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Abstract

Collective migration of animals in a cohesive group is rendered possible by a strategic distribution of
tasks among members: some track the travel route, which is time and energy-consuming, while the others
follow the group by interacting among themselves. In this paper, we study a social dynamics system
modeling collective migration. We consider a group of agents able to align their velocities to a global
target velocity, or to follow the group via interaction with the other agents. The balance between these
two attractive forces is our control for each agent, as we aim to drive the group to consensus at the
target velocity. We show that the optimal control strategies in the case of final and integral costs consist
of controlling the agents whose velocities are the furthest from the target one: these agents sense only
the target velocity and become leaders, while the uncontrolled ones sense only the group, and become
followers. Moreover, in the case of final cost, we prove an "Inactivation" principle: there exist initial
conditions such that the optimal control strategy consists of letting the system evolve freely for an initial
period of time, before acting with full control on the agent furthest from the target velocity.

Introduction

A fascinating feature of large groups is their self-organization ability, i.e. the emergence from local interaction
rules of certain global patterns. For instance, animal groups such as schools of fish, flocks of birds or herds of
mammals exhibit strong coordination in their movements, see e.g. [1, 2, 5, 8, 9, 27, 28, 29, 34, 37, 38]. This
collective behavior in animal groups also inspired applications to robotics (see [3]), in which the aim is to
coordinate autonomous vehicles |7, 21, 25, 36] and flight formations [31, 35]. Other interests concern models
in microbiology [19, 20, 22, 30, 32|, pedestrian and crowd motions [10, 11| and financial markets [14, 23].
Such systems are usually referred to as social dynamics. Examples of self-organization include clustering of
the agents, alignment of velocities, or other kinds of equilibria, see [5, 18, 26, 27, 28, 29, 37]. This raises the
question of understanding the mechanisms behind the global pattern formation.

A well-known model was proposed by F. Cucker and S. Smale (see [12]) to describe the phenomenon of
consensus in terms of alignment of velocities in a group on the move. The Cucker-Smale model in formula
is written as:

;=
iév: Vi — U; for i e {1,...,N}, (1)
N = (L4 oy — @il?)P

v; =

where 3 > 0, and 2; € R? and v; € R? are respectively the state and velocity. This model was originally
designed to describe the formation and evolution of language, and the variables v; can more generally
represent opinions, preferences or invested capital. The system converges to consensus if § < %, which
corresponds to a strong interaction even between distant agents, see [6]. On the other hand, if 5 > %, i.e. if the
interaction is too weak, convergence to consensus only happens under certain conditions. More generally, the
term (1+4||x; —;]|?) =" can be replaced by a(||x;—;||). Intuitively, it is natural to define a as a non-increasing

function, since proximity often encourages interaction. On the other hand, it was proven that interactions



modeled by non-decreasing functions a, called heterophilious, in fact enhance consensus (see [26]). When the
system does not converge to a desired state, a natural question is to study the possibility of steering it via
controls functions u;, in which case the second equation of (1) becomes: v; = 3; Z;\le a(||lzj—z;|) (v;—vs)+u;
(see [6, 15]).

In the collective migration problem (see [24]), not only do agents interact with one another to travel as
a group, but they also gather clues from the environment guiding them towards a global target velocity. In
the case of migrating birds, for instance, this velocity can be sensed through a magnetic field, the direction
of the sun, or environmental features. However, sensing the migration velocity is costly, both in used time
and energy. A trade-off thus occurs between gathering this information, which ensures more precision, and
following the group, which is less costly and saves time and energy for other tasks such as surveying for
predators [13, 17]. This problem also applies to the field of robotics, in which gathering information from
the environment is done at the expense of communicating with other robots (or planes, drones, etc.) or
performing other tasks, and to the field of economics when one aims to influence decisions of a group based
on limited information. This trade-off naturally separates the group into leaders, who gather information,
and followers, who only interact with the other agents (see [17]).

We study a Collective Migration Model, where the agents’ dynamics is determined by two forces: the
attraction towards a target velocity V' (which we assume can be sensed) and the consensus dynamics as in
the Cucker-Smale model. More precisely, each agent’s evolution is governed by a parameter «; € [0, 1] which
provides the balance between the two forces. The system can be written as:

g: alllz; — ) (v; — v3) forie{1,..,N}, (2)

j=1

2| =

’U.i = ai(V — ’Ui) —+ (]. — Oéi)

where: z; € R? and v; € R? are the state and velocity, V € R? is the target velocity, and «; € [0, 1] is the
control, with the constraint ., a; < M, M > 0. In this paper, we choose to set a = 1, so that the strength
of interaction does not depend on the agents’ positions. This is a reasonable hypothesis for instance if we
consider groups of planes or drones that can communicate just as easily from great distances.

While the Cucker-Smale model leads to alignment of all velocities to the average one (when there is
consensus), the migration model tends to align all velocities to the preassigned target velocity. Our work
focuses on finding optimal control strategies in order to achieve consensus to the target velocity, and in
particular on selecting optimal controlled leaders among the agents when the control strength M is small
with respect to the size of the group. In order to do that, we define the cost function V = + 3 v = VI3,
measuring the distance from consensus at the target velocity. We first show that, given any M > 0, the
strategy to decrease V instantaneously, with the constraint > a; < M, consists of distributing the control
among the agents with the largest positive projections of velocities along o—V (where ¥ is the mean velocity).
In particular, if (v;,7 — V) < 0, the agent i is not controlled (a; = 0).

We then study the optimal control strategy to minimize V at a fixed final time and first focus on the case
of two agents, with control bounded by M € [0,2]. The optimal control strategies depend on M but, in all
cases, we act with larger control on the agent with the largest projected velocity. Furthermore, if the final
time is too short to bring the agents together, then initially the system must evolve with no control (a = 0).
We call this phenomenon "Inactivation", in line with the "Inactivation Principle" proven in [16] in the case
of muscle use. The latter claims that, during fast arm movements, it is optimal to simultaneously inactivate
both agonistic and antagonistic muscles. We next generalize our results to any number of agents, but with
the constraint M < 1. Then the optimal control strategy acts with full strength on a sub-group of agents
to bring them together. Also in this case we observe "Inactivation", which occurs when the initial average
velocity v is very close to the target velocity V. Indeed, to drive the system to V requires both achieving
consensus and moving the average velocity towards V. If the average velocity is already close to V', then we
are left with inducing consensus which happens naturally without control. However, simulations show that
Inactivation is rare and its performance gain is hardly significant compared to a full-control strategy.

Then we move on to examine integral costs fOT V(t)dt and show that the optimal control strategy never
exhibits Inactivation. More precisely, we must use full control at all time splitting it evenly among the agents
with the biggest projected velocity. Such a strategy is more restrictive than that with final cost, indeed the
controls are completely determined by initial conditions, while previously we could use any strategy bringing



agents together at final time.

The paper is organized as follows. In Section 1, we define the cost functional and make general observa-
tions. In Section 2, we determine the strategy to decrease it instantaneously in time. Then, in Section 3, we
introduce the optimal control problem to minimize the cost function at a given final time. We first solve it
for the particular case of two agents (Section 4) before generalizing to any number of agents with a control
bounded by 1 (Section 5). Lastly, we find optimal control strategies to minimize the integral cost (Section
6).

1 Cost function and general observations

With no loss of generality, we set the target velocity V to zero. Having simplified the interaction function
a, system (2) reduces to:

l:i = V;
1 XN ie{l,..,N} 3
ﬁiz—aivrl-(l—ai)NZ(vj—Ui) ¢ ) )
Jj=1
Given M > 0, we define the set of controls Uy, as:

N
Uy = {a :[0,T] — [0,1]V| @ measurable, s.t. for all ¢, Zai(t) < M} (4)

i=1

1.1 Projection of the Dynamics

Note that the dynamics (3) can be written in the more compact way:

(o 0

where ¥ represents the mean velocity ¥ = 3 >, v;. The evolution of o is given by o = — (3, a;)v, so
the direction of ¥ is an invariant of the dynamics. Notice that if 7(0) = 0, then @(¢) = 0 for all ¢ € [0,T.
Hereafter, we shall assume that 9(0) # 0, since the case ¥ = 0 would make the dynamics (5) trivial. We can

then define the invariant unit vector e = ﬁ

Let w; = v; — (v;,e) e be the projection of v; over (v+). Then
w=—v+1—-—a)0— (v, + (1 — ) ,e) e = —w;.

Therefore the projection of v; over (o) decreases exponentially, independently of the controls ;. Let us now

define &; = (v;, e). Its evolution is given by: & = —(v;,€) + (1 — ;) (0, e) = =&+ (1 —a,)||v]] = =&+ (1—;)E.
In the following, we will only study the equations governing the evolution of the projected variables &;:

Forallie {1,...N}, & =—&+(1—a;)é (6)

where £ = % > j &;. This is a significant result: instead of studying a system evolving in RN? we consider a
system in R, thus greatly reducing the complexity of theoretical and numerical analyses. Hereafter we shall
make the following hypothesis:

Hypothesis 1.
It holds ©(0) # 0 and &;(0) > &;4+1(0) for every i € {1,...,N — 1}.

Proposition 1.1. -

Having made Hyp. 1, it holds t(t) # 0 and £(t) > 0 for all t € [0,T).

Furthermore, let T € [0,T]. If &(7) > 0, then &(t) > 0 for allt € [1,T]. If &(7) > 0, then &(t) > 0 for all
ternT].



