Geometric Methods in Quantum Control

Marco Caponigro

Conservatoire National des Arts et Métiers Paris, France

March $15^{\text {th }} 2013$

Quantum Control

Many technologies require the ability to induce a transition from a state to another of a quantum system:

- Photochemistry (to induce certain chemical reactions with light);
- Magnetic Resonance (in order to exploit spontaneous emission);
- Realization of Quantum Computers (to stock information).

To drive a quantum system from one state to another, by designing external fields:

- Lasers;
- X-Rays;
- Magnetic Fields.

Schrödinger equation

$$
i \frac{d \psi}{d t}=(-\Delta+V) \psi
$$

- $\Omega \subset \mathbb{R}^{d}$;
- $\psi=\psi(t, x)$ wave function, $\psi(t, \cdot) \in L^{2}(\Omega),\|\psi(t, \cdot)\|_{2}=1$;
- $-\Delta+V$ Schrödinger operator;
- $V: \Omega \rightarrow \mathbb{R}$ uncontrolled potential;

Bilinear Schrödinger equation

$$
i \frac{d \psi}{d t}=(-\Delta+V) \psi+u W \psi
$$

- $\Omega \subset \mathbb{R}^{d}$;
- $\psi=\psi(t, x)$ wave function, $\psi(t, \cdot) \in L^{2}(\Omega),\|\psi(t, \cdot)\|_{2}=1$;
- $-\Delta+V$ Schrödinger operator;
- $V: \Omega \rightarrow \mathbb{R}$ uncontrolled potential;
- $u=u(t) \in U \subset \mathbb{R}$ control law;
- $W: \Omega \rightarrow \mathbb{R}$ controlled potential.

Bilinear Schrödinger equation

$$
i \frac{d \psi}{d t}=(-\Delta+V) \psi+u W \psi
$$

- $\Omega \subset \mathbb{R}^{d}$;
- $\psi=\psi(t, x)$ wave function, $\psi(t, \cdot) \in L^{2}(\Omega),\|\psi(t, \cdot)\|_{2}=1$;
- $-\Delta+V$ Schrödinger operator;
- $V: \Omega \rightarrow \mathbb{R}$ uncontrolled potential;
- $u=u(t) \in U \subset \mathbb{R}$ control law;
- $W: \Omega \rightarrow \mathbb{R}$ controlled potential.

Controllability

Given ψ_{0}, ψ_{1} of L^{2}-norm equal to one, find (if there exist) $k \in \mathbb{N}, t_{1}, \ldots, t_{k}>0$, $u_{1}, \ldots, u_{k} \in U$ such that

$$
\psi_{1}=e^{-i t_{k}\left(-\Delta+V+u_{k} W\right)} \circ \cdots \circ e^{-i t_{1}\left(-\Delta+V+u_{1} W\right)}\left(\psi_{0}\right)
$$

Examples

Quantum Harmonic oscillator

$$
i \frac{\partial \psi(x, t)}{\partial t}=\left(-\frac{\partial^{2}}{\partial x^{2}}+x^{2}+u(t) x\right) \psi(x, t), \quad x \in \mathbb{R}
$$

Potential well

$$
i \frac{\partial \psi(x, t)}{\partial t}=\left(-\frac{\partial^{2}}{\partial x^{2}}+u(t) x\right) \psi(x, t), \quad x \in(-1,1), \quad \psi(\pm 1, t)=0
$$

Orientation of a linear bipolar molecule in the plane

$$
i \frac{\partial \psi(\theta, t)}{\partial t}=\left(-\frac{\partial^{2}}{\partial \theta^{2}}+u(t) \cos (\theta)\right) \psi(\theta, t), \quad \theta \in \mathbb{S}^{1}
$$

- θ rotational degree of freedom of a linear molecule,

Controllability results

Negative results

- non-exact controllability in the unit sphere of $L^{2}(\Omega)$ (Ball-Marsden-Slemrod [1982], Turinici [2000]);

Controllability results

Negative results

- non-exact controllability in the unit sphere of $L^{2}(\Omega)$ (Ball-Marsden-Slemrod [1982], Turinici [2000]);
- non-controllability for the quantum harmonic oscillator (Mirrahimi-Rouchon [2004]).

