirac delta map δm,p :
Sm → S(Hp

m)∗ defined by evaluating the spherical harmonics in Hp
m on points of Sm.

Here (Hp
m)∗ carries the natural SO(m+ 1)-module structure dual to Hp

m. (Note that
the L2-scalar product on Hp

m needs to be scaled suitably so that the Dirac delta maps
into the unit sphere.) The Dirac delta map is equivariant with respect to the action
of SO(m+ 1) on Sm and the SO(m+ 1)-module structure on (Hp

m)∗.
As a homogeneous space Sm = SO(m+1)/SO(m) is isotropy irreducible, that is, the
isotropy group SO(m+1)o = SO(m)⊕[1] ∼= SO(m) at the base point o = (0, . . . , 0, 1),
say, acts on the tangent space To(S

m) ∼= Rm irreduciby (actually transitively, by the
ordinary action of SO(m) on Rm). It follows that δm,p is homothetic, hence a spher-
ical minimal immersion of degree p.
With respect to an orthonormal basis {χi}n(m,p)i=0 ⊂ Hp

m, n(m, p) + 1 = dimHp
m,

the Dirac-delta immersion is (classically) expanded as δm,p(x) =
∑n(m,p)

i=0 χi(x)χi,
x ∈ Sm, and therefore, it can also be defined as the spherical minimal immersion
δm,p : Sm → Sn(m,p) whose components form an orthonormal basis in Hp

m. With this
definition, it is also referred to as the standard minimal immersion of Sm of degree p.

Beyond the classical Veronese immersions δ2,p : S2 → S2p, p ≥ 2, and various
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generalizations (for m ≥ 3 and p = 2, 3), it is well-known that there is an enormous
variety of spherical minimal immersions. According to the DoCarmo-Wallach theory,
for m ≥ 3 and p ≥ 4, the set of full spherical minimal immersions f : Sm → SV
modulo congruence on the ranges can be parametrized by a (non-trivial) compact
convex body Mp

m in a linear subspace Fpm of the symmetric square S2(Hp
m). The

convex bodyMp
m is called the moduli for spherical minimal immersions f : Sm → SV

of degree p. (For the original work of DoCarmo and Wallach, see [9] as well as [37].)
The group SO(m + 1) acts on the set of all spherical minimal immersions by

precomposition, and this action naturally carries over to the moduli Mp
m. This lat-

ter action, in turn, is the restriction of the SO(m + 1)-module structure on S2(Hp
m)

(extended from that of Hp
m) with Fpm being an SO(m+ 1)-submodule. The complex-

ification of Fpm decomposes as

Fpm ⊗R C ∼=
∑

(u,v)∈4p
2; u,v even

V
(u,v,0,...,0)
m+1 , (1)

where 4p
2 ⊂ R2 is a closed convex triangle with vertices (4, 4), (p, p), (2p−4, 4). Here

V
(u1,...,ud)
m+1 , d = [(m+ 1)/2], denotes the complex irreducible SO(m+ 1)-module with

highest weight vector (u1, . . . , ud) relative to the standard maximal torus in SO(m+1).

(The case m = 3 is special; due to non-self-conjugacy, the symbol V
(u,v)
3 means the

direct sum V
(u,v)
3 ⊕ V

(u,−v)
3 .) Since the dimension of the irreducible components in

(1) can be explicitly calculated by the Weyl-dimension formula, say, as a byproduct,
we obtain the exact dimension dimMp

m = dimFpm of the moduli. (The fact that
the right-hand side in (1) is a lower bound for Fpm ⊗R C is the main result of the
DoCarmo-Wallach theory. The equality, the so-called exact dimension conjecture of
DoCarmo-Wallach, was proved by the second author in [32]; see also [29, Chapter 3],
and also a subsequent different proof in [38].)

The first non-trivial case of the 18-dimensional moduliM4
3 of the quartic spherical

minimal immersions of domain S3 was completely described by Ziller and the second
author in [34]. (Note that, prior to the resolution of the exact dimension conjecture,
Y. Mutō in [21] verified that dimM4

3 = 18 by extensive but explicit computations.)

1.2 Isotropy and Helicality

The dimension as well as the subtlety of the moduliMp
m increase rapidly with m ≥ 3

and p ≥ 4. To reduce the complexity and to pin down some interesting part of the
moduli one needs to impose further geometric restrictions on the spherical minimal
immersions. As we will see below, two competing natural geometric properties of
spherical minimal immersions are “isotropy” and “helicality.”
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Let f : Sm → SV be a spherical minimal immersion of degree p. For k = 1, . . . , p,
let βk(f) denote the kth fundamental form of f , and Okf the kth osculating bundle
of f . (See [37] and also [13].) (For k = 1, we set β1(f) = f∗, the differential of f ,
and O1

f = T (Sm) regarded as a subbundle of the pull-back f ∗T (SV ). For k ≥ 2, the

kth osculating bundle Okf is a subbundle of the normal bundle Nf of f .) The higher
fundamental forms and osculating bundles are defined on a (maximal) open dense set
Df ⊂ Sm. On Df , the kth fundamental form is a bundle map βk(f) : Sk(T (Sm))→
Okf , which is fibrewise onto. The higher fundamental forms are defined inductively as

βk(f)(X1, . . . , Xk) = (∇⊥Xk
βk−1(f))(X1, . . . , Xk−1)

⊥k−1 , (2)

X1, . . . , Xk ∈ Tx(Sm), x ∈ Dk−1
f ,

where ∇⊥ is the natural connection on the normal bundle Nf , and ⊥k−1 is the or-
thogonal projection with kernel O0

f ;x⊕O1
f ;x⊕ . . .⊕Ok−1f ;x (O0

f ;x = R · f(x)), and Dk
f is

the set of points x ∈ Dk−1
f at which the image Okf ;x of βk(f) has maximal dimension.