Proof. The proposition is mainly a consequence of Gronwall’s inequality: It holds
- 1 v
E= =S (g, o) = (5, =) = [[g] (7)
N 2 ) = O
and
- 1 - M -
= _— , > ¢,
E=—% (; m) £> ¢

Hence, if #(0) # 0 and therefore £(0) > 0, then £(t) > e~ M¥/N£(0) > 0 and thus v( ) 7é 0 for all t €[0,T7.
Now notice that from (6) we can compute for all ¢ € [r,T]: &(t) = e~ =7 (& (1) + f 5)E(s)e*Tds),
s0 &(t) > e~ =7)¢; (1), which proves the second part of the proposition. O

1.2 Migration functional

We introduce the functional

1N

5 2

== iV (5)
i=1

which measures the distance from consensus at the desired velocity V. Since we set V = 0, V reduces

to: V + > llvill>. In the new projected coordinates &, the migration functional can be written as:

V= + 3 ([lwi]|* + £€2), where only the second term &2 can be controlled. Hence, here onward we will only
consider the controllable part of V, which we denote V:

1 XN
=N Z )
Notice that V can be written as a sum of two terms:

(& -8 (10)

MHZ

-

V=t
=1

which should be minimized simultaneously (where we remind that €= % >, &). Minimizing €2 (or &, since

according to Proposition 1.1, £ > 0) corresponds to steering the system as a whole to the desired velocity

V = 0. On the other hand, minimizing % Y& — €)? corresponds to driving the system to consensus.

However, the dynamics (6) of & show that if £ < 0, decreasing £ slows down the increase of &;, resulting in a

possible increase of (¢; — £)2. Hence, minimizing V requires balancing the decrease of the two terms in (10).

1.3 Minimization problems

In the following sections, we will deal with the minimization of different quantities, in order to design a
strategy for consensus at the migration velocity V = 0.

(i) The minimization of 4 i.e. the maximization of the instantaneous decrease of V (see Section 2).

dt’

(47) The minimization of the cost at final time, V(T') (see Section 3).
(i44) The minimization of the integral cost fOT V(t)dt (see Section 6).

In order to minimize (i7) V(T) and (7i7) fo t)dt, we will design an optimal control strategy using

Pontryagin’s maximum principle. The mlmmlzatlon of V, on the other hand, will not provide an optimal
control.



2 Instantaneous Decrease

In this section we look for a control strategy maximizing the instantaneous decrease of V.

9 N ] 9 N , N - 9 _ N
=¥ ;&& =¥ <; —& + ;(1 —~ aim) - 9V 4 Nﬁg(l

Since £ > 0, minimizing V amounts to the following problem:

N

Find min Z(l — ;)&
i=1

which can be done as follows (where | M| and [M] respectively denote the floor and the ceiling of M):

Proposition 2.1. Assume Hyp. 1. Furthermore, suppose that & (t) > ... > En(t) (or re-arrange the agents
so that this is satisfied). Then the following strategy minimizes %V:

Define IT(t) = {i € {1,..,N}, &(t) > 0}.

If It (t)| < M, then set a;(t) =1 ifi € It and a;(t) = 0 otherwise.

If |IH(t)] > M and Ear—11 > &y > Ermgr] then set ai(t) = 1 if @ < [M], ajpj41(t) = M — [ M] and
a;(t) = 0 otherwise.

IFIFE@OL > M and &) = &y or Ean = &)y let I = {i € {1 N, &i(1) = Ean (8} and

Ity = AL M} N Iy - Then set ai(t) = 1 df i € Iy, ait) = ﬁ if i € Ita and oi(t) = 0
otherwise.

3 Optimal control for final cost

In this section, we focus on problem (ii) (see Section 1.3), i.e. minimizing the migration functional V at final
time T using Pontryagin’s maximum principle.
Let us compute the hamiltonian H of the scalar system (6):

N N N
i=1 i=1 i=1

By Pontryagin’s maximum principle [33], if a € Uy, assoc1ated with the trajectory &, is optimal on [0, 77,
then there exists A : [0,7] — RY such that £=2 and A = Furthermore the following minimization

= ox ag
condition holds for almost all ¢ € [0, T]:

H(t, (1), A1), a(t)) = min H(E,£(2), A(t), B(1)). (12)

BEUM

Since £ > 0, minimizing H requires to set o; = 1 on the biggest positive \;. The differential equation for
the covectors \; gives:

OH

N

N
1 _
= N E oA — A+ N, 1€ {1,...,N}, (13)
Jj=1

From this we can also compute the evolution of \ = % Do it

— Z (14)

Since the final condition for ¢ is not fixed, the final condition for A at time T gives:

2

ND) = TVET) = (36 (D) 2 () (15)



Proposition 3.1. Ift >0, 4,5 € {1,..., N} , and \;(t) = \;(¢), then \;(t) = X;(t) for all t. In this case, for
a given control a, any control & satisfying d; + d; = o; + o and ay = oy, for every k # i, gives the same
evolution of X. If the control a satisfies the Pontryagin Mazimum Principle, then the control & also does.

Proof. Assume that at time ¢, \;(f) = X;(f). Let us define z;; = A; — \;. The evolution of z;; is given by:
Zii =N —Aj = N — \j = zi;. Hence, 2;(t) = 2;(D)et™%, and if z;;(f) = 0, then for all ¢, z;;(t) = 0, i.e.
Ai(t) = A;j(t). From this it follows that if o minimizes the hamiltonian H, then any control & satisfying
@; + d; = a; + o and dj = oy also minimizes H, since one easily sees from (11) that H* = H® (where we
denote by H* the hamiltonian obtained with the control function «). O

Still assuming that the projected velocities are initially ordered (Hypothesis 1), the following lemma will
allow us to further assume that they are ordered at all time.

Lemma 3.2.
There exists an optimal strategy satisfying the following: For allt € [0,T],

Ifi<j, then &(t) > &(1). (16)

Proof. Consider an optimal control strategy o € U.

Define 7 = sup{t € [0,7]; 38 € U s.t. V4(T) = V,(T) and &” satisfies (16) on [0,]}, where V5 and ¢?
denote respectively the migration functional and the dynamics driven by the control 5. Let us prove by
contradiction that 7 = T. Suppose that 7 < T. Then there exist 4,5 € {1,..., N} with ¢ < j such that
5?(7’) = 5?(7) and §f(t) > ff(t) on |7, 7 + 4] for some & > 0. Design a control strategy 8 such that on
[, T], ﬁ = B;, B; = i and for every k € {1, NY\ (i} By = B. Then for all € [r, 7, &ty =¢),
and 5? (t) = 55 (t). So for all t € [r, 7+ ], ff(t) > ff(t) and V#(T') = V#(T). Proceeding likewise for every
pair of indices (m, n) satisfying m < n and €8 (t) < €8(t) on |7, 7+ 6] we are able to design a control strategy
8 satisfying (16) on [0,7 + 6] and VA(T) = V*(T), which contradicts the definition of 7. In conclusion,
7 =T, 1ie. forall t € [0,T], for every 4,5 € {1,..., N}, if i < j then &(t) > &;(t). O

Hence, from here onward we shall assume that the variables £; are ordered at all time.

Hypothesis 2. Ifi < j, then &(t) > §;(t) for all t € [0,T].

From Hyp.2 and the transversality condition (15), we know that the covectors are ordered at final time, i.e.
A(T) > ... > An(T). Prop. 3.1 allows us to generalize this for any time t:

M) > ... > An(t) foralltel0,T). (17)
The Pontryagin Maximum Principle allows us to state the following:

Proposition 3.3. The optimal strateqy requires controlling the agents with the biggest positive covectors.
Let o € Ups be an optimal strategy and \;, i € {1,..., N} the corresponding covectors. Define:

In(t) = {z c{1,...N} ‘ A(t) > o} and I (t) == {z c{1,...N} ‘ Ai(t) > o}. (18)

If the set I(t) is empty, then there is no control on any agent: o;(t) =0 for every i.
If the set I (t) is mot empty, then there exists i € I, (t) such that a;(t) > 0. Furthermore, 0 =

min(|Zy (t)], M).
Proof. According to Pontryagin’s maximum principle (12), if the control «v is optimal, then it minimizes the
hamiltonian H (11) for almost all ¢ € [0,7]. The only controllable part of H is H = —£ ), a; A;. Minimizing

H requires to control the largest positive \; with the maximum strength allowed, while setting «; = 0 if
A; < 0. If A\; =0, Pontryagin’s maximum principle gives no information on «;. O

This leads to a trichotomy of cases.

e The biggest positive \;’s are always controlled with maximum control: Ziel;r o; = min(|I], M)
(where | - | denotes the cardinality of a set).



e If for 4,7, A\; and \; coincide (at a certain time, which implies at all time) then «; and o are under-
determined. The PMP only requests that a; + a; = ¢ where c is given by the strength of the control
to be used on the two agents.

e The negative \;’s are never controlled: if A; < 0, then «; = 0.

Remark 3.4. The existence of an optimal control for the problem described above is ensured by the convexity
of the sets F(t,&) = {(&+ (1 —ay)f),_, n» @€ 0,1, 3 a; < M} (see [4]).
4 Final cost with two agents

For a clearer understanding of the mechanisms taking place, we consider the simple case of two agents in
R?. We consider the sets of controls Uy;, where 0 < M < 2. Thus, system (6) becomes:

=6 »
L=-L+(1-m)¢
Computing the difference of the two projected variables will also prove useful:
q—b=—(6—&)— (a1 — )€ (20)

Three different situations may arise, depending on the value of the constraint on the control. Indeed, two
constraints are set: a1 +as < M, and 0 < o; < 1 for ¢ = 1,2. We differentiate the cases (a) 0 < M <1, (b)
1<M<2and (¢c) M =2.

