
Chapter 4

Integration Techniques

4.1 Transformation of Integrals

We defined the Riemann integral
∫ b

a
f of a function f : [a, b] → R through suprema

and infima of lower and upper Darboux integrals (and through limits of Riemann
sums). While this is a natural concept to begin with, and it can be used to evaluate
a few elementary integrals, for more complex tasks, we need to understand how an
integral transforms under a map. To get to this we need to replace the functional
integrand f : [a, b] → R of the integral

∫ b

a
f by the associated form α = f(x)dx

(Section 2.7), and define ∫ b

a

α =

∫ b

a

f(x)dx =

∫ b

a

f.

The justification of this more complex concept, the integral of a form, is contained in
the following:

Proposition 4.1.1. Let g : [a, b] → [c, d], c = g(a), d = g(b), be a differentiable
function such that the derivative g′ is Riemann integrable on [a, b]. Then, for any
Riemann integrable form1 α on [g(a), g(b)], we have∫ b

a

g∗(α) =

∫ g(b)

g(a)

α,

where the integrand on the left-hand side is the pull-back of α by g.

1By definition, a form α = f(x) dx is Riemann integrable if the function f : [a, b] → R is Riemann
integrable.
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182 CHAPTER 4. INTEGRATION TECHNIQUES

Proof. Letting α = f(x)dx, x ∈ [g(a), g(b)], we have g∗(f(x)dx) = f(g(x))g′(x)dx.
The formula above is therefore equivalent to∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du,

where we used u = g(x) with generic variables x and u. Let F (x) =
∫ x

a
f(u)du, so

that F ′(x) = f(x). Then the formula is a direct consequence of the chain rule∫ b

a

f(g(x))g′(x)dx =

∫ b

a

F ′(g(x))g′(x)dx =

∫ b

a

(F (g(x)))′dx

= F (g(x))

∣∣∣∣b
a

= F (u)

∣∣∣∣g(b)
g(a)

=

∫ g(b)

g(a)

F ′(u)du =

∫ g(b)

g(a)

f(u)du.

The formula in Proposition 4.1.1 is usually called the substitution rule, and
the actual use of the formula is termed as integration by substitution. There are
literally a miriad integration problems centered around the substitution rule (along
with the FTA).

We now begin to enlist the integrals of various elementary functions in increasing
complexity.
First, the integral formula for the power function gives the integral of any polynomial
explicitly as ∫ n∑

k=0

akx
k dx =

n∑
k=0

ak
k + 1

xk+1 + C, a0, a1, . . . , an ∈ R.

Second, the integral of a rational function is always an elementary function. This
follows from the partial fraction decomposition of rational functions2, and from the
fact that the integrals of partial fractions are elementary. We illustrate this by a few,
somewhat non-standard, examples. We begin with the simplest case of distinct real
roots in the denominator.

Example 4.1.1. For n ∈ N0, we have∫
dx

x(x+ 1) · · · (x+ n)
=

1

n!

n∑
k=0

(−1)k
(
n

k

)
ln |x+ k|+ C.

2For a detailed account, see Elements of Mathematics - History and Foundations, Section 9.2.
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Indeed, this is a direct consequence of the partial fraction decomposition

1

x(x+ 1) · · · (x+ n)
=

n∑
k=0

(−1)k
(
n

k

)
1

x+ k
.

This latter formula can be derived in the usual way, letting

1

x(x+ 1) · · · (x+ n)
=

n∑
k=0

Ak

x+ k
,

where the coefficients Ak, k = 0, 1, . . . , n, are to be determined. Eliminating all the
denominators by multiplying through x(x+1) · · · (x+n), and evaluating the obtained
equality on the roots −k, k = 0, 1, . . . , n, we obtain

1 = Ak(−k) · (−k + 1) · · · (−1) · 1 · 2 · · · (−k + n) = (−1)kAk · k!(n− k)!

The stated formula follows.

Remark. The partial fraction decomposition of the previous example can also be
derived inductively by letting q(x) = 1/(x(x + 1) · · · (x + n)), x ∈ R, n ∈ N0, and
noting that it satisfies the inductive formula

qn(x) =
1

n
(qn−1(x)− qn−1(x+ 1)) , x ∈ R, n ∈ N.

The next example is the case of irreducible quadratic factors:3

Example 4.1.2. Determine ∫
dx

x4 + 1
.

The usual trick x4 + 1 = x4 + 2x2 + 1 − 2x2 = (x2 + 1)2 − (
√
2x)2 = (x2 +

√
2x +

1)(x2 −
√
2x + 1) yields the complete factorization. A simple evaluation gives the

partial fraction decomposition

1

(x2 +
√
2x+ 1)(x2 −

√
2x+ 1)

=
1

4

√
2x+ 2

x2 +
√
2x+ 1

− 1

4

√
2x− 2

x2 −
√
2x+ 1

.

Using the integral formula∫
dx

(x+ a)2 + b2
=

1

b
arctan

(
x+ a

b

)
, b > 0,

3Or, using complex language, two pairs of conjugate complex roots.
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a simple computation gives∫
dx

x4 + 1
=

√
2

8
ln

(
x2 +

√
2x+ 1

x2 −
√
2x+ 1

)
+

√
2

4

(
arctan

(√
2x+ 1

)
+ arctan

(√
2x− 1

))
+C.

Oftentimes an integral can be “rationalized;” that is, it can be transformed into
an integral of a rational function, which, in turn, can be integrated by using partial
fractions. The next example is a typical, if somewhat technical, illustration to this.

Example 4.1.3. Determine the integral∫ √
tan(x) dx.

We first substitute u =
√

tan(x); that is, u2 = tan(x). This gives 2udu = sec2(x)dx.
Using the Pythagorean identity 1+tan2(x) = sec2(x), we obtain 2udu/(u4+1) = dx.
With this, we get ∫ √

tan(x) dx =

∫
2u2

u4 + 1
du.

We could proceed as in the previous example, but a simple trick works here better∫ √
tan(x) dx =

∫
u2 + 1

u4 + 1
du+

∫
u2 − 1

u4 + 1
du

=

∫
1 + 1/u2

u2 + 1/u2
du+

∫
1− 1/u2

u2 + 1/u2
du

=

∫
1 + 1/u2

(u− 1/u)2 + 2
du+

∫
1− 1/u2

(u+ 1/u)2 − 2
du

Substituting v = u − 1/u, resp. w = u + 1/u (and hence dv = (1 + 1/u2)du, resp.
dw = (1− 1/u2)du), we continue as∫ √

tan(x) dx =

∫
dv

v2 + 2
+

∫
dw

w2 − 2

=
1√
2
arctan

(
v√
2

)
+

1

2
√
2
ln

∣∣∣∣∣w −
√
2

w +
√
2

∣∣∣∣∣+ C

=
1√
2
arctan

(
u− 1/u√

2

)
+

1

2
√
2
ln

∣∣∣∣∣u+ 1/u−
√
2

u+ 1/u+
√
2

∣∣∣∣∣+ C

=
1√
2
arctan

(√
tan(x)−

√
cot(x)√

2

)
+

1

2
√
2
ln

∣∣∣∣∣
√

tan(x) +
√
cot(x)−

√
2√

tan(x) +
√
cot(x) +

√
2

∣∣∣∣∣+ C

The example follows.
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Sometimes there is more emphasis on trigonometry than on rationalization. The
following example illustrates this.

Example 4.1.4. Determine ∫
dx

1 + sin(x)

It is well-known that all the six trigonometric functions can be expressed as rational
functions of the tangent function with half of the respective angle.4 In particular, we
have

sin(x) =
2 tan(x/2)

tan2(x/2) + 1
and cos(x) =

1− tan2(x/2)

tan2(x/2) + 1
.

Hence ∫
dx

1 + sin(x)
=

∫
dx

1 + 2 tan(x/2)/(tan2(x/2) + 1)

=

∫
tan2(x/2) + 1

tan2(x/2) + 2 tan(x/2) + 1
dx

=

∫
sec2(x/2)

(tan(x/2) + 1)2
dx =

∫
2

(u+ 1)2
du

= − 2

u+ 1
+ C = − 2

tan(x/2) + 1
+ C,

where we used the substitution u = tan(x/2).

The next example is well-known to be notorious in resisting several standard
methods:

Example 4.1.5. Show that ∫ 1

0

ln(1− x)

x
dx = −π

2

6
.

By the power series expansion of ln(1 − x) with radius of convergence ρ = 1, the
function under the integral sign is defined on (−1, 1), and can be expanded into the
power series

ln(1− x)

x
= −1

x
·

∞∑
n=1

xn

n
= −

∞∑
n=1

xn−1

n
, |x| < 1.

4See Elements of Mathematics - History and Foundations, Section 11.4.
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By the corollary to Proposition 3.2.1, we can integrate term-by-term on any interval
[0, b], 0 < b < 1, and obtain∫ b

0

ln(1− x)

x
dx = −

∫ b

0

∞∑
n=1

xn−1

n
dx = −

∞∑
n=1

1

n

∫ b

0

xn−1dx = −
∞∑
n=1

bn

n2
.

The crux here is that, by the Weierstrass M -test, the infinite series
∑∞

n=1 x
n/n2

converges uniformly on the closed interval [0, 1] (with Mn = 1/n2, n ∈ N.) Thus, by
Proposition 1.2.2, this infinite sum is left-continuous at x = 1. This finally gives∫ 1

0

ln(1− x)

x
dx = lim

b→1−

∫ b

0

ln(1− x)

x
dx = − lim

b→1−

∞∑
n=1

bn

n2
= −

∞∑
n=1

1

n2
= −π

2

6
,

where we used the Euler sum
∑∞

n=1 1/n
2 = π2/6.

Example 4.1.6. Show that5∫ π/2

0

ln(sin(x)) dx =

∫ π/2

0

ln(cos(x)) dx = −π
2
ln 2.

First, we have∫ π/2

0

ln(sin(x)) dx = lim
a→0+

∫ π/2

a

ln(sin(x)) dx

= lim
a→0+

∫ π/2

a

ln

(
sin(x)

x

)
dx+ lim

a→0+

∫ π/2

a

ln(x) dx.

The first integral is finite since limx→0 sin(x)/x = 1 so that the function f(x) =
ln(sin(x)/x), x ∈ (0, π/2] becomes continuous on [0, π/2] by setting f(0) = 0. We
calculate the second integral as

lim
a→0+

∫ π/2

a

ln(x) dx = lim
a→0+

[x ln(x)− x]π/2a =
π

2
ln
(π
2

)
− π

2
− lim

a→0+
a ln(a).

For the last limit, we have

lim
a→0+

a ln(a) = lim
a→0+

ln(a)

1/a
= lim

a→0+

1/a

−1/a2
= − lim

a→0+
a = 0.

5Although well-known, this problem was in the William Lowell Putnam Mathematical Competi-
tion, 1953.
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We conclude that our integral is finite.
We now use the trigonometric identity sin(2α) = 2 sin(α) cos(α), α ∈ R, and calculate∫ π/2

0

ln(sin(x)) dx =

∫ π/2

0

ln(2 sin(x/2) cos(x/2)) dx

=
π

2
ln 2 +

∫ π/2

0

ln(sin(x/2)) dx+

∫ π/2

0

ln(cos(x/2)) dx

=
π

2
ln 2 + 2

∫ π/4

0

ln(sin(u)) du+ 2

∫ π/4

0

ln(cos(u)) du,

where we performed the substitution u = x/2. Finally, performing yet another sub-
stitution v = π/2− u in the last integral, we obtain∫ π/4

0

ln(cos(u)) du = −
∫ π/4

π/2

ln(cos(π/2− v)) dv =

∫ π/2

π/4

ln(sin(v)) dv.

Substituting this into the previous computation, we obtain∫ π/2

0

ln(sin(x)) dx =
π

2
ln 2 + 2

∫ π/4

0

ln(sin(u)) du+ 2

∫ π/2

π/4

ln(sin(v)) dv

=
π

2
ln 2 + 2

∫ π/2

0

ln(sin(x)) dx.

Rearranging, the example follows.

Example 4.1.7. Let 0 < a ∈ R. Show that6

lim
x→0+

1

x

∫ x

0

(1 + sin(at))1/t dt = ea.

By the Euler limit limx→∞(1 + 1/x)x = e, for the integrand we have

lim
t→0+

(1 + sin(at))1/t = lim
t→0+

(
(1 + sin(at))1/ sin(at)

)sin(at)/t
= ea.

Hence, FTC II gives

lim
x→0+

1

x

∫ x

0

(1 + sin(at))1/t dt = lim
x→0+

(1 + sin(ax))1/x = ea.

The example follows.

6See the problem (a = 2) in the first William Lowell Putnam Mathematical Competition, 1938.
The right-limit is of technical convenience.
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Example 4.1.8. Show that7 the integral∫ π

0

x sinx

1 + cos2 x
dx =

π2

4
.

We make use of the substitution u = π − x with du = −dx, and calculate∫ π

0

x sinx

1 + cos2 x
dx = −

∫ 0

π

(π−u) sinu

1 + cos2 u
du = π

∫ π

0

sinu

1 + cos2 u
du−

∫ π

0

u sinu

1 + cos2 u
du,

where we used sin(π−u) = sin(u) and cos(π−u) = − cos(u). Rearranging, and using
another substitution v = cos(u) with dv = − sin(u), we have∫ π

0

x sinx

1 + cos2 x
dx =

π

2

∫ π

0

sinu

1 + cos2 u
du = −π

2

∫ −1

1

dv

1 + v2
=
π

2

[
tan−1(v)

]1
−1

=
π2

4
.

We finish this section by a well-known non-elementary integral, the arc length of
an ellipse.

Example 4.1.9. We consider the arc length of the ellipse given in standard position
by

x2

a2
+
y2

b2
= 1, 0 < b < a,

over an interval [p, q] with −a ≤ p < q ≤ a. We claim that the arc length is given by

s(p, q) = ab

∫ √
1−(p/a)2

√
1−(q/a)2

1− k2u2√
(1− u2)(1− k2u2)

du,

where k2 = 1− a2/b2.
The arc length of the graph of a function8 f : D → R over [p, q] ⊂ D ⊂ R is given by

s(p, q) =

∫ q

p

√
1 + f ′(x)2 dx.

We use the equation of the ellipse above with y = f(x) = (b/a)
√
a2 − x2, |x| ≤ a.

Differentiating f(x)2 = (b/a)2(a2 − x2), we obtain f(x)f ′(x) = −(b/a)2x. Hence

1 + f ′(x)2 = 1 +
b2

a2
x2

a2 − x2
=
a4 + (b2 − a2)x2

a2(a2 − x2)
.

7Several examples presented here and below are insipired by and are at the level of “integration
bees” at various universities.

8We assume that f is differentiable and f ′ is integrable.
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With this, the arc length integral takes the form

s(p, q) =
1

a

∫ q

p

a4 + (b2 − a2)x2√
(a2 − x2)(a4 + (b2 − a2)x2)

dx

We now perform the substitution u2 = (a2 − x2)/a2 (or x2 = a2(1 − u2)) with du =
−x dx/(a

√
a2 − x2). We have a4+(b2−a2)x2 = a2b2(1−k2u2), where k2 = 1−(a/b)2.

Using these, the desired form above follows.

Remark. The arc length in the example above can be expressed by the elliptic
integral of the second kind:

E(ϕ, k) =

∫ ϕ

0

√
1− k2 sin2 θ dθ =

∫ sinϕ

0

√
1− k2u2√
1− u2

du =

∫ sinϕ

0

du√
(1− u2)(1− k2u2)

.

Exercises

1. Perform the induction to verify the partial fraction decomposition of Example
4.1.1 as indicated in the subsequent remark.

2. Evaluate the integral ∫ π/2

0

cosx

1 + cos2 x
dx.

3. Evaluate the integral ∫ (
x4

1 + x6

)2

dx.

Solution: Use the substitution u = x3 with du = 3x2dx, and partial fractions as∫
(x3)2

(1 + x6)2
x2 dx =

1

3

∫
u2

(1 + u2)2
du =

1

3

∫ (
1

1 + u2
− 1

(1 + u2)2

)
du.

Now use another substitution u = tan(θ) with du = sec2(θ)dθ, and obtain

1

3

∫ (
1

1 + u2
− 1

(1 + u2)2

)
du =

1

3

∫ (
1

sec2(θ)
− 1

sec4(θ)

)
sec2(θ) dθ

=
1

3

∫
(1− cos2 θ) dθ =

1

3

∫
sin2(θ) dθ =

1

6
(θ − sin(θ) cos(θ)) + C

=
1

6

(
arctan(u)− u

1 + u2

)
+ C =

1

6

(
arctan(x3)− x3

1 + x6

)
+ C.
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4. Let f : R → R be defined by

f(x) =

∫ x

0

t

(
1 + cos

(
1

t

))
dt.

Show that f is differentiable everywhere with critical points 0 and 1/((2n + 1)π),
n ∈ N.

4.2 Integration by Parts

The product rule for differentials

d(u · v) = v · du ·+u · dv

immediately gives the following:

Proposition 4.2.1. We have∫ b

a

udv = [uv]ba −
∫ b

a

vdu.

Remark. The integration by parts formula above can also be proved by using the
“summation by parts” technique on the respective Riemann sums (Section 2.3).

As an important application of the integration by parts technique, we briefly return
to Taylor series and derive yet another form of the Taylor remainder, the so-called
intergral form of the Taylor remainder, as follows:

Proposition 4.2.2. Let f : D → R, (c − d, c + d) ⊂ D, 0 < d ∈ R, and x ∈
(c − d, c + d) \ {c}. Assume that f is differentiable up to order n + 1 and f (n+1)

integrable on the closed interval between x and c. Then, for the Taylor remainder
Rn(x) = f(x)− Tn(x), we have

Rn(x) =

∫ x

c

f (n+1)(t)

n!
(x− t)ndt.

Proof. We use induction with repect to n ∈ N0. For n = 0, by the FTC I, we have

R0(x) = f(x)− f(c) =

∫ x

c

f ′(t)dt.
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For the general induction step n ⇒ n+ 1, n ∈ N0, we use integration by parts (with
u = f (n+1)(t)/(n+ 1)! and v = −(x− t)n+1), and calculate

Rn(x) =

∫ x

c

f (n+1)(t)

n!
(x− t)ndt

= −
[
f (n+1)(t)

(n+ 1)!
(x− t)n+1

]x
c

+

∫ x

c

f (n+2)(t)

(n+ 1)!
(x− t)n+1dt

=
f (n+1)(c)

(n+ 1)!
(x− c)n+1 +

∫ x

c

f (n+2)(t)

(n+ 1)!
(x− t)n+1dt

=
f (n+1)(c)

(n+ 1)!
(x− c)n+1 +Rn+1(x).

The proposition follows.

We finish this section by a cadre of somewhat challenging integrals. Our first
example is well-known. It is termed as Dirichlet integral, and is usually derived
by using more advanced techniques (such as contour integrals on the complex plane).
As usual we insist on elementary methods.

Example 4.2.1. Show that∫ ∞

0

sin(x)

x
dx = lim

R→∞

∫ R

0

sin(x)

x
dx =

π

2
.

