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Introduction
High dimensional particle systems arise in many modern
applications:

Image halftoning via variational

dithering.

Dynamical data analysis: R. palustris

protein-protein interaction network.

Large Facebook “friendship” network

Computational chemistry: molecule

simulation.



Relevant techniques
These tasks are addressed by common tools and concepts:

Compression

Mean field limit

Multiscale

High dimensional approximation

MODELING, SIMULATION, LEARNING, CONTROL
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Compression

“–Compression can be mathematically expressed as - numerically -
approximating a certain function, sometimes explicitely given or, as
more often, only implicitly given as a solution of a certain equation
or variational problem, by using the minimal/optimal amount of
degrees of freedom.–”



Social dynamics

We consider Dynamical Systems of
mutual distances Dx = (‖xi − xj‖)ij :

ẋi (t) = fi (Dx(t))+
N∑

j=1

fij(Dx(t))xj(t).

Several“social forces” encoded in fi
and fij :

I Repulsion-attraction

I Self-drive

I Noise/uncertainty

I ...

Patterns related to different balance of

social forces.

Understanding how superposition of re-iterated binary “social
forces” yields global self-organization.
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ẋi (t) = fi (Dx(t))+
N∑

j=1

fij(Dx(t))xj(t).

Several“social forces” encoded in fi
and fij :

I Repulsion-attraction

I Self-drive

I Noise/uncertainty

I ...

Patterns related to different balance of

social forces.

Understanding how superposition of re-iterated binary “social
forces” yields global self-organization.



An example inspired by nature

Mills in nature and in our simulations.

J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, Particle, kinetic,

hydrodynamic models of swarming, within the book “Mathematical modeling

of collective behavior in socio-economic and life-sciences”, Birkhäuser (Eds.

Lorenzo Pareschi, Giovanni Naldi, and Giuseppe Toscani), 2010.



Consensus emergence
The Cucker-Smale model:

ẋi = vi ∈ Rd

v̇i =
1

N

N∑
j=1

a(‖xj − xi‖)(vj − vi ) ∈ Rd
,

where a(t) := aβ(t) = 1
(1+t2)β

, β > 0 governs the rate of

communication.

In matrix notation:{
ẋ = v

v̇ = −Lxv

where Lx is the Laplacian of the matrix1 (a(‖xj − xi‖)/N)N
i ,j=1

and depends on x .

I Mean-velocity conservation:
d
dt v̄(t) = 1

N

∑N
i=1 v̇i (t) = 1

N2

∑N
i=1

∑N
j=1

vj−vi

(1+‖xj−xi‖2)β
≡ 0.

1The Laplacian L of A is given by L = D − A, with D = diag(d1, . . . , dN)
and dk =

PN
j=1 akj
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Unconditional consensus emergence

Without loss of generality v̄ = 0 and x̄(t) = x̄(0) = 1
N

∑N
i=1 xi (0).

Theorem (Cucker-Smale, Ha-Tadmor,
Carrillo-F.-Rosado-Toscani)

Let (x(t), v(t)) ∈ C 1([0,+∞),R2d×N) be the solution of the
Cucker-Smale system. We denote

V(t) = max
i=1,...N

‖vi (t)‖, V0 = V(0),

X (t) = max
i=1,...N

‖xi (t)− xi (0)‖, X0 = X (0).

If 0 < β < 1
2 then

V(t) ≤ V0e−a(2X̄ )t → 0, t →∞, ∃X̄ > 0.

Actually one has V(t)→ 0 also for β = 1/2.
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Conditional consensus emergence for a generic
communication rate a(·)

Consider the symmetric bilinear form

B(u, v) =
1

2N2

∑
i ,j

〈ui − uj , vi − vj〉 =
1

N

N∑
i=1

〈ui , vi 〉 − 〈ū, v̄〉,

and
X (t) = B(x(t), x(t)), V (t) = B(v(t), v(t)).

Theorem (Ha-Ha-Kim)

Let (x0, v0) ∈ (Rd)N × (Rd)N be such that
X0 = B(x0, x0) and V0 = B(v0, v0) satisfy

√
N

∫ ∞
√

NX0

a(
√

2r)dr >
√

V0 .