4.1 Pontryagin’s Maximum Principal

Notice that the migration functional can be written as:

1 1 5 (a-&)\°
V=@ - (@rart@-w) e+ (552 (21)
once again emphasizing the necessary trade-off between two terms: the mean velocity & and the distance
between the agents |§; — &2|. Computing the hamiltonian of the system gives:

§2—&1
2
In line with Hyp. 1, two cases are possible: £1(0) = £2(0) or £1(0) > £2(0). If £ (0) = £2(0), one easily

sees in (21) that the optimal strategy consists in keeping & (t) = &2(t) for all time, while maximizing the

decay of €. This is done by choosing oy () = as(t) = % for all t. Hence, in the following we will assume:

H(t, &, a) = =€ (a1 A + agha) + (A1 — A2), (22)

Hypothesis 3. £(0) > &(0).

Before studying each case in detail, we give general considerations on the relation between the control «
and A:

(a) If M <1, minimizing H (i.e. maximizing (), )) gives (see Fig.1a): (a1,as) = (M,0) if 0 < Ay < Ay;
(051,042) = (M/Q,M/Q) o< A = )\1; (al,ag) = (M, 0) if \g <0< )\1; (051,042) = (0,0) if A\ <0 and
A1 < 0.

(b) If 1 < M < 2, minimizing H gives (see Fig.1b): (a1, az) = (1, M — 1) if 0 < A2 < A1; (a1,a0) =
(M/2,M/2) ifO0< Ay = )\1; (Oél,Olg) = (1,0) if A <0< )\1; (0417012) = (070) if Ao <0 and A\ <O.

(¢) If M > 2, minimizing H gives (see Fig.1c): (ai,a2) = (1,1) if 0 < A2 < A1; (a1,a9) = (1,0) if
Ay <0< )\1; (Oél,ag) = (0,0) if Ay < 0 and A\ < 0.



(a) Case M <1 (b) Case 1 < M < 2 (c) Case M >2

Figure 1: Minimizing —(\, «)

Notice that in all three cases, if A\; = A, then the Pontryagin maximum principle does not give sufficient
information since any combination of c; and g such that ag + s = M minimizes the scalar product —(\, &)
(see Figure 1).

The dynamics for A are given by A= -VH = <

1+a l—a
2 tA1— 2 2o

Lfan ) _ ooy ), which allows us to compute the
2 2 2 1

evolution of the difference A1 — Aa:

d

dt
The transversality conditions give: A(T) = VV(T) = (&(T),&(T))". Hence, if the final configuration is
such that & (T) # &(T), i.e. M (T) # Xo(T), the difference A\; — Ay increases with time. On the other
hand, if A\{(T) = \o(T), then Vt < T, A1(t) = Ao(t). If the dynamics allow us to drive & and & together
before time 7', then A;(t) = A2(t) for all ¢, and the Pontryagin maximum principle does not give sufficient
information, as seen above.

(A1 = X2) = A1 — do. (23)

4.2 Global Strategy

According to equation (21), the functional V can be written as:

52 + (51 - 52)2. (24)

A\
4

Minimizing V requires minimizing £ and (£; — &)? simultaneously. The evolution of £ is given by:

=5 +a) € (25)

while that of (&1 — &2)? is:

% (61— &)%) = —2(&4 — &)* — 2(& — &)é(a1 — aw). (26)

Thus, minimizing £2 (both instantaneously and globally) requires using full control, i.e. setting o +ap =M.
On the other hand, the strategy to minimize (& — £2)? is less clear. It would require both maximizing £ and
maximizing the difference oy — o (assuming that £ —&; > 0), and these conditions might not be compatible.

4.3 Case M =1

Theorem 4.1.
Let T'> 0 and let M = 1. Furthermore, let a = (a1, a2) € Uy (see (4)) be an optimal control and & be the
corresponding trajectory of system (19). Define to = 21n(£1(0)/£(0)). Then



(i) T > to if and only if &(T) = &(T). In such a case, the the control satisfies: a1+ az =1 (so0 £(t) =
£(0)e™t/2). For instance, the strategy (a1, as)(t) = (1,0) for all t € [0,to] and (ay, a9)(t) = (1/2,1/2)
for all t € [to,T] is optimal.

(it) If T < to, then a(t) = (0,0) for all t € [0,t*[ and a(t) = (1,0) for all t € [t*,T], where t* = 2In(X)
and X € [1,€7/?[ is defined as follows:

2
X = argxer[rllienT/Q] (&1(0) + £(0) (X2 — 1))2 + (52(0) +£(0)(X? — 1)+ 2£(0) X (772 — X)) } .
Proof. Let & be an optimal trajectory achieved with optimal control «.

To prove (i), we shall show that the three statements (a) T > tg, (b) there exists ¢ € [0,7] such that
&1(t) = &(t) and (¢) & (T) = &(T) are equivalent.

Suppose (b), i.e. that there exists 7 € [0,T] such that & (7) = &(7). Then necessarily & (T) = &(T).
Indeed, suppose that &;(T") # & (T'). Then any strategy & such that on [0, 7], & = aw and on |7, T}, (a1,da2) =

]

(atfee a1tes) aehieves: E(T) = &(T) and (& —&)2(T) = 0 < (& —&)(T) (where €, V denote the trajectory
and cost corresponding to &), so according to equation (24), V(T) < V(T') and control strategy o cannot be
optimal. Hence, & (T) = &(T).

Now suppose (¢) &1(T') = &(T'). The transversality condition (15) gives A1 (T') = Ao(T') and from Proposition
3.1 we get: A\i(t) = Aa(t) for all t € [0,T]. Then, A = > a;\; = (3. ;)\ Since &(T) > 0, the transversality
condition (15) gives: A(T) > 0, and A(t) = A(t) = Aa(t) > 0 for all t € [0,7]. Therefore, the set Iy, see
(18), is not empty, so according to Proposition 3.3, the optimal control strategy requires using maximal
control strength: a; + ag = 1. According to equation (25), this suffices to fully determine &(t) = £(0) e~*/2.

Then & (t) — &(t) = e ((51 —&)(0) — £(0) fy (a1 — 042)65/2d5), and & (t) — &(t) = 0 if, and only if,

fg e/ (o —ag)(s)ds = (£1(0) — €(0))/£(0). Notice that min(, azyeu 1t | (§1—E&2)(t) = 0} is obtained when
@1 — g is maximal, i.e. for (a1, a2) = (1,0). With this strategy, min,, a,ycu, {t | (§1 —&2)(t) =0} =19 =
21n(&1(0)/£(0)). Hence, we must have: T' > ¢,.

Lastly, suppose (a) T" > to. Design a strategy & so that for all ¢ < 9, (&1,a2) = (1,0) and for all
t > tg, (a1,a2) = (1/2,1/2). This strategy is optimal since it maximizes the decrease of £, see (25), and
achieves (& — &)(T) = 0, see (26). Hence, our optimal strategy a must also satisfy: & (7)) = &(T) and
a1 + ag = 1. This proves (b).

We showed that (a), (b) and (c) are equivalent. We thus proved the first part of the proposition: T' > tg if
and only if & (T") = &(T). In this case, it also holds: a; + as = 1.

If on the other hand, (%) T < to, then &1 (t) > &(t) for all ¢ € [0,T] (since (b) implies (a)). According to
condition (15) and to Prop. 3.1, A1(t) > Xa(t) for all ¢ € [0, 7] and A (T) > 0. The evolution of \; is given
by: A1 = 2 (a1A1 + a2)2) + Ar — A > 0 since A; > A. Hence, two cases must be distinguished: either A; >0
at all time, so the set I /\+ is non-empty and full control will be used at all time, or there exists t* €]0, T such
that Ay < 0 on [0,t*[, A1 (t*) =0 and A; > 0 on |¢*,T], in which case a = (0,0) on [0,¢*[ and « = (1,0) on
Jt*,T]. Knowing this, it is easy to express &1, & and V as functions of ¢*:

&i(t) = e " (&(0) + f:(o)(et* -0
Ve [t T], § &a(t) = e H(€2(0) + £(0) (e — 1) + 2£(0)e! /2(e!/2 — €t'/2)) (27)
V(t) = &3 (t) + &5(t)

Denoting X = et'/2, V(T') can be written as a biquadratic polynomial in X:
V(T)(X) = e | (£2(0) + E0)(X2 = 1) + (£(0) + £(0) (X2 — 1) + 26(0) X (/2 - X))Q] :

We look for X minimizing V(T)(X) in the interval [1,e”/?] (so that t* € [0,7]). Notice that the leading
term is 2e~27£(0)? - X*. Hence, there are at most two local minima in the interval [1,e?/2]. Furthermore,
V(T)(1) = e T [€1(0)* + (§2(0) + 26(0)(e™/% — 1))*] and V(T)(e™/?) = e*T[(£1(0) + £(0)(e/? — 1))* +
(£2(0) +£(0)(eT —1))?], s0 V(T)(1) < V(T)(e™/?), which means that X < e”/2. If X = 1, then t* = 0 s0 it is
optimal to act with control (1,0) on the full interval [0,7]. If 1 < X < /2, then 0 < t* < T. The optimal



control strategy will require leaving the system to evolve without control on [0,¢*[, and acting with control
a=(1,0) on [t*,T]. O

Remark 4.2. The ezistence of an initial "Inactivation” period can be proven also with any number of agents
(see Theorem 5.8). Numerical simulations with any number of agents (see Section 5.2) show that in some
cases it is indeed optimal to let the system evolve without control on an initial time interval [0,t*], where
t* > 0.