Controllability results

Negative results

- non-exact controllability in the unit sphere of $L^{2}(\Omega)$ (Ball-Marsden-Slemrod [1982], Turinici [2000]);
- non-controllability for the quantum harmonic oscillator (Mirrahimi-Rouchon [2004]).

Positive results

- exact controllability in $H^{3}(\Omega)$ for the potential well (Beauchard [2005], Beauchard-Coron [2006], Beauchard-Laurent [2010]);

Controllability results

Negative results

- non-exact controllability in the unit sphere of $L^{2}(\Omega)$
(Ball-Marsden-Slemrod [1982], Turinici [2000]);
- non-controllability for the quantum harmonic oscillator (Mirrahimi-Rouchon [2004]).

Positive results

- exact controllability in $H^{3}(\Omega)$ for the potential well (Beauchard [2005], Beauchard-Coron [2006], Beauchard-Laurent [2010]);
- L^{2} - and H^{s}-approximate controllability by Lyapunov methods (Mirrahimi [2006], Ito-Kunisch [2009], Nersesyan [2009]);

Controllability results

Negative results

- non-exact controllability in the unit sphere of $L^{2}(\Omega)$ (Ball-Marsden-Slemrod [1982], Turinici [2000]);
- non-controllability for the quantum harmonic oscillator (Mirrahimi-Rouchon [2004]).

Positive results

- exact controllability in $H^{3}(\Omega)$ for the potential well (Beauchard [2005], Beauchard-Coron [2006], Beauchard-Laurent [2010]);
- L^{2} - and H^{s}-approximate controllability by Lyapunov methods (Mirrahimi [2006], Ito-Kunisch [2009], Nersesyan [2009]);
- L^{2}-approximate controllability by geometric methods (Chambrion-Mason-Sigalotti-Boscain [2009]).

Bilinear Schrödinger equation: abstract framework

Let \mathcal{H} be a complex Hilbert space

$$
\begin{equation*}
\frac{d}{d t} \psi=A \psi+u B \psi, \quad u \in U \tag{BSE}
\end{equation*}
$$

We assume that:

- A has discrete spectrum $\left(i \lambda_{k}\right)_{k \in \mathbb{N}}$;
- $A+u B: \operatorname{span}\left\{\phi_{k} \mid k \in \mathbb{N}\right\} \rightarrow \mathcal{H}$ is essentially skew-adjoint (not necessarily bounded) for every $u \in U$;
- \mathcal{H} has an Hilbert basis $\Phi=\left(\phi_{k}\right)_{k \in \mathbb{N}}$ made of eigenfunctions of A;
- $\phi_{k} \in D(B)$ for every $k \in \mathbb{N}$;
- $\left\langle\phi_{j}, B \phi_{k}\right\rangle=0$ for $j \neq k$ and $\lambda_{j}=\lambda_{k}$.

Definitions

Definition: propagator and solution

$$
\Upsilon_{T}^{u}\left(\psi_{0}\right)=e^{t_{k}\left(A+u_{k} B\right)} \circ \cdots \circ e^{t_{1}\left(A+u_{1} B\right)}\left(\psi_{0}\right)
$$

is the solution of $(B S E)$ with initial data $\psi_{0} \in \mathcal{H}$ associated with the piecewise constant control $u=u_{1} \chi_{\left[0, t_{1}\right)}+u_{2} \chi_{\left[t_{1}, t_{1}+t_{2}\right)}+\cdots$ Υ_{t}^{u} is the propagator of $(B S E)$ associated with u.

Definitions

Definition: propagator and solution

$$
\Upsilon_{T}^{u}\left(\psi_{0}\right)=e^{t_{k}\left(A+u_{k} B\right)} \circ \cdots \circ e^{t_{1}\left(A+u_{1} B\right)}\left(\psi_{0}\right)
$$

is the solution of $(B S E)$ with initial data $\psi_{0} \in \mathcal{H}$ associated with the piecewise constant control $u=u_{1} \chi_{\left[0, t_{1}\right)}+u_{2} \chi_{\left[t_{1}, t_{1}+t_{2}\right)}+\cdots$ Υ_{t}^{u} is the propagator of $(B S E)$ associated with u.