We set Df =
⋂p
k=0D

k
f . The largest k for which βk(f) does not vanish (identically) is

called the geometric degree df of f .
Due to equivariance, for the Dirac delta immersion δm,p : Sm → S(Hp

m)∗ , at the
base point o = (0, . . . , 0, 1), the branching

Hp
m|SO(m) = H0

m−1 ⊕H1
m−1 ⊕ . . .⊕H

p
m−1

(as SO(m)-modules) corresponds (isomorphically) to the decomposition of osculating
spaces

O0
δm,p;o ⊕O

1
δm,p;o ⊕ . . .⊕O

p
δm,p;o

.

Thus, the geometric degree of δm,p is equal to p, and, for any spherical minimal
immersion f : Sm → SV , we also have df ≤ dδm,p = p.

A spherical minimal immersion f : Sm → SV is called isotropic of order k, 2 ≤
k ≤ p, if, for 2 ≤ l ≤ k, we have

〈βl(f)(X1, . . . , Xl), βl(f)(Xl+1, . . . , X2l)〉 (3)

= 〈βl(δm,p)(X1, . . . , Xl), βl(δm,p)(Xl+1, . . . , X2l)〉,
X1, . . . , X2l ∈ Tx(Sm), x ∈ Df .

This condition implies that, for 2 ≤ l ≤ k, the osculating bundles Olf of f are
isomorphic with those of the Dirac delta immersion δm,p. In particular, for a spherical
minimal immersion f : Sm → SV that is isotropic of order k, we have the lower bound

dimV ≥ dim(H0
m−1 ⊕H1

m−1 ⊕ . . .⊕Hk
m−1) = dimHk

m.
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The moduli Mp;k
m parametrizing the spherical minimal immersions f : Sm → SV

of degree p that are isotropic of order k is a linear slice of the moduli Mp
m by an

SO(m+ 1)-submodule Fp;km ⊂ Fpm. We have the decomposition

Fp;km ⊗R C ∼=
∑

(u,v)∈4p
k+1; u,v even

V
(u,v,0,...,0)
m+1 , (4)

where the closed convex triangle 4p
k ⊂ R2, k = 2, 3, . . . , [p/2] has vertices (2k, 2k),

(p, p), and 2(p − k), 2k). As before, this gives the exact dimension of the moduli:
dimMp;k

m = dimFp;km . (These results have been proved by Gauchman and the second
author, for m ≥ 4, in [13]; and the case m = 3 has been completed in [29].)

We thus have the filtration

Fpm = Fp,1m+1 ⊃ F
p,2
m+1 ⊃ . . . ⊃ Fp;[p/2]−1m+1 ,

where each term is obtained from the decomposition above by restriction to the
respective triangle in the sequence

4p
2 = 4p

3 ⊃ . . . ⊃ 4p
[p/2],

As a byproduct, we obtain the following:

Corollary. Let f : Sm → SV be a spherical minimal immersion of degree p and order
of isotropy k. If p ≤ 2k + 1 then f is congruent to the Dirac delta immersion δm,p.

In a series of papers [22, 23, 24] Sakamoto introduced and studied the concept of
helical minimal immersions. The primary motivation for his study was originated in a
construction in Besse [1] of a minimal immersion of a strongly harmonic manifold into
a sphere which maps geodesics of the domain into curves of the range with (univer-
sally) constant curvatures; a property Sakamoto termed “helical.” Locally harmonic
manifolds in general have received much attention due to Lichnerowicz’ conjecture
that they are either flat or locally symmeric spaces of rank one. (This is now resolved
for compact simply connected Riemannian manifolds by Z. I. Szabo; see [25].)

In [33] Tsukada made an extensive study of isotropic spherical minimal immersions
f : Sm → SV in which he defined isotropy of order k by requiring ‖βl(f)(X,X, . . . , X)‖
to be universal constants Λl, 2 ≤ l ≤ k, (depending only on m and p) for all unit
vectors X ∈ Tx(Sm), x ∈ Df . (Most authors use lowercase letters λl, 2 ≤ l ≤ k, for
the constants of isotropy. The change to uppercase is to avoid confusion with the
eigenvalues of the Laplacian on the domain as in Section 1.1.) This is a special case
of (3) above with all arguments equal X = X1 = . . . = X2l (and of unit length).
In a technical argument [33, Proposition 3.1] he showed that these two concepts of
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isotropies are the same. Using (a natural extension of) the DoCarmo-Wallach theory
expounded above, he then established the right-hand side of (4) as a lower bound for
Fp;km ⊗R C.

Tsukada’s second goal was to prove that, for spherical domains, a helical spherical
minimal immersion is rigid in the sense that it is congruent to the Dirac delta immer-
sion of the respective degree; see [33, Theorem B]. By developing a formula for the
Frenet frame of the image curve σ = f ◦ γ of a geodesic γ : R→ Sm with the curva-
tures of σ and the higher fundamental forms involving βk(f)(σ′, . . . , σ′), 2 ≤ k ≤ df ,
he showed that Sakamoto’s helicality and the concept of isotropy are the same [33,
Proposition 5.1]. Finally, he used the extended concept of DoCarmo-Wallach rigidity
as in the corollary above.

In our present paper, continuing the DoCarmo-Wallach approach beyond Tsukada’s
rigidity, we will be interested in the geometric characterization of spherical minimal
immersions parametrized by the moduli Mp;k

m . Implicit in [33, Proposition 5.1], we
propose the following concept of “partial helicality” in which we require only an ini-
tial sequence of curvatures to be (universal) constants. More precisely, a spherical
minimal immersion f : Sm → SV of degree p is called helical up to order k if, for any
arc-length parametrized geodesic γ : R→ Sm, the first k− 1 curvatures of the image
curve σ = f ◦ γ : R → SV are non-zero constants, and these constants are universal
in that they do not depend on the choice of γ but only on m and p. (Recall that the
curvatures are obtained by taking higher order covariant derivatives of σ′ along with
a Gram-Schmidt orthogonalization process. Note also that the universal constants
have been determined in [12].)

Now, the defining properties of the moduliMp;k
m as well as the proof of Proposition

5.1 in [33] (with appropriate modifications) give the following:

Theorem A. A spherical minimal immersion f : Sm → SV of degree p is isotropic
of order k if and only if it is helical up to order k. Therefore, the moduli Mp;k

m

parametrizes the congruence classes of full spherical minimal immersions f : Sm →
SV of degree p which are helical up to order k, that is, they map geodesics of Sm to
curves whose first k − 1 curvatures are (non-zero) universal constants depending on
p and m only.

