Left Invariant CR Structures on S^3

Howard Jacobowitz Rutgers University Camden August 6, 2015

- CR structures on M³
- Pseudo-hermitian structures on M^3
 - Curvature and torsion
- $S^3 = SU(2)$
- Left-invariant CR and pseudo-hermitian structures on S^3
 - Classification results
- Geodesics in sub-Riemannian geometry

There are many results about pseudo-hermitian structures that are torsion free:

- 1. Isoperimetric inequalities (e.g., Chanillo and Yang, 2009)
- 2. Sasakian geometry and physics

Wanted simple examples of pseudo-hermitian structures with torsion.

Opportunity to work in pseudo-hermitian and subriemannian geometries.

A **CR structure** on M^3 is a two-plane distribution $H \subset TM$ and a complex structure on each fiber.

```
J: H \rightarrow H with J^2 = -I.
```

We denote this structure by (M, H, J). It is often useful to extend J by complex linearity to a map

$$J: \mathbf{C} \otimes \mathbf{H} \to \mathbf{C} \otimes \mathbf{H}.$$

Then *J* is completely determined by the eigenspace corresponding to the eigenvalue *i* (or to the eigenvalue -i). So a CR structure is just as well given by $B \subset \mathbf{C} \otimes H$,

$$B\cap \overline{B}=\{0\}.$$

It is useful to work with the dual formulation. Let $\theta^\perp = H$. Assume

$$\theta \wedge d\theta \neq 0.$$

Strict pseudoconvexity

There exists some θ^1 such that

$$d\theta = i\theta^1 \wedge \overline{\theta^1} \quad (\text{ or } d(-\theta) = i\theta^1 \wedge \overline{\theta^1})$$

2 $X \in H \implies \theta^1(X + iJX) = 0.$ (Equivalently, $J\theta^1 = i\theta^1$)

 (θ, θ^1) is called a CR coframe.

The forms θ and θ^1 are not unique. For example

with constants r real and α complex, $|\alpha|^2 = r > 0$. A **pseudo-hermitian structure** is a CR coframe (θ, θ^1) with θ fixed.

with $|\alpha| = 1$.

The standard CR structure on the three sphere S^3 is the one it inherits as a submanifold of C^2 .

 $H=TS^3\cap JTS^3.$

H is called the **standard contact distribution**. Choosing $\theta_0 = -i(\overline{z}dz + \overline{w}dw)$ give the **standard pseudo-hermitian structure**.

The natural choice for a coframe for these structures is

 $\{\theta_0, \theta_0^1\}$

with

$$\theta_0 = -i(\overline{z}dz + \overline{w}dw)$$

$$\theta_0^1 = wdz - zdw$$

where these forms are restricted to S^3 . We have

$$\begin{aligned} d\theta_0 &= i\theta_0^1 \wedge \overline{\theta_0^1} \\ d\theta_0^1 &= \theta_0^1 \wedge \omega \\ \omega &= -2i\theta_0. \end{aligned}$$

э

Given two CR structures (M, H, J) and (M, H, J) a diffeomorphism $F: M \to M$ is a **CR diffeomorphism** if it preserves the two-plane distribution and the *J*-operator. That is

$$F_* \circ J = \tilde{J} \circ F_*.$$

In terms of choices of coframes we are requiring

 $F^*\tilde{\theta} = s\theta$

$$F^* \tilde{\theta^1} = \gamma \theta^1 + \delta \theta$$

with s real, γ and δ complex $s \neq 0$, and $\gamma \neq 0$.

Given two pseudo-hermitian structures, say $\{\theta, \theta^1\}$ and $\{\theta, \tilde{\theta^1}\}$ and a diffeomorphism $F: M^3 \to M^3$, we say that the two pseudo-hermitian structures are equivalent, and that F is a **pseudo-hermitian diffeomorphism** if

$$F^*(\theta) = \theta$$

and

$$=^{*}(\tilde{\theta^{1}}) = \gamma \theta^{1} + \delta \theta.$$

 $(\gamma \neq 0)$

Theorem

Let (θ, θ^1) be a pseudo-hermitian coframe. There exist unique functions R, A, and V, and an unique one-form ω , so that

$$d\theta = i\theta^{1} \wedge \overline{\theta^{1}}$$

$$d\theta^{1} = \theta^{1} \wedge \omega + A\theta \wedge \overline{\theta^{1}}$$

$$\omega = -\overline{\omega}$$

$$d\omega = R\theta^{1} \wedge \overline{\theta^{1}} + 2i\Im(V\overline{\theta^{1}}) \wedge \theta$$