Approximate controllability

Given $\varepsilon>0, \psi_{0}, \psi_{1} \in \mathcal{H}$ find $u:[0, T] \rightarrow U$ such that

$$
\left\|\Upsilon_{T}^{u}\left(\psi_{0}\right)-\psi_{1}\right\|<\varepsilon
$$

Definitions

Definition: propagator and solution

$$
\Upsilon_{T}^{u}\left(\psi_{0}\right)=e^{t_{k}\left(A+u_{k} B\right)} \circ \cdots \circ e^{t_{1}\left(A+u_{1} B\right)}\left(\psi_{0}\right)
$$

is the solution of (BSE) with initial data $\psi_{0} \in \mathcal{H}$ associated with the piecewise constant control $u=u_{1} \chi_{\left[0, t_{1}\right)}+u_{2} \chi_{\left[t_{1}, t_{1}+t_{2}\right)}+\cdots$
Υ_{t}^{u} is the propagator of $(B S E)$ associated with u.

Approximate controllability

Given $\varepsilon>0, \psi_{0}, \psi_{1} \in \mathcal{H}$ find $u:[0, T] \rightarrow U$ such that

$$
\left\|\Upsilon_{T}^{u}\left(\psi_{0}\right)-\psi_{1}\right\|<\varepsilon
$$

Approximate simultaneous controllability

Given $\varepsilon>0, \psi^{1}, \ldots, \psi^{m} \in \mathcal{H}, \hat{\Upsilon} \in \mathbf{U}(\mathcal{H})$ find $u:[0, T] \rightarrow U$ such that

$$
\left\|\hat{\Upsilon}\left(\psi^{j}\right)-\Upsilon_{T}^{u}\left(\psi^{j}\right)\right\|<\varepsilon \quad j=1, \ldots, m
$$

Chain of connectedness

$S \subset \mathbb{N}^{2}$ is a connectedness chain for (A, B) if

- $\left\langle\phi_{\alpha}, B \phi_{\beta}\right\rangle \neq 0$ for every $(\alpha, \beta) \in S$;
- for every $j \leq k \in \mathbb{N}$, there exist $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{p}, \beta_{p}\right)$ in S such that

$$
j=\alpha_{1}, \quad \beta_{1}=\alpha_{2} \quad \ldots \quad \beta_{p-1}=\alpha_{p}, \quad \beta_{p}=k
$$

Chain of connectedness

$S \subset \mathbb{N}^{2}$ is a connectedness chain for (A, B) if

- $\left\langle\phi_{\alpha}, B \phi_{\beta}\right\rangle \neq 0$ for every $(\alpha, \beta) \in S$;
- for every $j \leq k \in \mathbb{N}$, there exist $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{p}, \beta_{p}\right)$ in S such that

$$
j=\alpha_{1}, \quad \beta_{1}=\alpha_{2} \quad \ldots \quad \beta_{p-1}=\alpha_{p}, \quad \beta_{p}=k .
$$

Examples:

- Nersesyan [2009]: $S=\{(1, n): n \in \mathbb{N}\}$,
- Chambrion et al. [2009]: $S=\{(n, n+1): n \in \mathbb{N}\}$.

Chain of connectedness

$S \subset \mathbb{N}^{2}$ is a connectedness chain for (A, B) if

- $\left\langle\phi_{\alpha}, B \phi_{\beta}\right\rangle \neq 0$ for every $(\alpha, \beta) \in S$;
- for every $j \leq k \in \mathbb{N}$, there exist $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{p}, \beta_{p}\right)$ in S such that

$$
j=\alpha_{1}, \quad \beta_{1}=\alpha_{2} \quad \ldots \quad \beta_{p-1}=\alpha_{p}, \quad \beta_{p}=k .
$$

Examples:

- Nersesyan [2009]: $S=\{(1, n): n \in \mathbb{N}\}$,
- Chambrion et al. [2009]: $S=\{(n, n+1): n \in \mathbb{N}\}$.

A connectedness chain for $(A, B), S$ is said to be non-resonant if

$$
\left|\lambda_{j}-\lambda_{k}\right| \neq\left|\lambda_{\ell}-\lambda_{m}\right|
$$

for every $(j, k) \in S,(\ell, m) \in \mathbb{N}^{2},\{j, k\} \neq\{\ell, m\}$.