The applications of this theorem are severalfold. First, in the corollary above,
“order of isotropy k” can be replaced by “helical up to order k;” and thereby Tsukada’s
rigidity follows. Second, as noted above, dimMp;k

m can be calculated explicitly. In
the past helical minimal immersions have only been studied individually, and here
we have a precise formula for the dimension of the moduli of such maps. Third,
helicality is a much simpler condition than isotropy, therefore, in several instances,
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this condition can be checked by explicit calculation.

1.3 The Lowest Order Isotropy

The complexity of the condition of isotropy increases rapidly with the order. The
lowest order of isotropy, isotropy of order two, has special significance because of the
relative simplicity of the formula expressing the first curvature of the image curve of a
geodesic under the immersion. In this short section we obtain an simple condition for
isotropy of order two of a spherical minimal immersion that will be used subsequently.

For brevity, we will suppress the order, and refer to a spherical minimal immer-
sion of degree p and order of isotropy two simply as an isotropic spherical minimal
immersion (of degree p).

As noted above, the moduli parametrizing the (congruence classes of) full isotropic
spherical minimal immersions is Mp;2

m which, by the corollary above, is non-trivial if
and only if p ≥ 6.

By definition, a spherical minimal immersion f : Sm → SV is isotropic (of order
two) if ‖β(f)(X,X)‖ is a universal constant Λ for all unit vectors X ∈ Tx(S

m),
x ∈ Sm. It is sometimes convenient to specify (or calculate) the actual value of this
constant.
It is well-known that, this holds if (and only if) the second fundamental form β(f),
is pointwise isotropic, that is, for any x ∈ Sm, β(f) is isotropic on the tangent space
Tx(S

m) as a symmetric bilinear form in the classical sense (with ‖β(f)(X,X)‖ being
independent of the unit vector X ∈ Tx(Sm)). (See for example [33, Proposition 3.1].)
Isotropy (at a point) can be conveniently reformulated in terms of the shape operator
A(f) of f : Sm → SV as

A(f)β(f)(X,X)X ∧X = 0, X ∈ Tx(Sm), x ∈ Sm. (5)

Indeed, for x ∈ Sm, polarizing ‖β(f)(X,X)‖2, X ∈ Tx(S
m), we see that β(f) is

isotropic on Tx(S
m) if and only if

〈β(f)(X,X), β(f)(X, Y )〉 = 〈Aβ(f)(X,X)X, Y 〉 = 0

for all X, Y ∈ Tx(Sm) with 〈X, Y 〉 = 0. (See also [23, (2.2)] or [6, Section 2].)

As expected, higher order isotropy is more complex. For completeness, we briefly
indicate the formula analogous to (5). Let X ∈ Tx(S

m), x ∈ Df , and denote by
ζk a (locally defined) section of the osculating bundle Okf . (We use the notations in
Section 1.2, and tacitly assume that we work over Df ⊂ Sm so that all osculating
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bundles are well-defined.) We define T k by

T kX(ζk−1) =
(
∇⊥Xζk−1

)Ok
f ,

where ∇⊥ is the connection of the normal bundle Nf and the osculating bundle in
the superscript indicates orthogonal projection. By definition, we have

βk(f)(X1, . . . , Xk) = T kX1
(βk−1(f)(X2, . . . , Xk))

for (locally defined) vector fields X1, . . . , Xk on Df .
Let Sk−1X be the adjoint of T kX (with respect to the bundle metrics on the respective
osculating bundles induced by the Riemannian metric on SV ). Clearly, we have

Sk−1X (ζk) = −
(
∇⊥Xζk

)Ok−1
f .

Now, polarizing ‖βk(f)(X, . . . , X)‖2 as before, we obtain that, for x ∈ Sm, βk(f) is
isotropic on Tx(S

m) if and only if

〈βk(f)(X, . . . , X), βk(f)(X, . . . , X, Y )〉 = 0

whenever X, Y ∈ Tx(Sm) with 〈X, Y 〉 = 0. We now calculate

〈βk(f)(X, . . . , X), βk(f)(X, . . . , X, Y )〉
= 〈βk(f)(X, . . . , X), T kXβk−1(f)(X, . . . , X, Y )〉
= 〈Sk−1X βk(f)(X, . . . , X), βk−1(f)(X, . . . , X, Y )〉
= 〈S2

XS
3
X · · ·Sk−1X βk(f)(X, . . . , X), β(f)(X, Y )〉

= 〈A(f)S2
XS

3
X ···S

k−1
X βk(f)(X,...,X)X, Y 〉.

Summarizing, we obtain that, for x ∈ Sm, βk(f), k ≥ 3, is isotropic on Tx(S
m) if and

only if, we have

A(f)S2
XS

3
X ···S

k−1
X βk(f)(X,...,X)X ∧X = 0, X ∈ Tx(Sm).

Remark. Another approach for order k isotropy in general was derived by Hong and
Houh in [15, Theorem 2.3]. The first k − 1 curvatures are constant if and only if, for
2 ≤ l ≤ 2k − 1, we have

A(f)(Dl−2β(f))(X,...,X)X ∧X = 0, X ∈ Tx(Sm), x ∈ Sm,

where D is the covariant differentiation on T (M) ⊕ Nf with Nf being the normal
bundle of f . (Note that, in this case, A(Dl−2β(f))(X...,X)X = 0 for l odd.)
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These conditions are formulated in terms of the notion of contact number of Eu-
clidean submanifolds. See [4, 5] for details for pseudo-Euclidean submanifolds. The
first author generalized this notion for the case of affine immersions in projectively
flat space; see [19].

The condition of isotropy in (5), in turn, can further be expressed in terms of
higher derivatives of the image curves σ = f ◦ γ under f , where γ : R → Sm runs
through all arc-length parametrized geodesics.