4.4 Case M <1

Generalizing to the case of any M < 1, we conduct the same analysis and the optimal control strategy is
similar.

Theorem 4.3. Let T>0 and M<1. Let a = (a1,2) € Upr (see (4)) be an optimal control and & be the
corresponding trajectory of system (19). Define to = 52 In (255 (£1(0) — £(0))/€(0) + 1), Then

(i) T > to if and only of §&1(T) = &(T). In such a case, the control satisfies: oy +ag = M (so £(t) =
E(0)e=M1/2).

(i) If T < to, then there exists t* € [0,T] such that a(t) = (0,0) for all t € [0,t*[ and a(t) = (1,0) for all
te 1.

Remark 4.4. To compute t* € [0,T[ in the case T < to, one can compute V(T)(et /) depending on
t* € 10,T) similarly to the case M = 1.

Proof. Let £ be an optimal trajectory achieved with optimal control a € Uy;. We argue as in the case M = 1.
To prove (i), first suppose that there exists 7 € [0,T] such that & (7) = &2(7). Then, as in the case M =1,
necessarily it holds & (T) = &(T) and any strategy achieving & (T') = &(T) while using maximum control
aq + ag = M is optimal. Then & (t) — &(t) =0 < fot eﬁs(al — ag)(s)ds = (£1(0) — &(0))/£(0). Hence,
ming ey, {t | (§&1 — &2)(t) = 0} is obtained when oy — s is maximal, i.e. for (a1, as) = (M,0). With this
strategy, mingey,, {t | (§&1 — &2)(t) = 0} = o as defined above. Hence, if there exists 7 < T such that
&1(1) = &(71), then T > tg. This proves the first implication of the proposition: if & (T) = &(T'), then
T > to.

Conversely, if T' > to, then the strategy (&1,ds) = (M,0) on [0,to] and (d1,d2) = (X,4) on [to, T]
is optimal since it minimizes £(T) and achieves & (T) = &(T'). Hence, if a is optimal, it must also satisfy
a1 +ag = M and & (T) = &(T), which proves the second implication.

Now assume (ii) T < to. From (i) we get: & (t) > &2(¢t) for all ¢ € [0,T]. One can then argue as in the
case M = 1. According to Pontryagin’s Maximum Principle, as = 0 and two cases have to be distinguished:
either A1 > 0 at all time, so the set I} (see (18)) is non-empty and full control will be used at all time, or
there exists t* €]0,T[ such that Ay < 0 on [0,t*[, A1 (¢*) = 0 and A; > 0 on ]¢*,T], in which case o = (0, 0)
on [0,t*[ and o = (M, 0) on |t*,T1.

O

Remark 4.5. Notice that in the limit case M — 1 of Theorem 4.3, one finds the same expression for ty as
in Theorem 4.1.

4.5 Case M =2

In order to determine the optimal strategy, let us first study the evolution of the covectors A. From &;(T) >
&(T) > 0 (see Prop. 1.1 and Hyp. 2) and the transversality condition (15), we get A\ (T") > 0.

Proposition 4.6. Let M = 2 and A1 and Ay be the covectors corresponding to an optimal control strategy
for the system (19). Then they satisfy the following properties:

(1) If Xo(T) > 0, then A1(t) > 0 and A2(t) > 0 for all t € [0, 7).
(i1) If Xo(T) =0, then A1(t) > 0 and A2(t) =0 for all t € [0, 7).
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(i11) If Aa(T) < 0, then X2(t) < O for all t € [0,T].

Proof.

(i) Let \o(T) > 0. Suppose that there exists T € [0,T] such that a(7) = 0 and A2(t) > 0 for all t €)1, T).
Then since \y > Ag > 0 on |7, T], according to Pontryagin’s mazimum principle (see Section 4.1), (a1, az) =
(1,1) on |7, T], which gives the following evolutions: Ay = A1 and Ay = \y. Hence, Ao(1) = Ao(T)e™™ T > 0,
which contmdzcts the definition of 7. Therefore, Aa(t) > 0 for allt € [0,T], and by (17), A1(t) >0 .

(ii) Let Xo(T) = 0. Let 7 := infjo 7{t € [0,T] s.t. Ao(t) = O for allt > t} and suppose that 7 > 0. By
definition of T, Aa(7) = 0. Since A\1(t) > A\a(t) for all t (see Prop. 3.1), there exists an interval [T — 6,7[ on
which Ay > 0 and either A2 > 0 or Ay < 0. If A2(t) > 0 for all t € [T — &, 7], then according to Pontryagin’s
mazimum principle (Section 4.1), the control satisfies cy (t) = an(t) = 1, which gives: Aa(t) = Aa(t) > 0. So
A2(7) > 0, which contradicts the definition of T. If on the other hand \o(t) < 0 for allt € [T — 0, 7], then
az(t) = 0 and \y(t) = 1 Xa(t) < 0, which is impossible since it implies Ao(7) < 0. Hence, 7 = 0. Furthermore,
since A1 (T) > 0 and Ao = 0, then M=)\ ina neighborhood of T, which ensures that \i(t) > 0 for all
t €10,T] (by the same reasoning as in (i)).

(iii) Let Ay(T') < 0. Define 1 := infjg p{t € [0,T] s.t. A1(t) > 0 and Xa(t) <O for all t > t}. Then on ], T},
as seen in Section 4.1, a1 = 1 and ay = 0, which gives: \a(t) = Xo(7)eT 7. Since \o(T) < 0, it follows
that Ao(7) < 0. Hence, either 7 = 0 or M\i(7) = 0. Notice that since \1(t) > Ao(t) for all t, \y is strictly
increasing (see (13)). Then the former case implies that A2(t) < 0 for allt € [0,T]. In the latter case, we
get that Aa(t) < 0 for allt <. O

This information about the covectors allows us to solve the optimization problem based on the initial
conditions and the final time. Recall from Proposition 1.1 that & (0) > 0.

Theorem 4.7. Let M=2. Let (a1,a2) € Uz be an optimal control strategy and & be the corresponding
trajectory for system (19). Define to = 21In (£1(0)/(2£(0))).

(1) If £2(0) > 0, then (a1, a2) = (1,1).

(1) If £2(0) <0 and T > tg, then &(T) =0 and oy = 1. For instance the strategy (a1, az) = (1,0) for all
t €10,to] and (a1, 0) = (1,1) for all t € [ty,T)] is optimal. Furthermore, if there exists t € [0,T] such
that &2(t) = 0, then & (t) =0 for all t € [t, T).

(i5i) If £2(0) < 0 and T < tg, then there exists t* € [0,T[ such that «a(t) = (0,0) for all t € [0,t*] and
a(t) = (1,0) for allt € [t*,T).

Proof. Let (a1, @2) be an optimal control strategy and & be the corresponding trajectory.
(i) Let &2(0) > 0. According to Prop. 1.1, for all ¢t € [0,77] it holds & (t) > 0 and &3(¢) > 0. Then A\ (7)) > 0
and A2(T) > 0. From Prop. 4.6 it follows that A;(¢) > 0 and A2(¢) > 0 for all ¢ € [0,T]. According to the
PMP (see Section 4.1), maximal control has to be used at all time, i.e. (a1, a2)(t) = (1,1) for all ¢ € [0,T].
For cases () and (%ii), let £&2(0) < 0. By Prop. 1.1 it holds & (¢t) > 0 for all ¢ € [0,7]. Suppose that
&(T') > 0. Then from Prop. 4.6 we get A1 (t) > Aa(t) > 0 for all ¢t € [0,T], so (a1, a2) = (1,1). But with this
strategy & = —&o, 50 &(t) = &(0)e~" < 0 for all t € [0, T)], which contradicts & (T) > 0. Hence &(T) < 0.
(#) First assume that T > ¢y. Let us show that &(7) = 0 and oy = 1. Such a strategy exists, since for
instance the control (81, 82)(t) = (1,0) for ¢ € [0, o[ and (B, B2)(t) = (1,1) for ¢ € [to, T] achieves &5 (t) = 0
for all t € [tg,T] (where &7 denotes the trajectory corresponding to the control strategy () — by direct
computation of (19). Suppose that £2(T") < 0. Then « cannot be optimal since the control strategy 8 achieves
the minimum of £7(T)2, see (19), and of &5 (T)? and therefore the minimum of V(T) = ¢2(T)2 + €5 (T)2.
Hence a must satisfy ay = 1 and £(7T") = 0 in order to perform as well as 3. Obviously, all strategies that
achieve &(T) = 0 with ay = 1 achieve the same final positions (see (19)) and thus have the same V(7).
Furthermore, if there exists a < T such that &(#) = 0, then & (t) = 0 for all ¢ € [£, T]: if &(F) = 0, then
(1) = (1 — ap)é(f) > 0 and therefore & cannot become negative, once it reaches 0. On the other hand, if
&(t) > 0, then &(T) > 0 by Prop. 1.1.
(iii) Assume now that T < tg. Firstly, we show that an optimal strategy (by PMP) always achieves
&(T) < 0. We argue by contradiction: Assume that &(T) = 0. Then A\ (T) > 0 and \o(T) = 0 and,
according to Proposition 4.6, it follows that A (t) > A2(t) = 0 for all ¢ € [0,T]. According to the PMP,
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a1 = 1. Then the growth of &, is maximal if, and only if, as = 0 since in this case ¢ is maximal. But with
this strategy &2 cannot reach 0 before to — by direct computation of (19). Therefore &(T) < 0, so A2(T) <0
and Aa(t) < 0 for all t € [0,T] by Prop. 4.6. Hence we are in the same situation as in the case M = 1 and
M < 1. Two cases are possible: either \; > 0 at all time, so the set I;r is non-empty and full control on &;
is used at all time, or there exists t* €]0,T[ such that A\; < 0 on [0,¢*[, A1 (t*) =0 and A; > 0 on |t*,T1], in
which case a = (0,0) on [0,¢*[ and o = (1,0) on |t*,T7. O

Remark 4.8. To compute t* € [0,T] in the case £&(0) > —&2(0) > 0 and T < to, one can compute V(T)(X)
depending on t* € [0,T[ similarly to the case M = 1.