Then the solution with initial data (x0, v0)
tends to consensus.
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Non-consensus events
If β > 1/2 then for a(·) = aβ(·) the consensus condition is not
satisfied by all (x0, v0) ∈ (Rd)N × (Rd)N .
There are counterexamples to consensus emergence
(Caponigro-F.-Piccoli-Trélat).

Consider β = 1 and x(t) = x1(t)− x2(t), v(t) = v1(t)− v2(t)
relative pos. and vel. of two agents on the line: ẋ = v

v̇ = − v

1 + x2

with initial conditions x(0) = x0 and v(0) = v0 > 0.
By direct integration

v(t) = − arctan x(t) + arctan x0 + v0.

Hence, if arctan x0 + v0 > π/2 + ε we have

v(t) > π/2 + ε− arctan x(t) > ε, ∀t ∈ R+.
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Self-organization Vs organization by intervention
We introduce the notion of organization via intervention.

Admissible controls: measurable functions
u = (u1, . . . , uN) : [0,+∞)→ RN such that

∑N
i=1 ‖ui (t)‖ ≤ M for

every t > 0, for a given constant M:
ẋi = vi

v̇i =
1

N

N∑
j=1

a(‖xj − xi‖)(vj − vi )+ui

for i = 1, . . . ,N, and xi ∈ Rd , vi ∈ Rd .

Our aim is then to find admissible controls
steering the system to the consensus
region.
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Total control

Proposition (Caponigro-F.-Piccoli-Trélat)

For every initial condition (x0, v0) ∈ (Rd)N × (Rd)N and M > 0
there exist T > 0 and u : [0,T ]→ (Rd)N , with

∑N
i=1 ‖ui (t)‖ ≤ M

for every t ∈ [0,T ] such that the associated solution tends to
consensus.

Proof.
Consider a solution of system with initial data (x0, v0) associated
with a feedback control u = −α(v − v̄), with
0 < α ≤ M/(N

√
B(v0, v0)). Then

d

dt
V (t) =

d

dt
B(v(t), v(t))

= −2B(Lxv(t), v(t)) + 2B(u(t), v(t))

≤ 2B(u(t), v(t)) = −2αB(v − v̄ , v − v̄) = −2αV (t).

Therefore V (t) ≤ e−2αtV (0) and V (t) tends to 0 exponentially
fast as t →∞. Moreover

∑N
i=1 ‖ui‖ ≤ M.
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More economical choices?

We wish to make

d

dt
V (t) =

d

dt
B(v(t), v(t))

= −2B(Lxv(t), v(t)) + 2B(u(t), v(t))

the smallest possible and use the minimal amount of intervention:

minimize B(u(t), v(t)) with additional sparsity constraints.
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Linear dynamical systems

Were the dependence of the trajectory
(x(t), v(t)) at the time t on the control
u := {u(s) : s ∈ [0, t]} linear

(x(t), v(t)) = Mx0,v0,tu,

then a rather general theory of linear
compression would apply.



Compressed sensing enters the picture

Theorem
Given a matrix M ∈ Rk×d , k � d, with incoherency properties
MT M ≈ I , and

x = Mu + e ∈ Rk , ‖e‖ ≤ ε,

the vector û computed by

û = arg min
‖Mv−x‖≤ε

‖v‖`1 :=
d∑

i=1

|vi |, (`1)

has the approximation property

‖û − u‖ ≤ C1
σK (u)1√

K
+ C2ε,

where σK (v)1 = ‖v − v[K ]‖`1 , best-K -term approx. error. If u is
sparse then σK (u)1 = 0.
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Geometrical interpretation

Minimal `1-norm solution.

Assume d = 2 and k = 1.
Hence F(x) = {z : Mu = x} is
just a line in R2. If we exclude
that there exists η ∈ ker M
such that |η1| = |η2| or,
equivalently,

|ηi | < |η{1,2}\{i}|

for all η ∈ ker M and for one
i = 1, 2, then the solution to
(`1) is a sparse solution.



Nonlinear dynamical systems

What to do if the dependence of the
trajectory (x(t), v(t)) at the time t on the
control u := {u(s) : s ∈ [0, t]} is nonlinear

(x(t), v(t)) = Mx0,v0,t(u)?

Can we again use `1-minimization as a
criterion for sparsifying the control?