Proposition. Let f : Sm → SV be a spherical minimal immersion of degree p.
For a unit vector X ∈ Tx(S

m), let γX : R → Sm be the (arc-length parametrized)
geodesic such that γX(0) = x and γ′X(0) = X, and set σX = f ◦ γX : R → SV .
Then f : Sm → SV is isotropic (of order two) if and only if, for any x ∈ Sm, and
X, Y ∈ Tx(Sm) with 〈X, Y 〉 = 0, we have

〈σ′′′X(0), σ′Y (0)〉 = 0. (6)

Here σ
(k)
X , k ≥ 1, is the kth derivative of σX as a vector-valued function (with values

in V ) and viewed as a vector field along the curve σX .
If f : Sm → SV is an isotropic spherical minimal immersion of degree p then, for the
isotropy constant Λ, we have

〈σ′′′X(0), σ′X(0)〉 = −Λ2 − λp
m
, ‖X‖ = 1, X ∈ Tx(Sm), x ∈ Sm. (7)

The proof of the proposition will be given in Section 2.

1.4 SU(2)-Equivariant Minimal Immersions

The moduli Mp
m parametrizing the congruence classes of full spherical minimal im-

mersions f : Sm → SV of degree p is non-trivial if and only if m ≥ 3 and p ≥ 4.
The lowest dimension of the domain Sm for non-trivial moduli is m = 3. This case is
special since the acting isometry group SO(4) has the almost product structure

SO(4) = SU(2) · SU(2)′. (8)

This splitting can be obtained by identifying R4 and C2 in the usual way: R4 3
(x, y, u, v) 7→ (z, w) = (x+ ıy, u+ ıv) ∈ C2. With this identification, the group SU(2)
of special unitary matrices with parametrization[

a −b̄
b ā

]
, |a|2 + |b|2 = 1, a, b ∈ C, (9)
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becomes a subgroup of SO(4).
This also shows that SU(2) = S3, where the latter is the unit sphere in C2 (and
(a, b) ∈ S3 ⊂ C2 corresponds to the typical element in (9)). Finally, S3 = SU(2) can
also be viewed as the unit sphere of the skew-field of quaternions H, and, under this
identification, (a, b) ∈ S3 ⊂ C2 corresponds to the unit quaternion g = a+ b ∈ S3 ⊂
H.

The orthogonal matrix γ = diag (1, 1, 1,−1) ∈ O(4) (or, in complex coordinates,
γ : z 7→ z, w 7→ w̄, (z, w) ∈ C2) conjugates SU(2) to the subgroup

SU(2)′ = γSU(2)γ ⊂ SO(4), γ−1 = γ.

Both subgroups SU(2) and SU(2)′ are normal in SO(4) and we have SU(2)∩SU(2)′ =
{±I}, so that (8) follows.

In view of the splitting in (8), it is natural to consider spherical minimal immer-
sions f : S3 → SV of degree p that are SU(2)-equivariant, that is, there exists a
homomorphism ρf : SU(2)→ SO(V ) such that

f ◦ Lg = ρf (g) ◦ f, g ∈ S3, (10)

where Lg is left-multiplication by the unit quaternion g.
The homomorphism ρf (associated to SU(2)-equivariance) defines an SU(2)-module
structure on the Euclidean vector space V . Moreover, the natural isomorphism be-
tween V and the space of components Vf ⊂ Hp

3 (through the dual V ∗) is SU(2)-
equivariant, and we obtain that V is an SU(2)-submodule of the restriction Hp

3|SU(2).

In general, the irreducible complex SU(2)-modules are parametrized by their di-
mension, and they can be realized as submodules appearing in the (multiplicity one)
decomposition of the SU(2)-module of complex homogeneous polynomials C[z, w] in
two variables. For p ≥ 0, the pth submodule Wp, dimCWp = p + 1, comprises the
homogeneous polynomials of degree p. With respect to the L2-scalar product (suit-
ably scaled) the standard orthonormal basis for Wp is {zp−qwq/

√
(p− q)!q!}pq=0. For

p odd, Wp is irreducible as a real SU(2)-module. For p even, the fixed point set Rp

of the complex anti-linear self map zqwp−q 7→ (−1)qzp−qwq, q = 0, . . . , p, of Wp is an
irreducible real submodule with Wp = Rp ⊗R C.
For the space of complex-valued spherical harmonics Hp

3 of order p, we have

Hp
3 = Wp ⊗W ′

p,

as complex SO(4)-modules, where W ′
p is the SU(2)′-module obtained from the SU(2)-

module Wp via conjugation by γ, and the tensor product is understood by the local
product structure in (8). Restricting to SU(2), we obtain

Hp
3 = (p+ 1)Wp,
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as complex SU(2)-modules.
For real-valued spherical harmonics, for p even, this gives

Hp
3 = (p+ 1)Rp.

Similarly, for p odd, we have

Hp
3 =

p+ 1

2
Wp

as real SU(2)-modules.

Returning to our SU(2)-equivariant spherical minimal immersion f : S3 → SV ,
we see that the SU(2)-module V is isomorphic with a multiple of Rp for p even, and
a multiple of Wp for p odd. As a byproduct, we also obtain that the dimension dimV
is divisible by p+ 1 if p is even, and by 2(p+ 1) if p is odd.

The SU(2)-equivariant spherical minimal immersions are parametrized by the
SU(2)-equivariant moduli (Mp

3)
SU(2), the fixed point set of SU(2) acting on the moduli

Mp
3. It is a compact convex body in the fixed point set (Fp3 )SU(2) which, in view of

the splitting (8), is an SU(2)′-module. We have

(Fp3 )SU(2) =

[p/2]∑
q=2

R′4q, (11)

as real SU(2)′-modules. In particular, we have the dimension formula

dim(Mp
3)
SU(2) = dim(Fp3 )SU(2) =

(
2
[p

2

]
+ 5
)([p

2

]
− 1
)
, p ≥ 4. (12)

(This dimension formula was first heuristically derived in [7]. Subsequently, the de-
composition in (11) was proved in [34] yielding (12). For more details, see also [29].)

To seek explicit examples of SU(2)-equivariant spherical minimal immersions f :
S3 → SV , it is natural to consider the simplest case when V = Wp (regardless the
parity of p). This has been initiated by K. Mashimo [17], and it is usually referred to
as the equivariant construction.