4.6 Casel <M <2

As in the case M = 2, we state the following properties concerning the covectors .

Proposition 4.9. Let M €]1,2[ and A1 and Ay be the covectors corresponding to an optimal control strategy
for the system (19). They satisfy the following properties:

(i) If \ao(T) > 0, then A1(t) > 0 and \a(t) > 0 for all t € [0,T].
(i) If \o(T) = 0, then A1(t) > 0 and A2(t) =0 for all t € [0,T].
(#ii) If A2(T) < 0, then A2(t) <0 for all t € [0,T].

Proof. The proof is very similar to that of Prop 4.6.

(i) Let Ao(T) > 0. Suppose that there exists T € [0, T[ such that A2(7) = 0 and A\2(t) > 0 for all t €], T].
Then if A1 > Ao > 0 on |1,T], according to Pontryagin’s mazimum principle (see Section 4.1), (a1, a2) =
(1, M — 1) on |7, T], which gives Ay = Mo, If My = X2 > 0 on |7, T, then oy + ap = M (see Figure 1b),
which also gives Ay = My, Hence, Aa(7) = a(T)e' T=T) > 0, which contradicts the definition of 7.

For (i) and (i1i) we reason the same way as in the proof of Proposition 4.6. O

As in the previous sections, this allows us to solve the optimal control problem by distinguishing cases
based on the initial conditions and the final time. The case &(0) < 0 is illustrated in Figure 2.

Theorem 4.10.
Let M €]1,2[. Let o € Ups be an optimal control strategy and & be the corresponding trajectory.

Cto = £1(0) _ £1(0) - £.(0)
Define to <ty <ty as: to = 2In (22(0)) =557 In (25(0)) and ty = 325 In( ).

If £5(0) > 0, two subcases are to be distinguished:
o If T <ty, then (a1,a2) = (1, M — 1) and 0 < &(T) < &(T).
L] IfT Z tz, fl(T) = gg(T) and a1 +ag = M.
In the case £3(0) < 0, four subcases appear:
o IfT < tg, then &(t) < 0 and there exists t* € [0, T such that (a1, a2)(t) = (0,0) for all t € [0,t*] and
(a1, a0)(t) = (1,0) for all t €)t*,T).
o Ifty <T <ty, thenay =1 and &(T) = 0.
o Ift; <T <tg, then (ag,a0) = (1, M — 1) and 0 < &(T) < &(T).
o Ifto <T, then ay + aa = M and & (T) = &(T).

Remark 4.11. Notice that if £1(0) = £2(0), then t2 = 0.

Remark 4.12. In the limit case M — 1, the times to and t1 are equal, which is in line with Theorem 4.1.
In the limit case M — 2, t1 and to are undefined, in line with Theorem 4.7.

Proof. See appendix. O
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(a) T < to (b) to<T <t (@)t <T <t ()t <T

Figure 2: Control strategies in the case £2(0) < 0 (controlled agents in red, uncontrolled ones in blue)

5 Final cost with any number of agents and control bounded by
M=1

5.1 Theroretical Analysis

In this section, we address the optimal control problem of minimizing V(7') with any number of agents,
setting the upper bound M = 1 on the strength of the control, i.e. Zfil a; < 1. We define the set of such
controls:

N
U= {a 20, 7] — [0,1]| @ measurable, s.t. for all t € [0, T] Zai(t) < 1}. (28)
i=1

We remind the equations governing the evolution of &; and ¢ for i € {1,..., N}:

*(Z ai) €. (29)

f=—&+(1—a)f and £

2

As before, we aim to minimize the migration functional V = ﬁ &2 over the space U at final time:

@
Il
-

Problem 1. Find arg mizrle(T)'
ae

Let us consider the restricted set of full-strength controls Upg C U:

N

Urs = {oz [0, 7] — [0, 1]N‘ o measurable, s.t. for all ¢, Zai(t) = 1}. (30)
i=1
We also introduce the set of optimal controls Uops:
Uopt = {a clU st. YV, = rﬁnelng}. (31)

A question then arises naturally: are there optimal controls among full-strength controls? In other words,
we study the intersection Ups N Uops. To answer this, we first look for an optimal control strategy among
the restricted set of controls Ugg, i.e. we consider the problem:

Problem 2. Find arg min V(T).

a€EURs

Introducing the partial mean 5_171 = %Zi:l &, we design the following optimal control strategy to solve
Problem 2.

13



Theorem 5.1 (Full-control strategy). _
Let T > 0. The strategy designed in Prop 2.1 to decrease V instantaneously is an optimal control strategy
for Problem 2. It can be explicitly described as follows:

Define t; =0 and forl € {2,...N}, t; = %ln ((l — 1)%% + 1).

If there exists | € {1,...,N —1} such that T € [t;,t;11], then any strategy satisfying: & (T) = & 1(T) for every
1e{1,...,1}, Zi=1 a; =1 and a; =0 for everyi € {{+1,...,N} is optimal.

If T > ty, then any strategy satisfying &(T) = &(T) for all i € {1,..., N} and Zfil a; =1 is optimal.

For instance, if T € [t;, t;+1[, one optimal strategy would consist in defining the following piecewise constant
control:

oty =+ ifi<k

Ozi(t) =014fi> k. (32)

VkE <, Vt e [tk,tk+1[7 {
Proof. Let us first show that if T > ¢;, then the optimal control strategy for Problem 2 must achieve
&(T) = & 4(T) for all i € {1,...,1}, reasoning by contradiction.
Suppose that there exists k € {1,...,1} such that & (T) # & ,(T). Using Hyp. 2, we can suppose that
there exists m < [ such that for every i € {1,....,m}, &(T) = & (T), and for every i € {1,...,m} and
je{m+1,.. N}, &(T) < &(T).

Let j € {m+1,...,1}. The transversality condition (15) gives: for every i € {1,...,m}, \;(T) < X\(T).
According to Proposition 3.1, for all ¢ € [0,T7], for every i € {1,...,m}, A;(¢) < A\i(t). According to the PMP,
as seen in Section 3, only the biggest covectors are controlled, and since a € Upg, with maximum control.
So > a; =1 and a; = 0. The evolutions of §; and &1.m are then given by:

§=—6+¢
> _ _ 33
{gl,m = _gl,m + %5 ( )
Since Zivzl a; = 1, the evolution of the mean is given by f = —+¢&, and we can compute £ = £(0)et/N,
which in turn allows us to solve:
(1) =et (£(0) + 2=E0) (e -1
vepr J90=" (:sj O+ RO >) -
Eim(t) =e (fl,m(o + = 1 €0)(e v - 1))
We get:
_ _ 1 N _ N-1
G = D) = (60 - 60) — & P EOETT 1)) (35)
We made the hypothesis that 7 > ¢; = <2~ In ((l — 1)%% + 1). Hence,
G = )T) < T (6000) = 0 = 20~ D(Eva(0) ~ 60D
= e [y (0) — mé;(0) — (1 = i1 (0) + (L~ V&)
() m -1
< Lot lz &(0) =Y &(0)+(1—1- m)fz(o)]
m =1 i=1 (36)
-1
= %e_T l— Y GOy +(-1- m)gl(o)l
i=m+1
< e 1 m)a0) + (1 - mE(0)
=0,

where inequalities () derive from Hypothesis 1: since j < I, &(0) > &/(0). However, (&1, — &)(T) < 0
contradicts that &;(7T") < &(T') for every i € {1,...,m}. From this we conclude that if 7" > #;, then for every
ie{L,.., 1}, &(T) = &,4(T) for an optimal control strategy fulfilling Hypothesis 2.
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Let us now show that if T < t;,1, then for every k € {I +1,..., N}, a; = 0 and &(T) < &14(T).

F 1 7| = T N1 1 _
EuT) = 6(1) Y e 00 - 60) = [ TG D0y - a0}
T
(é) eiT <5111(0) — fk(O) — /0 6%8%5(0)(18

= (100~ 6.0) - FE0ETT - ) ol

> e (£24(0) — €(0) = (£1.4(0) — &41(0)))
=e T (&11(0) — &,(0))

where .
(1) was computed using the evolutions of & and & ;: € = —Ep+(1—ag)fand &) = —5_1714—(1—% 22:1 )€,
(2) was obtained from inequalities 22:1 a;(t) <1 and ay(t) > 0 for all ¢,

—17&1,.(0)— 0
NNllfl,L( )=&i+1(0) +1),

. . . _ N
(3) comes from the inequality: T' < t;41 = 5~ In( 0

(4) derives from Hypothesis 1 since k > 1 + 1.
Hence, for every k € {l +1,..,N}, &(T) > & ,(T). Furthermore, the transversality condition (15) along
with Proposition 3.1 imply that for all ¢ € [0,T] for every i € {1,...,1}, A\i(t) < A\;i(t) and the Pontryagin
Maximum Principle as seen in Section 3 states that o, = 0. So & (T) > gl,l(T).