Greedy sparse control

Theorem (Caponigro-F.-Piccoli-Trélat)

For every initial condition (x0, v0) ∈ (Rd)N × (Rd)N and M > 0
there exist T > 0 and a sparse control u : [0,T ]→ (Rd)N , with∑N

i=1 ‖ui (t)‖ ≤ M for every t ∈ [0,T ] such that the associated AC
solution tends to consensus.

More precisely, we can choose
adaptively the control law explicitly as one of the solutions of the
variational problem

min B(v , u) +
γ(x)

N

N∑
i=1

‖ui‖ subject to
N∑

i=1

‖ui‖ ≤ M ,

where

γ(x) =
√

N

∫ ∞
√

NB(x ,x)
a(
√

2r)dr .

The control u(t) is a sparse vector with at most one nonzero
coordinate, i.e., ui (t) 6= 0 for a unique i ∈ {1, . . . ,N} and
uj(t) = 0 for j 6= i for almost every t ∈ [0,T ].
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Explicit sparse control
Denote v⊥ = v − v̄ . We construct the control law from the variational
problem.

If ‖v⊥i‖ ≤ γ(x) for every i = 1, . . . ,N, then

u1 = · · · = uN = 0⇒ reached consensus region.

Otherwise there exists a “best index” i ∈ {1, . . . ,N} such that

‖v⊥i‖ > γ(x) and ‖v⊥i‖ ≥ ‖v⊥j‖ for every j = 1, . . . ,N.

Therefore we can choose i ∈ {1, . . . ,N} satisfying it, and a control law

ui = −M
v⊥i

‖v⊥i‖
, and uj = 0, for every j 6= i .

Hence the control acts on the most
“stubborn”. We may call this control the
“shepherd dog strategy”. This choice of the
control makes V (t) = B(v(t), v(t)) vanishing
in finite time, hence there exists T such that
B(v(t), v(t)) ≤ γ(x)2, t ≥ T .
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B(v(t), v(t)) ≤ γ(x)2, t ≥ T .
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Geometrical interpretation in the scalar case

For |v | ≤ γ the minimal solution u ∈ [−M,M] is zero.

For |v | > γ the minimal solution u ∈ [−M,M] is |u| = M.



Instantaneous optimality of the greedy strategy

Consider generic control u (solution of the variation problem) of
components

ui (x , v) =


0 if v⊥i

= 0

− αi
v⊥i

‖v⊥i
‖

if v⊥i
6= 0

where αi ≥ 0 such that
∑N

i=1 αi ≤ M.

Theorem (Caponigro-
F.-Piccoli-Trélat)

The 1-sparse control is
the minimizer of

R(t, u) := R(t) =
d

dt
V (t),

among all the control of
the previous form.

A policy maker, who is not allowed to have
prediction on future developments, should
always consider more favorable to intervene
with stronger actions on the fewest possible
instantaneous optimal leaders than trying to
control more agents with minor strength.



Time-sparse control: sampling-and-hold

Definition (Sampling solution)

Let U ⊂ Rm, f : Rn × U 7→ f (x , u) be continuous and locally
Lipschitz in x uniformly on compact subset of Rn × U. Given a
feedback u : Rn → U, τ > 0, and x0 ∈ Rn we define the sampling
solution of

ẋ = f (x , u(x)), x(0) = x0

as the continuous (actually piecewise C 1) function x : [0,T ]→ Rn

solving recursively for k ≥ 0

ẋ(t) = f (x(t), u(x(kτ))), t ∈ [kτ, (k + 1)τ ]

using as initial value x(kτ) the endpoint of the solution on the
preceding interval and starting with x(0) = x0.



Time-sparse control: sampling-and-hold
We define u = u(x , v) via the following criterion. If
B(v , v) ≥ γ(B(x , x))2 then let i ∈ {1, . . . ,N} be the smallest
index such that

‖v⊥i
‖ ≥ γ(B(x , x)) and ‖v⊥i

‖ ≥ ‖v⊥j
‖ for every j = 1, . . . ,N.

and set

ui = −M
v⊥i

‖v⊥i
‖
, and uj = 0, for every j 6= i ,

Theorem (Caponigro-F.-Piccoli-Trélat)