More explicitily, given a (nonzero) polynomial

ξ =

p∑
q=0

cqz
p−qwq ∈ Wp, (13)

we consider the orbit map fξ : S3 → Wp, fξ(g) = g · ξ = ξ ◦ g−1, g ∈ SU(2), through
ξ. It maps into a unit sphere SWp if and only if

‖ξ‖2 =

p∑
q=0

(p− q)!q!|cq|2 = 1. (14)
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Assuming this, we obtain a map fξ : S3 → SWp which is obviously SU(2)-equivariant.
Note that, if p is even and ξ ∈ Rp, then fξ : S3 → SRp with range the irreducible

real SU(2)-submodule Rp ⊂ Wp.
Since SU(2) acts transitively on S3, homothety needs to be imposed only on the

tangent space T1(S
3), say. A simple computation then gives that fξ is homothetic

with homothety constant λp/3 = p(p+ 2)/3 if and only if

p−2∑
q=0

(p− q)!(q + 2)!cq c̄q+2 = 0, (15)

p−1∑
q=0

(p− q)!(q + 1)!(p− 2q − 1)cq c̄q+1 = 0, (16)

p∑
q=0

(p− q)!q!(p− 2q)2|cq|2 =
p(p+ 2)

3
. (17)

(For more details, see [7, 8] or [34, 29].

Examples. The quartic (p = 4) minimal immersion I : S3 → SW4 = S9, the SU(2)-
orbit map of the polynomial ξ = (

√
6/24)(z4−w4) + (

√
2/4)z2w2 ∈ W4, is archetypal

in understanding the structure of the moduli (M4
3)
SU(2) and thereby M4

3; see [34].
Moreover, the sextic (p = 6) tetrahedral minimal immersion Tet : S3 → SR6 = S6,
the SU(2)-orbit map of the polynomial ξ = (1/(4

√
15))zw(z4 − w4) ∈ R6 ⊂ W6, is

a famous example because it realizes the minimum range dimension among all non-
standard spherical minimal immersions of S3. (For more details, and for an extensive
list of SU(2)-equivariant spherical minimal immersions, see [7, 8, 29].)

1.5 Isotropic SU(2)-Equivariant Spherical Minimal Immer-
sions

SU(2)-equivariant spherical minimal immersions f : S3 → SV of degree p that are
isotropic of order k are parametrized by the SU(2)-equivariant moduli (Mp,k

3 )SU(2).
It is a compact convex body in the fixed point set (Fp;k3 )SU(2) which, in view of the
splitting (8), is an SU(2)′-module. We have

(Fp,23 )SU(2) =

[p/2]∑
q=k+1

R′4q,
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as real SU(2)′-modules. In particular, we have the dimension formula

dim(Mp;k
3 )SU(2) = dim(Fp;k3 )SU(2) =

(
2
[p

2

]
+ 2k + 3

)([p
2

]
− k
)
, p ≥ 2k + 2. (18)

In view of the simple characterization of (order two) isotropic spherical minimal
immersions in the proposition (in Section 1.3), as a final task we now give a com-
plete characterization of isotropic SU(2)-equivariant spherical minimal immersions
f : S3 → SWp of degree p.

Theorem B. Let f = fξ : S3 → SWp be an SU(2)-equivariant spherical minimal
immersion of order p. Setting f = fξ with ξ ∈ Wp satisfying (13)-(17), f = fξ is
isotropic (of order two) if and only if the following system of equations holds

p−4∑
q=0

(p− q)!(q + 4)!cq c̄q+4 = 0, (19)

p−3∑
q=0

(p− q)!(q + 3)!(p− 2q − 3)cq c̄q+3 = 0, (20)

p−2∑
q=0

(p− q)!(q + 2)!(p− 2q − 2)2cq c̄q+2 = 0, (21)

p−1∑
q=0

(p− q)!(q + 1)!(p− 2q − 1)3cq c̄q+1 = 0, (22)

p∑
q=0

(p− q)!q!(p− 2q)4|cq|2 =
p(p+ 2)(3p(p+ 2)− 4)

15
. (23)

Finally, in this case, for the constant of isotropy Λ, we have

Λ2 =
p(p+ 2)(p(p+ 2)− 3)

5
. (24)

To exhibit specific examples of isotropic SU(2)-equivariant spherical minimal im-
mersions f : S3 → SWp thus amounts to solve the system of equations (19)-(23) along
with (14)-(17).

The proof of Theorem B is very technical, and it is deferred to (most part of) the
next section. The system of equations (19)-(23) exhibits specific symmetries, and it
is easy to make a specific conjecture as to what the analogous system should be for
higher order isotropy.
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1.6 Examples

The archetypal SU(2)-equivariant spherical minimal immersions are the tetrahedral,
octahedral, and icosahedral minimal immersions. As recognized by DeTurck and Ziller
in [7, 8], they are the SU(2)-orbits of Felix Klein’s minimum degree absolute invari-
ants of the tetrahedral, T , octahedral, O, and isosahedral, I, groups in R2d ⊂ W2d,
for d = 3, 4, 6. As such they realize minimal embeddings of the tetrahedral, S3/T ∗,
octahedral, S3/O∗, and isocahedral, S3/I∗, manifolds, where the asterisk indicates
the respective binary groups. (For more details, see [29, Section 1.5].)

We note first that the tetrahedral minimal immersion Tet : S3 → SR6 = S6 can-
not be isotropic for reasons of dimension since, for any isotropic SU(2)-equivariant
spherical minimal immersion f : S3 → SV , we have dimV ≥ dimH2

3 = 9 (Section
1.2).

This dimension restriction does not exclude the octahedral minimal immersion
Oct : S3 → SR8 = S8 to be isotropic; however, it is the SU(2)-orbit of the octahedral
invariant ξ = c0(z

8 + 14z4w4 +w8) ∈ R8, c0 = 1/(96
√

21), which does not satisfy (19)
or (23). Hence the octahedral minimal immersion is not isotropic.