Further, if θ^1 is replaced by $\theta^1 = \lambda \theta^1$, $|\lambda| = 1$, then

$$\mathbf{R} = R, \quad \mathbf{A} = \lambda^2 A, \quad \mathbf{V} = \lambda V, \quad \boldsymbol{\omega} = \boldsymbol{\omega} - \lambda^{-1} d\lambda.$$

The group structure

$$\begin{aligned} SU(2) &= \left\{ \left(\begin{array}{cc} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{array} \right) : \ |\alpha|^2 + |\beta|^2 = 1 \right\}. \\ SU(2) \leftrightarrow S^3 \\ \left(\begin{array}{cc} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{array} \right) \leftrightarrow (\alpha, \beta) \in C^2 \end{aligned}$$

Let $\alpha = a + ib$ and $\beta = c + id$. Now SU(2) acts on R^4 . Starting with the vectors

(0,1,0,0), (0,0,1,0), and (0,0,0,1)

tangent to S^3 at (1,0,0,0), we translate them using SU(2) to obtain the vector fields at the point (a, b, c, d)

$$L_1 = (-b, a, -d, c))$$

$$L_2 = (-c, d, a, -b)$$

$$L_3 = (-d, -c, b, a).$$

Each of the three 2-planes spanned by $\{L_j, L_k\}$ is contact. For example,

$$H = \{L_2, L_3\}$$

is the standard contact structure. Thus the standard contact structure in left-invariant.

For any other left-invariant distribution we can choose a basis

$$U = L_1 + uL_3$$
$$V = L_2 + vL_3$$

with real constants u and v.

Lemma

Each left-invariant 2-plane distribution on S^3 is a contact structure.

Proof We have

$$\frac{1}{2}[U,V] = uL_1 + vL_2 - L_3.$$

Assume

$$[U,V] = xU + yV$$

Then

$$x = 2u$$
, $y = 2v$, and $xu + yv = -2$

gives the contradiction

$$2u^2 + 2v^2 = -2.$$

- ∢ ≣ ▶

Lemma

If \mathcal{D} is a left-invariant 2-plane distribution on S^3 then there is some $\Phi: S^3 \to S^3$ such that the induced map

 $\Phi_*\,TS^3\to\,TS^3$

takes \mathcal{D} to the standard contact distribution.

Restrict CR and pseudo-hermitian structures to have the standard distribution.

(Almost) any complex structure on H at a given point is given by

$$\theta^1 = \theta^1_0 + \mu \overline{\theta^1_0}, \quad \mu \neq \pm 1.$$

As μ varies we obtain all the CR structures with the given contact distribution, except for the conjugate of the standard CR structure which appears as the limit as $\mu \to \infty$.

Pseudo-hermitian coframe

$$\begin{aligned} \theta &= \theta_0 \\ \theta^1 &= \lambda (\theta_0^1 + \mu \overline{\theta_0^1}) \end{aligned}$$

with

$$|\lambda|^2(1-|\mu|^2) = 1.$$

We have

$$d\theta^{1} = \theta^{1} \wedge \left(-2i\left(\frac{1+|\mu|^{2}}{1-|\mu|^{2}}\right)\right)\theta - \frac{4i\mu}{1-|\mu|^{2}}\theta \wedge \overline{\theta^{1}}.$$

Webster connection form

$$\omega = -2i\left(\frac{1+|\mu|^2}{1-|\mu|^2}\right)\theta_0.$$

Torsion

$$A = -\frac{4i\mu}{1-|\mu|^2}$$

Curvature

$$R = 2\left(\frac{1+|\mu|^2}{1-|\mu|^2}\right).$$

э

Let ${\mathcal S}$ denote the set of equivalence classes of left invariant pseudo-hermitian structures corresponding to the standard contact structure.

Theorem The map $\{\mu \in C, \ |\mu| < 1\} \rightarrow S$ is surjective with fiber given by $|\mu|$.

Remark

The same result and proof hold for $|\mu| > 1$ and θ replaced by $-\theta$.