For every initial condition (x0, v0) ∈ (Rd)N × (Rd)N and M > 0
consider the control u given above. There exists
τ0 = τ0(M,N, x0, v0) > 0 small enough, such that for all
0 < τ ≤ τ0 the sampling solution associated with the control u,
the sampling time τ , and initial datum (x0, v0) tends to consensus

in time T ≤ N
2M (

√
V (0)− γ(X̄ )), X̄ = 2B(x0, x0) + 2N4

M2 B(v0, v0)2.
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Complexty of consensus
Given a stuitable compact set K ⊂ (Rd)N × (Rd)N of initial
conditions, control bound M > 0, number of agents N ∈ N, and
arrival time T > 0, we define

n := n(M,N,K,T )

= inf sup
(x0,v0)∈K

{
k−1∑
`=0

# supp(u(t`)) :

(x(T ; u), v(T , u)) is in the consensus region }

The previous result allow us to have upper bounds for this
consensus numbers: for

T̄ = T̄ (M,N, x0, v0) =
N

2M
(
√

V (0)− γ(X̄ )),

n(M,N,K,T ) ≤

{
∞, T < T̄
sup(x0,v0)∈K T̄ (M,N,x0,v0)

inf(x0,v0)∈K τ0(M,N,x0,v0) , T ≥ T̄

Presently lower bounds are not yet given.
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Sparse controllability near the consensus manifold

Consensus manifold is (Rd)N × Vf , where
Vf = {(v1, . . . , vN) ∈ (Rd)N | v1 = · · · = vN ∈ Rd}.

Theorem (Caponigro-F.-Piccoli-Trélat)

For every M > 0, for almost every x̃ ∈ (Rd)N and for every
ṽ ∈ Vf , for every time T > 0, there exists a neighborhood W of
(x̃ , ṽ) in (Rd)N × (Rd)N such that, for all points (x0, v0) and
(x1, v1) of W , for every index i ∈ {1, . . . ,N}, there exists an
admissible componentwise and time sparse sparse control u, every
component of which is zero except the i th (that is, uj(t) = 0 for
every j 6= i and every t ∈ [0,T ]), steering the control system from
(x0, v0) to (x1, v1) in time T .



Global sparse controllability

Corollary (Caponigro-F.-Piccoli-Trélat)

For every M > 0, for every initial condition
(x0, v0) ∈ (Rd)N × (Rd)N , for almost every (x1, v1) ∈ (Rd)N × Vf ,
there exist T > 0 and an admissible componentwise and time
sparse control u : [0,T ]→ (Rd)N , such that the corresponding
solution starting at (x0, v0) arrives at the consensus point (x1, v1)
within time T .



Sparse optimal control

The problem is to minimize, for a given γ > 0

J (u) :=

∫ T

0

N∑
i=1

((
vi (t)− 1

N

N∑
j=1

vj(t)
)2

+ γ

N∑
i=1

‖ui (t)‖
)

dt,

s.t.
∑
‖ui‖ ≤ M

where the state is a trajectory of the control system
ẋi = vi

v̇i =
1

N

N∑
j=1

a(‖xj − xi‖)(vj − vi ) + ui

with initial constraint

(x(0), v(0)) = (x0, v0) ∈ (Rd)N × (Rd)N .



Beyond a greedy approach: sparse optimal control

Theorem (Caponigro-F.-Piccoli-Trélat)

For every (x0, v0) in (Rd)N × (Rd)N , for every M > 0, and for
every γ > 0 the optimal control problem has an optimal solution.
The optimal control u(t) is “usually” instantaneously a vector with
at most one nonzero coordinate.

The PMP ensures the existence of λ ≥ 0 and of a nontrivial
covector (px , pv ) ∈ (Rd)N × (Rd)N satisfying the adjoint
equations, for i = 1, . . . ,N,

ṗxi =
1

N

N∑
j=1

a(‖xj − xi‖)
‖xj − xi‖

〈xj − xi , vj − vi 〉(pvj − pvi )

ṗvi = −pxi −
1

N

∑
j 6=i

a(‖xj − xi‖)(pvj − pvi )− 2λvi +
2λ

N

N∑
j=1

vj .

The application of the PMP leads to minimize

min
N∑

i=1

〈pvi , ui 〉+ λγ
N∑

i=1

‖ui‖, subject to
N∑

i=1

‖ui‖ ≤ M.
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Conclusion

I We presented dynamical systems with
self-organization features.

I In case pattern formation cannot be
ensured, we introduced the concept of
organization by external intervention.