The fact that the icosahedral minimal immersion I : S3 → SR12 = S12 is isotropic
has been proved by Escher and Weingart in [10] using basic representation theoret-
ical tools. (See also [29, Remark 2 in 4.5].) Here it follows directly from Theo-
rem B by simple substitution using the explicit form of Klein’s icosahedral invariant
ξ = c1(z

11w + 11z6w6 − zw11) ∈ R12, c1 = 1/(3600
√

11).
It is natural to expect that there are no isotropic spherical minimal immersions

with ranges R8 or R10, and therefore the icosahedral minimal immersion is the mini-
mum (co)dimension isotropic spherical minimal immersion. Over the reals, (13)-(17)
and (19)-(27) represent 15 quadratic equations, for R8, in 9 variables, and, for R10,
in 11 variables. Even though in both cases we have highly overdetermined systems,
to show non-existence of solutions is a major technical problem (even with computer
algebra systems). Note that even for R12 the system (13)-(17) and (19)-(27) is slightly
overdetermined (15 equations in 13 variables); however, an “accidental” coincidence
of some coefficients results in the existence of solutions. In this line of notes we finally
remark that, for R10, an extensive case-by-case computation shows that if an isotropic
SU(2)-equivariant spherical minimal immersion fξ : S3 → SR10 exists then, for the
coefficients cq, q = 0, . . . , 5, of ξ ∈ R10 in (13), one of the products c2c3c4c5, c1c3c4c5,
c1c2c3c4, c0c2c3c4 cannot vanish.
It is also natural to ask if the icosahedral minimal immersion is unique (up to isome-
tries of the domain and the range) among all isotropic SU(2)-equivariant spherical
minimal immersions with range R12.

A slight change in the coefficients may result in a radically different spherical mini-
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mal immersion. For example, ξ = c1(z
11w+11ız6w6−zw11) (with c1 as above) belongs

to W12 (and not R12), and the corresponding (full) isotropic SU(2)-equivariant spher-
ical minimal immersion fξ : S3 → SW12 = S25 has the binary dihedral group D∗5 as its
invariance group, and it gives a minimal embedding of the dihedral manifold S3/D∗5
into S25.
The isocahedral minimal immersion above and this last example are in the complete
list of DeTurck and Ziller of all spherical minimal embeddings of 3-dimensional space
forms. (See [7, 8] and also [29, 1.5].) Using Theorem B, a simple case-by-case check
shows that these are the only isotropic spherical minimal immersions in this list.

We have W12 = 2R12 as real SU(2)-modules, so that the previous example im-
mediately raises the problem of minimal multiplicity; that is, for given p ≥ 6 even,
what is the minimal 1 ≤ k ≤ p+ 1 such that an isotropic SU(2)-equivariant spherical
minimal immersion f : S3 → SkRp exists. Using deeper representation theoretical
tools, the second author in [30] showed the existence of isotropic SU(2)-equivariant
spherical minimal immersions f : S3 → S4R6 and f : S3 → S6R8 .

Isotropic SU(2)-equivariant spherical minimal immersions with range Wp abound
for p ≥ 11. As the simplest example, letting cq = 0 for q 6≡ 0 (mod 5), q = 0, . . . , 11,
(13)-(17) and (19)-(23) give

|c0|2 =
1

29 · 35 · 54 · 11
, |c5|2 =

11

27 · 33 · 54
, |c10|2 =

1

29 · 35 · 54
.

Setting ξ = c0z
11 + c5z

6w5 + c10zw
10 ∈ W11 we obtain isotropic SU(2)-equivariant

spherical minimal immersions fξ : S3 → SW11 = S23.

For a somewhat more symmetric example in W12, once again letting cq = 0 for
q 6≡ 0 (mod 5), q = 0, . . . , 12, by (13)-(17) and (19)-(23), we have

|c0|2 =
25

12! · 52 · 7
, |c5|2 =

2 · 3 · 11

5! · 7! · 52 · 7
, |c10|2 =

11

2! · 10! · 52
.

Setting ξ = c0z
12 + c5z

7w5 + c10z
2w10 ∈ W12, we obtain isotropic SU(2)-equivariant

spherical minimal immersions fξ : S3 → SW12 = S25.

2 Proofs

Proof of Proposition. We let ∇ denote the Levi-Civita covariant differentiation
on Sm and D the covariant (ordinary) differentiation on the Euclidean vector space
V . Letting ι : SV → V denote the inclusion, we have

DXY = ∇XY + β(f)(X, Y )− 〈X, Y 〉ι, (25)
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for any locally defined vector fields X, Y on Sm. As usual, we identify locally defined
vector fields with their images under any immersions (such as f : Sm → SV and
ι ◦ f : Sm → V , etc.). With this, for any unit tangent vector X ∈ Tx(Sm), x ∈ Sm,
we have

Dσ′X
σ
(k)
X = σ

(k+1)
X , k ≥ 0, (26)

as vector fields along σX . Using (25)-(26), we now calculate

σ′′X = Dσ′X
σ′X = β(f)(σ′X , σ

′
X)− (λp/m)σX ,

where ∇σ′X
σ′X = 0 since γX is a geodesic. Using this, we have

σ′′′X = Dσ′X
σ′′X = Dσ′X

β(f)(σ′X , σ
′
X)− (λp/m)σ′X

= ∇⊥σ′Xβ(f)(σ′X , σ
′
X)−A(f)β(f)(σ′X ,σ′X)σ

′
X − (λp/m)σ′X ,

where ∇⊥ denotes the covariant differentiation of the normal bundle Nf of f : Sm →
SV . For unit tangent vectors X, Y ∈ Tx(Sm), x ∈ Sm, this gives

〈σ′′′X(0), σ′Y (0)〉 = −〈A(f)β(f)(X,X)X, Y 〉 − (λp/m)〈X, Y 〉.

The equivalence of (5) and (6) is now clear.
Setting X = Y ∈ Tx(Sm), x ∈ Sm, with ‖X‖ = 1, we obtain

〈σ′′′X(0), σ′X(0)〉 = −‖β(f)(X,X)‖2 − λp
m

= −Λ2 − λp
m
.

The last statement and thereby the proposition follows.

For the proof of Theorem B, we first need to develop several computational tools.
In the Lie algebra su(2) we take the standard (orthonormal) basis:

X =

[
0 1
−1 0

]
, Y =

[
0 ı
ı 0

]
, Z =

[
ı 0
0 −ı

]
.