First, the integrand, the function under the integral sign, is continuous everywhere
except at 0, where it has a removable discontinuity. Since limx→0 sin(x)/x = 1, we
remove this singularity by setting this function equal to 1 at 0. Now the integrand is
continuous everywhere and hence integrable.
Second, we claim that the improper integral converges; that is, the limit

lim
R→∞

∫ R

0

sin(x)

x
dx =

∫ 1

0

sin(x)

x
dx+ lim

R→∞

∫ R

1

sin(x)

x
dx

exists;9 where we split off the finite portion over [0, 1] for convenience. For the last
limit, we use integration by parts via u = 1/x and dv = sin(x)dx (and hence du =
−dx/x2 and v = − cos(x)), and obtain∫ R

1

sin(x)

x
dx =

[
−cos(x)

x

]R
1

−
∫ R

1

cos(x)

x2
dx = −cos(R)

R
+ cos 1−

∫ R

1

cos(x)

x2
dx.

9Another proof is by splitting the integral into the infinite series
∑∞

n=0

∫ (n+1)π

nπ
(sin(x)/x) dx and

use the alternating series test; see also Section 4.7.
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Letting R → ∞, we have limR→∞ cos(R)/R = 0, and the last integral is absolutely
convergent since, by comparison, we have∫ ∞

1

∣∣∣∣cos(x)x2

∣∣∣∣ dx ≤
∫ ∞

1

dx

x2
= 1.

The claim follows.
(Warning: The original integral is not absolutely convergent:

∫∞
1

| sin(x)|/x dx >∑∞
n=1

∫ (n+1)π

nπ
| sin(x)|dx/(nπ) = (2/π) ·

∑∞
n=1 1/n = ∞.)

The crux of this example is to estimate the transformed integral∫ (2n+1)π/2

0

sin(x)

x
dx =

∫ π/2

0

sin((2n+ 1)t)

t
dt, n ∈ N,

(via the substitution x = (2n+ 1)t) by using the Lagrange identity10

n∑
k=1

cos(2kt) = −1

2
+

sin((2n+ 1)t)

2 sin(t)
.

To do this, we denote

In =

∫ π/2

0

sin((2n+ 1)t)

t
dt and Jn =

∫ π/2

0

sin((2n+ 1)t)

sin(t)
dt, n ∈ N.

Clearly ∫ ∞

0

sin(x)

x
dx = lim

n→∞

∫ (2n+1)π/2

0

sin(x)

x
dx = lim

n→∞
In.

On the other hand, integrating both sides of the Langrange identity above, we have

n∑
k=0

∫ π/2

0

cos(2kt) dt = −π
4
+

1

2
Jn, n ∈ N.

Since each term in the sum on the left-hand side vanishes, we obtain

Jn =
π

2
, n ∈ N.

We now calculate the difference

Jn − In =

∫ π/2

0

(
1

sin(t)
− 1

t

)
sin((2n+ 1)t) dt

=
1

2n+ 1

∫ π/2

0

(
1

t2
− cos(t)

sin2(t)

)
cos((2n+ 1)t) dt,

10See Elements of Mathematics - History and Foundations, Exercise 11.3.6.
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where we performed integration by parts with 1/ sin(t)−1/t = u and sin((2n+1)t)dt =
dv. Note that the boundary terms vanish since[(

1

sin(t)
− 1

t

)
cos((2n+ 1)t)

2n+ 1

]π/2
0

= − 1

2n+ 1
lim
t→0

(
1

sin(t)
− 1

t

)
= 0.

(See Example 2.2.6.) Note also that, in the last integral above, the difference is the
parentheses has removable discontinuity at 0, since

lim
t→0

(
1

t2
− cos(t)

sin2(t)

)
=

1

6
.

(See Example 2.2.7.) Since the last integral is bounded as n→ ∞, we conclude that
limn→∞(Jn − In) = 0, or equivalently

lim
n→∞

In = lim
n→∞

Jn.

Putting these together, we arrive at the following:∫ ∞

0

sin(x)

x
dx = lim

n→∞
In = lim

n→∞
Jn =

π

2
.

The example follows.

Example 4.2.2. Derive the formula∫ x

0

tn · et dt =

[
n∑

k=0

(−1)n−kn!

k!
· xk
]
· ex + (−1)n+1n!, n ∈ N0.

Letting u = tn and v = et, we use integration by parts:∫ x

0

tn · et dt =
∫ x

0

tnd(et) =
[
tn · et

]x
0
−
∫ x

0

et d(tn) = x · ex − n

∫ x

0

tn−1 · et dt,

since d(et) = et dt and d(tn) = ntn−1 dt as forms. Letting En(x) denote the integral
on the left-hand side, this gives the inductive formula

En(x) = xn · ex − nEn−1(x), n ∈ N,

and E0(x) = ex − 1. To derive the stated formula we now use induction with respect
to n ∈ N0. Since the formula clearly holds for n = 0, we need only to perform the
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general induction step n− 1 ⇒ n, n ∈ N. We have

En(x) = xn · ex − nEn−1(x)

= xn · ex − n

[
n−1∑
k=0

(−1)n−k−1 (n− 1)!

k!
· xk
]
· ex − n(−1)n(n− 1)!

= xn · ex +

[
n−1∑
k=0

(−1)n−kn!

k!
· xk
]
· ex + (−1)n+1n!

=

[
n∑

k=0

(−1)n−kn!

k!
· xk
]
· ex + (−1)n+1n!.

The induction is complete, and the formula follows.

Example 4.2.3. Show that∫ 1

0

xa(ln(x))n dx = (−1)n
n!

(a+ 1)n+1
, −1 < a ∈ R, n ∈ N0.

We have the inductive formula for the integral11∫
xa(ln(x))n dx =

xa+1(ln(x))n

a+ 1
− n

a+ 1

∫
xa(ln(x))n−1 dx, x > 0.

Indeed, this is a simple application of integration by parts with u = (ln(x))n and
dv = xadx. We then have du = n(ln(x))n−1/x · dx and v = xa+1/(a + 1), and the
formula follows.
Applying this formula inductively, we obtain∫

xa(ln(x))n dx =
xa+1

a+ 1
·

n∑
k=0

(−1)k
n!

(n− k)!(a+ 1)k
(ln(x))n−k + C,

x > 0, −1 < a ∈ R, n ∈ N0.

For the corresponding definite integral over [0, 1] we need to evaluate all boundary
terms (x = 0, 1) on the right-hand side. All terms in the sum have vanishing right-
limit at 0. Indeed, for 0 < b ∈ R and m ∈ N, we have the inductive formula

lim
x→0+

xb(ln(x))m = lim
x→0+

(ln(x))m

1/xb
= lim

x→0+

m(ln(x))m−1 · 1/x
−b/xb+1

= −m
b

lim
x→0+

xb(ln(x))m−1.

11The only restriction for the validity of this formula is a ̸= −1. (See Example 4.3.1 in the next
session.) For a = −1, we have

∫
(ln(x))n dx/x = (ln(x))n+1/(n + 1) + C, n ̸= −1; and, finally,∫

dx/(x ln(x)) = ln(ln(x)) + C.
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Applying this m times, the claim follows.
Finally, all terms but the last (k = n) in the sum vanish at x = 1.
The example follows.

The next example can be found in Euler’s works:

Example 4.2.4. Show that ∫ 1

0

sin(ln(x))

ln(x)
dx =

π

4
.

Removing the singularity at 0, we have the power series expansion

sin(u)

u
=

∞∑
n=0

(−1)n
u2n

(2n+ 1)!
, u ∈ R,

(with radius of convergence ρ = ∞). Hence∫ 1

0

sin(ln(x))

ln(x)
dx =

∫ 1

0

∞∑
n=0

(−1)n
ln2n(x)

(2n+ 1)!
dx =

∞∑
n=0

(−1)n

(2n+ 1)!

∫ 1

0

ln2n(x) dx,

where the interchange of the sum and the (improper integral) is allowed due to uniform
convergence of the power series expansion above on closed intervals (Proposition
3.2.1). By Example 4.2.3 just shown, we have∫ 1

0

lnn(x) dx = (−1)nn!, n ∈ N0.

Substituting, we obtain ∫ 1

0

sin(ln(x))

ln(x)
dx =

∞∑
n=0

(−1)n

2n+ 1
=
π

4
.

Here the last equality follows from the elementary integral

arctan(x) =

∫ x

0

dt

1 + t2
=

∫ x

0

∞∑
n=0

(−1)nt2n dt =
∞∑
n=0

(−1)n

2n+ 1
x2n+1, 0 ≤ x ≤ 1,

upon substituting x = 1, and noting Abel’s theorem on power series (Proposition
2.3.3).

The integral in the next example is commonly called the “sophomore’s dream.”
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Example 4.2.5. Show that ∫ 1

0

x−x dx =
∞∑
n=1

n−n.

Note that x−x = e−x ln(x), x > 0, and it is extended to 0 (with value e0 = 1)using the
right-limit limx→0+ x ln(x) = 0. Note, in addition, that the negative sign is due to the
fact that ln(x) < 0 for 0 < x < 1.
Using the Taylor series of the natural exponential function (centered at 0), we obtain

x−x =
∞∑
n=0

(−x ln(x))n

n!
=

∞∑
n=0

(−1)n
xn(ln(x))n

n!
, x > 0.

Since the function f : [0, 1] → R defined by f(x) = −x ln(x), 0 < x ≤ 1, and f(0) = 0,
is continuous, this series converges uniformly on [0, 1]. Applying Proposition 2.1.9
with fn(x) = (−1)nxn(ln(x))n/n!, 0 < x ≤ 1, and fn(0) = 0, n ∈ N0, we obtain∫ 1

0

x−x dx =

∫ 1

0

∞∑
n=0

(−1)n
xn(ln(x))n

n!
dx

=
∞∑
n=0

(−1)n

n!

∫ 1

0

xn(ln(x))n dx

=
∞∑
n=0

1

(n+ 1)n+1
=

∞∑
n=1

n−n,

where we used the result of the previous example.
The example follows.

History. The formula in the previous example was dicovered by Johann Bernoulli in 1697, and

we essentially followed the classical proof by intergration by parts (and filled the gaps of Bernoulli’s

proof such as the boundary behavior at 0). See also the modern account by Dunham.12 Due to its

beauty and simplicity, it was termed the “sophomore’s dream” by Borwein, Bailey, and Girgensohn.13

See also Exercise 5 at the end of this section. This is in contrast to the “freshman’s dream,” the

erroneous formula (a+ b)n = an + bn which, however, is true for a, b ∈ Z when reduced to (mod n).

This is due to the elementary number theoretical fact that n
∣∣(n

k

)
for k = 1, 2, . . . , n− 1.

12Dunham, W. The calculus gallery, masterpieces from Newton to Lebesgue, Princeton Univ.
Press, pp. 46-51.

13See Borwein, J., Bailey, D.H. and Girgensohn, R., Experimentation in mathematics: computa-
tional paths to discovery, (2004) 4, 44.
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Example 4.2.6. Evaluate the integral14

Wn =

∫ π/2

0

sinn(x) =

∫ π/2

0

cosn(x) dx, n ∈ N0.

The last equality is because of the identity sin(x) = cos(π/2−x). It is therefore enough
to consider the sine integral. We have W0 = π/2 and W1 = 1. Monotonicity of the
integral givesWn ≥ Wn+1, n ∈ N0. We derive an inductive formula forWn, n ∈ N. For
2 ≤ n ∈ N, we use integration by parts with the casting u = sinn−1 x and v = − cosx;
and hence du = d(sinn−1 x) = (n−1) sinn−2 x ·cosx dx and dv = −d(cosx) = sin x dx.
We obtain∫ π/2

0

sinn(x) dx = −
[
sinn−1 x · cosx

]π/2
0

+ (n− 1)

∫ π/2

0

cos2 x · sinn−2 x dx

= (n− 1)

∫ π/2

0

(1− sin2 x) sinn−2 x dx

= (n− 1)

∫ π/2

0

sinn−2 x dx− (n− 1)

∫ π/2

0

sinn x dx.

This gives

Wn =
n− 1

n
Wn−2, 2 ≤ n ∈ N.

Splitting the even and odd cases, and using this formula inductively, for n ∈ N, we
arrive at the following

W2n =

∫ π/2

0

sin2n x dx =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
π

2
=

(2n)!

22n(n!)2
π

2

W2n+1 =

∫ π/2

0

sin2n+1 x dx =
2 · 4 · · · (2n)

1 · 3 · 5 · · · (2n+ 1)
=

22n(n!)2

(2n+ 1)!
.

Exercises

1. Derive the pair of integral formulas∫
e−ax sin(bx)dx = − e−ax

a2 + b2
(a sin(bx) + b cos(bx))∫

e−ax cos(bx)dx = − e−ax

a2 + b2
(a cos(bx)− b sin(bx)) .

14This is sometimes called the Wallis integral in honor of John Wallis (1626 – 1703); see Section
4.11.
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Solution: Use integration by parts twice.

2. Show that ∫ ∞

0

sin2(x)

x2
dx =

∫ ∞

0

sin(x)

x
dx.

Solution: Perform integration by parts via sin2(x) = u and dx/x2 = dv.

3. Determine ∫ ∞

0

sin(
√
x2 + 1) cos(x)√
x2 + 1

dx.

Solution: Write the integral as

1

2

∫ ∞

0

sin(
√
x2 + 1− x) + sin(

√
x2 + 1 + x)√

x2 + 1
dx.

Split this into two integrals, and use the substitutions
√
x2 + 1 ∓ x = t to convert

them to
∫ 1

0
sin(t)dt/t and

∫∞
1

sin(t)dt/t. Finally, use Example 2.6.1.

4. Determine the integral ∫
sin−1 x dx.

Solution: Let x = sin(θ); then dx = cos(θ)dθ, and the integral transforms into∫
θ · cos(θ) dθ. Finally, use integration by parts.

5. Derive the “other sophomore’s dream”:∫ 1

0

xx dx = −
∞∑
n=1

(−n)−n.

6. Use the “generating function technique” to derive the formula in Example 4.2.2
as follows. Let ∫ x

0

est · et dt =
∫ x

0

e(1+s)tdt =
e(s+1)x − 1

1 + s
, x, s ∈ R.

Expand all expressions in s in power series, integrate, and compare the coeffficients
of the powers of s.

7. Derive the integral formulas∫ 1

0

(1− x2)ndx =
22n(n!)2

(2n+ 1)!
and

∫ 1

0

dx

(1− x2)n
=

(2n− 2)!

22n−2((n− 1)!)2
π

2
.
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Solution: For the first integral, substitute x = cos(θ); for the second, x = tan(θ).

8. Use Abel’s summation in parts in Section 2.3 to derive the formula

n−1∑
k=m+1

Ak(bk+1 − bk) = Anbn − Ambm −
n∑

k=m+1

bk(Ak − Ak−1), n > m, m, n ∈ N,

where (Ak)
n
k=m and (bk)

n
k=m are finite sequences. Given a closed interval [a, b], let

x = (xm, . . . , xn) be a partition of [a, b] with a = xm and b = xn. Define Ak = f(xk)
and bk = g(xk), k = m, . . . , n, where f, g : [a, b] → R are two functions. Rewrite the
formula above as

n−1∑
k=m+1

f(xk)
g(xk+1)− g(xk)

xk+1 − xk
(xk+1−xk) = [fg]ba−

n∑
k=m+1

f(xk)− f(xk−1)

xk − xk−1

g(xk)(xk−xk−1).

Finally, interpret this as a discrete version (with Riemann sums) of the intergration
by parts formula.

4.3 Improper Integrals

A variation on the theme of Example 4.2.3 is the following:

Example 4.3.1. We have∫ ∞

1

(ln(x))n

xa
dx =

n!

(a− 1)n+1
, n ∈ N, 1 < a ∈ R.

We first perform the substitution u = ln(x) and obtain∫ ∞

1

(ln(x))n

xa
dx =

∫ ∞

0

une−(a−1)u du.

Second, integration by parts (with obvious roles) gives∫ ∞

0

une−(a−1)u du =
n

a− 1

∫ ∞

0

un−1e−(a−1)u du,

where the boundary terms vanish:

− 1

a− 1

[
une−(a−1)u

]∞
0

= 0, n ∈ N, 1 < a ∈ R.

Now, a simple induction completes the proof.
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We begin with this section with the following simple result:

Proposition 4.3.1. Let f : [a,∞) → R be bounded on [a,∞) and integrable on every
closed subinterval [a, b], b > a, and let g : [a,∞) → R with absolutely convergent
improper integral

∫∞
a
g(x) dx. Then

∫∞
a
f(x)g(x) dx is absolutely convergent.

Proof. Let M > 0 be a bound for f on [a,∞); that is, |f(x)| ≤ M , x ≥ a. By
assumption, the restriction f |[a, b] to any interval [a, b], b > a, is integrable. By
Proposition 3.1.7 (5) and (3), |f | and |f | |g| are integable on [a, b]. We have∫ b

a

|f(x)g(x)| dx =

∫ b

a

|f(x)| |g(x)| dx ≤M

∫ b

a

|g(x)| dx.

Letting b → ∞, we obtain that
∫∞
a

|f(x)g(x)| dx < ∞, and hence
∫∞
a
f(x)g(x) dx is

absolutely convergent.

Next we state Abel’s theorem on improper integrals as follows:

Proposition 4.3.2. Let f : [a,∞) → R with convergent improper integral
∫∞
a
f(x) dx.

Let g : [a,∞) → R be bounded and monotonic. Then
∫∞
a
f(x)g(x) dx is convergent.

Proof. First, note that, being bounded and monotonic, g is integrable over any
finite interval [b, c], a ≤ b < c. Since f is also integrable on [b, c], the second mean
value theorem on integrals (Section 3.1) gives∫ c

b

f(x)g(x) dx = g(b)

∫ c0

b

f(x) dx+ g(c)

∫ c

c0

f(x) dx,

for some c0 ∈ [b, c]. We denote M = sup[a,∞) |g|. Since
∫∞
a
f(x) dx is convergent, by

the Cauchy criterion of convergence, for every 0 < ϵ ∈ R, there exists a < N ∈ R
such that ∣∣∣∣∫ c

b

f(x) dx

∣∣∣∣ < ϵ

2M
, N < b < c.

Keeping N < b < c, we now estimate∣∣∣∣∫ c

b

f(x)g(x) dx

∣∣∣∣ = ∣∣∣∣g(b)∫ c0

b

f(x) dx+ g(c)

∫ c

c0

f(x) dx

∣∣∣∣
≤ |g(b)|

∣∣∣∣∫ c0

b

f(x) dx

∣∣∣∣+ |g(c)|
∣∣∣∣∫ c

c0

f(x) dx

∣∣∣∣ < M
ϵ

2M
+M

ϵ

2M
= ϵ.

By the Cauchy criterion for convergence, the integral
∫∞
a
f(x)g(x) dx converges.

Dirichlet’s theorem on improper integrals is the following:
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Proposition 4.3.3. Let f : [a,∞) → R be such that, for all b > a, f is integrable on

[a, b] and
∣∣∣∫ b

a
f(x) dx

∣∣∣ ≤ M , for some M (independent of b). Let g : [a,∞) → R be

bounded and monotonic, and limx→∞ g(x) = 0. Then
∫∞
a
f(x)g(x) dx is convergent.