I We proved that the most effective
greedy strategy to achieve consensus
emergence is by instantaneous
1-sparse controls.

I We showed that maximally sparse
optimal control are also expected
when considering `1-norm constraints.
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High-dimensional dynamical systems: the general model
First, some notation:

I d ∈ N - dimension (very large!!),

I N ∈ N - number of agents, typically N = dα, α > 0;

I x = {x1, . . . , xN} ∈ RN×d , where xi ∈ Rd , i = 1, . . . ,N,

I D : RN×d → RN×N , Dx = (|xi − xj |)N
i ,j=1 is the adjacency

matrix of x ;

I fi : RN×N → Rd , i = 1, . . . ,N,;

I fij : RN×N → R, i , j = 1, . . . ,N.

We are interested in the

I dimensionality reduction and numerical simulation

of dynamical systems of the type

ẋi (t) = fi (Dx(t)) +
N∑

j=1

fij(Dx(t))xj(t), x(0) = x0 ∈ RN×d ,

describing the dynamics of multiple complex agents, interacting on
the basis of their mutual “social” distance.



High-dimensional dynamical systems: the general model
First, some notation:

I d ∈ N - dimension (very large!!),

I N ∈ N - number of agents, typically N = dα, α > 0;

I x = {x1, . . . , xN} ∈ RN×d , where xi ∈ Rd , i = 1, . . . ,N,

I D : RN×d → RN×N , Dx = (|xi − xj |)N
i ,j=1 is the adjacency

matrix of x ;

I fi : RN×N → Rd , i = 1, . . . ,N,;

I fij : RN×N → R, i , j = 1, . . . ,N.

We are interested in the

I dimensionality reduction and numerical simulation

of dynamical systems of the type
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The application framework

With the development of communication technology and Internet,
larger and larger groups of people will access

I information (interactive database access, trends in scientific
literature and in newspapers ...)

I services (Google, the financial market ...)

I social interactions (social networks ...)

Our aim is to provide innovative tools for analyzing, simulating,
even predicting and controlling the behavior of such large crowds,
as one today can already do with weather forecasts.

We are facing very difficult challenges due to the “curse of
dimensionality”, as our individuals are not physical particles and
need a large number d of degrees of freedom to be described.
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Relevant assumptions

We assume the following Lipschitz and boundedness properties of
fi and fij , namely

‖fi (a)− fi (b)‖ ≤ L‖a− b‖∞,

max
i

∑
j

|fij(a)| ≤ L′,

max
i

∑
j

|fij(a)− fij(b)| ≤ L′′‖a− b‖∞,

for every a, b ∈ RN×N . Here, ‖a− b‖∞ := maxi ,j |aij − bij |.



A classical result

Theorem (Convergence of the Euler scheme)

Assume fij = 0. Fix x0 ∈ RN×d and let x(t) be the unique solution
of the ODE system

ẋ(t) = f (Dx(t)) , x(0) = x0 ,

on the interval [0,T ], T > 0.

Fix h > 0 and tn := nh:

x̃n+1 = x̃n + hf (Dx̃n) , x̃0 = x̃0 ,

for n = 1, 2, . . . .

Then, we have the estimate for en = ‖x(tn)− x̃n‖,

en ≤ exp(Ltn)

(
e0 + htn

‖f (Dx̃0)‖
2

)
.
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Exponential complexity reduction in d

The complexity of this algorithm stems from the evaluation of
f (Dx) which can be (generically) estimated by

O(d × N2).

Our first aim is to find an appropriate model of appropriate
reduction of the dynamical system to log(d) dimensions and
consequently the complexity to

O(log(d)× N2).



Dimensionality reduction via Johnson-Lindenstrauss
embeddings

Again some notation

I ε > 0 - a distortion parameter from J-L Lemma, see below,

I n0 ∈ N - number of iterations,

I N = n0N - number of iterations times number of agents

I k = O(ε−2 log(N )), new lower dimension - see below,

I M ∈ Rk×d - randomly generated matrix, see below,

I D : RN×d → RN×N , Dx = (‖xi − xj‖)N
i ,j=1 is the adjacency

matrix in high-dimension and similarly defined
D′ : RN×k → RN×N , D′y = (‖yi − yj‖)N

i ,j=1, the one in
low-dimension.