The unit sphere Ssu(2) ⊂ su(2) can then be parametrized by spherical coordinates as

U = U(θ, ϕ) = cos θ cosϕ ·X + sin θ cosϕ · Y + sinϕ · Z

=

[
ı sinϕ eıθ cosϕ

−e−ıθ cosϕ −ı sinϕ

]
∈ Ssu(2), θ, ϕ ∈ R.

(For simplicity, unless needed, we suppress the angular variables.) An important
feature of the spherical coordinates to be used in the sequel is that, for given θ, ϕ ∈ R,
the vectors U(θ, ϕ), U(θ + π/2, 0), and U(θ, ϕ + π/2) form an orthonormal basis of
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su(2) (which, for θ = ϕ = 0 reduces to the standard basis above).
Moreover, since U2 = −I, we have

U2l = (−1)lI and U2l+1 = (−1)lU, l ≥ 1.

Hence, for the exponential map exp : su(2)→ SU(2), we obtain

exp(t · U) =
∞∑
j=0

1

j!
(tU)j =

∞∑
l=0

(−1)l
t2l

(2l)!
U2l +

∞∑
l=0

(−1)l
t2l+1

(2l + 1)!
U2l+1 (27)

= cos t · I + sin t · U =

[
cos t+ ı sinϕ sin t eıθ cosϕ sin t
−e−ıθ cosϕ sin t cos t− ı sinϕ sin t

]
, t ∈ R.

Recall from Section 1.4 the equivariant construction which associates to a unit
vector ξ ∈ Wp, p ≥ 4, the orbit map fξ : S3 → SWp defined by

fξ(g) = g · ξ = ξ ◦ g−1, g ∈ SU(2).

Here SU(2) = S3, the unit sphere in C2 = H, with typical element in (9) being
identified with the unit quaternion g = a+ b ∈ SH. For the inverse, we have

g−1 = g∗ = (ā,−b) = (a+ b)−1 = ā− b.

Using the realization Wp as an SU(2)-submodule of C[z, w], we obtain the explicit
representation

fξ(g)(z, w) = ξ(g−1(z, w)) = ξ((ā− b)(z + w))

= ξ((āz + b̄w) + (−bz + aw))

= ξ(āz + b̄w,−bz + aw), g = (a, b) = a+ b ∈ S3.

Let U ∈ T1(S3) = TI(SU(2)) = su(2) be a unit vector, and consider the geodesic
γU : R→ S3, γU(0) = 1 and γ′U(0) = U , as in the proposition in Section 1.3. Letting
U = U(θ, ϕ), θ, ϕ ∈ R, by (27), we have

γU(t) = (cos t+ ı sinϕ sin t,−e−ıθ cosϕ sin t) ∈ S3, t ∈ R.

By the proposition again, we let σU = fξ ◦ γU : R → SWp be the image curve under
fξ. By the explicit representation above, we obtain

σU(t) = ξ(a(t), b(t)), t ∈ R, (28)
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where

a(t) = a(t, θ, ϕ) : = (cos t− ı sinϕ sin t)z − (eıθ cosϕ sin t)w

= z · cos t+ (−ı sinϕ · z − eıθ cosϕ · w) sin t,

b(t) = b(t, θ, ϕ) : = (e−ıθ cosϕ sin t)z + (cos t+ ı sinϕ sin t)w

= w · cos t+ (e−ıθ cosϕ · z + ı sinϕ · w) sin t.

It is a simple but crucial fact that, for given θ, ϕ ∈ R, the pair (a(t), b(t)), t ∈ R,
satisfies the system of differential equations

da

dt
= −ı sinϕ · a(t)− eıθ cosϕ · b(t),

db

dt
= e−ıθ cosϕ · a(t) + ı sinϕ · b(t).

with initial conditions a(0) = z, b(0) = w. (Note that the coefficient matrix is in
SU(2).)
We now expand ξ ∈ Wp as in (13). Evaluating this on the pair (a(t), b(t)), t ∈ R, by
(28), we obtain

σU(t) =

p∑
q=0

cq a(t)p−q b(t)q, t ∈ R.

(It will be convenient to define cq = 0 for the out-of-range indices q < 0 and q > p.)
Taking derivatives and using the system of differential equations above, a simple
induction gives the following:

Lemma 1. Given θ, ϕ ∈ R, for any k ∈ N, we have

σ
(k)
U (t) =

p∑
q=0

c(k)q a(t)p−q b(t)q, t ∈ R,

where the coefficients c
(k)
q = c

(k)
q (θ, ϕ) are given by

c(k)q = e−ıθ cosϕ · (q + 1)c
(k−1)
q+1 − ı sinϕ · (p− 2q)c(k−1)q

−eıθ cosϕ · (p− q + 1)c
(k−1)
q−1 , q = 0, . . . , p. (29)

Here c
(0)
q = cq, q ∈ Z, and c

(k)
q = 0 for the out-of-range indices q < 0 and q > p.

We now assume that fξ : S3 → SWp is a spherical minimal immersion, that is,
the coefficients of ξ in the expansion (13) satisfy (14)-(17). Our task is to give a

19



necessary and sufficient condition for fξ to be isotropic (of order two). Since fξ is
SU(2)-equivariant, the vanishing of the scalar products in (6) of the proposition need
to hold only for unit vectors in the tangent space T1(S

3) = su(2). Thus, our setting
above applies.
We now let

U1 := U(θ, ϕ), U2 := U(θ + π/2, 0), U3 := U(θ, ϕ+ π/2), θ, ϕ ∈ R.

We observe that, for given θ, ϕ ∈ R, {U1, U2, U3} ⊂ T1(S
3) is an orthonormal basis.

Due to the arbitrary position of U1 (given by the arbitrary choices of θ and ϕ), and
linearity in the first derivative in (6), the proposition in Section 1.3 gives the following:

Lemma 2. Let fξ : S3 → SWp be an SU(2)-equivariant spherical immerison. Then
fξ is isotropic if and only if , for any θ, ϕ ∈ R, we have

〈σ′′′U1
(0), σ′U2

(0)〉 = 〈σ′′′U1
(0), σ′U3

(0)〉 = 0. (30)

In this case, for the constant of isotropy Λ, we have 〈σ′′′U1
(0), σ′U1

(0)〉 = −Λ2 − 1.

