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57/9
Tn and Un are called the Chebyshev polynomials; they have extended literature.

64/-5
Conversely, every complex number z ∈ C is the root of a quadraic polynomial in
real coefficients. Indeed, a + bi, a, b ∈ R, is a root of the quadratic polynomial
x2 − 2ax+ a2 + b2 = 0.

97/-6
Recall a few facts from the metric geometry of the Euclidean plane R2. The equation
for the line containing two points p0 = (x0, y0) and p1 = (x1, y1) can be written as

(y1 − y0)x− (x1 − x0)y = x0y1 − x1y0,

or equivalently

(x0 − x)(y − y1)− (x− x1)(y0 − y) = 0.

(Note that, in the second equation with the variable point q = (x, y), the left-hand
side is the (signed) area of the parallelogram with vertices at the origin, p0− q, q− p1
and p0− p1. It expresses the fact that q is on the line containing the points p0 and p1
if and only if the parallelogram is degenerate (has area zero), that is, its four vertices
are collinear.)
Assume that the line ℓ contains two distinct points p0 = (x0, y0) and p1 = (x1, y1).
For t ∈ R, we define the point

pt = (1− t)p0 + tp1 = ((1− t)x0 + tx1, (1− t)y0 + ty1).

We claim that ℓ = {pt | t ∈ R}. The indeterminate t ∈ R is called and affine parameter
of the line ℓ.
First, for t ∈ R, we have pt ∈ ℓ since

(y1 − y0) ((1− t)x0 + tx1)− (x1 − x0) ((1− t)y0 + ty1)

= (1− t) ((y1 − y0)x0 − (x1 − x0)y0) + t ((y1 − y0)x1 − (x1 − x0)y1)

= (1− t)(x0y1 − x1y0) + t(x0y1 − x1y0) = x0y1 − x1y0.

We need to show the converse. If x0 ̸= x1 then we let t = (x − x0)/(x1 − x0),
or equivalently, x = (1 − t)x0 + tx1. Substituting this into the equation of the
line, a simple computation gives y = (1 − t)y0 + ty1. If y0 ̸= y1 then we let t =
(y − y0)/(y1 − y0), or equivalently, y = (1 − t)y0 + ty1. Substituting this into the
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equation of the line again, we obtain x = (1− t)x0 + tx1. The converse follows.
The line segment with end-points p0 and p1 is given by

[p0, p1] = {pt | 0 ≤ t ≤ 1}.

97/-2
The Euclidean distance d satistfies the following properties:
1. Non-negativity: d(p0, p1) ≥ 0 for all p0, p1 ∈ R2, and d(p0, p1) = 0 if and only if
p0 = p1.
2. Symmetry: d(p0, p1) = d(p1, p0) for all p0, p1 ∈ R2.
3. (Strict) Triangle Inequality: d(p0, p1) ≤ d(p0, q)+d(q, p1) for all p0, p1, q ∈ R2. The
triangle inequality is strict in the sense that equality holds if and only if q ∈ [p0, p1].
Non-negativity and symmetry are clear. We only need to show 3.
Letting p0 = (x0, y0), p1 = (x1, y1), q = (x2, y2), we denote a = x0 − x2, b = x2 − x1,
and c = y0 − y2, d = y2 − y1, so that, we have a+ b = x0 − x1 and c+ d = y0 − y1.
For the triangle inequality, we need to show√

(a+ b)2 + (c+ d)2 ≤
√
a2 + c2 +

√
b2 + d2.

Squaring both sides we have

(a+ b)2 + (c+ d)2 ≤ a2 + b2 + c2 + d2 + 2
√
a2 + c2

√
b2 + d2.

Expanding and simplifying, we obtain

ab+ cd ≤
√
a2 + c2

√
b2 + d2.

Squaring both sides again, we arrive at the Cauchy-Schwarz inequality:

(ab+ cd)2 ≤ (a2 + c2)(b2 + d2).

Since the steps that we made are reversible, we obtain that the triangle inequality is
equivalent to the Cauchy-Schwarz inequality above.
The latter, however, is a direct consequence of the identity