Proof Assume $|\mu| = |\mu'|$. Let $F(z, w) = (\zeta z, w) = (\tilde{z}, \tilde{w})$ for $\zeta \in \mathbf{C}$ and $|\zeta| = 1$. $F^*(\theta|_{(\tilde{z},\tilde{w})}) = \theta|_{(z,w)}$

and

$$F^{*}(\tilde{\theta^{1}}|_{(\tilde{z},\tilde{w})}) = F^{*}(\tilde{\lambda}(\theta^{1}_{0} + \tilde{\mu}\overline{\theta^{1}}_{0}))$$

$$= \tilde{\lambda}(\zeta(wdz - zdw) + \tilde{\mu}\overline{\zeta}(\overline{w}d\overline{z} - \overline{z}d\overline{w}))$$

$$= k\theta^{1}|_{(z,w)}$$

Provided we can find some ζ of norm one such that $\tilde{\mu}\overline{\zeta}/\zeta = \mu$. That is, provided

$$|\tilde{\mu}|$$
 = $|\mu|$

Remark When $\mu = \tilde{\mu}$, we can take $\zeta = \pm 1$ and we have two CR diffeomorphisms leaving (0, 1) fixed.

This illustrates a general theorem:

A spc CR structure on M^3 with nonzero "CR curvature" admits at most two CR diffeomorphisms leaving a given point fixed.

If μ = 0 the dimension of the isotropy group of a point is 5.

Conversely, we start with a pseudo-hermitian diffeomorphism F and show that $|\mu| = |\tilde{\mu}|$.

$$\begin{array}{lll} d\theta^1 & = & \theta^1 \wedge \omega + A\theta \wedge \overline{\theta^1} \\ d\tilde{\theta^1} & = & \tilde{\theta^1} \wedge \tilde{\omega} + \tilde{A}\theta \wedge \overline{\tilde{\theta^1}} \end{array}$$

together with $F^*(\tilde{\theta^1}) = \alpha \theta^1$ to derive

$$(d\alpha) \wedge \theta^1 + \alpha(\theta^1 \wedge \omega + A\theta \wedge \overline{\theta^1}) = \alpha \theta^1 \wedge \tilde{\omega} + \overline{\alpha} \tilde{A}\theta \wedge \overline{\theta^1}.$$

Wedge this with θ^1 and obtain

$$\alpha A = \overline{\alpha} \widetilde{A}.$$

Use

$$A = -\frac{4i\mu}{1-|\mu|^2}$$

to conclude that $|\mu| = |\tilde{\mu}|$.

CR structural equations

Let ϕ and ϕ_1 be one-forms with ϕ real giving the CR structure:

 $\Phi^{\perp} = H,$

2
$$J\phi_1 = i\phi_1$$
,

 $d\phi = i\phi_1\overline{\phi_1}.$

Theorem

There exist unique one-forms ϕ_2 , ϕ_3 , ϕ_4 and unique functions R(x) and S(x) such that

$$oldsymbol{0}$$
 ϕ_2 is imaginary and ϕ_4 is real,

2
$$d\phi_1 = -\phi_1\phi_2 - \phi\phi_3$$
,
3 $d\phi_2 = 2i\phi_1\overline{\phi_3} + i\overline{\phi_1}\phi_3 - \phi\phi_4$,

$$d\phi_3 = -\phi_1\phi_4 - \overline{\phi_2}\phi_3 - R\phi\overline{\phi_1}$$

 $d\phi_4 = i\phi_3\overline{\phi_3} + (S\phi_1 + \overline{S\phi_1})\phi.$

4 If we replace ϕ by ψ = $|\nu|^2\phi$ and ϕ_1 by ψ_1 = $\nu\phi_1$ with a constant ν then the forms

$$\psi_2 = \phi_2, \quad \psi_3 = \frac{1}{\overline{\nu}}\phi_3, \quad \psi_4 = \frac{1}{|\nu|^2}\phi_4$$

satisfy the equations in the Theorem with R and S replaced by

$$R = rac{R}{|
u|^2 \overline{
u}^2}$$
 and $S = rac{S}{|
u|^2
u}$.

R is a relative invariant.

 $R(p) \neq 0$ implies that (M, H, J) is nonumbilic at p.

Corollary

A left invariant CR structure on S^3 with $\mu \neq 0$ has no umbilic points.

We want to choose a multiple of ϕ and a corresponding multiple of ϕ_1 so that $R(x) \equiv 1$.