Dimensionality reduction via Johnson-Lindenstrauss
embeddings

Lemma (Johnson and Lindenstrauss)

Let P be an arbitrary set of N points in Rd . Given ε > 0, there
exists

k0 = O(ε−2 log(N )),

such that for all integers k ≥ k0, there exists a k × d random
matrix M for which with high probability, for all x , x̃ ∈ P

(1− ε)‖x − x̃‖2 ≤ ‖Mx −Mx̃‖2 ≤ (1 + ε)‖x − x̃‖2.



Dimensionality reduction via Johnson-Lindenstrauss
embeddings



Restricted Isometry Property

Definition
A k × d matrix M̃ is said to have the Restricted Isometry Property
of order K ≤ d and level δ ∈ (0, 1) if

(1− δ)‖x‖2 ≤ ‖M̃x‖2 ≤ (1 + δ)‖x‖2

for all K -sparse x ∈ Rd , i.e., # supp(x) ≤ K .

Theorem (Krahmer, Ward)

Fix η > 0 and ε > 0, and consider a finite set P ⊂ Rd of cardinality
|P| = N . Set K ≥ 40 log 4N

η , and suppose that the k × d matrix

M̃ satisfies the Restricted Isometry Property of order K and level
δ ≤ ε/4. Let ξ ∈ Rd be a Rademacher sequence, i.e., uniformly
distributed on {−1, 1}d . Then with probability exceeding 1− η,

(1− ε)‖x‖2 ≤ ‖Mx‖2 ≤ (1 + ε)‖x‖2.

uniformly for all x ∈ P, where M := M̃ diag(ξ).
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|P| = N . Set K ≥ 40 log 4N

η , and suppose that the k × d matrix

M̃ satisfies the Restricted Isometry Property of order K and level
δ ≤ ε/4. Let ξ ∈ Rd be a Rademacher sequence, i.e., uniformly
distributed on {−1, 1}d . Then with probability exceeding 1− η,

(1− ε)‖x‖2 ≤ ‖Mx‖2 ≤ (1 + ε)‖x‖2.

uniformly for all x ∈ P, where M := M̃ diag(ξ).



Some stochastic constructions of RIP→JL matrices
The following matrices satisfies the RIP w.h.p. for

K = O
(

k

1 + log(d/k)

)
.

I k × d matrices M̃ whose entries m̃i,j are independent realizations of
Gaussian random variables

m̃i,j ∼ N
(

0,
1

k

)
;

I k × d matrices M̃ whose entries are independent realizations of ±
Bernoulli random variables

m̃i,j :=

{
+ 1√

k
, with probability 1

2

− 1√
k
, with probability 1

2

More matrices: by random sampling of bounded basis (e.g., Fourier
basis) or random circulant matrices.
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Projection of the dynamical system
We consider the system of ordinary differential equations in the
fixed form with the initial condition

xi (0) = x0
i , i = 1, . . . ,N .

The Euler method for this system is given by this initial condition
and

xn+1
i := xn

i + h

fi (Dxn) +
N∑

j=1

fij(Dxn)xn
j

 , n = 0, . . . , n0 − 1.

where h > 0 is the time step and n0 := T/h is the number of
iterations.

If M ∈ Rk×d is a matrix, we may consider the associated Euler
method in Rk , namely

y 0
i := Mx0

i ,

yn+1
i := yn

i + h

Mfi (D′yn) +
N∑

j=1

fij(D′yn)yn
j

 , n = 0, . . . , n0 − 1.
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A first surprising result

Theorem (Fornasier, Haškovec, Vyb́ıral)

Given a matrix M ∈ Rk×d such that∥∥Mfi (D′yn)−Mfi (Dxn)
∥∥ ≤ (1 + ε)

∥∥fi (D′yn)− fi (Dxn)
∥∥ ,

‖Mxn
j ‖ ≤ (1 + ε)‖xn

j ‖,
(1− ε)‖xn

i − xn
j ‖ ≤ ‖Mxn

i −Mxn
j ‖ ≤ (1 + ε)‖xn

i − xn
j ‖

for all i , j = 1, . . . ,N and all n = 0, . . . , n0. Let us also assume,
that α ≥ maxj ‖xn

j ‖ for all n = 0, . . . , n0, j = 1, . . . ,N. Let

en
i := ‖yn

i −Mxn
i ‖, i = 1, . . . ,N and n = 0, . . . , n0

and put En := maxi en
i . Then

En ≤ εhnB exp(hnA),

where A := L′ + 2(1 + ε)(L + αL′′) and B := 2α(1 + ε)(L + αL′′).