(ab+ cd)2 + (ad− bc)2 = (a2 + c2)(b2 + d2)

which can be verified by expanding all parentheses. Thus, the Cauchy-Schwarz in-
equality, and thereby the triangle inequality follow.
For the strictness of the triangle inequality: For the “if” part, assuming that equality
holds in the triangle inequality, and thereby in the Cauchy-Schwarz inequality, the
identity above implies

ad− bc = (x0 − x2)(y2 − y1)− (x2 − x1)(y0 − y2) = 0.
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By the above, this means that q is on the line ℓ containing the points p0, p1. Since q ∈
ℓ, we have q = pt for some t ∈ R. With this, we have d(p0, q) = d(p0, pt) = |t|d(p0, p1)
and d(q, p1) = d(pt, p1) = |1 − t|d(p0, p1). Hence |t| + |1 − t| = 1 holds. This means
that 0 ≤ t ≤ 1 so that q = pt ∈ [p0, p1]. The claim follows.
The “only if” part is obvious since q ∈ [p0, p1] implies q = pt for some 0 ≤ t ≤ 1, and
thus d(p0, q) + d(q, p1) = d(p0, pt) + d(pt, p1) = td(p0, p1) + (1− t)d(p0, p1) = d(p0, p1).

98/7
We claim that every isometry S ∈ Iso (R2) is invertible: Since S is clearly injective,
we need to show that it is also surjecive. A quick proof of this is the following: Let
v ∈ R2 be the vector terminating at S(0), and consider the composition U = T−v ◦S.
Then, U is an isometry which fixes the origin; that is, U(0) = 0. By the parallelogram
rule of addition of vectors, U : R2 → R2 is a linear (isometric) transformation. Since
U is injective, linear algebra tells us that it must also be surjective. Hence, S = Tv ◦U
must also be surjective. Thus S−1 exist, and, clearly, it is also an isometry.
A somewhat longer proof, without the recourse to linear algebra, is the following: We
first claim that S maps lines onto lines. Indeed, let ℓ ∈ R2 be a line and p0, p1 ∈ ℓ
two distinct points. For 0 ≤ t ≤ 1, the point pt = (1− t)p0 + tp1 ∈ [p0, p1] satisfies

d(S(p0), S(pt)) = d(p0, pt) = td(p0, p1) = td(S(p0), S(p1)).

Similarly

d(S(pt), S(p1)) = d(pt, p1) = (1− t)d(p0, p1) = (1− t)d(S(p0), S(p1)).

Adding, we obtain

d(S(p0), S(pt)) + d(S(pt), S(p1)) = d(S(p0), S(p1)).

By strictness of the triangle inequality, we get S(pt) ∈ [S(p0), S(p1)], and hence, by
the above

S(pt) = (1− t)S(p0) + tS(p1), 0 ≤ t ≤ 1.

We obtain that S maps the line segment [p0, p1] onto the line seqment [S(p0), S(p1)].
A simple induction in the use of an equidistant subdivision of ℓ now shows that S(ℓ)
is a line.
Given a triangle with vertices p, q, r ∈ R2, by what we have just shown, the isom-
etry S maps the sides of the triangle onto the sides of the triangle with vertices
S(p), S(q), S(r). Applying the same argument to line sements with end-points as one
of the vertices and a (varying) point of the opposite side, we obtain that S maps
triangles onto (congruent) triangles. Finally, again by induction in the use of a sub-
division of R2 into congruent triangles, it follows that S is onto.
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99/18
If an isometry fixes two distinct points p0, p1 ∈ R2 then it fixes every point on the
line ℓ through p0 and p1. This is because

S(pt) = (1− t)S(p0) + tS(p1) = (1− t)p0 + tp1 = pt, t ∈ R.

If an isometry fixes two distict points p0, p1 ∈ R2 then it is either the identity, or a
reflection in the line ℓ passing through p0, p1. Indeed, let q ∈ R2 be a point not in
ℓ. Since the triangles with vertices p0, p1, q and p0, p1, S(q) are congruent then either
S(q) = q or S(q) = Rℓ(q). In the first case S is the identity, in the second, Rℓ ◦ S is
the identity. Since R2

ℓ is the identity, the stamement follows.
As an immediate byproduct we see that if an isometry fixes three non-collinear points
in R2 then it fixes every point in R2; that is, the isometry is the identity.

99/-14
Given three points p0 = (x0, y0), p1 = (x1, y1), p2 = (x2, y2), we let

ω(p0, p1, p2) = (x2 − x0)(y2 − y1)− (x2 − x1)(y2 − y0).