Proof. Since g is bounded and monotonic on [a,∞), it is integrable on any subin-
terval [a, b]. Also f is integrable on [a, b]. As in the previous proof, by the second
mean value theorem, we have∫ c

b

f(x)g(x) dx = g(b)

∫ c0

b

f(x) dx+ g(c)

∫ c

c0

f(x) dx,

for some c0 ∈ [b, c]. Let 0 < ϵ ∈ R, and 0 < N ∈ R such that |g(x)| < ϵ/(4M) for
x > N . For N < b < c, we estimate∣∣∣∣∫ c

b

f(x)g(x) dx

∣∣∣∣ = |g(b)|
∣∣∣∣∫ c0

b

f(x) dx

∣∣∣∣+ |g(c)|
∣∣∣∣∫ c

c0

f(x) dx

∣∣∣∣
≤ ϵ

4M
2M +

ϵ

4M
2M = ϵ.

Once again, Cauchy’s criterion finishes the proof.

Remark. There is a close relationship between Abel’s test for convergence for series
(Proposition 2.3.1) and Abel’s theorem on improper integrals (Proposition 4.3.2), as
well as the analogous results of Dirichlet (Propositions 2.3.2 and 4.3.3). This will be
exhibited in the first Euler-Maclaurin formula in Section 4.16.

Example 4.3.2. Let s > 0. Show that∫ ∞

1

sin(x)

xs
dx

is convergent.
Letting f(x) = sin(x) and g(x) = 1/xs, x ≥ 1, s > 0, the conditions of Dirichlet’s
theorem are satisfied since∣∣∣∣∫ b

1

sin(x) dx

∣∣∣∣ = ∣∣∣− [cos(x)]b1

∣∣∣ = |cos(1)− cos(b)| ≤ 2, 1 < b ∈ R.

The example follows.

Example 4.3.3. Show that ∫ ∞

1

sin(x2) dx
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is convergent.
Letting f(x) = 2x sin(x2) and g(x) = 1/(2x), x ≥ 1, the conditions of Dirichlet’s
theorem are satisfied since∣∣∣∣∫ b

1

2x sin(x2) dx

∣∣∣∣ = ∣∣∣− [cos(x2)]b1∣∣∣ = ∣∣cos(1)− cos(b2)
∣∣ ≤ 2, 1 < b ∈ R.

The example follows.

Exercises

1. Show that ∫ ∞

0

sin(x)

x
arctan(x) dx

exists.

2. Prove Dirichlet’s theorem via integration by parts assuming that g is differentiable,
and g′ is integrable (on every integval [a, b], a < b), using the following steps. (1) Let
F : [a,∞) → R be defined by F (x) =

∫ x

a
f(u) du, and use integration by parts to

show that∫ b

a

f(x)g(x) dx =

∫ b

a

F ′(x)g(x) dx = F (b)g(b) +

∫ b

a

F (x)(−g′(x)) dx, a < b,

where −g′ ≥ 0. (2) Derive the estimate∣∣∣∣∫ b

a

f(x)g(x) dx

∣∣∣∣ ≤Mg(b) +M(g(a)− g(b).

(3) Finally, let b→ ∞.

3. Prove Abel’s theorem along the lines of the previous exercise for g differentiable
and g′ integrable.

4.4 Parametric Integrals

In this section we introduce the technique of interchanging differentiation and inte-
gration of a parametric integral (an integral depending on a parameter). This was
one of the favorite methods of Feynman; and for this reason, is is sometimes termed
as the ”Feynman’s trick;” a slight misnomer as this method is much older.15

15For the proofs of the results here, see Lewin, J.W., Some applications of the bounded convergence
theorem for an introductory course on analysis, Amer. Math. Monthly, 94, 10 (December 1987) 988-
993.
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Proposition 4.4.1. Let I ⊂ R be an open interval, and f : [a, b]× I → R a function

such that, for every t ∈ I, the integral
∫ b

a
f(x, t) dx exists. Let t0 ∈ I, and assume

that, for every x ∈ [a, b], the derivative (df/dt)(x, t0) exists, and, as a function of

x ∈ [a, b], it is integrable on [a, b]; that is, the integral
∫ b

a
(df/dt)(x, t0) dx also exists.

If

sup

{∣∣∣∣f(x, t)− f(x, t0)

t− t0

∣∣∣∣ ∣∣∣∣x ∈ [a, b], t0 ̸= t ∈ I

}
<∞,

then, we have
d

dt

∫ b

a

f(x, t) dx

∣∣∣∣
t=t0

=

∫ b

a

d

dt
f(x, t)

∣∣∣∣
t=t0

dx.

Proof. By our assumptions, for a sequence (tn)n∈N with limn→∞ tn = t0, we have
the pointwise limit

lim
n→∞

f(x, tn)− f(x, t0)

tn − t0
=
df

dt
(x, t0), x ∈ [a, b],

where all the particpating functions as well as the limit are integrable on [a, b]. In
addition, by the assumption on the supremum, we also have∣∣∣∣f(x, tn)− f(x, t0)

tn − t0

∣∣∣∣ ≤M, x ∈ [a, b], n ∈ N,

with some 0 < M ∈ R. We are now in the position to apply Arzelà’s bounded
convergence theorem (Section 3.2), and conclude

d

dt

∫ b

a

f(x, t) dx

∣∣∣∣
t=t0

= lim
n→∞

∫ b

a
f(x, tn) dx−

∫ b

a
f(x, t0) dx

tn − t0

= lim
n→∞

∫ b

a

f(x, tn)− f(x, t0)

tn − t0
dx

=

∫ b

a

lim
n→∞

f(x, tn)− f(x, t0)

tn − t0
dx =

∫ b

a

df

dt
(x, t0) dx.

The proposition follows.

Corollary. Let I ⊂ R be an open interval, and f : [a, b] × I → R a function

such that, for every t ∈ I, the integral
∫ b

a
f(x, t) dx exists. Assume that, for every

(x, t) ∈ [a, b]×I, the derivative (df/dt)(x, t) exists, and the integral
∫ b

a
(df/dt)(x, t) dx

also exists. If ∣∣∣∣dfdt (x, t)
∣∣∣∣ ≤M, (x, t) ∈ [a, b]× I,
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for some M ∈ R then, for every t ∈ I, we have

d

dt

∫ b

a

f(x, t) dx =

∫ b

a

d

dt
f(x, t) dx.

Applying Arzelà’s dominated convergence theorem instead of the bounded con-
vergence theorem, we obtain the analogous result for improper integrals:

Proposition 4.4.2. Let I ⊂ R be an open interval, and f : [a,∞) × I → R a
function such that, for every t ∈ I, the improper integral

∫∞
a
f(x, t) dx exists. Assume

that, for every (x, t) ∈ [a,∞)× I, the derivative (df/dt)(x, t) exists, and the integral∫∞
a
(df/dt)(x, t) dx also exists. If there is an improper integrable function g : [a,∞) →

R such that ∣∣∣∣dfdt (x, t)
∣∣∣∣ ≤ g(x), (x, t) ∈ [a,∞)× I,

then, for every t ∈ I, we have

d

dt

∫ ∞

a

f(x, t) dx =

∫ ∞

a

d

dt
f(x, t) dx.

Remark. This proposition, with obvious modifications, holds for any improper inte-
gral, including finite intervals where the integrand is undefined at an end-point.

In Section 3.1 we briefly noted the so-called Leibniz integral rule. A more
general form of this rule also holds for parametric integrals as follows. Given an open
interval I ⊂ R, let f : [a0, b0]×I → R be a continuous function such that the derivative
df/dt, t ∈ I, is also continuous on [a0, b0] × I. Let a, b : I → R be two differentiable
functions defined on an open interval I ⊂ R such that a0 ≤ a(t) < b(t) ≤ b0, t ∈ I.
Then we have

d

dt

∫ b(t)

a(t)

f(x, t) dx = f(b(t), t)b′(t)− f(a(t), t)a′(t) +

∫ b(t)

a(t)

d

dt
f(x, t) dx, t ∈ I.

For the proof, we define g : I → R by

g(t) =

∫ b(t)

a(t)

f(x, t) dx, t ∈ I.

The left-hand side of the formula above is g′(t), t ∈ I. For a fixed t ∈ I, we let
0 ̸= h ∈ R be such that t+ h ∈ I. Using Proposition 3.1.5, we now calculate

g(t+ h)− g(t) =

∫ b(t+h)

a(t+h)

f(x, t+ h) dx−
∫ b(t)

a(t)

f(x, t) dx

= −
∫ a(t+h)

a(t)

f(x, t+ h) dx+

∫ b(t)

a(t)

(f(x, t+ h)− f(x, t)) dx+

∫ b(t+h)

b(t)

f(x, t+ h) dx.



4.4. PARAMETRIC INTEGRALS 205

The MVT I for integrals asserts that∫ a(t+h)

a(t)

f(x, t+ h) dx = (a(t+ h)− a(t)) f(c(t), t+ h),

for some c(t) between a(t) and a(t+ h). Similarly, we have∫ b(t+h)

b(t)

f(x, t+ h) dx = (b(t+ h)− b(t)) f(d(t), t+ h),

for some d(t) between b(t) and b(t+ h). Substituting these, and dividing by 0 ̸= h,
we obtain

g(t+ h)− g(t)

h
= −a(t+ h)− a(t)

h
f(c(t), t+ h) +

∫ b(t)

a(t)

f(x, t+ h)− f(x, t)

h
dx

+
b(t+ h)− b(t)

h
f(d(t), t+ h).

Letting h→ 0, and using continuity, we obtain

g′(t) = −a′(t)f(a(t), t) + lim
h→0

∫ b(t)

a(t)

f(x, t+ h)− f(x, t)

h
dx+ b′(t)f(b(t), t), t ∈ I.

By the Arzelà bounded convergence theorem (Section 3.2), the limit and the integral
can be intechanged. The general Leibniz integral rule follows.

We close this section by a few examples.

Example 4.4.1. Show that∫ ∞

0

e−tx − e−(t+a)x

x
dx = ln

(
1 +

a

t

)
, t > 0, t > −a.

Differentiating both sides with respect to t, and noting that the differentiation can
be interchanged by integration (Proposition 4.4.2), we have

d

dt

∫ ∞

0

e−tx − e−(t+a)x

x
dx =

∫ ∞

0

d

dt

e−tx − e−(t+a)x

x
dx

= −
∫ ∞

0

e−tx dx+

∫ ∞

0

e−(t+a)x dx =

[
e−tx

t

]∞
0

+

[
e−(t+a)x

t+ a

]∞
0

= −1

t
+

1

t+ a
=

d

dt
ln

(
t+ a

t

)
=

d

dt
ln
(
1 +

a

t

)
.

Thus, the right- and left-hand sides of the formula to be proved have equal derivatives,
and hence they differ by a constant. On the other hand, this constant must be zero
since both sides tend to zero as t→ ∞. The example follows.
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Example 4.4.2. Show that ∫ ∞

0

e−x2

dx =

√
π

2
.

For brevity, we denote this improper integral by I. We let F : (0,∞) → R be the
parametric integral defined by

F (t) =

∫ ∞

0

e−t(1+x2)

1 + x2
dx, 0 ≤ t ∈ R.

Clearly, F (0) = [arctan(x)]∞0 = π/2; in particular, F (t) exists for all t ≥ 0 as it is
decreasing with limt→∞ F (t) = 0 (since 0 ≤ F (t) ≤ e−tF (0), t ≥ 0.)
We wish to calculate the derivative F ′(t), t > 0 by differentiating under the integral
sign. We define f : [0,∞) × (0,∞) → R by f(x, t) = e−t(1+x2)/(1 + x2), x, t ≥
0. Letting ϵ > 0, all the assumptions of Proposition 4.4.2 hold for f restricted to
[0,∞)× (ϵ, 0); namely, we have∣∣∣∣dfdt

∣∣∣∣ = e−t(1+x2) ≤ e−ϵ(1+x2), x ≥ 0,

and the function on the right-hand side is integrable on [0,∞). Applying Proposition
4.4.2, for t > ϵ, we calculate

F ′(t) =

∫ ∞

0

df

dt
(x, t) dx = −

∫ ∞

0

e−t(1+x2) dx = −e−t

∫ ∞

0

e−tx2

dx = −e
−t

√
t
I,

where, in the last equality, we used the substitution u =
√
tx. Since this holds for all

ϵ > 0, this formula is valid for all t > 0.
Working backwards, by the FTC II, we have

F (t) = I ·
∫ ∞

t

e−s

√
s
ds = 2I

∫ ∞

√
t

e−u2

du, t > 0,

where, in the last equality, we used the substitution u2 = s. Letting t → 0 (as both
sides are continuous at 0), we obtain F (0) = π/2 = 2I2. The example follows.

History. In probability theory, the normal distribution is defined by the probability density
function

1

σ
√

2π
e−

1
2 ( x−µ

σ )
2

, x ∈ R.

Here σ is called the standard deviation and µ the variance. A simple substitution in the integral

in the example above shows that the integral of this function over the entire R = (−∞,∞) is equal
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to 1. The probability of a random variable to be in an interval (a, b) is equal to the integral of

this function over (a, b) (where a = −∞ and b = ∞ are also allowed). In his Doctrine of chances,

the French mathematician Abraham de Moivre (1667 – 1754) observed first that probabilities of

discretely generated random variables (e.g. rolling a die or flipping a coin) can be approximated by

what he called the “curve of errors,” that is, the normal distribution. This observation was elevated

to what was the first version of the central limit theorem by Pierre Simon Laplace in his Théorie

analitique des probabilités published in 1812. The integral of the normal distribution is nowadays

called the Gauss-Laplace-Poisson integral. Gauss, in his study of the errors made in astronomical

observations, over half a century after de Moivre in 1809, developed his law of observational error,

a 2-parameter family of normal distributions. He himself attributed the invention of the normal

distribution to Laplace and Poisson. It is sometimes contemplated that the fact that de Moivre’s

name receded to oblivion in this matter may had something to do with the fact that he was a

hugenot, an immigrant of difficult position in French society of the time.16

Example 4.4.3. 17 Determine ∫ 1

0

ln(1 + x)

1 + x2
dx.

We let F : (0,∞) → R be the parametric integral defined by

F (t) =

∫ 1

0

ln(1 + tx)

1 + x2
dx, t > 0.

As in the previous example, we wish to calculate F ′(t) by differentiating under the
integral sign. Clearly, all the assumptions of the corollary to Proposition 4.4.1 hold.
(The derivative (d/dt)(ln(1 + tx)/(1 + x2)) = x/((1 + tx)(1 + x2)) is bounded for
0 ≤ x ≤ 1 and t > 0.) Differentiating (under the integral sign), we obtain

F ′(t) =

∫ 1

0

x dx

(1 + tx)(1 + x2)
, t > 0.

The integrand can be decomposed into partial fractions (with respect to x) as

x

(1 + tx)(1 + x2)
= − t

(1 + t2)(1 + tx)
+

x+ t

(1 + t2)(1 + x2)
.

16For a more complete story, see Stahl, S., The evolution of the normal distribution, Mathematics
Magazine, Vol. 79, No. 2, (April 2006) 96-113.

17This was a problem in the William Lowell Putnam Mathematical Competition, 2005. For
another solution, see Math. Magazine, 79 (2006) 76-79.
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Integrating, we obtain

F ′(t) = − t

(1 + t2)

∫ 1

0

dx

1 + tx
+

1

1 + t2

∫ 1

0

x+ t

1 + x2
dx

= − ln(1 + t)

1 + t2
+

ln(2)

2

1

1 + t2
+
π

4

t

1 + t2
.

This gives

F (t) = −
∫ t

0

ln(1 + x)

1 + x2
dx+

ln(2)

2
arctan(t) +

π

8
ln(1 + t2).

Evaluating at t = 1 and rearranging, we arrive at

F (1) =

∫ 1

0

ln(1 + x)

1 + x2
dx =

π

8
ln(2).

Exercises

1. Use Example 4.4.1 to derive the integral∫ ∞

0

e−x − e−tx

x
dx = ln(t), 0 < t ∈ R.

Solution: Change the variable from x to tx.

4.5 Double Integrals and Fubini’s Theorem

The concept of double integral of a function is a natural extension of that of the
integral (in a single variable). While this topic belongs to multivariate calculus, in
rare instances the double integral is a powerful tool in deriving some statements in
single variable calculus and real analysis. In this section we give a rapid course on
this discussing only matters that are absolutely necessary for future developments.

A rectangle R in the plane R2 is the (Cartesian) product of two intervals. A
closed, resp. open, rectangle is the product of two closed, resp. open, intervals. If
the boundary needs to be specified, we let R = [a, b]× [c, d], resp. R = (a, b)× (c, d),
denote a generic closed, resp. open, rectangle. Finally, note that (u, v) ∈ R is an
interior point of R if it is contained in an open rectangle that, itself, is contained in
R. Equivalently, (u − δ0, u + δ0) × (v − δ0, v + δ0) ⊂ R for some δ0 > 0. Finally, a
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function f : R → R is continous on R if it is continuous at every point of R.
The concepts of limit superior, limit inferior, limit, and continuity of a function
f : R → R at a point are completely analogous to their one variable counterparts.
We only note here that f : R → R is continuous at an interior point (u, v) ∈ R if, for
every ϵ > 0, there exists 0 < δ ≤ δ0 such that |x − u| < δ and |y − v| < δ imply18

|f(x, y)−f(u, v)| < ϵ. Finally, f is continuous at a boundary point (u, v) ∈ R if there
exists a function f̃ : R0 → R with R0 = (u − δ0, u + δ0) × (v − δ0, v + δ0) which is
continuous at (u, v) ∈ R0 such that we have f̃ |R∩R0 = f |R∩R0 . The basic properties
of continuous functions in one variable naturally extend to our multivariate setting.

LetR = [a, b]×[c, d], a < b, c < d, a, b, c, d ∈ R. A partition ofR is a pair (x;y) of
partitions x = (x0, x1, . . . , xn) ∈ Π(a, b) and y = (y0, y1, . . . , ym) ∈ Π(c, d), n,m ∈ N.
Geometrically, a partition can be viewed as being composed of the subrectangles
Rij = [xi−1, xi] × [yj−1, yj], i = 1, . . . , n and j = 1, . . . ,m. The set of all partitions
of R are denoted by Π(a, b; c, d). The usual concept of refinement and its properties
extend from one variable to this setting.

Let f : [a, b] × [c, d] → R be a bounded real function. For a partition (x,y) ∈
Π(a, b; c, d) as above. we define the lower, resp. upper Darboux sums of f as

Sf (x,y) =
n∑

i=1

m∑
j=1

(xi − xi−1)(yj − yj−1) · inf
Rij

f,

resp.

Sf (x,y) =
n∑

i=1

m∑
j=1

(xi − xi−1)(yj − yj−1) · sup
Rij

f.

With these, we define the upper, resp. lower Darboux integrals19 of f by

If = sup
(x,y)∈Π(a,b;c,d)

Sf (x,y), resp. If = inf
(x,y)∈Π(a,b;c,d)

Sf (x,y).

By the monotonicity property of the Darboux sums, the supremum and infimum exist,
and we have(

Sf (x,y) ≤
)
If ≤ If

(
≤ Sf (x,y)

)
, (x,y) ∈ Π(a, b; c, d).