We proved that if T € [t;,t;41], then for every i € {I+1,..., N}, a; = 0. Since ¢ is fully determined as
a € Ups, this means that for all i € {I+1,..., N}, &(T) is also fully determined (satisfying the equation
£ = —&+¢€ ). On the other hand, we proved that for all i € {1,...,1}, &(T) = &, ;(T) and that Zi:l a; =1,

so &1 is also fully determined (satisfying the equation &;; = —&1; + 51¢ ). Hence, any strategy such that
for all i € {1,...,1}, &(T) = &4(T) with 22:1 a; =1and foralli e {{+1,...,N}, o; =0 is optimal for
Problem 2. O

Notice that this optimal control strategy is not sparse, as control is split among more and more agents
as time goes. However, it is not unique and one could very well act on one agent at a time until all reach
the known final velocities. Going back to the general Problem 1, we prove that under certain conditions, the
optimal control strategy uses full strength at all time, i.e. a°P* € Upg.

Theorem 5.2 (Sufficient condition for full control).
Define the time ty = >~ In (<N71)2 Gnv1(0)=En(0) | 1) as in Theorem 5.1.

N-1 N £(0) B
If T > ty, then the optimal strategies a®Pt to Problem 1 belong to Urg and for these controls &(T) = £(T)
for everyi € {1,...,N}.

Proof. If T' > ty, then the instantaneous decrease strategy designed in Theorem 5.1 is optimal. Indeed, we
noticed that the migration functional can be written as the sum of two terms (10): V.= &2 + £ 3°(& — €)%
The strategy designed in Theorem 5.1 minimizes £(T) by using full control at all time, hence minimizing
&(T)? since ¢ > 0. Furthermore, it achieves &(T) = &(T) for all i € {1,..., N}, thus minimizing the second
term % _Z(fl — €)%, Hence any optimal control strategy has to use full control at all time and achieve
&(T) =&(T) for every i € {1,..., N} in order to perform as well. O

We finally address the general case stated in Problem 1: minimize V(T') over the set of controls U, for any
time 7. In the following theorem, we show the existence of an initial "inativation" time interval: the optimal
strategy can require to let the system evolve freely (i.e. without control) at initial time, before acting on it
with full strength.
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Theorem 5.3 (Inactivation Principle).
If T < ty, then one of the two holds: any control strategy a°P" either belongs to Urs and the strategy designed
in Theorem 5.1 is optimal, or there exists some § < T such that a®?* =0 on [0,6], and 3. a?" =1 on [6,T).

opt

Proof. According to Hypothesis 2, we can assume that & (T") > &(T) for every ¢ € {1, ..., N}. Furthermore,
E(T) > 0, so &(T) > 0. From the transversality condition (15) we deduce: A\ (T) > X\;(T) for every
i€ {l,..,N} and A\{(T) > 0. From Prop. 3.1, we know that for all ¢ € [0,T], Ai(¢) > Ai(¢). According
to Prop. 3.3, full control is used at time ¢ if A\1(¢) > 0 and no control is used if A;(¢) < 0. Let us study
the evolution of A\i: A\ = % Yoo — X + Ai. By the Pontryagin maximum principle, we always have
S ;A > 0. Furthermore, \; — A > 0. So A;(t) > 0 for all t € [0,T]. We show that \; = 0 at most at
one point. Indeed, suppose that A;(7) = 0 for some 7 € [0,7] and that A;(7) = 0. Then A\ (1) = —A(7)
so A(7) = A\ (7) = 0, and since the \;’s are ordered, \;(7) = A(7) for every i € {1,...,N}. According
to Proposition 3.1, \;(t) = A(¢) for all time ¢ and every i. Since \;(T) > 0, there exists a time interval
[7*,T] such that A\j(t) > 0 for all ¢ € [7*,T]. On this interval, \; = A 20y = + A1, which gives:
M(T) = A (7%)enT=7") This contradicts the existence of a time 7 at which A;(7) = 0. In conclusion, if
A1(7) =0, then )'\1(7') > 0so A; = 0 at most at one point.

Hence, there is a dichotomy of cases:

Either A;(t) > 0 for all time, so I(t) # ( for all £, which implies that a°P* € Upg according to Prop. 3.3. In
this case, arg max,ey V = arg maxa ey ¥ and the control strategy designed in Theorem 5.1 for Problem 2
is optimal also for Problem 1.

Or there exists § € [0,T] such that A(t) < 0 on [0,d] and A;(t) > 0 on [§,T], which implies that «(t) =
0 on [0,0] and > «;(t) = 1 on |6, T]. Practically, an optimal control strategy would consist in letting the
system evolve without control on [0, §[. Then the full-control strategy from Theorem 5.1 can be applied on
[0, T] with the new initial positions £(0). O

Remark 5.4. Although this result may seem counter-intuitive, in certain cases it makes sense to let the
system evolve freely, at least initially. Indeed, without control the system naturally regroups in order to reach
CONSENSUS, MINIMIZING vazl(& —&) in (10), but keeping & constant. Actual examples of such cases are shown
in the next section.

Remark 5.5. Note that a constraint M < 1 would not change the nature of the results. It would only mean
acting with lesser strength on the controlled agents, therefore changing the values of the times t; defined in
Theorem 5.1, but the optimal control strateqy would be unchanged. With a constraint M > 1, we can expect
results similar to those of Section 4, with two kinds of Inactivation periods, consisting either in letting the
system evolve freely, or in controlling it with a non-mazimal total strength 0 < Y. o; < M (see Theorem 4.7

(ii) and (%ii)).

5.2 Practical Approach

We proved in the previous section that the optimal strategy can either be to act with full control as in
Theorem 5.1, or to let the system evolve without control on some time interval [0, §], before acting with full
control on ]d, T]. The migration functional Vs can be computed explicitly as a function of §. We then look
for the value of 0 that minimizes V(7).

Let us denote by £° the solution to system (29) when no control is applied on [0,d] and full control is
used on |4, T]. Equation (29) gives:

oo N 3 on [0,4], (38)

which allows us to solve: £2(8) = e~ (£2(0) + £°(0)(e — 1)).
We then apply the strategy designed in Theorem 5.1 with the new initial conditions £(§) and the new
z5 s
final time 7 — §. Define the times t{ = 0 and for [ € {2,.., N}, t) = &5 In <(l — 1)%%&;)&(6) +1).

Find l € {1,...,N — 1}, such that T — ¢ € [t?,tfﬂ[. Then any strategy satisfying £ (7)) = g‘fl(T) for every
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ie{1,..,1}, Zlizl a;(t) = 1for all t € [6,T], and «; = 0 for every i € {l + 1,..., N} is optimal. From
equation (29) we get:

&5 _ 76 1—175
&=, +7¢

€ =-+8 forie{l+1,..,N} on [6,7T], (39)
£ =4
from which we can solve:
) = E,(0) = =0 (,0)+ P FLEOET T D) forallie (et

E(T) = e~ (T-9) (gf(a) + 288 (0)(e7m (T=0) — 1)) forallie {l+1,..,N}.

N
We then compute VO(T) = + >~ &2(T)? and look for 5H[13HT] Vo(T) (see Figure 3).
i=1 €lo,

x10~° Migration functional at final time with respect to inaction time
1.355 T T T T T T T T

1.35F

1.345

1.34

vo(m)

1.3351

1.331F

1.325

1.32 L I L I I L I L I
0 05 1 15 2 25 3 3.5 4 4.5 5

Figure 3: V(T with respect to Inactivation time §. Here the optimal Inactivation time is § = 1.94.

Series of simulations were then run to look for cases in which 6 > 0. Tables 1 and 2 list the number of
such cases found over 1000 simulations, for different values of the number of agents and of the final time.
For the first series of simulations (Table 1), initial projected variables &;(0) were chosen randomly in the
interval [—1,1] and such that the mean ¢ is strictly positive. In Table 2, initial projected variables were
chosen randomly in the interval [—0.5,1.5]. As expected (and proven in Theorem 5.2), for larger values of T,
it is always optimal to act with full control at all time (in other words 6 = 0). One also notices that as the
number of agents increases, "Inactivation" cases become less and less frequent. They are also less frequent
when £(0) is larger (Table 2). This can be explained again by looking at the two terms in the migration
functional V (10). When £ is small (as is the case in the first set of simulations), one can concentrate on
minimizing the second term % S(& — €)%, which does not necessarily require full control since the system
naturally evolves to minimize this term. On the other hand, when ¢ is large, full control is required to
minimize it, which explains the smaller number of "Inactivation" cases in the second set of simulations.

Table 3 shows the average of the relative difference Vf%,i:cvs, where V? was obtained by using optimal
control and V. by using full control at all time (as designed in Theorem 5.1), in the case of the first set
of simulations, i.e. &(0) € [-1,1]. The gain in performance when using the optimal strategy is minor
(significantly less than 1% in most cases), and decreases as the number of agents increases.

Hence, Uopt, NURs = () occurs in very few cases, and when it does, the gain in performance compared to
the full control strategy is hardly significant. For reasons of computational speed and complexity, it is very
reasonable to neglect those cases and to apply the full control strategy at all time.
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Number ofagents\ 5 \ 10 \ 20 \ 50 ‘

T=3 16 %0 | 9 %o 0 0
18 %o | 7 %o | 3 %o 0
10 %0 | 2 %0 | 2 %o 0
2 %o | 1 %o 0 1 %o
0 0 0 0

I
| o o i

= =

Table 1: Number of cases in which ¢ > 0 out of 1000 simulations. £;(0) chosen randomly in [—1,1].