The result

Theorem (Boscain, C., Chambrion, Sigalotti, 2012)
If (A, B) has a non-resonant chain of connectedness, then (A, B) is approximately simultaneously controllable.

The result

Theorem (Boscain, C., Chambrion, Sigalotti, 2012)

If (A, B) has a non-resonant chain of connectedness, then (A, B) is approximately simultaneously controllable.

Theorem (Boscain, C., Chambrion, Sigalotti, 2012)
If (A, B) has a non-resonant chain of connectedness containing (j, k), then for every $\varepsilon, \delta>0$, there exists $u:[0, T] \rightarrow[0, \delta]$ such that

$$
\left\|\Upsilon_{T}^{u}\left(\phi_{j}\right)-\phi_{k}\right\|<\varepsilon \quad \text { et } \quad\|u\|_{L^{\prime}} \leq \frac{\pi}{2 \nu\left|\left\langle\phi_{j}, B \phi_{k}\right\rangle\right|^{\prime}} .
$$

$1^{s t}$ step: finite dimensional Galerkin approximation

- Time reparametrization: since $e^{t(A+u B)}=e^{t u\left(\frac{1}{u} A+B\right)}$ then (BSE) become

$$
\dot{X}=v A X+B X,
$$

- Interaction framework: if $Y=e^{-\int{ }^{v A} X \text {, then }}$

$$
\begin{gathered}
\dot{Y}=e^{-\int v A} B e^{\int v A} Y \\
\left|\left\langle\phi_{k}, Y\right\rangle\right|=\left|\left\langle\phi_{k}, X\right\rangle\right|, \quad \text { for every } k \in \mathbb{N}
\end{gathered}
$$

- Galerkin approximation: projecting the system on $\mathcal{L}_{N}=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ we have

$$
\dot{Y}=\left(e^{i\left(\lambda_{j}-\lambda_{k}\right) \int{ }^{v}} b_{j k}\right)_{j, k=1}^{N} Y, \quad Y \text { in } \mathcal{L}_{N} .
$$

$2^{\text {nd }}$ step: convexification

We have to study the curve on the torus,

$$
\Psi: \omega \mapsto\left(e^{i\left(\lambda_{j_{1}}-\lambda_{k_{1}}\right) \omega}, \ldots, e^{i\left(\lambda_{j_{m}}-\lambda_{k_{m}}\right) \omega}\right)
$$

$2^{\text {nd }}$ step: convexification

We have to study the curve on the torus,

$$
\Psi: \omega \mapsto\left(e^{i\left(\lambda_{j_{1}}-\lambda_{k_{1}}\right) \omega}, \ldots, e^{i\left(\lambda_{j_{m}}-\lambda_{k_{m}}\right) \omega}\right)
$$

Let $\nu \geq \prod_{k=2}^{\infty} \cos \left(\frac{\pi}{2 k}\right)=0.4298 \ldots$ then

$$
\overline{\operatorname{Conv} \Psi([0, \infty))} \supset \nu \mathbb{S}^{1} \times\{0\} \times \cdots \times\{0\} .
$$

We can realize the transition between the levels j_{1} and k_{1}.
Example: $m=2, \lambda_{j_{1}}-\lambda_{k_{1}}=1, \lambda_{j_{2}}-\lambda_{k_{2}}=2$,

$$
\operatorname{Conv}\{\Psi(0), \Psi(\pi / 2)\}=\left(\frac{1+i}{2}, 0\right)
$$

then

$$
\operatorname{Conv} \Psi([0, \infty)) \supset \frac{\sqrt{2}}{2} \mathbb{S}^{1} \times\{0\}, \quad \text { and } \quad \frac{\sqrt{2}}{2}>\nu
$$

$3^{r d}$ step: "strong" controllability in $S U(n)$

Thanks to the existence of the chain of connectedness
For every $N \in \mathbb{N}$ the control system

$$
\dot{Y}=\left(e^{i\left(\lambda_{j}-\lambda_{k}\right) \int{ }^{v}} b_{j k}\right)_{j, k=1}^{N} Y, \quad Y \in \mathcal{L}_{N},
$$

is controllable.
We have more than that
For every N, n and $M(t) \in S U(n)$ we can track, with a tolerance of ε,

$$
\left(\begin{array}{c|c|c}
M(t) & 0_{n \times N-n} & R(t) \\
\hline 0_{N-n \times n} & 0_{N-n \times N-n} & \cdots \\
\hline \vdots & \vdots & \ddots
\end{array}\right)
$$

$4^{\text {th }}$ and final step: Infinite dimension

The controllability on $S U(n)$ is not sufficient in general.