We say that a bounded function f : [a, b]× [c, d] → R is Darboux integrable,
or simply integrable, if equality holds; that is, if we have If = If . In this case, this
common value is called the (Darboux) integral of f : [a, b] × [c, d] → R, and it is
denoted by

∫
R
f =

∫
[a,b]×[c,d]

f .

18The customary condition
√

(x− u)2 + (y − v)2 < δ is clearly equivalent to this. Our emphasis
here is on rectangles.

19These are also called upper, resp. lower Riemann integrals.
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As in single variable, a simple but useful criterion of integrability is the following:

Proposition 4.5.1. A bounded function f : [a, b]× [c, d] → R is integrable if and only
if, for any ϵ > 0, there exists a partition (x,y) ∈ Π(a, b; c, d) such that Sf (x,y) −
Sf (x,y) < ϵ.

As in the single variable case, we have:

Proposition 4.5.2. A continuous function f : [a, b]× [c, d] → R is integrable.

The main result in this section is Fubini’s theorem on iterated integrals:

Proposition 4.5.3. Let f : [a, b]× [c, d] → R be an integrable function, and assume
that, for any x ∈ [a, b], the function y 7→ f(x, y), y ∈ [c, d], is integrable, and that

x 7→
∫ d

c
f(x, y) dy, x ∈ [a, b], defines an integrable function on [a, b]. Then, we have∫

[a,b]×[c,d]

f =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx.

Remark. The integrand on the left-hand side is not written in the differential form∫
R
f(x, y) dx ∧ dy as this would require an introduction of the concept of differential

2-forms on R2. Some authors also use the double integral sign
∫ ∫

instead of a single∫
. The right-hand side is often called an iterated integral. We usually suppress

the parentheses when there is no danger of confusion.

Proof of Proposition 4.5.3. Let (x,y) ∈ Π(a, b; c, d) be a partition with x =
(x0, x1, . . . , xn) ∈ Π(a, b) and y = (y0, y1, . . . , ym) ∈ Π(c, d), n,m ∈ N. We let
Rij = [xi−1, xi]× [yj−1, yj], i = 1, . . . , n, j = 1, . . . ,m, be the respective subrectangles.
We start with

inf
Rij

f ≤ f(x, y) ≤ sup
Rij

f, (x, y) ∈ Rij, i = 1, . . . , n, j = 1, . . . ,m.

By assumption, the function x 7→ f(x, y), y ∈ [c, d], is integrable on [c, d], and hence
it is also integrable on any subinterval of [c, d] (Proposition 3.1.5). Thus, integrating
the inequalities above over [yj−1, yj], j = 1, . . . ,m, we obtain

(yj − yj−1) inf
Rij

f ≤
∫ yj

yj−1

f(x, y) dy ≤ (yj − yj−1) sup
Rij

f,

x ∈ [xi−1, xi], i = 1, . . . , n, j = 1, . . . ,m.

Summing over with respect to j = 1, . . . ,m, and using Proposition 3.1.5 again, we
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get

m∑
j=1

(yj−yj−1) inf
Rij

f ≤
∫ d

c

f(x, y) dy ≤
m∑
j=1

(yj−yj−1) sup
Rij

f, x ∈ [xi−1, xi], i = 1, . . . , n.

By assumption, the function x 7→
∫ d

c
f(x, y) dy, x ∈ [a, b], is integrable. Integrating

over [xi−1, xi], i = 1, . . . , n, again by Proposition 3.1.5, for i = 1, . . . , n, we have

m∑
j=1

(xi − xi−1)(yj − yj−1) inf
Rij

f ≤
∫ xi

xi−1

∫ d

c

f(x, y) dy ≤
m∑
j=1

(xi − xi−1)(yj − yj−1) sup
Rij

f.

Summing over with respect to j = 1, . . . ,m, and using Proposition 3.1.5 for the last
time, we get

n∑
i=1

m∑
j=1

(xi−xi−1)(yj−yj−1) inf
Rij

f ≤
∫ b

a

∫ d

c

f(x, y) dy dx ≤
n∑

i=1

m∑
j=1

(xi−xi−1)(yj−yj−1) sup
Rij

f.

Using Darboux sums, this can be written as

Sf (x,y) ≤
∫ b

a

∫ d

c

f(x, y) dy dx ≤ Sf (x,y).

Since the partition (x,y) ∈ Π(a, b; c, d) was arbitrary, we arrive at

If ≤
∫ b

a

∫ d

c

f(x, y) dy dx ≤ If .

By assumption, f is integrable. This means that If = If =
∫
[a,b]×[c,d]

f . The proof is

complete.

Remark. The assumptions in the Fubini theorem can be compactly expressed as the
integrals ∫ d

c

f(x, y) dy for all x ∈ [a, b]∫ b

a

∫ d

c

f(x, y) dy dx

exist.
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Corollary. Let f : [a, b] × [c, d] → R be an integrable function, and assume that the
following integrals exist ∫ d

c

f(x, y) dy for all x ∈ [a, b],∫ b

a

f(x, y) dx for all y ∈ [c, d],∫ b

a

∫ d

c

f(x, y) dy dx,∫ d

c

∫ b

a

f(x, y) dx dy.

Then, we have(∫
[a,b]×[c,d]

f =

) ∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

Note that, by Proposition 4.5.2, all assumptions of Proposition 4.5.3 and the
subsequent corollary hold if f : [a, b] → R is continuous.

Remark. Note that the corollary above automatically extends to improper integrals.

As a final note, all considerations in this section directly extend to multivariate
functions f : [a1, b1]× · · · × [an, bn] → R, 2 ≤ n ∈ N.
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4.6 The Gamma Function

In this introductory section we define the gamma function, show that it is analytic ev-
erywhere except having simple poles at non-positive integers, and derive its functional
equation.

We define the gamma function Γ : (0,∞) → R by the integral

Γ(t) =

∫ ∞

0

xt−1e−x dx, t > 0.

We first show that the integral is absolutely convergent, so that the gamma function
is well-defined. Let t > 0. We first split the integral:

Γ(t) =

∫ 1

0

xt−1e−x dx+

∫ ∞

1

xt−1e−x dx.

We estimate the first integral as∫ 1

0

xt−1e−x dx ≤
∫ 1

0

xt−1 dx =

[
xt

t

]1
0

=
1

t
<∞.

For the second integral, letting t < m, m ∈ N, we estimate∫ ∞

1

xt−1e−x dx ≤ m!

∫ ∞

1

dx

xm−t+1
=

m!

m− t
,

where we used ex ≥ xm/m!, x ≥ 0, m ∈ N. Absolute convergence of the integral
follows for any t > 0.

Example 4.6.1. Let −1 < a ∈ R and 0 < b, c ∈ R. Show that∫ ∞

0

tae−b tc dt =
Γ
(
a+1
c

)
b(a+1)/c · c

.

The substitution x = b · tc and bc · tc−1dt = dx transforms the integral on the left-hand
side into ∫ ∞

0

tae−b tc dt =
1

b(a+1)/c · c

∫ ∞

0

x(a+1)/c−1e−x dx.

The example now follows from the definition of the gamma function.

A related special case of the example above is the improper integral∫ 1

0

xa(− ln(x))b dx =
Γ(b+ 1)

(a+ 1)b+1
, −1 < a, b ∈ R,
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where, in the last integral, we first need to perform the substitution u = − ln(x).
For a, b integers, comparing this with the integral of Example 4.3.1, we obtain

Γ(n+ 1) = n!, n ∈ N.

History. It was for this last property that the gamma function was introduced by Leonhard Euler
in 1729; that is, to extend the factorial to non-integer values. This question was raised earlier by
Daniel Bernoulli and Euler’s friend, Christian Goldbach. In a letter to Goldbach dated in October
6, 1729, Bernoulli gave the extension as the limit

lim
n→∞

(
n + 1 +

x

2

) n∏
k=1

k + 1

k + x
, x ∈ R \ N,

along with several numerical examples. Within a few days later, once again in a letter to Goldbach,
Euler gave his first extension as the infinite product

Γ(x + 1) =
∞∏

n=1

n1−x(n + 1)x

n + x
=

∞∏
n=1

(1 + 1/n)x

1 + x/n
, x ∈ R \ N.

For x = N , N ∈ N0, by inner cancellations, the infinite product reduces to the value N !. Moreover,
for x = 1/2, it gives

Γ (1/2 + 1) =
∞∏

n=1

√
n(n + 1)

n + 1/2
=

√
2 · 42 · 62 · · ·
1 · 32 · 52 · · ·

=

√
π

4
=

√
π

2
,

where we used the Wallis product formula (Section 4.8; see also below). The appearance of π

provided Euler a hint to look for a suitable integral expression. He soon arrived at the formula

Γ(t) =
∫ 1

0
(− ln(x))t−1 dx, t > 0; and this appears in a letter20 to Goldbach, in January 8, 1730.

Performing the change of variables u = − ln(x) (as above) we obtain the integral that we adopted

in our definition. It was termed as the Eulerian integral of the second kind by Legendre in his

Exercises de Calcul Intégral, I. (1817) p. 221 (as opposed to the Eulerian integral of the first

kind defining the beta function; see below in Section 4.11). The use of Γ for the gamma function

is due to Legendre in 1814. For a detailed history of the Gamma function, see Godefroy, M.,

La fonction Gamma; Théorie, Histoire, Bibliographie, Gauthier-Villars, Paris (1901). For a more

modern account, see Artin, E., The Gamma Function, New York, Holt, Rinehart and Winston 1964,

and Dover 2015.

Remark. By Example 4.4.2, we have

Γ(1/2) =

∫ ∞

0

e−x

√
x
dx = 2

∫ ∞

0

e−u2

du =
√
π,

20Both results submitted to the St. Petersburg Academy on November 28, 1729, under the title
De progressionibus transcendentibus seu quarum termini generales algebraice dari nequeunt. See also
Fuss, N. Correspondance Mathématique et Physique de Quelques Célebrès Géomètres du XVIIIème

siècle, 1, Saint-Pétersburg, 1843.
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where we used the substitution u =
√
x (and du = dx/(2

√
x)). (Note that this will

also be a special numerical case of Euler’s reflection formula in Proposition 4.9.1.)

We now turn to the study of the derivatives of the gamma function. As before,
we split the defining integral as

Γ(t) =

∫ 1

0

xt−1e−x dx+

∫ ∞

1

xt−1e−x dx, t > 0.

We wish to apply Proposition 4.4.2 which would allow differentiation (d/dt) under
the integral sign. We define f : (0,∞) × (0,∞) → R by f(x, t) = xt−1e−x, x, t > 0.
For n ∈ N, differentiating n times, we obtain

dnf

dtn
(x, t) = xt−1e−x(ln(x))n, x, t > 0.

For the first integral, 0 < x ≤ 1, we estimate∣∣∣∣dnfdtn (x, t)
∣∣∣∣ ≤ xt−1(− ln(x))n, t > 0.

The function on the right-hand side of this inequality is (improperly) integrable on
[0, 1]; in fact, by Example 4.2.3, we have∫ 1

0

xt−1(− ln(x))n dx =
n!

tn+1
, n ∈ N0, t > 0.

Letting ϵ > 0, and applying this to t ∈ (ϵ,∞), by the remark following Proposition
4.4.2, differentiation under the integral sign is allowed. We obtain

dn

dtn

∫ 1

0

xt−1e−x dx =

∫ 1

0

xt−1e−x(ln(x))n dx.

Since ϵ > 0 is arbitrary, this formula holds for any t > 0.
For the second integral, x ≥ 1, we let t+ n < m, m ∈ N. We estimate∣∣∣∣dnfdtn (x, t)

∣∣∣∣ ≤ xt−1e−x(ln(x))n ≤ m!
xt−1(ln(x))n

xm
= m!

(ln(x))n

xm−t+1
≤ m!

xm−n−t+1
,

where we used ex ≥ xm/m!, x ≥ 0, m ∈ N. Since the functions here are (improperly)
integrable over [1,∞), Proposition 4.4.2 applies. We obtain

dn

dtn

∫ ∞

1

xt−1e−x dx =

∫ ∞

1

xt−1e−x(ln(x))n dx.
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Putting these together, we obtain that the gamma function is differentiable up to any
order, and we have

Γ(n)(t) =

∫ ∞

0

xt−1e−x(ln(x))n dx, t > 0.

To estimate the growth rate of Γ(n)(t), t > 0, in n ∈ N, we need to refine the upper
bound for the second integral above. We fix 1 < b ∈ R, and assume 0 < t ≤ b. With
this, we choose 0 < K ∈ R such that

xt−1 ≤ xb−1 ≤ Kex/2, x ≥ 1,

or equivalently
xt−1e−x ≤ Ke−x/2, x ≥ 1.

For x ≥ 1, t > 0, and n ∈ N, we then have the estimate

xt−1e−x(ln(x))n ≤ Ke−x/2(ln(x))n ≤ K 2n n!

(
ln(x)

x

)n

,

where we also employed the inequality ex/2 ≥ (x/2)n/n!, x > 0, n ∈ N0. With this,
assuming 2 ≤ n ∈ N, we return to the second integral as∫ ∞

1

xt−1e−x(ln(x))n dx ≤ K 2n n!

∫ ∞

1

(
ln(x)

x

)n

dx ≤ K 2n n!
n!

(n− 1)n+1
≤ K 2n+1 n!,

where we used Example 4.3.1 (with a = n), and the trivial inequality n! ≤ 2(n−1)n+1,
2 ≤ n ∈ N.
Finally, putting this together with the previous estimate of the first integral, we obtain

Γ(n)(t) ≤ n!

tn+1
+K 2n+1 n!, 2 ≤ n ∈ N,

where the constant K > 0 depends on the upper bound b of t > 0. In particular, for
any fixed t > 0, there exists C > 0 such that

Γ(n)(t) ≤ Cn+1 n!, n ∈ N.

We obtain that Γ is analytic on (0,∞) (Section 2.4).

The formula Γ(n + 1) = n!, n ∈ N0, obtained previously actually holds for non-
integer values, and its is known as the functional equation for the gamma func-
tion:

Γ(t+ 1) = tΓ(t), t > 0.
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Indeed, a simple integration by parts in the parametric integral for Γ(t + 1) (with
xt = u and e−xdx = dv) gives

Γ(t+ 1) =

∫ ∞

0

xte−x dx =
[
−xte−x

]∞
0
+ t

∫ ∞

0

xt−1e−x dx = tΓ(t), t > 0.

Inductively, we have

Γ(t+ n) = t(t+ 1) · · · (t+ n− 1)Γ(t), t > 0, n ∈ N.

In particular, Γ(1/2) =
√
π derived above gives

Γ(1/2 + n) =
(2n)!

22nn!

√
π and Γ(1/2− n) = (−1)n

22nn!

(2n)!

√
π, n ∈ N.

Remark. No closed formulas are known for Γ(1/3), resp. Γ(1/4), but these numbers
are known to be transcendental, proved in 1983 by Le Lionnais, resp. by Chud-
novsky in 1984. In addition, it is known that, if t is positive rational but non-integral
then either Γ(t) or Γ(2t) is transcendental.21

Example 4.6.2. For a > 0, we have the power series expansion

(1− x)−a =
∞∑
n=0

Γ(a+ n)

n!Γ(a)
xn,

with radius of convergence ρ = 1.
Indeed, this is a special case of Example 2.3.5, as

(1− x)−a = 1 +
∞∑
n=1

(−1)na(a+ 1) · · · (a+ n− 1)

n!
(−x)n =

∞∑
n=0

Γ(a+ n)

n!Γ(a)
xn,

where we used the functional equation above (inductively).

The functional equation for the gamma function allows to define it for negative
values by setting

Γ(t) =
Γ(t+ 1)

t
, −1 < t < 0,

and then, inductively, by setting

Γ(t) =
Γ(t+ n)

t(t+ 1) · · · (t+ n− 1)
, −n < t < 0, −t /∈ N.

21See Siegel, C.L., Transcendental numbers, Ann. Math. Studies, Princeton (1950).
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The domain of definition of the extended Γ is R\(−N0) = {t ∈ R | t ̸= 0,−1,−2, . . .}.
Note that the validity of the functional equation for the gamma function above auto-
matically extends to this domain. Finally, note that the the extended gamma function
is analytic on R \ (−N0), since the quotient of analytic functions is analytic (Section
2.4).

A simple consequence of the extension of the gamma function is the limit

lim
t→0

tΓ(t) = Γ(1) = 1,

or equivalently, the asymptotic relation

Γ(t) ∼ 1

t
, as t→ 0.

By induction, we have

lim
t→−n

(t+ n)Γ(t) = lim
t→−n

Γ(t+ n+ 1)

t(t+ 1) · · · (t+ n− 1)
=

(−1)n

n!
,

or equivalently

Γ(t) ∼ (−1)n

n!

1

t+ n
, as t→ −n, n ∈ N0.

We finish this section with a somewhat long winded example of an important pair
of improper integrals:

Example 4.6.3. For 0 < s ∈ R, 0 < a ∈ R and b ∈ R, have22∫ ∞

0

xs−1e−ax sin(bx) dx = Γ(s)
sin(s arctan(b/a))

(a2 + b2)s/2∫ ∞

0

xs−1e−ax cos(bx) dx = Γ(s)
cos(s arctan(b/a))

(a2 + b2)s/2
.

We begin by replacing x by x/a, and letting t = b/a. These give

I(t, s) =

∫ ∞

0

xs−1e−x sin(tx) dx = Γ(s)
sin(s arctan(t))

(1 + t2)s/2

J(t, s) =

∫ ∞

0

xs−1e−x cos(tx) dx = Γ(s)
cos(s arctan(t))

(1 + t2)s/2
,

22The known proofs invariably use complex analysis at various levels. We present here a completely
elementary derivation using only real calculus. A proof based on similar ideas is known in the special
case a = cos θ, b = sin θ, θ ∈ (−π/2, π/2); see the remark at the end of this section.
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where we also introduced shorthand notations for the integrals. To derive these, we
first claim23

dI

dt
=

s

1 + t2
(J − tI)

dJ

dt
= − s

1 + t2
(I + tJ) .

Interchanging the integration and the differentiation (Corollary to Proposition 4.4.1),
we obtain

dI

dt
(t, s) =

d

dt

∫ ∞

0

xs−1e−x sin(tx) dx =

∫ ∞

0

xse−x cos(tx) dx = J(t, s+ 1)

dJ

dt
(t, s) =

d

dt

∫ ∞

0

xs−1e−x cos(tx) dx = −
∫ ∞

0

xse−x sin(tx) dx = −I(t, s+ 1).

We now continue the computations for the first formula only, the proof of the second
is analogous. We use integration by parts via

u = xs and dv = e−x cos(tx) dx,

and hence

du = sxs−1 and v = − e−x

1 + t2
(cos(tx)− t sin(tx)) .

(See Exercise 1 at the end of Section 4.2) We now calculate

dI

dt
=

∫ ∞

0

xse−x cos(tx) dx

=
s

1 + t2

(∫ ∞

0

xs−1e−x cos(tx) dx− t

∫ ∞

0

xs−1e−x sin(tx) dx

)
=

s

1 + t2
(J − tI) ,

where the boundary terms vanish:[
− 1

1 + t2
xse−x (cos(tx)− t sin(tx))

]∞
0

= 0.

