

Crowd dynamics

Benedetto Piccoli

Joseph and Loretta Lopez Chair Professor of Mathematics Department of Mathematical Sciences and Program Director Center for Computational and Integrative Biology Rutgers University - Camden

Group of intelligent agents on the move

Autonomous, Self-propelled, Self-driven, Selfish, Greedy, Boids, !

Conservation laws on networks

1.!The only conservation at nodes does not determine the dynamics 2.!Additional rules should take into account, as distribution policies 3.!Solutions give rise to boundary value problems on arcs 4.!Entropy is used to determine dynamics (maximal flux)

Rule (A) : Out. Fluxes Vector = A " Inc. Fluxes Vector Traffic distribution matrix $A = (\#_{ji}), 0 < \#_{ji} < 1, \$_{ji} \#_{ji} = 1$

Rule (B) : Max %Inc. Fluxes Vector%

Rule (B) is an "entropy" type rule : maximize velocity

Berkeley-Nokia and Octotelematics

Berkeley-Nokia: Alex Bayen group, Octotelematics: Corrado DeFabritiis

Tens, hundreds, thousands of pedestrians

Helbing et al., microscopic

Maury-Venel, microscopic

Colombo-Rosini, macroscopic 1D

 $\partial_t \rho + \partial_x q(\rho) = 0$

Bellomo-Dogbé, macroscopic

 $\begin{cases} \partial_t \rho + \nabla \cdot (\rho v) = 0\\ \partial_t v + (v \cdot \nabla) v = F[\rho, v] \end{cases}$

Time evolving measures Measure μ : (t,E) $\rightarrow \mu$ (t,E) number of pedestrians in the region E Flow map γ : x \rightarrow x + v(x, μ) Δ t move points with given velocity At next time step is given by μ (t+ Δ t ,E) = μ (t, γ^{-1} (E))

The velocity v is the sum of desired velocity vd

and interaction term v_i (μ)

Time evolving measares: Canuto-Fagnani-Tilli, Tosin-P., Muntean et al., Santambrogio, Carrillo-Figalli et al., Colombo, Gwiazda !.

Macroscopic for self-organization in pedestrians

Initial condition

Desired velocity field

Exiting the metro: simulation

MICRO

MULTISCALE

MACRO

What metric for evolving measures?

#

If #<" then the L1 distance is O(1)

Wasserstein (Vaserstein) metric

 $v[\mu]$ is uniformly Lipschitz and uniformly bounded, i.e. there exist L, M not depending on μ , such that for all $\mu \in \mathcal{M}, x, y \in \mathbb{R}^n$,

$$|v[\mu](x) - v[\mu](y)| \le L|x - y|$$
 $|v[\mu](x)| \le M.$

v is a Lipschitz function, i.e. there exists K such that

$$\|v\left[\mu\right] - v\left[\nu\right]\|_{\mathcal{C}^{0}} \le KW_{p}\left(\mu,\nu\right).$$

Generalized Wasserstein

$$\begin{cases} \partial_t \mu + \nabla \cdot (v \left[\mu \right] \, \mu) = h \left[\mu \right], \\ \mu_{|_{t=0}} = \mu_0. \end{cases}$$

$$W_p^{a,b}(\mu,\nu) = \inf_{\substack{\tilde{\mu},\tilde{\nu} \in \mathcal{M}^p \\ |\tilde{\mu}| = |\tilde{\nu}|}} (a|\mu - \tilde{\mu}| + a|\nu - \tilde{\nu}| + bW_p(\tilde{\mu},\tilde{\nu}))$$

$$\mathcal{B}^{a,b}\left[\mu, v, h\right] := a^2 \left(\int_0^1 dt \left(\int_{\mathbb{R}^d} d|h_t| \right) \right)^2 + b^2 \int_0^1 dt \left(\int_{\mathbb{R}^d} d\mu_t \, |v_t|^2 \right).$$

$$T_{2}^{a,b}(\mu,\nu) = \inf_{\tilde{\mu},\tilde{\nu}\in\mathcal{M},\,|\tilde{\mu}|=|\tilde{\nu}|} a^{2} \left(|\mu-\tilde{\mu}|+|\nu-\tilde{\nu}|\right)^{2} + b^{2} W_{2}^{2}(\tilde{\mu},\tilde{\nu})$$

 $T_2^{a,b}(\mu_0,\mu_1) = \inf \left\{ \mathcal{B}^{a,b}[\mu,v,h] \mid \mu \text{ is a solution of (1)} \right\}$

with vector field v, source h and $\mu_{|_{t=0}} = \mu_0, \mu_{|_{t=1}} = \mu_1$

CROWD DYNAMICS

VEHICULAR TRAFFIC

SUPPLY CHAINS

Simone Goettlich

Anna Chiara Lai

Marco Caponigro

Andrea Tosin

Roberto Natalini

Mauro Garavello

Dirk Helbing

Alessia Marigo

Dan Work

Amelio Maurizi

BET

Rosanna Manzo

Axel Klar

ANIMAL GROUPS

Paola Goatin

Seb Blandin

Yacine Chitour

Rinaldo Colombo

Giuseppe Coclite

Corrado Lattanzio