[ 50 ]

’ Number of agents \ 5 \ 10 \ 2

o
t
o

T=3 4%0 | 1%0| 0 0
T—4 2 %o 0 0] 0
T=5 1 %o 0 01]O0
T=6 0 0 0] 0
T=7 0 0 0] 0

Table 2: Number of cases in which § > 0 out of 1000 simulations. &;(0) chosen randomly in [—0.5,1.5].

’ Number of agents \ 5 \ 10 \ 20 \ 50
T=3 0.073% | 0.001% - -
T=4 0.27% | 0.018% | 0.001% -
T=5 0.91% | 0.056% | 0.0069% -
T=6 1.53% 0.2% - 0.00003 %

Table 3: Relative improvement of V® w.r.t. Vg

Figure 4 shows the evolution of the projected velocities &, i € {1, ..., 10} with respect to time, in a case
where the optimal strategy requires full control at all time. The control function is the one designed in
Theorem 5.1 and acts first on &1, then on & and &», and so on until all have reached consensus, at which
point it acts with equal strength on all agents to drive & down to 0.

6 Optimal control for integral cost

In this section we focus on minimizing the integral of the migration functional, with the constraint on the
controls M = 1. As done in Section 5, we define two problems (where U (28) and Upg (30) are defined as
before).

Problem 3. Find arg melzrll fOT V(t)dt.

Problem 4. Find arg min fOTV(t)dt.

a€EURs

6.1 Pontryagin’s Maximum Principle

We first prove general results, with the aim of solving Problem 3. In order to use Pontryagin’s maximum

principle, we introduce the new hamiltonian H = (A, f) + AV and the equations governing the covectors’

evolution \; = ,%_ Considering normal trajectories, we set A\’ = 1 and obtain:

\ N R N
z:1(— i&i) + fg:l(l — i)\ + z; & (41)

H
A== & 21— ay)A — 26
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Figure 4: Evolution of the projected velocities §; with the full strength optimal control for a system of 10
agents. In this example £(0) = 0.25 so full control at all time is needed to drive £ to the desired velocity
V =0 (ie. § =0). At final time T = 4.5 the system has reached consensus, but not yet at the desired
velocity.

Since the final condition is not fixed, we have the following transversality condition for the covectors:
NT) = 0. (42)

As in the minimization of the migration functional at final time (Section 3), we define I and I} (see (18)).
Then minimizing H = Ziil —a\ + H (where H contains only uncontrolled terms) requires the following :
if K & I, a = 0; furthermore, if I)J\r # (), then Zielf a; = 1.

As in Section 5, we make Hypothesis 1. Given the initial order on the agents’ projected velocities &;, we
prove the following:

Lemma 6.1. There exists an optimal control strategy satisfying:
vt € [0,T], Vi,j € {1,..., N}, i <j = &(t) > &(t) (43)

Proof. The proof is very similar to that of Lemma 3.2. Consider an optimal control strategy a € U.

Define 7 = sup{t | 36 € U s.t. fOT Vg(s)ds = fOT Vao(s)ds and &7 satisfies (43) on [0,#]}. Let us prove by
contradiction that 7 = T. Suppose that 7 < T. Then there exist 4,5 € {1,..., N} with ¢ < j such that
§f(7’) = 55(7’) and ff(t) > ff(t) on |7, 7 4 8] for some § > 0. Design a control strategy § such that on

[7,T), Bi = Bj, B; = Bi and for every k € {1,..., N}\ {i,5}, Bx = Br. Then for all t € [r,T], gf(t) =),
and Ef(t) = ¢P(t). Soforall t € [r,7+ 4], £7(t) > §f(t) and for all t € [0, 77, VA(t) = VA(t). Proceeding
likewise for every pair of indices (m,n) satisfying m < n and £2(t) > £€2(t) on |7, 7+4] we are able to design a

control strategy J satisfying (43) on [0, 7 + ] and fOT Vp(t)dt = fOT Vo (t)dt, which contradicts the definition
of 7. In conclusion, 7 =T, i.e. for all t € [0,T], for every 4,5 € {1,..., N}, i < j = &(t) > &(t). O

Hence, as in Section 5, we can assume Hypothesis 2: for all t € [0,T7, if ¢ < j, then &;(t) > £;(¢). By the
following proposition, we shall prove that the same order is observed among the covectors A;.

Proposition 6.2.
Vit € [O,T], i<j=>/\i(t) 2/\](t) (44)
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Proof. Let us reason by contradiction. Suppose that there exists 7 € [0,7] such that for some i<j,
(Ai — Aj)(1) < 0. From the evolution of the covectors (41) we derive for all t > 7: (A — A\j)(t) =

el ((/\i () =2 ffe g — gj)(s)ds). Since (\;—\;)(7) < 0 and for all s € [0, T], (& —&;)(s) > 0,
we deduce that for all ¢t € [7,T], (A\; — A;)(t) < 0, which contradicts the final condition (42). O

Proposition 6.3. Let 7 € [0,7] and i,j € {1,...,N}, such that (A\; — X;)(7) = 0. Then for all t > T,
(Ai = Aj)(t) = 0 and (& — &)(t) = 0.

Proof. Let 7 € [0,T] and i,j € {1, ..., N}, such that (A\; — A\;)(7) = 0. Then for all ¢t > 7,

(= X)) = 2¢7 [ e g - ) (s)ds. (45)

Suppose for instance that ¢ < j. According to Proposition 6.2, for all ¢t € [0,T], (A\; — A;)(t) > 0. Since we
made Hypothesis 2, the right-hand side of equation (45) is nonpositive. This is only possible if both sides
are equally zero. Hence, for all t > 7, (A; — A;)(t) = 0 and (& — &;)(¢) = 0. O

The following proposition states that if at a certain point in time, two agents have the same projected
velocities, then these should stay identical until final time.

Proposition 6.4. Suppose that there exists T € [0,T] and 1,j € {1,..., N} such that §(7) = &;(7). Then

forallt > 1, &(t) = &(t). (46)
As a consequence, for almost all t > 7, o;(t) = a;(t).

Proof. Let 7 € [0,T] and ¢,j € {1, ..., N}. Define 7 = sup{t > 7 | &(t) = §;(¢) for all t € [r,7]}. Notice from
(29) that this implies that o;(t) = c;(t) for almost every t € [r,7]. Let us prove that 7 =T.
Suppose that 7 < T. Then there exists § > 0 such that for all ¢ €]7, 7 4 J], &(¢) # &;(¢). Define 5 such that
B =aon [0,7] and
= B, = Ly, :

Bi =P 2(a1+.a7) ) on |7, T,

B =ap for k#1i, k#j
and denote by &” the corresponding trajectory. Notice that Yk 0k = Y Bk, so according to (29), £= &P
This implies that & = f,f for all k # 4,j. Moreover, o; + oj = 3; + 5, so for all ¢t € [7, T, (& + &;)(t) =
(gf + {f)(t) Furthermore, §iﬁ and ff satisfy the same differential equation on [7,T] and ﬁf(r) = fjﬁ (1), so

forall t € [7,T], €7 (t) = §f (t) = 1(&+&5)(t). Define V, and Vg as the cost functions associated respectively
with the controls o and 8. Then Vg =V, on [0,7]. On |7, T7,

Vo —Vs = (&)= (€)= &)+ (&) =€) —(&)?

k k

= (€ +(6) 256 +6) = (6~ &)

Hence, for all t €]7,7 + 6], Vo (t) > Vg(t), and for all ¢ € [7 + 8, T], Va(t) > Va(t). We get [ Vg < [V,
which contradicts that « is an optimal control. In conclusion, 7 = T', which proves the proposition. O

6.2 Optimal full-strength control

We design an optimal control strategy for Problem 4:

Theorem 6.5. Let J(t) = {i € {1,...,N} | &(t) = max; ;(t)}. The following control o is optimal for
Problem 4:

: (47)
Vi g J(t), a;(t) =0.

{w € J(t), ai(t) = 7y



Proof. According to Pontryagin’s maximum principle and the expression of the Hamiltonian (41), the optimal
control strategy solving Problem 4 requires to set Ziel(t) a;(t) = 1 and ag(t) = 0 for k & I(t), where
I(t) == {i | Ai(t) = max; A\j(¢)}. Furthermore, according to Proposition 6.3, if \;(t) = \; (%), then & (t) = &;(t)
for all ¢ > ¢, and according to Proposition 6.4, «;(t) = «;(t) for almost every ¢ > ¢t. Hence, the optimal
strategy in fact requires to set, for almost every ¢ € [0, T,

Vi€ I(t), ai(t) =
Vi g I(t), ai(t) =0,

(48)

where | - | denotes the cardinality of a set. Let us prove that I(¢t) = J(t) for almost every ¢. Assume that

i € I(t) and (48) holds true. According to Proposition 6.2, the covectors are ordered, so A;(t) = --- = \;(¢).
From Proposition 6.3 and Hypothesis 2, this implies & (t) = -+ = &(t), so i € J(t). Conversely, assume that
i € J(t). Then from Hypothesis 2, & (t) = -+ = &(t). According to Proposition 6.4, a1(t) = -+ = ay(t).