Visual explanation



A continuous Johnson-Lindenstrauss Lemma

Theorem (Fornasier, Haškovec, Vyb́ıral)

Let ϕ : [0, 1]→ Rd be a C1 curve. Let 0 < ε < ε′ < 1,

γ := max
ξ∈[0,1]

‖ϕ̇(ξ)‖
‖ϕ(ξ)‖

<∞ and N ≥ (
√

d + 1) · γ

ε′ − ε
.

Let k be such a dimension, that a randomly chosen (and properly
normalized) projector M satisfies the statement of the
Johnson-Lindenstrauss Lemma with ε, d , k and N arbitrary points.
Then

(1− ε′)‖ϕ(t)‖ ≤ ‖Mϕ(t)‖ ≤ (1 + ε′)‖ϕ(t)‖, t ∈ [0, 1]

holds with the same probability.



A continuous Johnson-Lindenstrauss Lemma

The condition

γ := max
ξ∈[0,1]

‖ϕ̇(ξ)‖
‖ϕ(ξ)‖

<∞ and N ≥ (
√

d + 1) · γ

ε′ − ε

is necessary.y

Peano’s space-filling curve

By lifting a suitable parametrization
a Peano’s space-filling curve on the
unit sphere Sd−1, one generates a
curve with infinite speed (i.e., the
condition does not hold), and at the
same time it generates any possible
vector including those in the kernel
of M, hence

(1− ε′)‖ϕ(t)‖ ≤ ‖Mϕ(t)‖

cannot hold!



Projecting the continuous system

Theorem (Fornasier, Haškovec, Vyb́ıral)

Let x(t) ∈ Rd×N , t ∈ [0,T ], be the solution of the given ODE
system, such that maxt∈[0,T ] maxi ,j ‖xi (t)− xj(t)‖ ≤ α . Let us fix

k ∈ N, k ≤ d, and a matrix M ∈ Rk×d such that

(1− ε)‖xi (t)− xj(t)‖ ≤ ‖Mxi (t)−Mxj(t)‖ ≤ (1 + ε)‖xi (t)− xj(t)‖ ,

for all t ∈ [0,T ] and i, j = 1, . . . ,N. Let y(t) ∈ Rk×N , t ∈ [0,T ]
be the solution of the projected (continuous) system such that for
a suitable β > 0, maxt∈[0,T ] maxi ‖yi (t)‖ ≤ β . Let us define the
columnwise `2-error ei (t) := ‖yi (t)−Mxi (t)‖ for i = 1, . . . ,N and

E(t) := max
i=1,...,N

ei (t) .

Then we have the estimate

E(t) ≤ εαt(L‖M‖+ L′′β) exp
[
(2L‖M‖+ 2βL′′ + L′)t

]
.



Verifying the crucial condition

According to our continuous Johnson-Lindenstrauss Lemma

(1− ε)‖xi (t)− xj(t)‖ ≤ ‖Mxi (t)−Mxj(t)‖ ≤ (1 + ε)‖xi (t)− xj(t)‖ ,

for all t ∈ [0,T ] and i , j = 1, . . . ,N, is verified if the necessary
condition

sup
t∈[0,T ]

max
i ,j

‖ẋi (t)− ẋj(t)‖
‖xi (t)− xj(t)‖

≤ γ <∞ ,

holds.

It is, for instance, trivially satisfied when the right hand
sides fi , fij have the following Lipschitz continuity:

‖fi (Dx)− fj(Dx)‖ ≤ L′′′‖xi − xj‖ for all i , j = 1, . . . ,N ,

‖fi`(Dx)− fj`(Dx)‖ ≤ L′′′′‖xi − xj‖ for all i , j , ` = 1, . . . ,N .

We will show relevant examples below for which the condition is
verified.
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Optimal information recovery?

We would like to address the following two fundamental questions:

(i) Can we quantify the best possible information of the
high-dimensional trajectory one can recover from one or more
projections in lower dimension?

(ii) Is there any practical method which performs an optimal
recovery?