Counterexample:

Every Galerkin approximation of the quantum harmonic oscillator is controllable but the infinite dimensional system is not controllable.

$4^{\text {th }}$ and final step: Infinite dimension

The controllability on $S U(n)$ is not sufficient in general.

Counterexample:

Every Galerkin approximation of the quantum harmonic oscillator is controllable but the infinite dimensional system is not controllable.

In conclusion:

- General controllability result
- Constructive
- With L^{1} estimates on the control

Other results

- Approximate controllability with periodic functions (Chambrion 2012) :
- easy (numerical and physical) implementation of simple transitions
- no simultaneous controllability
- Approximate simultaneous controllability with Lie algebraic methods (Boscain, C, Sigalotti, 2013) :
- applies to the multi-input case
- no constructive proof

Weakly coupled systems

- $i\left(A+u_{1} B_{1}+\cdots u_{p} B_{p}\right)$ is bounded from below for every $u \in U$
- λ_{j} is non-decreasing and unbounded

k-weakly coupled

The system (A, B) is k-weakly coupled if

- $D\left(|A+u B|^{k / 2}\right)=D\left(|A|^{k / 2}\right)$
- there exists C such that

$$
\left.\left.|\Re\langle | A|^{k} \psi, B \psi\right\rangle\left.|\leq C|\langle | A\right|^{k} \psi, \psi\right\rangle \mid \quad \psi \in D\left(|A|^{k}\right)
$$

Examples:

- B is relatively bounded wrt A.
- $i A=-\Delta+V, i B=W$ and $V, W \in C^{2 k}(\Omega), \Omega$ compact.

Growth of the $|A|^{k / 2}$-norm

$$
\left.\|\psi\|_{k / 2}=\left\||A|^{k / 2} \psi\right\|^{2}=|\langle | A|^{k} \psi, \psi\right\rangle\left|=\sum_{n \in \mathbb{N}} \lambda_{n}^{k}\right|\left\langle\phi_{k}, \psi\right\rangle \mid
$$

We want to estimate the growth of the $|A|^{k / 2}$-norm

$$
\begin{aligned}
\left.\left|\frac{d}{d t}\langle | A\right|^{k} \psi, \psi\right\rangle \mid & \left.\leq 2|u(t)||\Re\langle | A|^{k} \psi, B \psi\right\rangle \mid \\
& \left.\leq 2 C|u(t)||\langle | A|^{k} \psi, \psi\right\rangle \mid
\end{aligned}
$$

by Gronwall's Lemma

$$
\|\psi(t)\|_{k / 2} \leq e^{2 C\|u\|_{L^{1}}}\|\psi(0)\|_{k / 2}
$$

- The regularity of the systems is an obstacle to the exact controllability.

Good Galerkin Approximation

Denote by $X_{u}^{(N)}$ the propagator of

$$
\dot{x}=\left(\left.A\right|_{\mathcal{L}_{N}}+\left.u B\right|_{\mathcal{L}_{N}}\right) x \quad x \in \mathcal{L}_{N}
$$

Theorem (Boussaïd, C, Chambrion, 2012)

Let (A, B) be k-weakly coupled and B be bounded relatively to $|A|^{s}, s<k$. For every $\varepsilon>0, K>0, \psi_{0} \in D\left(|A|^{k / 2}\right), s<k$ there exists $N=N\left(\varepsilon, K, \psi_{0}\right)$ such that

$$
\|u\|_{L^{1}} \leq K \Longrightarrow\left\|\Upsilon_{t}^{u}\left(\psi_{0}\right)-X_{u}^{(N)}(t) \psi_{0}\right\|_{s}<\varepsilon, \quad t \geq 0
$$

- A priori estimates in numerical and physical simulations.
- Convergence of controllability strategies:
- A bang-bang Theorem for weakly coupled systems (Boussaïd, C, Chambrion, 2012);
- Approximate controllability in norm H^{s} (Boscain, C, Sigalotti, 2013).