The claimed formula follows.
We now introduce

A(t, s) = I(t, s)
(1 + t2)s/2

sin(s arctan(t))
and B(t, s) = J(t, s)

(1 + t2)s/2

cos(s arctan(t))
.

23The partial derivatives ∂I/∂t and ∂J/∂t are meant here. Since, in this passage, the variable s is
kept constant, we use regular derivatives for simplicity. In addition, we suppress the variables (t, s)
whenever there is no danger of confusion.
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We claim

dA

dt
= − s

1 + t2
cot(s arctan(t)) (A−B)

dB

dt
= − s

1 + t2
tan(s arctan(t)) (A−B) .

Once again, we do the computations for the first formula only, the proof of the second
is analogous. We calculate

dA

dt
=

d

dt

(
I

(1 + t2)s/2

sin(s arctan(t))

)
=
dI

dt

(1 + t2)s/2

sin(s arctan(t))

+ tsI
(1 + t2)s/2−1

sin(s arctan(t))
− sI(1 + t2)s/2−1 cos(s arctan(t)

sin2(s arctan(t))

=
(1 + t2)s/2

sin(s arctan(t))

(
s

1 + t2
(J − tI) +

ts

1 + t2
I − s

1 + t2
I
cos(s arctan(t)

sin(s arctan(t))

)
=

s

1 + t2
cos(s arctan(t)

sin(s arctan(t))

(
J

(1 + t2)s/2

cos(s arctan(t))
− I

(1 + t2)s/2

sin(s arctan(t))

)
,

where we used the formula for the derivative of I obtained above. The claim follows.
Subtracting, we obtain

d(A−B)

dt
= (tan(s arctan(t))− cot(s arctan(t)))

s

1 + t2
(A−B).

This can be easily resolved as

A(t, s)−B(t, s) = C(s) · exp
(
s

∫
(tan(s arctan(t))− cot(s arctan(t)))

dt

1 + t2

)
,

where the constant C(s) depends only on s, and also on the bounds of the indefinite
integral. By the substitution u = arctan(t), the exponent is

s

∫
(tan(s arctan(t))− cot(s arctan(t)))

dt

1 + t2
=

∫
(tan(u)− cot(u)) du

= − ln | sin(2u)| = − ln | sin(2s arctan(t)),

where we suppressed the constants. Adjusting the constant C(s), this gives

A(t, s)−B(t, s) =
C(s)

sin(2s arctan(t))
.
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Playing this back to I and J , we obtain

I(t, s) cos(s arctan(t))− J(t, s) sin(s arctan(t)) =
C(s)

2(1 + t2)s/2
.

Substituting t = 0 we get C(s) = 0 (since I(0, s) = 0). Therefore, we have

I(t, s) cos(s arctan(t)) = J(t, s) sin(s arctan(t)).

This gives A = B. Hence, dA/dt = dB/dt = 0, so that

A(t, s) = B(t, s) = G(s),

for some function G depending only on s. Once again, playing this back to I and J ,
we obtain

I(t, s) = G(s)
sin(s arcsin(t))

(1 + t2)s/2
and J(t, s) = G(s)

cos(s arcsin(t))

(1 + t2)s/2
.

It remains to show that G is the gamma function. But this follows immediately by
substituting t = 0 into the second formula:

Γ(s) =

∫ ∞

0

xs−1e−x dx = J(0, s) = G(s).

The example follows.

Remark. A notable special case of Example 4.6.3 is obtained24 by setting a = cos θ,
b = sin θ, −π/2 < θ < π/2. The integral formulas then reduce to∫ ∞

0

xs−1e−x cos θ sin(x sin θ) dx = Γ(s) sin(sθ)∫ ∞

0

xs−1e−x cos θ cos(x sin θ) dx = Γ(s) cos(sθ).

In particular, for 0 < s < 1, we have∫ ∞

0

xs−1 sin(x) dx = Γ(s) sin
(πs
2

)
and

∫ ∞

0

xs−1 cos(x) dx = Γ(s) cos
(πs
2

)
.

24See Farrel, O.J. and Ross, B., Solved problems in analysis, Dover, 2013; Problems II-22-23, and
also Andrews, G.E., Askey, R. and Roy, R. Special Functions, Encyclopedia of Mathematics and its
Applications, Vol. 71, Cambridge University Press, 1999, Exercise 20 at the end of Chapter 1.
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Note that we obtain the correct answer for Example 4.2.1 in the limiting sense for
s→ 0+, since

lim
s→0+

Γ(s) sin
(πs
2

)
= lim

s→0+
Γ(s+ 1)

sin (πs/2)

s
=
π

2
.

(For s = 1, the integrals are not convergent.) Finally, replacing s by 1 − s, the
formulas above take the equivalent form∫ ∞

0

sin(x)

xs
dx = Γ(1−s) cos

(πs
2

)
and

∫ ∞

0

cos(x)

xs
dx = Γ(1−s) sin

(πs
2

)
, 0 < s < 1.

Exercises

1. Use Example 4.4.3 to show that∫ 1

0

arctan(x)

1 + x
dx =

π

8
ln(2).

Solution: Integrate
∫ 1

0
ln(1 + x)/(1 + x2) dx by parts.

2. Show that ∫ 1

0

xt − 1

ln(x)
dx = ln(1 + t), t > 0.

Solution: The integrand is continuous on (0, 1), and can be extended continuously to
[0, 1] by setting it equal to 0 at x = 0, and equal to t at x = 1. In addition, we have
(d/dt)(xt − 1)/ ln(x) = xt.

3. Show that ∫ ∞

0

e−x4

dx = Γ

(
5

4

)
.

Solution: Let u = x4.

4. Derive the equivalent representation of the Gamma function

Γ(t) = 2

∫ ∞

0

x2t−1e−x2

dt, t > 0.

Solution: Use the substitution u2 = − ln(x) in the original definition of the gamma
function by Euler in the historical insert.

5. Show that ∫ ∞

0

ua · r−u du =
Γ(a+ 1)

(ln(r))a+1
, −1 < a ∈ R, 0 < r ∈ R.
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6. Calculate
Γ(t+ n)

Γ(t− n)
, n ∈ N, 0 < t ∈ R, t− n ̸= (−N0).

Solution: Using the formula Γ(t + 1) = tΓ(t) inductively, this is equal to (t + n −
1)(t+ n− 2) · · · (t− n).

7. Show that ∫ ∞

0

e−x2

cos(tx) dx =

√
π

2
e−t2/4, t > 0.

Solution: Letting F : (0,∞) → R be the parametric integral F (t) defined by the
right-hand side, differentiating under the indefinite integral followed by integration
by parts gives F ′(t) = −(t/2)F (t), and hence F (t) = Ce−t2 . The constant, given by
Example 4.4.2, is C =

√
π/2.

8. Show that ∫ ∞

0

1− e−tx2

x2
dx =

√
πt, t > 0.

4.7 The Fresnel Integrals

The Fresnel integrals are defined as

C =

∫ ∞

0

cos(x2) dx =
1

2

∫ ∞

0

cos(u)√
u

du and S =

∫ ∞

0

sin(x2) dx =
1

2

∫ ∞

0

sin(u)√
u

du.

(Note that the equalities follow by the substitution u = x2.) We will show the
convergence of these improper integrals below.

History. The convergence of the improper integral
∫∞
0

sin(x2) dx was observed by Dirichlet in

his paper in the Journal für Math. (1837), p. 60. His primary interest was to exhibit a convergent

improper integral
∫∞
0

f(x) dx for which limx→∞ f(x) ̸= 0.

We introduce the parametric integrals25 C, S : [0,∞) → R defined by

C(t) =

∫ ∞

0

cos(t(x2 + 1))

x2 + 1
dx and S(t) =

∫ ∞

0

sin(t(x2 + 1))

x2 + 1
dx, t ≥ 0.

Clearly, the integrals are convergent, and we have

C(0) =
π

2
and S(0) = 0.

25This example follows van Yzeren, J., Moivre’s and Fresnel’s integrals by simple integration,
Amer. Math. Monthly, Vol. 86, No. 8 (Oct. 1979) 690-693.
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It will be of technical convenience to use the trigonometric addition formulas for sine
and cosine, and write

C(t) = cos(t) · c(t)− sin(t) · s(t) and S(t) = cos(t) · s(t) + sin(t) · c(t),

where

c(t) =

∫ ∞

0

cos(tx2)

x2 + 1
dx =

1

2

∫ ∞

0

cos(tu)

(u+ 1)
√
u
du

and

s(t) =

∫ ∞

0

sin(tx2)

x2 + 1
dx =

1

2

∫ ∞

0

sin(tu)

(u+ 1)
√
u
du.

We first claim that
lim
t→∞

C(t) = lim
t→∞

S(t) = 0.

In view of the linear combinations above, it is enough to derive these limit relations
for c and s. We will show that limt→∞ s(t) = 0; the proof for c is analogous. Using
the second integral for s(t), we observe that the integrand can be interpreted as a
damped sine wave with period 2π/t. We therefore write this as an alternating series

s(t) =
∞∑
n=0

∫ (n+1)π/t

nπ/t

sin(tu)

(u+ 1)
√
u
du =

∞∑
n=0

(−1)nan,

where

an =

∫ (n+1)π/t

nπ/t

| sin(tu)|
(u+ 1)

√
u
du, n ∈ N0.

Now the crux is that (an)n∈N0 is a strictly decreasing null-sequence (since the denom-
inator of the integrand is strictly increasing). Hence, by the alternating series test,26

the series converges. Moreover, once again because this is an alternating series, we
have

0 <

∫ ∞

0

sin(tu)

(u+ 1)
√
u
du <

∫ π/t

0

sin(tu)

(u+ 1)
√
u
du <

∫ π/t

0

du√
u
du = 2

√
π

t
, t > 0.

Letting t→ ∞, the claim follows.
Note that the same argument in the use of the alternating series shows that the

original integrals C and S (in the second integral form) are convergent; for example,
we have

S =
1

2

∫ ∞

0

sin(u)√
u

du =
1

2

∞∑
n=0

∫ (n+1)π

nπ

sin(u)√
u

du <
1

2

∫ π

0

sin(u)√
u

du <
1

2

∫ π

0

du√
u
=

√
π.

26This simple test, used by Leibniz, is based on the fact that the the odd partial sums increase
while even partial sums decrease, and the infinite sum is between the two.
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Next, we wish to calculate the derivatives C ′(t) and S ′(t), t > 0, by differentiating
under the integral sign. To do this, we first claim that

d

dt

∫ ∞

0

cos(tx2)

x2 + 1
dx =

∫ ∞

0

d

dt

cos(tx2)

x2 + 1
dx = −

∫ ∞

0

x2 sin(tx2)

x2 + 1
dx = −1

2

∫ ∞

0

u sin(tu)

(u+ 1)
√
u
du

and

d

dt

∫ ∞

0

sin(tx2)

x2 + 1
dx =

∫ ∞

0

d

dt

sin(tx2)

x2 + 1
dx =

∫ ∞

0

x2 cos(tx2)

x2 + 1
dx =

1

2

∫ ∞

0

u cos(tu)

(u+ 1)
√
u
du.

The difficulty here is that the integrals on the right-hand sides are not absolutely
convergent, so that we cannot use Proposition 4.4.2 to interchange the integrals with
differentiation. We therefore need to proceed with the definition of the derivative as
a limit. We will do the computations for the second integral, the first is analogous.
We have

d

dt

∫ ∞

0

sin(tx2)

x2 + 1
dx = lim

h→0

1

h

∫ ∞

0

sin((t+ h)x2)− sin(tx2)

x2 + 1
dx

The crux here is to reshape the first term in the numerator to resemble the second
by a change of variables. We let t + h = ts2, s > 0, h > −t, for the limit, and then
u = sx and du = sdx for the integral. Thus, for the integral of the first term, we have

1

h

∫ ∞

0

sin((t+ h)x2)

x2 + 1
dx =

1

t(s2 − 1)

∫ ∞

0

sin(t(sx)2)

x2 + 1
dx =

1

t(s2 − 1)

∫ ∞

0

s sin(tu2)

u2 + s2
du

We now rebaptize the variable u back to x, substitute this integral back to the limit
above, and calculate

d

dt

∫ ∞

0

sin(tx2)

x2 + 1
dx = lim

s→1

1

t(s2 − 1)

∫ ∞

0

(
s sin(tx2)

x2 + s2
− sin(tx2)

x2 + 1

)
dx

= lim
s→1

1

t(s+ 1)

∫ ∞

0

(x2 − s) sin(tx2)

(x2 + s2)(x2 + 1)
dx

=
1

2t
lim
s→1

∫ ∞

0

(x2 − s) sin(tx2)

(x2 + s2)(x2 + 1)
dx.

We are now in the position to apply Arzelà’s dominated convergence theorem (for a
sequence(sn)n∈N with limn→∞ sn = 1) since the integrand∣∣∣∣ (x2 − s) sin(tx2)

(x2 + s2)(x2 + 1)

∣∣∣∣ < 1

x2 + 1
.
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Interchanging the limit with the integral, we arrive at

d

dt

∫ ∞

0

sin(tx2)

x2 + 1
dx =

1

2t

∫ ∞

0

(x2 − 1) sin(tx2)

(x2 + 1)2
dx

Finally, we perform integration by parts for the integral on the right-hand side with

u = sin(tx2) and dv =
x2 − 1

(x2 + 1)2
dx,

and hence
du = 2tx cos(tx2) and v = − x

x2 + 1
.

We obtain
1

2t

∫ ∞

0

(x2 − 1) sin(tx2)

(x2 + 1)2
dx =

∫ ∞

0

x2 cos(tx2)

x2 + 1
dx,

since the boundary terms vanish:[
−x sin(tx

2)

x2 + 1

]∞
0

= 0.

The claim now follows.
We rewrite these differentiation formulas as

c′(t) = −
∫ ∞

0

x2 sin(tx2)

x2 + 1
dx = −

∫ ∞

0

sin(tx2) dx+

∫ ∞

0

sin(tx2)

x2 + 1
dx = − S√

t
+ s(t)

s′(t) =

∫ ∞

0

x2 cos(tx2)

x2 + 1
dx = .

∫ ∞

0

cos(tx2) dx−
∫ ∞

0

cos(tx2)

x2 + 1
dx =

C√
t
− c(t)

Applying these differentiation rules to calculate to the linear combinations for C and
S above, we have

C ′(t) = − sin(t)c(t) + cos(t)c′(t)− cos(t)s(t)− sin(t)s′(t) = −S cos(t)√
t

− C
sin(t)√

t

and

S ′(t) = − sin(t)s(t) + cos(t)s′(t) + cos(t)c(t) + sin(t)c′(t) = C
cos(t)√

t
− S

sin(t)√
t
.

Finally, integrating over [0,∞) and using the limit relations for C and S, we obtain

−π
2
= −2SC − 2CS and 0 = 2C2 − 2S2.
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These give

C = S =

√
π

2
√
2
.

History. The Fresnel functions are defined by

C(x) =

√
2

π

∫ x

0

cos(v2) dv =
1√
2π

∫ x2

0

cos(u)√
u

du

and

S(x) =

√
2

π

∫ x

0

sin(v2) dv =
1√
2π

∫ x2

0

sin(u)√
u

du.

The “normalizing constants” are chosen such that

lim
x→∞

C(x) = lim
x→∞

S(x) =
1

2
.

The power series expansion of cosine and sine give

C(x) =

√
2

π
x

∞∑
k=0

(−1)k
x4k

(2k)!(4k + 1)
S(x) =

√
2

π
x

∞∑
k=0

(−1)k
x2(2k+1)

(2k + 1)!(4k + 3)

both with radius of convergence ρ = ∞.

We close this section by revisiting Example 4.2.1.

Example 4.7.1. Show that ∫ ∞

0

sin(x)

x
dx =

π

2
.

By the alternating series test method of the previous example, splitting the integral
into the sum ∫ ∞

0

sin(x)

x
dx =

∞∑
n=0

(−1)n
∫ (n+1)π

nπ

| sin(x)|
x

dx,

the improper integral converges.
We consider the parametric integral F : (0,∞) → R given by

F (t) =

∫ ∞

0

e−tx sin(x)

x
dx, t > 0.

First, we wish to apply Proposition 4.4.2 to determine F . (Note that this is a limiting
case of Example 4.6.3.) We need to verify that the assumptions of this proposition
hold.
We let f : [0,∞)× (0,∞) be defined by f(x, t) = e−tx sin(x)/x, x, t > 0, and f(0, t) =
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1 (the right-limit at x = 0). For any t > 0, this improper integral is absolutely
convergent, since∫ ∞

0

|f(x, t)| dx =

∫ ∞

0

e−tx | sin(x)|
x

dx ≤
∫ ∞

0

e−tx dx =
1

t
.

Moreover, the same holds for the integral∫ ∞

0

∣∣∣∣dfdt (x, t)
∣∣∣∣ dx ≤

∫ ∞

0

e−tx| sin(x)| dx ≤
∫ ∞

0

e−tx dx =
1

t
.

For any ϵ > 0, on the interval (ϵ,∞), we have the upper estimate∣∣∣∣dfdt (x, t)
∣∣∣∣ = e−tx| sin(x)| ≤ e−tx < e−ϵx, x ≥ 0, t > ϵ.

Now we can apply Proposition 4.4.2 with I = (ϵ,∞) and g : [0,∞) → R given by
g(x) = e−ϵx, x ≥ 0. For t > ϵ, this gives

d

dt

∫ ∞

0

e−tx sin(x)

x
dx =

d

dt

∫ ∞

0

f(x, t) dx =

∫ ∞

0

df

dt
(x, t) dx = −

∫ ∞

0

e−tx sin(x) dx.

Since ϵ > 0 was arbitrary, this formula holds for all t > 0.
Now, a simple integration by parts (twice), gives∫ ∞

0

e−tx sin(x) dx =
1

1 + t2
, t > 0.

Putting everything together, we obtain

F ′(t) =
dF

dt
= − 1

1 + t2
, t > 0.

Integrating, we get
F (t) = − arctan(t) + C, t > 0.

To calculate the value of C, we let t→ ∞, and obtain

lim
t→∞

∫ ∞

0

e−tx sin(x)

x
dx = lim

t→∞
F (t) = −π

2
+ C,

On the other hand, we can evaluating the limit on the left-hand side on a divergent
sequence (tn)n∈N such that tn ≥ 1, n ∈ N, say. By Arzelà’s dominated convergence
theorem with fn(x) = e−tnx sin(x)/x, x > 0, and fn(0) = 1, n ∈ N, this limit is zero
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since limn→∞ fn = 0 pointwise27 on (0,∞) (and the theorem applies as |fn(x)| ≤ e−x,
x ≥ 0, n ∈ N).
The formula above then reduces to C = π/2. Using this, we get

F (t) =

∫ ∞

0

e−tx sin(x)

x
dx = − arctan(t) +

π

2
= arctan

(
1

t

)
, t > 0.

(Once again, note that this is a limiting case of Example 4.6.3.) Since the right-hand
side is continuous at t = 0, it remains to show that

lim
t→0+

∫ ∞

0

e−tx sin(x)

x
dx =

∫ ∞

0

lim
t→0+

e−tx sin(x)

x
dx =

∫ ∞

0

sin(x)

x
dx.

