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Abstract. Every manifold admits a nowhere vanishing complex vector field.
If, however, the manifold is compact and orientable and the complex bilinear
form associated to a Riemannian metric is never zero when evaluated on the
vector field, then the manifold must have zero Euler characteristic.

One of the oldest and most basic results in global differential topology relates
the topology of a manifold to the zeros of its vector fields. Let M be a compact
and orientable manifold and let χ(M) denote its Euler characteristic. Here is the
simplest statement of this relation.

If there is a global nowhere zero vector field on M then χ(M) = 0.(1)

This of course is for a real vector field (that is, for a section M → TM). On the
other hand, it is easy to see that any manifold admits a nowhere zero complex
vector field. (A complex vector field is a section M → C ⊗ TM). This can be seen
most simply by observing that a generic perturbation of any section, even the zero
section itself, must be everywhere different from zero.

It is natural to seek a condition on a nowhere zero complex vector field which
would again imply χ(M) = 0. Curiously, a trivial restatement of (1) leads to such
a condition. Let g be any Riemannian metric on M .

(2) Let v : M → TM be a global vector field on M . If the Riemannian metric
g(v, v) is never zero, then χ(M) = 0.

Here is the condition for complex vector fields.

Theorem 1. Let v : M → C ⊗ TM be a global vector field on M . If the bilinear
form g(v,v) is never zero, then χ(M) = 0.

Here g is extended to complex vector fields by taking g(v, w) to be complex linear
in each argument; for v = ξ + iη we have

g(v, v) = g(ξ, ξ) − g(η, η) + 2ig(ξ, η).

Proof. We show that if g(v, v) 6= 0 then v can be deformed to a nowhere zero
real vector field. So the Euler characteristic would be zero, according to (1). We
decompose M as

M = A+ ∪ B ∪ A
−

where g(ξ, ξ) > g(η, η) on A+, the opposite inequality holds on A
−

, and equality
holds on B. We assume for now that B is not empty. Note that ξ is nowhere zero
in A+ and η is nowhere zero in A

−
. Further, since g(v, v) is never zero, we have

that g(ξ, η) is never zero on B. Thus there is an open neighborhood Ω of B on
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which g(ξ, η) is never zero. We may take Ω to have a smooth boundary. We have
that η is never zero in A

−
∪ Ω and ξ is never zero in A+ ∪ Ω. Let Ω1 be an open

set chosen so that
B ⊂ Ω1, Ω1 ⊂ Ω

and

Ω1 is a neighborhood retract of Ω.

The boundary of Ω has two components, one in A+ and the other in A
−

. (That
is, the boundary of Ω is the union of two sets, neither of which need be connected.)
The same is true for the boundary of Ω1. We will work only with the components
in A+. Call them Σ and Σ1. Each of these sets separates M into two components.
We seek to deform v to a nowhere vanishing real vector field u. Set u = ξ on the
component of M−Σ which does not contain A

−
. The sets Σ and Σ1 bound a region

which retracts onto Σ1. We want to rotate ξ to η, (or to −η) as the retraction takes
Σ to Σ1. Since g(ξ, η) 6= 0, in this region, this is easily done. Pick a point in this
region. The angle θ between the vectors ξ and η satisfies one of the alternatives

0 ≤ θ ≤ π/2 or π/2 < θ ≤ π

and whichever alternative is satisfied at that point is also satisfied at all points in
the region. Thus as we retract Σ to Σ1, we may rotate ξ to η, or, respectively to
−η. Finally, define u = η, respectively u = −η, on the component of M −Σ1 which
contains A

−
.

If B is empty, the proof is even easier. Now either g(ξ, ξ) > g(η, η) everywhere
and so ξ is a nowhere zero real vector field or the opposite inequality holds and η
is a nowhere zero real vector field. �

Remark. We have proved the theorem by reducing to (1). This latter result goes
back to H. Hopf; an influential modern proof was given by Atiyah [1]. Atiyah’s
proof makes use of the Clifford algebra structure on the bundle of exterior forms.
Our Theorem can be proved directly, without reducing to (1), by following Atiyah’s
proof using the corresponding complex Clifford algebra.

There is a stronger version of (1) which expresses the Euler characteristic as the
algebraic sum of the indices of the zeros of the vector field. (Indeed this is the result
of Hopf.) It would be interesting to generalize this to complex vector fields.
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