Example: the rotating molecule

$$
i \frac{\partial \psi}{\partial t}(\theta, t)=-\frac{1}{2} \partial_{\theta}^{2} \psi(\theta, t)+u(t) \cos (\theta) \psi(\theta, t) \quad \theta \in \mathbb{S}^{1}
$$

- Eigenvalues: $0, i, 4 i, 9 i, \ldots, k^{2} i, \ldots$;
- Control potential

$$
B=i\left(\begin{array}{ccccc}
0 & 1 / \sqrt{2} & 0 & \ldots & \\
1 / \sqrt{2} & 0 & 1 / 2 & 0 & \ldots \\
0 & 1 / 2 & 0 & 1 / 2 & 0 \\
\vdots & 0 & 1 / 2 & 0 & \ddots \\
& \vdots & 0 & \ddots & \ddots
\end{array}\right)
$$

- $\{(k, k \pm 1) ; k \in \mathbf{N}\}$ is a non-resonant chain of connectedness;
- The system is k-weakly coupled for every k;
- The system is approximately simultaneously controllable in norm H^{k} for every k

The control algorithm: "Q-track"

Consider the problem of exchanging the states 1 and 2 .

- we know, a priori, that $\|u\|_{L^{1}}=3$.
- of $N=14$ then $\left\|\Upsilon_{t}^{u}\left(\phi_{j}\right)-X_{(N)}^{u}(t, 0) \pi_{N} \phi_{j}\right\|<10^{-3}$, for $j=1,2$, and for every $t \in[0, T]$.
- The control $u:[0, T] \rightarrow[0,1]$ is

The control algorithm: "Q-track"

$$
\Upsilon_{0}^{u}=\left(\begin{array}{cccc}
1 & 0 & \cdots & \\
0 & 1 & 0 & \cdots \\
\vdots & 0 & 1 & \ddots \\
& \vdots & \ddots & \ddots
\end{array}\right) \rightarrow \Upsilon_{T}^{u} \approx\left(\begin{array}{cccc}
0 & e^{i \theta_{1}} & 0 & \cdots \\
e^{i \theta_{2}} & 0 & 0 & \cdots \\
0 & 0 & 1 & \ddots \\
\vdots & \vdots & \ddots & \ddots
\end{array}\right)
$$

- The error

$$
\left\|\left|\left\langle\phi_{j}, \Upsilon_{t}^{u}\left(\phi_{2}\right)\right\rangle\right|-\left\langle\phi_{j}, \phi_{1}\right\rangle\right\|<\varepsilon \quad\left\|\left|\left\langle\phi_{j}, \Upsilon_{t}^{u}\left(\phi_{1}\right)\right\rangle\right|-\left\langle\phi_{j}, \phi_{2}\right\rangle\right\|<\varepsilon
$$

is $\varepsilon=O(1 / T)$

- for $N=14, T=624$ we have $\varepsilon=7 * 10^{-3}$.
$\left\langle\phi_{1}, \Upsilon_{t}^{u}\left(\phi_{1}\right)\right\rangle$

$\left\langle\phi_{1}, \Upsilon_{t}^{u}\left(\phi_{2}\right)\right\rangle$

$$
\left\langle\phi_{2}, \Upsilon_{t}^{u}\left(\phi_{2}\right)\right\rangle
$$

$$
\left\langle\phi_{2}, \Upsilon_{t}^{u}\left(\phi_{1}\right)\right\rangle
$$

$\left\langle\phi_{2}, \Upsilon_{t}^{u}\left(\phi_{1}\right)\right\rangle:$ time evolution $t \in[0, T]$

$\left\langle\phi_{2}, \Upsilon_{t}^{u}\left(\phi_{1}\right)\right\rangle:$ time evolution $t \in[0, T]$

$$
\left\langle\phi_{2}, \Upsilon_{t}^{u}\left(\phi_{4}\right)\right\rangle
$$