It is enough to show this on the positive null-sequence (tn)n∈N.
As usual, we split the integral as∫ ∞

0

e−tnx
sin(x)

x
dx =

∫ 1

0

e−tnx
sin(x)

x
dx+

∫ ∞

1

e−tnx
sin(x)

x
dx, n ∈ N.

For the first integral on the right-hand side, we apply Arzelà’s bounded convergence
theorem with fn(x) = e−tnx sin(x)/x, 0 < x ≤ 1, and fn(0) = 1. (Note that |fn| ≤ 1,
n ∈ N, as sin(x) ≤ x, x ∈ [0, 1].) We obtain

lim
n→∞

∫ 1

0

e−tnx
sin(x)

x
dx =

∫ 1

0

lim
n→∞

e−tnx
sin(x)

x
dx =

∫ 1

0

sin(x)

x
dx.

For the second integral, we first perform integration by parts with u = 1/x and
dv = e−tnx sin(x) dx, and hence du = −dx/x2 and

v = −e−tnx
tn sin(x) + cos(x)

1 + t2n
.

This gives∫ ∞

1

e−tnx
sin(x)

x
dx = e−tn

tn sin(1) + cos(1)

1 + t2n
− 1

1 + t2n

∫ ∞

1

e−tnx
tn sin(x) + cos(x)

x2
dx,

since the boundary terms[
−e

−tnx

x

tn sin(x) + cos(x)

1 + t2n

]∞
1

= e−tn
tn sin(1) + cos(1)

1 + t2n
.

27For x = 0, this limit is 1, but the limit is still integrable on [0,∞) with zero integral.
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Letting n→ ∞, up to this point, we have

lim
n→∞

∫ ∞

1

e−tnx
sin(x)

x
dx = cos(1)− lim

n→∞

∫ ∞

1

e−tnx
tn sin(x) + cos(x)

x2
dx.

Finally, Arzelà’s dominated convergence theorem can be applied to the last integral
with fn(x) = e−tnx(tn sin(x) + cos(x))/x2, x ≥ 1, n ∈ N. (Note that |fn(x)| ≤M/x2,
x ∈ [1,∞), n ∈ N, where M = supn∈N(1 + tn).) We obtain

lim
n→∞

∫ ∞

1

e−tnx
tn sin(x) + cos(x)

x2
dx

=

∫ ∞

1

lim
n→∞

(
e−tnx

tn sin(x) + cos(x)

x2

)
dx =

∫ ∞

1

cos(x)

x2
dx.

Putting this together, we get

lim
n→∞

∫ ∞

1

e−tnx
sin(x)

x
dx = cos(1)−

∫ ∞

1

cos(x)

x2
dx =

∫ ∞

1

sin(x)

x
dx.

(For the last equality, see the beginning of Example 4.2.1.) The example follows.

Exercises.

1. For 1 < a ∈ R, determine the integrals

∫ ∞

0

sin(xa) dx and

∫ ∞

0

cos(xa) dx.

Solution: We have ∫ ∞

0

sin(xa) dx =
1

a

∫ ∞

0

sin(u)

u1−1/a
du,

and similarly for the cosine.
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4.8 The Wallis Product and Euler’s Sine Product

As a classical example of the integration by parts technique, we derive here the Wallis
product formula28

∞∏
k=1

4k2

4k2 − 1
= lim

n→∞

n∏
k=1

4k2

4k2 − 1
= lim

n→∞

24n(n!)4

(2n!)2(2n+ 1)
=
π

2
,

where the first equality is the definition of the infinite product, the second is a simple
algebraic equivalent via

4k2

4k2 − 1
=

(2k)2

(2k − 1)(2k + 1)
=

24k4

(2k − 1)(2k)(2k)(2k + 1)
, k ∈ N,

and the third is the Wallis product formula.

History. This product formula was discovered and published by John Wallis in his Arithmetica

Infinitorum in 1656.

To obtain the Wallis product formula, we return to the Wallis integral Wn =∫ π/2

0
sinn x dx, n ∈ N, in Example 4.2.6. The inductive formula for even indices can

be written as
W2n+2

W2n

=
2n+ 1

2n+ 2
, n ∈ N.

Using monotonicity of the sequence, we obtain

2n+ 1

2n+ 2
=
W2n+2

W2n

≤ W2n+1

W2n

≤ 1,

Letting n→ ∞, we obtain the limit

lim
n→∞

W2n+1

W2n

= 1.

On the other hand, the explicit formulas at the end of Example 4.2.6 give

W2n+1

W2n

=
22 · 42 · · · (2n)2

1 · 32 · 52 · · · (2n− 1)2(2n+ 1)

2

π
=

n∏
k=1

4k2

4k2 − 1

2

π
.

28There are a handful of proofs of the Wallis product formula that do not require integration by
parts, but use elementary if sophisticated arguments. See, for example, the proof of the Yaglom
brothers in A.M. Yaglom and I.M. Yaglom, An elementary derivation of the formulas of Walllis,
Leibniz and Euler for the number π, Uspechi matematiceskich nauk. (N. S.) 57 (1953) 181-187 (in
Russian). Another simpler proof is given by J. Wästlund, An elementary proof of the Wallis product
formula for π, Linköping studies in Mathematics, No. 2, February 21, 2005.
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Substituting this to the limit above, the Wallis formula now follows.
As an interesting byproduct, combining the last estimates, we have

2n+ 1

2n+ 2
≤ W2n+1

W2n

=
22 · 42 · · · (2n)2

1 · 32 · 52 · · · (2n− 1)2(2n+ 1)

2

π
≤ 1

Rearranging, this gives

π

4

1

n+ 1
≤
(

2 · 4 · · · (2n)
1 · 3 · 5 · · · (2n+ 1)

)2

≤ π

4

1

n+ 1/2
.

Taking the square root, and using the formula for W2n+1 in Example 4.2.6, we obtain
the estimate

√
π

2

1√
n+ 1

≤
∫ π/2

0

sin2n+1(x) dx ≤
√
π

2

1√
n+ 1/2

, n ∈ N0.

Changing parity, starting from the ineqalities W2n+1 ≤ W2n ≤ W2n−1, n ∈ N, in an
entirely analogous manner we can derive the estimate

√
π

2

1√
n+ 1/2

≤
∫ π/2

0

sin2n(x) dx ≤
√
π

2

1√
n
, n ∈ N.

These last two estimates can be combined to give√
π

2

1√
m+ 1

≤ Wm =

∫ π/2

0

sinm(x) dx ≤
√
π

2

1√
m
, m ∈ N.

As a beautiful (direct) application of the Wallis formula (actually, its consequence,
the integral estimates above), we now derive the “Gaussian” integral in Example 4.4.2:

Example 4.8.1. We have ∫ ∞

0

e−x2

dx =

√
π

2
.

We will derive sharp upper and lower bounds for the integral using the following
simple inequalities29

e−x2 ≤ 1

1 + x2
, x ≥ 0, and 1− x2 ≤ e−x2

, 0 ≤ x ≤ 1.

29See Elements of Mathematics - History and Foundations, Section 10.1.



4.8. THE WALLIS PRODUCT AND EULER’S SINE PRODUCT 235

For the upper bound, for 2 ≤ n ∈ N, we estimate∫ ∞

0

e−x2

dx =
√
n

∫ ∞

0

e−nx2

dx =

∫ ∞

0

1

(1 + x2)n
dx =

√
n

∫ π/2

0

sec2(u)

(1 + tan2(u))n
du

=
√
n

∫ π/2

0

cos2n−2(u) du =
√
n

∫ π/2

0

sin2n−2(u) du ≤
√
π

2

√
n

n− 1
.

For the lower bound, for n ∈ N, we split the integral as∫ ∞

0

e−x2

dx ≥
∫ √

n

0

e−x2

dx =
√
n

∫ 1

0

e−nx2

dx ≥
√
n

∫ 1

0

(1− x2)n dx

=
√
n

∫ π/2

0

(1− cos2(u))n sin(u) du =
√
n

∫ π/2

0

sin2n+1(u) du ≥
√
π

2

√
n

n+ 1/2
.

Combining these, we obtain
√
π

2

√
n

n+ 1/2
≤
∫ ∞

0

e−x2

dx ≤
√
π

2

√
n

n− 1
, 2 ≤ n ∈ N.

Letting n→ ∞, the example follows.

Euler Infinite Product Formulas.30 For t ∈ R, we have

sin(πt) = πt
∞∏
k=1

(
1− t2

k2

)
cos(πt) =

∞∏
k=0

(
1− 4t2

(2k + 1)2

)
.

Proof.31 We first claim the inductive formula∫ π/2

0

cosn(x) cos(2tx) dx =
n− 1

n

(
1− 4t2

n2

)−1 ∫ π/2

0

cosn−2(x) cos(2tx) dx, 2 ≤ n ∈ N.

30An infinite product
∏∞

n=1 bn, bn ∈ R, n ∈ N, is said to converge if there exists m ∈ N such
that bn ̸= 0 for n ≥ m, and limn→∞

∏n
k=m bk converges to a non-zero number. In this case, we

write
∏∞

n=1 bn = b1 · b2 · · · bm−1 · limn→∞
∏n

k=m bk. It is an elementary fact that an infinite product∏∞
n=1(1 + an), 0 ≤ an ∈ R, n ∈ N, converges if and only if the infinite series

∑∞
n=1 an converges.

31The proof follows Salwinski, D., Euler’s Sine product Formula: An Elementary Proof, Coll.
Math. J., March 2018, which, in turn, closely follows the outline in Spivak, M., Calculus, 4th ed.
Publish or Perish, Houston, TX, p. 395. For another elementary proof, see Ciaurri, O. Euler’s
product expansion for the sine: An elementary proof, Amer. Math. Monthly, Vol. 122, No. 7
(August-September 2015) 693-695.
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We assume, initially, that t ̸= 0,±n/2. Using integration by parts, with obvious cast,
we have ∫ π/2

0

cosn(x) cos(2tx) dx =
n

2t

∫ π/2

0

cosn−1(x) sin(x) sin(2tx) dx,

since the boundary terms vanish:[
cosn(x) sin(2tx)

2t

]π/2
0

= 0.

We perform yet another integration by parts, and obtain∫ π/2

0

cosn−1(x) sin(x) sin(2tx) dx

=
1

2t

∫ π/2

0

(
−(n− 1) cosn−2(x) sin2(x) + cosn(x)

)
cos(2tx) dx,

since, once again, the boundary terms vanish:[
−cosn−1(x) sin(x) cos(2tx)

2t

]π/2
0

= 0.

Using the identity sin2(x) = 1−cos2(x), putting everything together and rearranging,
the inductive formula above follows.

Following the main structure of the proof of the Wallis formula, we now split the
cases according to the parity of 2 ≤ n ∈ N. The case n = 2m, m ∈ N, will give the
(first) infinite product formula for the sine function, the second case n = 2m + 1,
m ∈ N, will result in the (second) infinite product formula for the cosine. We will
give details only in the first case as the proof of the second case is analogous. For
n = 2m, m ∈ N, the inductive formula takes the form∫ π/2

0

cos2m(x) cos(2tx) dx =
2m− 1

2m

(
1− t2

m2

)−1 ∫ π/2

0

cos2m−2(x) cos(2tx) dx, m ∈ N,

where t ̸= ±m. Assuming t ̸= ±k, k = 1, . . . ,m, we now use this formula inductively,
and obtain∫ π/2

0

cos2m(x) cos(2tx) dx =
m∏
k=1

2k − 1

2k

m∏
k=1

(
1− t2

k2

)−1 ∫ π/2

0

cos(2tx) dx

=
π

2

m∏
k=1

2k − 1

2k

m∏
k=1

(
1− t2

k2

)−1
sin(πt)

πt
.
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We now replace the first product on the right-hand side of the last expression, using
the formula ∫ π/2

0

cos2m(x) dx =

∫ π/2

0

sin2m(x) dx = I2m =
π

2

m∏
k=1

2k − 1

2k

in Example 4.2.6, where the first equality here follows from the identity sin(x) =
cos(π/2− x).
We obtain

sin(πt) = πt
m∏
k=1

2k − 1

2k

n∏
k=1

(
1− t2

k2

) ∫ π/2

0
cos2m(x) cos(2tx) dx∫ π/2

0
cos2m(x) dx

, t ∈ R,

where we observed that this formula obviously holds for the previously excluded cases
t = ±k, k = 1, . . . ,m.
It remains to show that

lim
m→∞

∫ π/2

0
cos2m(x) cos(2tx) dx∫ π/2

0
cos2m(x) dx

= 1.

We show this under more general conditions as follows:

Lemma. Let f : [0, π/2] → R be integrable, and assume that |f(x) − f(0)| ≤ Mx,
x ∈ [0, π/2]. Then, we have

lim
n→∞

∫ π/2

0
f(x) cosn(x) dx∫ π/2

0
cosn(x) dx

= f(0).

Proof. We derive suitable estimates for the numerator and denominator in the limit.
First, note that the trivial inequality 0 ≤ x ≤ tan(x), x ∈ [0, π/2), combined with
the identity sec2(x) = 1+ tan2(x) gives cos(x) ≤ 1/

√
1 + x2, x ∈ [0, π/2]. Using this,

for 3 ≤ m ∈ N, we estimate∣∣∣∣∣
∫ π/2

0

f(x) cosn(x) dx− f(0) cosn(x) dx

∣∣∣∣∣ ≤
∫ π/2

0

|f(x)− f(0)| cosn(x) dx

≤M

∫ π/2

0

x dx

(1 + x2)n/2
=

1

2

∫ 1+π2/4

1

du

un/2

=
M

n− 2

(
1− 1

(1 + π2/4)n/2−1

)
≤ M

n− 2
.
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Dividing by
∫ π/2

0
|f(x)−f(0)| cosn(x) dx =

∫ π/2

0
|f(x)−f(0)| cosn(x) dx and estimating

this below by the last formula at the beginning of this section, we obtain∣∣∣∣∣
∫ π/2

0
f(x) cosn(x) dx∫ π/2

0
cosn(x) dx

− 1

∣∣∣∣∣ ≤ M

n− 2

√
n+ 1√
π/2

=M

√
2

π

√
n+ 1

n− 2
, 3 ≤ n ∈ N.

Letting n→ ∞, the lemma follows.

Remark. Setting t = 1/2 is Euler’s infinite product for sine, we recover the Wallis
formula.

In the Euler product formula for sine, taking the natural logarithm of both sides,
we have

ln sin(πt) = ln(πt) +
∞∑
k=1

ln

(
1− t2

k2

)
0 < t < 1.

Differentiating both sides (which is legitimate by Proposition 2.2.4), after rearranging,
we obtain the expansion of the cotangent:

π cot(πt)

2t
=

1

2t2
−

∞∑
k=1

1

k2 − t2
, 0 < t < 1.

Similary, for the infinite product of the cosine, we obtain the expansion of the
tangent:

π tan(πt)

8t
=

∞∑
k=0

1

(2k + 1)2 − 4t2
, −1

2
< t <

1

2
.

Exercises

1. Show that the hypothesis of the Lemma holds for functions f : [0, π/2] → R such
that f is continuous on [0, π/2] and all Dini derivatives are finite on (0, π/2).
Solution: Use Proposition 2.1.7.

2. Derive the formula
√
2 =

∞∏
k=0

(4k + 2)2

(4k + 1)(4k + 3)
.

Solution: Evaluate Euler’s infinite product for cosine at t = 1/4.
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3. Derive the estimates

1− 2|t|√
π

√
n+ 1/2

n− 1
≤ sin(πt)

πt
∏∞

k=1 (1− t2/k2)
≤ 1, t ∈ R \ Z, 2 ≤ n ∈ N

1− 2|t|√
π

√
n+ 1

n− 1/2
≤ cos(πt)∏∞

k=1 (1− 4t2/(2k + 1)2)
≤ 1, t ∈ R \ (Z+ 1/2) , n ∈ N.

Solution: Letting f(x) = cos(2tx) and M = 2|t| in the final estimate in the proof of
the lemma, we obtain∣∣∣∣∣1−

∫ π/2

0
cosn(x) cos(2tx) dx∫ π/2

0
cosn(x) dx

∣∣∣∣∣ ≤ 2|t|√
π

√
2n+ 2

n− 2
, 3 ≤ n ∈ N.

Now notice that the expression in the absolute value is non-negative. Finally, split
into two cases according to the parity of n.

4.32 (a) For 2 ≤ n ∈ N, derive the inductive formula∫ π/2

0

cosn(x) cosh(2tx) dx =
n− 1

n

(
1 +

4t2

n2

)−1 ∫ π/2

0

cosn−2(x) cosh(2tx) dx.

(b) Split the inductive formula in (a) into two cases according to the parity of n to
obtain the infinite product formulas for the hyperbolic sine and cosine functions:

sinh(πt) = πt
∞∏
k=1

(
1 +

t2

k2

)
cosh(πt) =

∞∏
k=0

(
1 +

4t2

(2k + 1)2

)
.

(c) Take the logarithm and differentiate (as for the sine and cosine products) to
obtain the following expansions of the hyperbolic cotangent and hyperbolic tangent
functions:

π coth(πt)

2t
=

1

2t2
+

∞∑
k=1

1

k2 + t2
, t > 0

π tanh(πt)

8t
=

∞∑
k=0

1

(2k + 1)2 + 4t2
, t ̸= 0.

(d) As a byproduct, calculate the limit

lim
t→0+

(
π coth(πt)

2t
− 1

2t2

)
=
π2

6
,

and obtain Euler’s solution to the Basel problem.

32See the previous footnote.



240

4.9 The Gamma Function Revisited

The gamma function has several equivalent representations for different purposes. We
begin here with the original definition of the gamma function due to Euler in 1729:

Γ(t) = lim
n→∞

nt n!

t(t+ 1) · · · (t+ n)
= lim

n→∞

nt

t

n∏
k=1

1

1 + t/k
, t ∈ R \ (−N0).

This is usually written as a single infinite product since we have

Γ(t) = lim
n→∞

(n+ 1)t

t

n∏
k=1

1

1 + t/k

=
1

t
lim
n→∞

n∏
k=1

(
k + 1

k

)t n∏
k=1

1

1 + t/k

=
1

t
lim
n→∞

n∏
k=1

(1 + 1/k)t

1 + t/k
,

where we replaced nt by (n + 1)t without affecting the limit. This gives Euler’s
representation of the gamma function as an infinite product:

Γ(t) =
1

t

∞∏
n=1

(1 + 1/n)t

1 + t/n
, t ∈ R \ (−N0)

Note the obvious advantage that the product converges for all t ∈ R \ (−N0).

History. This formula appears in a letter of Euler written to Goldbach in October 13, 1729, and

thus, it predates the formula that we adopted in Section 4.6; and, in fact, this is the first formula

that defines the gamma function.