Since «(t) verifies (48), we deduce that i € I(t). Therefore, I(¢t) = J(t) for almost every ¢t € [0,7] and the
optimal strategies (48) and (47) are equivalent.
O

Notice that the control strategy in the case of integral cost minimization with full control (Problem 4) is
more restrictive than the optimal strategy to minimize the final value of the migration functional with full
control (Problem 2) seen in Section 5. Indeed, this control strategy cannot be sparse. In order to minimize
fOT V(t)dt, one has to split the control among more and more agents. However, any optimal control solving
Problem 4 is also optimal for Problem 2.

6.3 Optimal control in the general case

After designing the optimal strategy for Problem 4, we show that Problems 3 and 4 are actually equivalent,
i.e. that the optimal control solving Problem 3 belongs to Ups.

Theorem 6.6. The optimal control strategy for Problem & requires using full-strength control, i.e. o € Ups.

Proof. According to the Pontryagin Maximum Principle (see Section 6.1), if A\;(¢) > 0 for all ¢, then full
control must be used at all time. Combining the final condition (42) and the evolution (41), we get A1 (T) =0
and A\ (T) = —2¢,(T) < 0. Hence there exists an interval Jt,T[ on which A\; > 0. Let 7 = inf{t €
[0,7] s.t. Ai(s) > Oforall s €]t,T[}. Suppose that 7 > 0. Then A;(7) = 0. Furthermore, A,(7) =
(A1 — N)(7) — 261(7). We compute: A\; — A = A\; — A — 2(&; — €). Denoting A = A\ — A, we get the
following evolution backwards in time: A = —A+2(& — £). Recall that backwards in time, we also have:
=G - (T-a)f TA=¢&,then A =& -20=&§+(1—a)f -2 =& — (1 +a1)§ <& Since
A(T) =0 < & (T), this implies that A(t) < &1(¢) for all ¢t € [7,T]. Hence, A1 (1) = A(7) — 2&1(7) < 0, which
contradicts the definition of 7. We conclude that A;(t) > 0 for all ¢ €]0,7'[, and that ), o; = 1. O

Hence, the control strategy designed in Theorem 6.5 is an optimal strategy for the minimization of integral
cost, i.e. Problem 3. Unlike in the minimization of the final cost (Problem 1), there is no initial Inactivation
period.

Figure 5 illustrates the control strategy designed in Theorem 6.5. In this example, 5 agents are to be con-
trolled optimally to reach consensus at the target velocity V' = (1,0). Initially (Figure 5a), only one agent is
controlled, the agent with the biggest projected velocity over v—V. The set J(t) = argmax;c 1. Ny (v, %}
contains more and more agents as time goes (5b, 5¢) and eventually, control is split evenly among all agents
(see Figure 5d).
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(a) t =0.1 (b) t = 0.48 (c) t=1.35

Figure 5: Control of 5 agents to reach the target velocity V' = (1,0). Agents are represented in the velocity
space, controlled ones in red, uncontrolled ones in blue, and the mean velocity in black. Initial positions are
marked by stars.

7 Appendix

Proof. (Theorem 4.10)

First, let &(0) > &(0) > 0. According to Prop. 1.1, &(¢) > 0 and &(t) > 0 for all ¢ € [0,7]. The
transversality condition gives A1(7) > 0 and A2(T) > 0, and according to Prop. 4.9, A;(¢) > 0 and A2(t) > 0
for all t < T. According to Pontryagin’s maximum principle (see Section 4.1), the global strategy requires
setting aq 4+ ao = M. In this case, {(t) = £(0) exp(—2t) does not depend on the choice of a; and as.
Minimizing V (24) therefore amounts to minimizing (£; — &)

(i) If T > to, we will show that in addition to satisfying a; + s = M, the optimal control o must achieve
&1(T) = &(T). Such a control strategy exists, since for instance (as one can see by direct computation
of (19)) the control (81, 82)(t) = (1, M — 1) for all t € [0,t2] and (81, B2)(t) = (M/2,M/2) for all
t € [t, T achieves £7(t) = &5(t) for all t € [ty, T], where £# denotes the corresponding trajectory.
Notice that 3 minimizes £(T") by using the full strength M of the control at all time (see (25)), and
minimizes (& — &)?(T), so it minimizes V(T') (see (21)). Hence, in order to be optimal, o must satisfy
&(T) = &(T) as well as a1 + ag = M.

(ii) f T < t9, we will show that (a1,as) = (1, M — 1) and that & and & cannot be brought together (i.e.
&(T) > &(T )) Indeed, knowing that oy + as = M, one can use (20) to compute: (£ — &)(t) =
et (({1 &)(0 fo a; —az)(s )f(s)esds). Since € is fully determined, ¢y := MiNaerry, 0y +as=m{t €
[0,T] s.t. (&1 — 52)( ) = 0} is achieved by maximizing (o — as), which gives: (o, a2) = (1, M —1). As
seen previously, by direct computation of (19), ¢, = t2 as defined above. Hence, if T' < tq, necessarily
&(T) > &(T). Then A (T) > Ao(T') and according to Prop. 4.9, and to Prop. 3.1, A1(¢) > A2(t) > 0
for all ¢. According to the PMP (see 4.1), the optimal strategy is (aq,a2) = (1, M — 1).

Now let & (0) > 0, £2(0) < 0 and £(0) > 0. We then distinguish four subcases.

Firstly, let us prove that if £&(7) > 0, then necessarily T' > t;. Indeed, if 0 < &(T) < &(T), then 0 <
Xo(T) < M\ (T), and according to Proposition 4.9, 0 < A2(t) < A1(t) for all ¢ € [0,T]. According to the PMP
(see Section 4.1), a; +ay = M. Hence £(t) = £(0)e= M2 and & (t) = e~ (£2(0) + £(0) fot(l — ap)e T ods).
The minimum time ¢,,;, needed to achieve &5 (tmin) > 0 is achieved for (ay,s) = (1, M — 1), which, after
computation, gives tyi, = t1 as defined above. Hence, if £&3(T) > 0, then T > ¢;.

(iii) Let T" > to. Let us prove that ay + ag = M and & (T) = &(T). Such a control strategy exists.
Indeed, take for example (51, 82)(t) = (1,M — 1) on [0,t2] and (81, 82)(¢) = (M/2,M/2) on |ta,T).
Then, by direct computation of (19), £2(t) = £5(t) for all ¢ € [to, T] (where £° denotes the trajectory
corresponding to the control 3). Furthermore, 3 is optimal since it minimizes £# by using full control
at all time and achieves (flﬁ - 55 )2(T) = 0 (see (21)). In order to perform optimally, the control «
must also satisfy a; + as = M and & (T) = &(T).

(iv) Let T < to. Since ty < t1, then as proved above, &(T) < 0. Suppose that &(7T) = 0. Then
M(T) > X(T) = 0 and according to Proposition 4.9, A1(t) > A2(t) = 0 for all time ¢. Hence,
a1 = 1 (see Section 4.1). Then min,, {t € [0,7T] s.t. 52( ) = 0} = to as defined above (obtained for

22



(vi)

ag = 0). This contradicts the condition on T. Hence, if T < tg, then &(T) < 0 and according to
Proposition 4.9 and Section 4.1, A2 < 0 so az = 0. However, there is no information on A; other
than A\; = a1/2A; + X — Ay > 0 and A(7) = 0 implies A\;(7) > 0. Hence, as in the previous sections,
there exists t* € [0,T[ such that \y < 0 on [0,¢*[, A (¢*) = 0 and Ay > 0 on |¢t*,T]. This implies that
(o1, 2) = (0,0) on [0,t*[ and (a1, a2) = (1,0) on [t*,T7.

Let tg < T < t;. We shall prove that &(7") = 0 and that ay = 1. As seen previously, if T' < ¢q, then
&(T) < 0. Suppose that &(T) < 0. Then A (T) > 0 and A2(7) < 0 which according to Proposition
4.9 gives Ao(t) < 0 for all ¢, and according to the PMP (see Section 4.1), ag = 0. Then &(t) =

s

e7t(&2(0) + £(0) fOT e~ i zn(Mdresgg) - Thus tsup = sup,, {7 € [0,T] s.t. &(t) < 0forall t € [0,7[}
is obtained for a; = 1 and by direct computation, ts,, = to. Since T > tg, there exists 7 < T such
that &(7) = 0. However, by Proposition 1.1, once & = 0 it cannot become negative again, which
contradicts {(T") < 0. Therefore, »(7) = 0, and according to Proposition 4.9 and the PMP (Section
4.1), A1 (t) > 0 for all t € [0,T] so a; = 1. Furthermore, if £&(7) = 0, then &(7) = (1 — aa(7))E(T) > 0
since ag = M —a; = M — 1 < 1. According to Proposition 1.1, once & becomes positive it cannot
become zero again. Hence we must have & (t) < 0 for all ¢ < T and &(7T) = 0.

Let t1 < T < t3. We shall prove that 0 < &(7T') < &(T) and that (ag,a2) = (1, M — 1). As in the
previous case, since T > tg, one must have: &(T) > 0. Suppose that £&(T") = 0. Then according to
Proposition 4.9 and the PMP, a1 = 1 and & (t) = e7(&(0) +£(0) fOT(l —ag)(s)e™ Jo 2(ta2)(N)dres gy
Then the minimum of & (T") is obtained for ag = M — 1, so

- 2—M

T
&(T) = 7" (&(0) + 5_(0)/0 (2= M)em2"0e*ds) > e (£2(0) + £(0)(e 2

by definition of ¢;. This contradicts & (T') = 0, so necessarily £&(T") > 0. Then A;(¢) > 0 and A\y(t) >0
for all ¢, which implies that a3 + a2 = M. In this case we prove as in case (i) that & (T) > &(T),
which implies (o, a2) = (1, M — 1).

O
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