For example ω((0, 0), (1, 0), (0, 1)) = 1. As above, ω(p0, p1, p2) is the signed area of the
paralelogram with vertices 0, p0 − p2, p2 − p1, p0 − p1 or (applying a translation) that
of the parallelogram with vertices p1, p0 + p1 − p2, p2, p0. In particular, p0, p1, p2 ∈ R2

are not collinear if and only if ω(p0, p1, p2) ̸= 0.
Clearly, ω is unchanged by a simultaneous translation or a rotation of the arguments,
and it changes sign by a reflection of the arguments in a line.
We call a triplet (p0, p1, p2) positively oriented if ω(p0, p1, p2) > 0. Otherwise, (p0, p1, p2)
is negatively oriented. Given p0, p1 ∈ R2 distinct, the points p2 ∈ R2 such that
ω(p0, p1, p2) > 0 fill an open half-plane whose boundary line passes through p0 and
p1. The other half-plane corresponds to negatively oriented triplets.
Any two positively oriented triplets (p0, p1, p2) and (q0, q1, q2) can be connected by
a continuous (in fact, piecewise linear) one-parameter family of positively oriented
triplets.
An isometry S is direct if it does not change the sign of the orientation of triplets;
that is, if S maps positively oriented triples to positively oriented triplets, and the
same holds for negatively oriented triplets. More concisely, S is direct if

ω(p0, p1, p2)ω(S(p0), S(p1), S(p2)) > 0

for any triplet of non-collinear points p0, p1, p2 ∈ R2. Otherwise, S is opposite.
S is direct if and only if the determinant detU > 0 (and hence = 1), where S = Tv ◦U
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as above. Indeed, if the matrix of U is

(
a b
c d

)
then we have

ω((0, 0), (1, 0), (0, 1))ω(S(0, 0), S(1, 0), S(0, 1))

= ω((0, 0), (1, 0), (0, 1))ω(U(0, 0), U(1, 0), U(0, 1))

= ad− bc = detU.

Similarly, S is opposite if and only if detU = −1.
Clearly, translations and rotations are direct, and reflections (in lines) and glides
are opposite. The composition of two isometries is direct if they have the same
orientation; otherwise it is opposite.

99/-4
Using S = Tv ◦ Rθ(p), another proof is the following. Write Tv = Rℓ′ ◦ Rℓ, ℓ∥ℓ′, and
then Rθ(p) = Rℓ ◦Rℓ′′ , we obtain S = Rℓ′ ◦Rℓ′′ . Now ℓ′∥ℓ′′ since S has no fixed point.
Thus, S is a translation.

99/-3
More precisely, a = |v|/(2 tan(θ/2)) is the height of the isosceles triangle.

127/-1
As evey reflecion is the inverse of itself, it follows that any Möbius transformation
has an inverse.

134/-6
Actually, at most three reflections as z 7→ pz̄ + q, |p| = 1, is an isometry.

134/-1
Clearly, c ̸= 0 is equivalent to g(∞) ̸= ∞. If this holds the isometric circle exists, and
the computations show that g ◦ RSg is an isometry h of R2. This gives g = h ◦ RSg ,
where h ∈ Iso (R2). In particular, every Möbius transformation is the composition of
at most four reflections (first, in three lines, and the last in the isometric circle).
For completeness: If c = 0, that is, g(∞) = ∞, then g(z) = (a/d)z+(b/d) = a2z+ab
since ad = 1. If z0 ∈ C is a fixed point of g then (a2 − 1)z0 = −ab.
We distingish two cases. 1. If a2 = 1 then, for b = 0, g is the identity, and, for
b ̸= 0, there is no fixed point and g(z) = z + ab, so that g is a translation. 2. If
a2 ̸= 1 then z0 = −ab/(a2 − 1) is the unique fixed point of g in C. We then have
g(z)− z0 = a2z+ ab+ ab/(a2− 1) = a2(z− z0), z ∈ C. Hence g is a central dilatation
with center z0 and ratio a2.

148/-5
We use the substitution x = cosu, dx = − sinudu.
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204/1
Let O(R3) denote the group of linear isometries of R3, and SO(R3) ⊂ O(R3) the
subgroup of all direct linear isomeries. Theorem 10 implies that SO(R3) is the group
of all spatial rotations of R3 which are linear, that is their rotation axes pass through
the origin.

256/1
Cayley’s theorem and the subsequent remark assert that SO(R3), the group of all
spatial rotations of R3, is isomorphic with the group SU(2)/{±I}.

320/-11
By Theorem 16, we have an isomorphism S3/{±1} → SO(R3). If we use the
natural identification S3 = SU(2) given by (λ, µ) ∈ C2, |λ|2 + |µ|2 = 1, asso-

ciated to

(
λ −µ̄
µ λ̄

)
(as in Cayley’s theorem) then we obtain the isomorphism

SU(2)/{±1} → SO(R3). Note that this is not quite the inverse of the isomorphism
given by Cayley’s theorem, but would become the inverse if we used the reverse basis
k, j, i. (This remark is due to Claus Diem.)

334/-4
Delete the sentence “Using more modern ...a well-defined function on CP 1 = Ĉ.”

376/7

=
(48u2a− 12ub− c)3

64a2(12u(ac− b2)− bc)