We now show that this infinite product representation of the gamma function is
the same as the integral representation we started with in Section 4.6. We first set
t > 0, and define fn : [0,∞) → R, n ∈ N, by fn(x) = (1− x/n)n for 0 ≤ x ≤ n, and
fn(x) = 0 for x > n. We observe that, by Euler’s limit relation, limn→∞ fn(x) = e−x,
x ∈ R, pointwise on [0,∞). We thus have

Γ(t) =

∫ ∞

0

xt−1e−x dx =

∫ ∞

0

lim
n→∞

(
xt−1fn(x)

)
dx

To interchange the improper integral with the limit we use Arzelà’s dominated con-
vergence theorem (Section 3.2). Since33 (1 − x/n)n ≤ e−x, 0 ≤ x ≤ n, we have

33See Elements of Mathematics - History and Foundations, Section 10.5.
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|xt−1fn(x)| ≤ xt−1(1 − x/n)n ≤ xt−1e−x, x, t > 0. The latter (dominating) function,
being the integrand for original definition of the gamma function (Section 4.6), is
improperly integrable on [0,∞); and hence the assumptions of the theorem hold. We
obtain34

Γ(t) =

∫ ∞

0

xt−1e−x dx = lim
n→∞

∫ ∞

0

xt−1fn(x) dx = lim
n→∞

∫ n

0

xt−1
(
1− x

n

)n
dx.

(Note the change of the upper bound for the integral.) We now perform integration
by parts on the last integral with u = (1 − x/n)n and dv = xt−1dx (and hence
du = −(1− x/n)n−1dx and v = xt/t), and obtain∫ n

0

xt−1
(
1− x

n

)n
dx =

1

t

∫ n

0

xt
(
1− x

n

)n−1

dx,

since the boundary terms vanish:[
xt

t

(
1− x

n

)n]n
0

= 0.

We perform this inductively(n times), and arrive at∫ n

0

xt−1
(
1− x

n

)n
dx =

n

nt

n− 1

n(t+ 1)

n− 2

n(t+ 2)
· · · 1

n(t+ n− 1)

∫ n

0

xt+n−1 dx

=
1

nn

n!

t(t+ 1) · · · (t+ n− 1)

nt+n

t+ n
= nt n!

t(t+ 1) · · · (t+ n)
.

The stated formula follows for t > 0.
The extension to negative t < 0, −t ̸= N0, can be shown by compatibility with the
relation Γ(t) = Γ(t+ 1)/t. Indeed, we have

Γ(t+ 1)

t
= lim

n→∞
nt+1 n!

t(t+ 1) · · · (t+ n+ 1)

= lim
n→∞

n

t+ n+ 1
· lim
n→∞

nt n!

t(t+ 1) · · · (t+ n)
= Γ(t).

The formula now follows for all t ∈ R \ (−N0).

34It is instructive to compare this with 12.2 in Whittaker, E.T. and Watson, G.N., A Course in
Modern Analysis, 3rd ed. Dover, 2020, where the argument is based on estimates of the exponential
function used in our Example 4.16.3 below.



242

Example 4.9.1. We have35

(Γ′(1) =)

∫ ∞

0

e−x ln(x) dx = lim
n→∞

(ln(n)−Hn) = −γ,

where Hn =
∑n

k=1 1/k and 0 < γ < 1 is the Euler-Mascheroni constant36 (defined by
the last equality).
We first note that∫ ∞

0

e−x ln(x) dx =

∫ 1

0

e−x ln(x) dx+

∫ ∞

1

e−x ln(x) dx,

whereas (1) the first improper integral on the right-hand side converges since∣∣∣∣∫ 1

0

e−x ln(x) dx

∣∣∣∣ ≤ −
∫ 1

0

ln(x) dx = − [x ln(x)− x]10 = 1 + lim
x→0+

x ln(x) = 1,

and (2) performing integration by parts on the second integral, we get∫ ∞

1

e−x ln(x) dx =

∫ ∞

1

e−x

x
dx <∞,

since [−e−x ln(x)]
∞
1 = − limx→∞ e−x ln(x) = 0.

Turning to the main computation, we define fn : [0,∞) → R, n ∈ N, as above.
With this, by Arzelà’s dominated convergence theorem, we have∫ ∞

0

e−x ln(x) dx =

∫ ∞

0

lim
n→∞

fn(x) ln(x) dx = lim
n→∞

∫ n

0

(
1− x

n

)n
ln(x) dx.

For the integral, we use the substitution u = 1− x/n∫ n

0

(
1− x

n

)n
ln(x) dx = n

∫ 1

0

un ln(n(1−u)) du =
n

n+ 1
ln(n)+n

∫ 1

0

un ln(1−u) du,

where split the logarithm as ln(n(1− u)) = ln(n) + ln(1− u).
It remains to treat the last integral. We have the power series expansion − ln(1−u) =∑∞

k=1 u
k/k with radius of convergence ρ = 1. Therefore, the power series converges

uniformly on any closed interval contained in (−1, 1). Actually, for u ∈ [0, 1), the

35For a direct proof using the mean value theorem, see Bagby, R., A simple proof that Γ′(1) = −γ,
Amer. Math. Monthly, Vol. 117, No 1. (January 2010) 83-85.

36See Elements of Mathematics - History and Foundations, Section 10.3.
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partial sums of the series are increasing, and the monotone convergence theorem
(Section 3.2) applies. We obtain∫ 1

0

un ln(1− u) du = − lim
b→1−

∫ b

0

un
∞∑
k=1

uk

k
du = − lim

b→1−

∫ b

0

∞∑
k=1

uk+n

k
du

= − lim
b→1−

∞∑
k=1

∫ b

0

uk+n

k
du = − lim

b→1−

∞∑
k=1

bk+n+1

k(k + n+ 1)
= −

∞∑
k=1

1

k(k + n+ 1)
.

The last sum is telescopic (with strings of n+1 terms consecutively canceling), since

1

k(k + n+ 1)
=

1

n+ 1

(
1

k
− 1

k + n+ 1

)
, k ∈ N.

We obtain ∫ 1

0

un ln(1− u) du = − 1

n+ 1

n=1∑
k=1

1

k
= − 1

n+ 1
Hn+1.

Putting everything together, we arrive at∫ ∞

0

e−x ln(x) dx = lim
n→∞

(
n

n+ 1
ln(n)− n

n+ 1
Hn+1

)
= lim

n→∞
(ln(n)−Hn) ,

since Hn+1 = Hn + 1/(n+ 1). The example follows.

Example 4.9.2. Show that ∫ 1

0

ln ln

(
1

x

)
dx = −γ.

We use the substitution u = e−x and du = −e−xdx in the previous example.

We use the new representation of the gamma function obtained above to derive
Euler’s reflection formula.37

Proposition 4.9.1. We have38

Γ(t)Γ(1− t) =
π

sin(πt)
, t /∈ Z.

37Sometimes also called Euler’s functional equation.
38Most of the proofs of this formula are non-elementary, and use some basic complex analysis.
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Proof. We first use the functional equation for the gamma function, and calculate

Γ(t)Γ(1− t) = −tΓ(t)Γ(−t) = −t lim
n→∞

(
n−t

−t

n∏
k=1

1

1− t/k
· n

t

t

n∏
k=1

1

1 + t/k

)

= lim
n→∞

(
1

t

n∏
k=1

1

1− t2/k2

)
=

1

t

∞∏
k=1

1

1− t2/k2
=

π

sin(πt)
,

where, in the last equality, we used Euler’s infinite product formula for the sine. The
proposition follows.

Corollary. We have

Γ(t− n) = (−1)n+1Γ(−t)Γ(1 + t)

Γ(n+ 1− t)
, n ∈ Z.

Proof. Applying Euler’s reflection formula for t− n and −t, we have

Γ(t− n)Γ(n+ 1− t)

Γ(−t)Γ(1 + t)
= − π

sin(π(t− n))

sin(πt)

π
.

The corollary follows since sin(π(t− n)) = sin(πt) cos(πn) = (−1)n sin(πt).

Example 4.9.3. 39 For a > 0 and 0 < t < 1, we have∫ ∞

0

sin(ax)

xt
dx = at−1 π

2Γ(t)
csc

(
πt

2

)
and

∫ ∞

0

cos(ax)

xt
dx = at−1 π

2Γ(t)
sec

(
πt

2

)
.

We derive only the first formula as the proof of the second is entirely analogous. By
the remark at the end of Section 4.6, Euler’s reflection formula, and the duplication
formula for sine, we calculate∫ ∞

0

sin(x)

xt
dx = Γ(1− t) cos

(
πt

2

)
=

π

Γ(t) sin(πt)
cos

(
πt

2

)
=

π

2Γ(t)
csc

(
πt

2

)
, 0 < t < 1.

The example now follows by simple scaling x 7→ ax.

39See also Andrews, G.E., Askey, R. and Roy, R., Special Functions, Encyclopedia of Mathematics
and its Applications, Vol. 71, Cambridge Uniersity Press, 1999, Exercise 19 at the end of Chapter
1.
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Exercises

1. Use Euler’s reflection formula (t = 1/2) to derive the “Gausssian” integral of
Examples 4.4.2 and 4.8.1: ∫ ∞

0

e−x2

dx =

√
π

2
.

Soluion: Use the substitution u = x2 with du/
√
u = 2dx, and calculate∫ ∞

0

e−x2

dx =
1

2

∫ ∞

0

e−u

√
u
du =

1

2

∫ ∞

0

u−1/2e−u du =
1

2
Γ

(
1

2

)
.

4.10 The Stirling Formula and Multiplicative

Properties of the Gamma Function

**

We will use the fact that the natural logarithmic function y = ln(x), 0 < x ∈ R,
is concave in two ways.40 (1) The graph of y = ln(x), 0 < x ∈ R, is below41 any of
its tangent lines; (2) Any part of the graph of y = ln(x), 0 < x ∈ R, cut out by a
secant lies above42 the corresponding line segment of the secant.

We fix 1 ≤ t ∈ R, and let Dt ⊂ R be the region under the graph of the natural
logarithm function y = ln(x) for t ≤ x ≤ t + 1. The crucial step in deriving the

Stirling formula amounts to estimate the area
∫ t+1

t
ln(x) dx of Dt.

To do this, we let X0 = (t, 0), X1 = (t + 1, 0), Y0 = (t, ln(t)), Y1 = (t + 1, ln(t + 1)).
Moreover, we let Z0 be the intersection of the tangent line to the graph of ln at
Y1 and the vertical line through X0; and Z1 the intersection of the tangent line to
the graph of ln at Y0 and the vertical line through X1. The differentiation formula
(ln |x|)′ = 1/x, 0 ̸= x ∈ R easily implies that Z0 = (t, ln(t + 1) − 1/(t + 1)) and
Z1 = (t+ 1, ln(t) + 1/t).
By concavity of the natural logarithm, the trapezoid [X0, X1, Y0, Y1] is contained in
Dt; whereas the two trapezoids [X0, X1, Y1, Z0] and [X0, X1, Y0, Z1] contain Dt. The

40The following proof is a variant of the classical approach; see A.J. Coleman, A simple proof of
Stirling’s formula, The American Mathematical Monthly, Vol. 58, No. 5 (1951) 334-336.

41This follows from the analogous statement for the natural exponential function y = ex, x ∈ R,
via the fundamental inequality ex ≥ 1 + x, x ∈ R. See Elements of Mathematics - History and
Foundations, Section 10.1.

42This follows form the analogous property of the natural exponential function y = ex, x ∈ R, via
the Bernoulli inequality. See Elements of Mathematics - History and Foundations, Section 10.1.
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area of the first trapezoid [X0, X1, Y0, Y1] is

1

2
(ln(t) + ln(t+ 1)) <

∫ t+1

t

ln(x) dx.

Letting 2 ≤ n ∈ N, and summing up for t = k = 1, . . . , n− 1, we obtain

1

2

n−1∑
k=1

(ln(k) + ln(k + 1)) =
n∑

k=1

ln(k)− 1

2
ln(n) = ln(n!)− 1

2
ln(n) <

∫ n

1

ln(x)dx.

On the other hand, for 0 < t ∈ R, with the areas of the trapezoids (Dt ⊂) [X0, X1, Y1, Z0]
and (Dt ⊂) [X0, X1, Y0, Z1], we have∫ t+1

t

ln(x)dx < ln(t+ 1)− 1

2(t+ 1)
and

∫ t+1

t

ln(x)dx < ln(t)− 1

2t
.

We now take the arithmetic sum of these∫ t+1

t

ln(x)dx <
1

2
(ln(t) + ln(t+ 1)) +

1

4

(
1

t
− 1

t+ 1

)
.

As before, letting 2 ≤ n ∈ N, and summing up for t = k = 1, . . . , n − 1, a similar
computation as above gives∫ n

1

ln(x)dx <
1

2

n−1∑
k=1

(ln(k)+ln(k+1))+
1

4

n−1∑
k=1

(
1

k
− 1

k + 1

)
= ln(n!)−1

2
ln(n)+

1

4
− 1

4n
,

where the second sum is telescopic.
With these estimates in place, for 2 ≤ n ∈ N, we define

dn =

∫ n

1

ln(x) dx− 1

2

n−1∑
k=1

(ln(k) + ln(k + 1))

=

∫ n

1

ln(x) dx−
n∑

k=1

ln(k) +
1

2
ln(n)

=

∫ n

1

ln(x) dx− ln(n!) +
1

2
ln(n).

By the first equality, dn, 2 ≤ n ∈ N, is the difference of the area under the graph of
y = ln(x), for 1 ≤ n, and the inscribed first set of trapezoids. Hence, the sequence
(dn)2≤n∈N has positive terms (see also our first (lower) estimate above), and it is
strictly increasing. By the second (upper) estimate, we have

(0 <) dn <
1

4
− 1

4n
<

1

4
, 2 ≤ n ∈ N.
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Using the monotone convergence theorem, we conclude that the limit limn→∞ dn = d
exists with 0 < d ≤ 1/4.
Finally, we can calculate the integral∫ n

1

ln(x) dx = [x · ln(x)− x]n1 = n ln(n)− n+ 1.

Substituting this into the definition of dn above, we obtain

dn =

∫ n

1

ln(x) dx− ln(n!) +
1

2
ln(n)

=

(
n+

1

2

)
ln(n)− ln(n!)− n+ 1

= ln

(
nn+1/2

n! · en

)
+ 1

= − ln

(
n! · en

nn+1/2

)
+ 1.

Summarizing, these give the Stirling limit

lim
n→∞

n!√
n · nn · e−n

= a,

where a = e1−d with e3/4 ≤ a < e.
To obtain the value of a we use the Wallis product formula

lim
n→∞

22n(n!)2

(2n)!
√
2n+ 1

=

√
π

2
.

We replace the factorials in this limit by the two equivalent forms of the Stirling limit
above

lim
n→∞

√
2n · (2n)2n · e−2n

(2n)!
=

1

a
and lim

n→∞

(n!)2

n2n+1 · e−2n
= a2.

Upon substitution and simplification, we obtain

a · lim
n→∞

22n · n2n+1

√
2n+ 1 ·

√
2n · (2n)2n

=
a

2
=

√
π

2
.

This gives
a =

√
2π.

Summarizing, we obtain the Stirling formula

lim
n→∞

n!

nn+1/2 · e−n
=

√
2π,
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or equivalently
n! ∼

√
2πn · nn · e−n as n→ ∞.

History. The Stirling formula with a generic constant in place of
√

2π was discovered by Abraham

de Moivre. Stirling then found this constant to be
√

2π. It was also de Moivre who encouraged

Stirling to publish the more precise formula above that is subsequently named after the latter.43 A

lesser known but slightly better asymptotics44 is n! ∼
√

(2n + 1/3)π · nn · e−n.

As an application of the Stirling formula, we now derive Legendre’s duplication
formula for the gamma function.

Proposition 4.10.1. We have

Γ(t)Γ(t+ 1/2) = 21−2t
√
πΓ(2t),

Proof. We use Euler’s representation for the gamma function derived at the begin-
ning of Section 4.9. For brevity, we write Γ(t) = limn→∞ qn(t), where

qn(t) =
nt · n!

t(t+ 1) · · · (t+ n)
, n ∈ N, t ∈ R \ (−N0).

We calculate

qn(t)qn(t+ 1/2) =
nt · n!

t(t+ 1) · · · (t+ n)
· 2n+1nt+1/2 · n!
(2t+ 1)(2t+ 3) · · · (2t+ 2n+ 1)

=
22n+2n2t+1/2 · (n!)2

2t(2t+ 1) · · · (2t+ 2n+ 1)

=
22n+2n1/2 · (n!)2

22t(2n)!
· 1

2t+ 2n+ 1
· q2n(2t).

We now use the Stirling formula as

22n+2n1/2 · (n!)2

(2n)!
∼ 22n+2n1/2 · 2πn · n2ne−2n

√
4πn 22n n2ne−2n

= 4
√
π n, n→ ∞.

Putting everything together, we arrive at

qn(t)qn(t+ 1/2) ∼
√
π

22t−1
· 2n

2t+ 2n+ 1
· q2n(2t) ∼ 21−2t

√
πq2n(2t), n→ ∞.

43See Tweedle, I., James Stirling, Scottish Academic Press, Edinburgh, 1988.
44See Gosper, R.W., Decision procedure for indefinite hypergeometric summation, Proc. Natl.

Acad. Sci. USA, 75 (1978) 40-42.
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Letting n→ ∞, the proposition follows.

History. As the name suggests, this formula is due to Legendre in 1809.

Remark. In an alternative development,45 the Legendre duplication formula can be
used to derive Euler’s reflection formula. This is expounded in Exercise 1.

The following is a “multiplicative” generalization of the Legendre duplication for-
mula (m = 2) usually termed as the Legendre-Gauss formula. It follows from a
general multiplication theorem46 obeyed by several special functions. As usual,
we prefer a short and direct proof.

Proposition 4.10.2. We have

m−1∏
k=0

Γ

(
t+ k

m

)
= (2π)(m−1)/2m1/2−tΓ(t), m ∈ N, t ∈ R \ (−N0)

Proof. Let m ∈ N. By Euler’s representation of the gamma function, the product

m∏
k=1

Γ

(
t+ k

m

)
, t /∈ (−N0)

(with modified ends) is the limit (as n→ ∞) of the expression

Qn(t,m) =
m∏
k=1

n
t+k
m · n!(

t+k
m

) (
t+k
m

+ 1
)
· · ·
(
t+k
m

+ n
) =

nt+(m+1)/2 ·m(n+1)m · (n!)m

(t+ 1)(t+ 2) · · · (t+ (n+ 1)m)
,

where we used
∑m

k=1 k = m(m+ 1)/2. For t = 0, this reduces to

Qn(0,m) =
n(m+1)/2 ·m(n+1)m · (n!)m

((n+ 1)m)!
.

It is convenient to consider the ratio

Qn(t,m)

Qn(0,m)
=

nt · ((n+ 1)m)!

(t+ 1)(t+ 2) · · · (t+ (n+ 1)m)

= tm−t

(
n

n+ 1

)t
((n+ 1)m)t((n+ 1)m)!

t(t+ 1)(t+ 2) · · · (t+ (n+ 1)m)
∼ tm−tΓ(t), as n→ ∞.

45See Artin, E., The Gamma Function, New York, Holt, Rinehart and Winston 1964, and Dover
2015.

46See Bourbaki, N., Élements de Mathématique, Fonctions d’une variable réelle, Springer, 2007,
VII.21, Exercise 1) a).
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On the other hand, by Euler’s reflection formula, we have

lim
n→∞

Qn(0,m) =
m−1∏
k=1

Γ

(
k

m

)
=

m−1∏
k=1

Γ

(
1− k

m

)

=

√√√√m−1∏
k=1

Γ

(
k

m

)
Γ

(
1− k

m

)

=

√
πm−1∏m−1

k=1 sin (kπ/m)
.