The first question was implicitly addressed already in the 70’s by
Kashin and later by Garnaev and Gluskin, as one can put in
relationship the optimal recovery from (random) linear projections
with Gelfand width of `p-balls. It was only with the development
of the theory of compressed sensing that an answer to the second
question was provided, showing that `1-minimization actually
performs an optimal recovery of vectors in high dimension from
random linear projections to low dimension.
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Compressed sensing enters the picture

Theorem
Given a matrix M ∈ Rk×d with the RIP of order 2K and level
δ < 0.4, and

y = Mx + η ∈ Rk , ‖η‖ ≤ ε

The vector x̂ computed by x̂ = arg min‖Mz−y‖≤ε ‖z‖1 :=
∑d

i=1 |zi |,
has the approximation property

‖x̂ − x‖ ≤ C1
σK (x)1√

K
+ C2ε,

where σK (z)1 = ‖z − z[K ]‖1, best-K -term approx. error.
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A second surprising algorithmic result
As a consequence of this theorem, by projecting and simulating in parallel
the dynamical system dk -times, dk ≤ d

k in lower dimension

ẏ `
i = M`fi (D′y `) +

N∑
j=1

fij(D′y `)y `
j , y `

i (0) = M`x0
i , j = 1, . . . , dk ,

we can assemble the following system
M1

M2

. . .

. . .
Mdk

 xi =


y 1
i

y 2
i

. . .

. . .

ydk

i

−


η1
i

η2
i

. . .

. . .

ηdk

i


Therefore we can compute x̂i such that

‖x̂i − xi‖ ≤ C1
σK ′(xi )1√

K ′
+ C2ε,

with K ′ = O
(

dkk
1+log(d/(dkk))

)
. The computation of x̂i can be parallelized!

M. Fornasier, Domain decomposition methods for linear inverse problems with

sparsity constraints, Inverse Problems, Vol. 23, 2007, pp. 2505-2526.
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Interesting examples
Our theory apply, for instance, on

I the Cucker-Smale model, which is given by

ẋi = vi ∈ Rd ,

v̇i =
1

N

N∑
j=1

a(‖xi − xj‖)(vj − vi ).

The function g : R→ R is given by a(t) = G
(1+t2)β

, t > 0 and

bounded by a(0) = G > 0.
I the D’Orsogna-Chuang-Bertozzi-Chayes model, which is given

by

ẋi = vi ∈ Rd ,

v̇i = (a− b‖vi‖2)vi −
1

N

∑
j 6=i

∇U(‖xi − xj‖),

where a and b are positive constants and U : R→ R is a
smooth potential.
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Interesting examples

In principle, we can also consider

I the Keller-Segel model, given by

dxi (t) = −c
∑
j 6=i

xi − xj

‖xi − xj‖d
dt +

√
2dBi ,

where Bi (t), i = 1, . . . ,N are mutually independent
d-dimensional Brownian motions and c is a positive constant.

In this case, though, the matrix M should be better a partial
orthogonal random matrix (for instance a random partial Fourier
matrix), as MBi (t), i = 1, . . . ,N are mutually independent
k-dimensional Brownian motions!
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Numerical results

Numerical results showing the time evolution of the relative error of projection

(left panel) and relative error of recovery via `1-minimization (right panel) of

the v-variables for the Cucker-Smale model.



Numerical results: stability of consensus after random
projection

Numerical results for β = 1.62: First row shows the evolution of Γ(t) = V (t)

of the CS-system projected to dimension k = 100 (left) and k = 25 (right) in

the twenty realizations, compared to the original system (bold dashed line).

Second row shows the initial values V (t = 0) and final values V (t = 30) in all

the performed simulations.



Conclusion

I We defined a general class of
dynamical systems modeling social
interactions

I We showed that randomized
projections via Johnson-Lindenstrauss
embeddings map stably the
trajectories

I We showed how `1-minimization can
be used for recovering
high-dimensional trajectories from
low-dymensional simulations

I We showed an application to the
Cucker-Smale system modelling
consensus
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stabilization and optimal control of the Cucker-Smale model,
submitted to SIAM Review, 2012.

I J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani,
Asymptotic flocking dynamics for the kinetic Cucker-Smale
model, SIAM. J. Math. Anal., Vol. 42, no. 1, 2010, pp.
218-236.
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