Corollary

If $R(p) \neq 0$, there are precisely two choices of (ϕ, ϕ_1) such that in a neighborhood of p

$$ullet$$
 (ϕ,ϕ_1) give the CR structure,

2)
$$d\phi = i\phi_1\overline{\phi_1}$$
, and

 $\bigcirc R \equiv 1.$

If we denote one choice by (ω, ω_1) , then the other choice is $(\omega, -\omega_1)$. We set $\phi = \omega$ and $\phi_1 = \omega_1$ and apply the theorem to obtain ϕ_2 , ϕ_3 , and ϕ_4 .

$$\phi'_2 = \phi_2, \quad \phi'_3 = -\phi_3, \text{ and } \phi'_4 = \phi_4.$$

Theorem

If F is a CR diffeomorphism between left-invariant CR structures characterized by μ and $\tilde{\mu}$ and with the standard contact distribution then either $|\mu| = |\tilde{\mu}|$ or $|\mu| = 1/|\tilde{\mu}|$.

Local coordinates for T^*M

$$(x,\xi) \rightarrow (x,\xi_j dx_j)$$

Global symplectic form

$$\omega_{S} = -d(\xi_{j}dx_{j})$$

For pseudo-hermitian structure

$$-\omega_{S} = d(\zeta \theta^{1} + \overline{\zeta} \overline{\theta^{1}} + \eta \theta)$$

Hamiltonian

 $H = |\zeta|^2$

The Hamiltonian vector field on T^*M

$$X_{H} = \overline{\zeta}Z + \zeta\overline{Z} + B\partial_{\zeta} + \overline{B}\partial_{\overline{\zeta}} + C\partial_{\eta}$$

with

$$B = i\eta\zeta + \zeta\omega(X)$$
$$C = \zeta^2 A + \overline{\zeta}^2 \overline{A}.$$

글 🖌 🖌 글 🕨

э

 $\gamma(t)$ is the projection of an integral curve of X_H to M.

Let (T, Z, \overline{Z}) be dual to a pseudo-hermitian coframe $(\theta, \theta^1, \overline{\theta^1})$. A connection is defined by

$$\nabla Z = \omega \otimes Z$$

$$\nabla \overline{Z} = -\omega \otimes \overline{Z}$$

$$\nabla T = 0.$$

Theorem

The curve $\gamma(t)$ is Legendrian and its tangent X(t) satisfies

$$\nabla_X X = aJX \text{ and } Xa = < Tor(X, T), X > .$$

$$\begin{split} \gamma'(t) &= \overline{\zeta(t)}Z(\gamma(t)) + \zeta(t)\overline{Z(\gamma(t))} \\ \zeta'(t) &= i\eta\zeta + \omega(\gamma')\zeta \\ \eta'(t) &= 2\Re(\zeta^2 A). \end{split}$$

 $|\zeta(t)|$ is a constant. $\zeta(t)$ gives the direction of $\gamma(t)$ in $H_{\gamma(t)}$. $\eta(t)$ is related to the curvature of $\gamma(t)$. Restrict to left-invariant pseudo-hermitian structures

Theorem

Let $\gamma(t)$ be a geodesic for a left invariant structure and let $P = \gamma(t_0)$. Let $\alpha(t)$ be the projection of $\gamma(t)$ into the horizontal complex line at P. Let ζ and η be the associated functions. Then the curvature of $\alpha(t)$ at $t = t_0$ is equal to

$$\frac{|\eta(t_0)|}{|\lambda(\overline{\zeta(t_0)} - \mu\zeta(t_0)|^3}.$$

The well-known result for the hyperquadric Q asserting that the projected curves $\alpha(t)$ are circles does not hold for S^3 .

Restrict to the standard left-invariant structure

A = 0 and so η is a constant.

Theorem

Each geodesic (as a space curve) has constant curvature given by

$$\kappa = \sqrt{1 + \eta^2}.$$

Theorem

The geodesic satisfying

$$\gamma(0) = (0,1) \tag{1}$$

$$\gamma'(0) = (e^{i\phi}, 0) \qquad (2$$

$$\gamma''(0) = (i\eta e^{-\phi}, -1)$$
 (3)

(4)

э

is periodic if and only if

$$\frac{\eta}{\sqrt{\eta^2 + 4}}$$

is rational.

THANK YOU

▶ < E ▶ < E</p>

э