Before the proof of Theorem B, we need a convenient scalar product on Wp ⊂
C[z, w], or, more generally, on the space of complex spherical harmonics Hp

3. As usual,
we identify Hp

3 with the space of complex-valued degree p harmonic homogeneous
polynomials on C2 = R4. To define this scalar product, we will regard a complex
polynomial χ in the complex variables z, w ∈ C as a real polynomial in the variables
z, w, z̄, w̄. Then, for χ1, χ2 ∈ Hp

3, we define the scalar product on Hp
3 by

〈χ1, χ2〉 = <
(
χ1

(
∂

∂z̄
,
∂

∂w̄
,
∂

∂z
,
∂

∂w

)
χ̄2

)
,

where χ1 acts on χ̄2 as a polynomial differential operator. (This form of the scalar
product on Hp

3 has been used in [7, 8, 34].) Note that, with respect to this scalar
product, {zp−qwq/

√
(p− q)!q!}pq=0 is an orthonormal basis of Wp as stated in Section

1.4.

Proof of Theorem B. The explicit calculation of the two scalar products in (30)
are technically very similar with a slight difference that the vanishing of the first
implies only (19)-(22) (and not (23)). Hence we will treat only the second scalar
product in (30).

Using Lemma 1, for fixed θ, ϕ ∈ R, we have:

〈σ′′′U1
(0), σ′U3

(0)〉 = <

(
p∑
q=0

(p− q)!q! · c(3)q (θ, ϕ) c
(1)
q (θ, ϕ+ π/2)

)
=

4∑
k=−4

ekıθBk, (31)
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where the last exponential sum is obtained by repeated application of the recurrence
in (29) and the careful tracking of the exponential factors ekıθ, k = −4, . . . , 4. In this
last sum each Bk, k = −4, . . . , 4, is independent of the variable θ. In particular, the
scalar product on the left-hand side of (31) vanishes for all θ, ϕ ∈ R if and only if the
(Fourier) coefficents Bk, k = −4, . . . , 4, vanish for all ϕ ∈ R.

Expanding the factors c
(3)
q (θ, ϕ) c

(1)
q (θ, ϕ+ π/2), q = 0, . . . , p, in (31) in terms of the

coefficients cq, q = 0, . . . , p, requires fairly involved computations. It turns out that
the expressions

ekıθBk + e−kıθB−k, k = 0, . . . , 4, (32)

are the least cumbersome to determine. (For k = 0, this reduces to 2B0 which we
included here.)

We begin with the simplest case k = 4. As noted above, a technical computation
gives

e4ıθB4 + e−4ıθB−4 = 2 cos3 ϕ sinϕ

p−4∑
q=0

(p− q)!(q + 4)! · <
(
e4ıθcq c̄q+4

)
,

Cleary, this vanishes for all θ, ϕ ∈ R if and only if (19) holds.
The cases k = 1, . . . , 3 are similar but more involved. We will discuss only the

case k = 1. Once again, a technical computation gives

eıθB1 + e−ıθB−1 =
cos4 ϕ

2

p−1∑
q=0

(p− q)!(q + 1)!×

×
[
3(p− 2q − 1)3 + 2(4− (p+ 1)2)(p− 2q − 1)

]
· =
(
eıθcq c̄q+1

)
−3 cos2 ϕ sin2 ϕ

2

p−1∑
q=0

(p− q)!(q + 1)!×

×
[
7(p− 2q − 1)3 −

(
3(p+ 1)2 − 20

)
(p− 2q − 1)

]
· =
(
eıθcq c̄q+1

)
+2 sin4 ϕ

p−1∑
q=0

(p− q)!(q + 1)!×

×
[
(p− 2q − 1)3 + (p− 2q − 1)

]
· =
(
eıθcq c̄q+1

)
,

Due to (16), the second term (with common factor (p−2q−1)) in each square bracket
cancels. With this the simplified expression vanishes for all θ, ϕ ∈ R if and only if
(22) holds. (Note that we recover (22) three times corresponding to each sum above.)
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The cases k = 3 and k = 2 are similar and they yield (20) and (21), respectively.
Finally, we treat the case k = 0. We have

B0 =
cos3 ϕ sinϕ

8

p∑
q=0

(p− q)!q!×

×
[
15(p− 2q)4 + 18(2− p(p+ 2))(p− 2q)2 + 3p2(p+ 2)2 − 8p(p+ 2)

]
|cq|2

−cosϕ sin3 ϕ

2

p∑
q=0

(p− q)!q!×

×
[
5(p− 2q)4 − (3p(p+ 2)− 16)(p− 2q)2 − 4p(p+ 2)

]
|cq|2. (33)

(We keep the factor p(p + 2) intact as it is the pth eigenvalue of the Laplacian on
S3.) Now, B0 = 0 for all θ, ϕ ∈ R if and only if each of the two sums above vanish
separately. We split the first as

15

p∑
q=0

(p− q)!q!(p− 2q)4|cq|2 + 18(2− p(p+ 2))

p∑
q=0

(p− q)!q!(p− 2q)2|cq|2

+(3p2(p+ 2)2 − 8p(p+ 2))

p∑
q=0

(p− q)!q!|cq|2 = 0

By (17) and (14), the second and third sums are equal to p(p+2)/3 and 1, respectively.
Rearranging, we obtain (23). The second sum in (33) gives the same result.

Finally, to determine the constant of isotropy Λ, in view of the last statement of
the proposition, we need to calculate

〈σ′′′U1
(0), σ′U1

(0)〉 = <

(
p∑
q=0

(p− q)!q! · c(3)q (θ, ϕ) c
(1)
q (θ, ϕ)

)
.

Once again expanding, akin to the previous computations, we obtain

〈σ′′′U1
(0), σ′U1

(0)〉 = −p(p+ 2)(3p(p+ 2)− 4)

15
.

Combining this with (7), the last statement of Theorem B follows.
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