The trigonometric product in the denominator is well-known. For completeness,
we include a proof here.47

Lemma. For 2 ≤ m ∈ N, we have

m−1∏
k=1

sin

(
kπ

m

)
=

m

2m−1
and

m−1∏
k=1

cos

(
kπ

m

)
=

sin(mπ/2)

2m−1
.

Proof. let Tm and Um, m ∈ N0 denote the Chebyshev polynomials48 of degree
m. By definition, we have

Tm(cos(α)) = cos(mα) and Um−1(cos(α)) =
sin(mα)

sin(α)
.

An easy consequence of the recurrence relations49 for Tm(x) and Um−1(x) (as polyno-
mials in x) is that their leading coefficients are equal to 2m−1.
Now, the crucial observation is the simple fact that cos(kπ/m), k = 1, . . . ,m− 1 are
the roots of Um−1. With this, we have the factorization

Um−1(x) = 2m−1

m−1∏
k=1

(
x− cos

(
kπ

m

))
.

47A typical proof uses (complex) roots of unity. Since we steer clear of complex arithmetic, we
need to recourse to Chebyshev polynomials.

48See Elements of Mathematics - History and Foundations, Section 11.3.
49See ibid.
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To derive the first formula, we use this at x = ±1, and calculate

Um−1(1)Um−1(−1) = (−1)m−122m−2

m−1∏
k=1

(
1− cos2

(
kπ

m

))

= (−1)m−122m−2

m−1∏
k=1

sin2

(
kπ

m

)
.

On the other hand

Um−1(1) = Um−1(cos(0)) = lim
α→0

sin(mα)

sin(α)
= m,

and

Um−1(−1) = Um−1(cos(π)) = lim
α→π

sin(mα)

sin(α)
= (−1)m−1m.

Putting these together, we obtain

m2 = 22m−2

m−1∏
k=1

sin2

(
kπ

m

)
,

The first formula follows.
For the second formula, we first note that, by the last Viète relation,50 the product
of the roots of Um−1(x) is equal to

m−1∏
k=1

cos(kπ/m) = (−1)m−1Um−1(0)

2m−1
,

where the numerator in the fraction is the constant term of the polynomial Um−1(x).
On the other hand, we have

Um−1(x) =
sin(m arccos(x))

sin(arccos(x))
.

At x = 0, this gives Um−1(0) = sin(mπ/2). The second formula follows. (The sign
(−1)m−1 does not come into play since sin(mπ/2) vanishes for m even.)

Remark. Taking the natural logarithm of both sides of the first formula, we obtain

π

m

m−1∑
k=1

ln

(
sin

(
kπ

m

))
= π

ln(m)

m
− π

m− 1

m
ln 2.

50See Elements of Mathematics - History and Foundations, Section 6.6.
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Interpreting the left-hand side as a middle Riemann sum (on the interval [π/(2m), (2m−
1)π/(2m)]), we recover Example 4.1.6∫ π

0

ln(sin(x)) dx = lim
m→∞

π

m

m−1∑
k=1

ln

(
sin

(
kπ

m

))
= π lim

m→∞

ln(m)

m
−π lim

m→∞

m− 1

m
ln 2 = −π ln 2.

Returning to the main line of the proof, the last step gives

lim
n→∞

Qn(0,m) = (2π)(m−1)/2 ·m−1/2.

Hence, we arrive at
m∏
k=1

Γ

(
t+ k

m

)
= lim

n→∞
Qn(t,m) = (2π)(m−1)/2 ·m−1/2 · t ·m−tΓ(t).

In the final step, we convert the last factor of the product in the left-hand side as

Γ

(
t+m

m

)
= Γ

(
t

m

)
=

t

m
Γ

(
t

m

)
.

The Gauss-Legendre formula follows.

History. It is worth noting that the special case

m−1∏
k=1

Γ

(
k

m

)
=

(2π)(m−1)/2

√
m

, m ∈ N,

obtained in the proof above is due to Euler.

Remark. There is yet another “additive” generalization of the Legendre duplication
formula due to Schlömilch51 as follows

2t−1Γ

(
t+m+ 1

2

)
Γ

(
t−m

2

)
=

√
π

m∑
k=0

Γ(t− k)

2k · k!
(m− k + 1)2k, t > m ∈ N0,

where (x)n =
∏n−1

j=0 (x− j) is the so-called Pochhammer symbol.

Finally, note a generalization of the Legendre-Gauss formula due to Schobloch.52 The
Schobloch reciprocity formula is a “symmetrized” Legendre-Gauss formula:

(2π)−n/2nt+mn−m−n
2

n−1∏
k=0

Γ

(
t+ km

n

)
= (2π)−m/2mt+mn−m−n

2

m−1∏
k=0

Γ

(
t+ kn

m

)
, m, n ∈ N.

51See Schlömilch, O., Analitische Studien: Erste Abtheilung, Leipzig, 1848. For an elementary
proof as well as yet another generalization, see Goenka, R. and Srinivasan, G.K., Gamma function
and its functional equations, Resonance 26 (2021) 367-386.

52See Srinivasan, G.K., The gamma function: an eclectic tour, Amer. Math. Monthly, Vol. 114,
No. 4 (Apr. 2007) 297-315, and the references therein.
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Returning to the main line, in view of the formula Γ(n + 1) = n!, n ∈ N0, it is
natural to expect that the Stirling formula derived above extends to an asymptotic
formula for the gamma function. Indeed, we have

Γ(t+ 1) ∼
√
2πt · tt · e−t, t→ ∞.

History. The extension of the Stirling formula to the gamma function is due to Pierre Simon

Laplace in his Mémoire sur la probabilité des courses par les événemens, Mémoires de matématique et

de physique presentés a L’Académie royale des sciences, par divers savans, & lus dans ses assemblées

6 (1774) 621-656. (Reprinted in Laplace’s Œuvres complètes 8 27-65.)

For the proof,53 we need some preparations, notably yet another infinite product
formula for the gamma function. It is commonly termed as the Weierstrass repre-
sentation of the gamma function, albeit it has been discovered by Schlömilch and
Newman earlier.54 To derive this, we begin with Euler’s representation of the gamma
function discussed in the previous section, and calculate

Γ(t) = lim
n→∞

n!nt

t(t+ 1) · · · (t+ n)

=
1

t
lim
n→∞

et ln(n)

(1 + t/1)(1 + t/2) · · · (1 + t/n)

=
1

t
lim
n→∞

et(ln(n)−Hn)etHn

(1 + t/1)(1 + t/2) · · · (1 + t/n)

=
e−γt

t
lim
n→∞

et/1+t/2+···+t/n

(1 + t/1)(1 + t/2) · · · (1 + t/n)

=
e−γt

t

∞∏
n=1

(
1 +

t

n

)−1

et/n,

where we inserted the Euler-Mascheroni number γ = limn→∞(Hn − ln(n)), Hn =
1+ 1/2 + · · ·+ 1/n, n ∈ N. The last formula is the Weierstrass representation of the
gamma function.

53There are many proofs of Stirling’s formula; see Diaconis, P. Freedman, D., An elementary proof
of Stirling’s formula, Amer. Math. Monthly, Vol. 93 (1986) 123-125; Patin, J.M. A very short proof
of Stirling’s formula, Amer. Math. Monthly, 96 (1989) 41-42; Lou, H. A short proof of Stirling’s
formula, Amer. Math. Monthly, Vol. 121, No. 2 (February 2014) 154-157; Nichel, R., On Stirling’s
formula, Amer. Math. Monthly, 109 (2002) 388-390; and Neuschel, Th., A new proof of Stirling’s
formula, Amer. Math. Monthly, Vol 121, No. 4 (April 2014) 350-352.

54See Nielsen, N., Handbuch der Theorie der Gamma Funktion, B.B. Teubner, Leipzig, 1906.
Note that this work contains a comprehensive account on the gamma function until the end of the
eighteenth century. Note finally that the Weierstrass representation of the gamma function is the
beginning of the function theoretic approach to the gamma function.
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History. The Euler-Mascheroni number was introduced by Euler in 1734 by the limit above.

Euler used C to denote this number, while the notation γ is probably due to Lorenzo Mascheroni

(1750 – 1800) in 1790. It is not known whether γ is rational or irrational.

Taking the natural logarithm, we obtain

ln Γ(t) = − ln(t)− γt+
∞∑
n=1

(
t

n
− ln

(
1 +

t

n

))
.

We now use logarithmic differentiation to calculate

Γ′(t)

Γ(t)
=

d

dt
(ln(Γ(t))) = −1

t
− γ +

d

dt

∞∑
n=1

(
t

n
− ln

(
1 +

t

n

))
.

We need to interchange the differentiation and the infinite summation. To apply
Proposition 2.2.4, we let fn : (0,∞) → R, n ∈ N, be defined by fn(t) = t/n− ln(1 +
t/n), t > 0. Clearly, limn→∞ fn(t) = 0 (pointwise) on (0,∞). In addition, we have

f ′
n(t) =

1

n
− 1/n

1 + t/n
=

t

n(t+ n)
≤ t

n2
, t > 0, n ∈ N.

By the WeierstrassM -test, the series
∑∞

n=1 f
′
n(t) converges uniformly on every closed

interval [ϵ, R], 0 < ϵ < R. Proposition 1.3.10 applies, and we obtain

Γ′(t)

Γ(t)
= −1

t
− γ +

∞∑
n=1

d

dt

(
t

n
− ln

(
1 +

t

n

))
= −1

t
− γ +

∞∑
n=1

(
1

n
− 1

t+ n

)
= −γ +

∞∑
n=1

(
1

n
− 1

t+ n− 1

)
,

where the last equality follows by rearrangement of the absolutely convergent series.
Note the obvious consequence that Γ is strictly decreasing on (0, 1] (since

Γ′(t) < 0 for 0 < t < 1).

Remark. The formula above for the logarithmic derivative of the gamma function
can be used to give another proof for the Legendre duplication formula, and, in
general, for the Legendre-Gauss formula as well. We give details to the first.55 We

55For the second, see Srinivasan, G.K. The gamma function: an eclectic tour, Amer. Math.
Monthly, Vol. 114, No. 4 (Apr. 2007) 297-315, and the references therein.
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calculate

Γ′(t)

Γ(t)
− 1

2

Γ′(t/2)

Γ(t/2)
− 1

2

Γ′((t+ 1)/2)

2Γ((t+ 1)/2)

= lim
n→∞

(
n∑

k=1

(
1

k
− 1

t+ k − 1

)
− 1

2

n∑
k=1

(
1

k
− 1

t/2 + k − 1

)
−1

2

n∑
k=1

(
1

k
− 1

(t+ 1)/2 + k − 1

))

= lim
n→∞

(
−

n∑
k=1

1

t+ k − 1
+

n∑
k=1

1

t+ 2k − 2
+

n∑
k=1

1

t+ 2k − 1

)

= lim
n→∞

2n∑
k=n+1

1

t+ k − 1
= lim

n→∞

2n∑
k=n+1

(
1

t+ k − 1
− 1

k

)
+ lim

n→∞

2n∑
k=n+1

1

k
= ln 2,

where, due to convergence, the first limit on the right-hand side is zero; and the second
is well known56 to be equal to ln 2. Rewriting the entire formula into logarithmic
derivatives, and integrating, we obtain

Γ(t)

Γ(t/2)Γ((t+ 1)/2)
= C · 2t.

Finally, letting t = 1, the value of the constant is C = 1/(2
√
π). The Legendre

duplication formula follows.

Example 4.10.1. Show that57

Γ′(1)

Γ(1)
− Γ′(1/2)

Γ(1/2)
= 2 ln 2.

This is a special case (t = 1) of the computation in the remark above.

Returning to the main line, differentiating one more time, we obtain

d2

dt2
ln Γ(t) =

d

dt

∞∑
n=1

(
1

n
− 1

t+ n− 1

)
=

∞∑
n=0

1

(t+ n)2
, t > 0,

56See Elements of Mathematics - History and Foundations, Example 4.10.2. Indeed,
∑2

k=n 1/k =
(H2n − ln(2n)) − (Hn − ln(n)) + ln(2), and let n → ∞.

57See Whittaker, E.T. and Watson, G.N. A Course in Modern Analysis, 3rd ed. Dover, 2020;
Exercise 3, p. 259.
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where we note that, by the Weierstrass M -test, the last infinite sum is uniformly
convergent on closed subintervals in (0,∞), and therefore, by Proposition 1.2.10,
differentiation can be brought under the infinite sum.
In particular, the second derivative of ln Γ is positive on (0,∞), a property that we
term as the gamma function is (strictly) logarithmically convex on (0,∞). More
about this later.

Remark. In some developments, the formula above is used to the effect that the
gamma function is the unique solution of the differential equation d2 ln(y(t))/dt2 =∑∞

n=0 1/(t+ n)2 with initial values y(1) = 1 and y′(1) = −γ.

After these preparations,58 we define the function f : (0,∞) → R by

f(t) = ln

(
Γ(t+ 1)et

tt+1/2

)
, t > 0.

By the Stirling formula, we have

lim
n→∞

f(n) = ln
(√

2π
)
.

We need to show that
lim
t→∞

f(t) = ln
(√

2π
)
.

To do this, by Proposition 2.2.2 (with an = n, n ∈ N, and L = ln(
√
2π)) we need to

prove that
lim
t→∞

f ′(t) = 0.

We now use logarithmic differentiation and calculate

f ′(t) =
Γ′(t+ 1)

Γ(t+ 1)
− ln(t)− 1

2t
= −γ +

∞∑
n=1

(
1

n
− 1

t+ n

)
− ln(t)− 1

2t
, t > 0.

With this, we have

f ′(t) = lim
n→∞

(
ln(n)−Hn +

n∑
k=1

(
1

k
− 1

t+ k

)
− ln(t)− 1

2t

)

= lim
n→∞

(
ln
(n
t

)
−

n∑
k=0

1

t+ k + 1

)
− 1

2t
.

58We follow here Dutkay, D.E., Niculascu, C.P., Popovici, F., A note on Stirling’s formula for the
gamma function, Journal of Prime Research in Mathematics, Vol. 8 (2012) 1-4.
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(Note the shift in the summation.)
To give suitable bounds for the sum here, we first note that the trivial estimate∫ u+1

u

dx

x
<

1

u
<

∫ u

u−1

dx

x
, u > 1,

gives

ln(u+ 1)− ln(u) <
1

u
< ln(u)− ln(u− 1), u > 1.

In particular, we have

ln(t+ k + 2)− ln(t+ k + 1) <
1

t+ k + 1
< ln(t+ k + 1)− ln(t+ k), t > 0, k ∈ N0.

Summing, we obtain

ln(t+ n+ 2)− ln(t+ 1) <
n∑

k=0

1

t+ k + 1
< ln(t+ n+ 1)− ln(t), x > 0, n ∈ N0.

Hence

ln

(
t+ n+ 2

n

)
+ ln

(
t

t+ 1

)
<

n∑
k=0

1

t+ k + 1
− ln

(n
t

)
< ln

(
t+ n+ 1

n

)
Letting n→ ∞ and using the formula for f ′(t) above, we arrive at

− 1

2t
< f ′(t) < ln

(
t+ 1

t

)
− 1

2t
, t > 0.

This gives limt→∞ f ′(t) = 0. The extension of the Stirling formula for the gamma
function follows.

We now briefly return to the Legendre-Gauss formula in Proposition 4.10.2. Re-
placing the variable t > 0 by mt, m ∈ N, taking the natural logarithm, and dividing
by m, the left-hand side of the formula becomes

1

m

m−1∑
k=0

ln Γ

(
t+

k

m

)
.

We notice that this is a (left-)Riemann sum of the integral
∫ t+1

t
ln(Γ(x)) dx. This is

the principal observation leading to the Raabe integral, as stated in the following:
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Proposition 4.10.3. We have∫ t+1

t

ln Γ(x) dx = t (ln(t)− 1) +
1

2
ln(2π), t > 0.

Proof. We first note that the formula makes sense for t = 0 in the limiting sense
(t→ 0+): ∫ 1

0

ln Γ(x) dx =
1

2
ln(2π).

Indeed, the improper integral converges, since, by the Weierstrass representation of
the gamma function, we have59∫ 1

0

ln Γ(x) dx = −
∫ 1

0

ln(x) dx− γ +

∫ 1

0

∞∑
n=1

(x
n
− ln

(
1 +

x

n

))
dx

≤ 1− γ +

∫ 1

0

∞∑
n=1

x2

n(n+ x)
dx < 1− γ +

1

3

∞∑
n=1

1

n2
dx = 1− γ +

π2

18
,

where we used the fundamental estimate for the natural logarithm60 x/(1 + x) ≤
ln(1 + x) ≤ x, −1 < x ∈ R. In particular, we have

lim
ϵ→0+

∫ ϵ

0

ln Γ(x) dx = 0.

As noted above, Γ is strictly decreasing on (0, 1]. This implies that, for any ϵ ∈ (0, 1],
we have

1

n

[nϵ]∑
k=1

ln Γ

(
k

n

)
≤
∫ ϵ

0

ln Γ(x) dx, n ∈ N.

Here the greatest integer [nϵ] is the largest integer m ∈ N0 such that m/n ≤ ϵ.
Therefore, by continuity, for ϵ ∈ (0, 1), we have

lim
n→∞

1

n

n∑
k=[nϵ]+1

ln Γ

(
k

n

)
=

∫ 1

ϵ

ln Γ(x) dx.

Combining these, we obtain

lim
n→∞

1

n

n∑
k=1

ln Γ

(
k

n

)
=

∫ 1

0

ln Γ(x) dx.

59Note that, by Arzelà’s bounded convergence theorem, we could intechange the summation with
the integral, integrate, and finally expand ln(1 + 1/n), but this does not result in a better estimate.

60See Elements of Mathematics - History and Foundations, Section 10.3.
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We now bring in (the last product of the proof of) the Legendre-Gauss theorem:

n∏
k=1

Γ

(
t+ k

n

)
= (2π)(n−1)/2 · n−1/2 · n−tΓ(t+ 1), n ∈ N,

where we used Γ(t+ 1) = tΓ(t). Setting t = 0, we obtain

n∏
k=1

Γ

(
k

n

)
= (2π)(n−1)/2 · n−1/2.

Hence
1

n

n∑
k=1

ln Γ

(
k

n

)
=
n− 1

2n
ln(2π)− ln(n)

2n
.

Taking the limit as n→ ∞, we arrive at∫ 1

0

ln Γ(x) dx =
1

2
ln(2π).

For the general case, we use the identity Γ(x+ 1) = xΓ(x), x > 0, to the effect that∫ t+1

1

ln Γ(x) dx =

∫ t

0

ln Γ(x+ 1) dx =

∫ t

0

ln Γ(x) dx+

∫ t

0

ln(x) dx, t > 0.

Therefore∫ t+1

t

ln Γ(x) dx =

∫ 1

0

ln Γ(x) dx+

∫ t+1

1

ln Γ(x) dx−
∫ t

0

ln Γ(x) dx

=
1

2
ln(2π) +

∫ t

0

ln(x) dx, t > 0.

The proposition follows since
∫
ln(x) dx = x(ln(x)− 1) + C.

As noted in a previous history, Euler introduced the gamma function to extend the
concept of factorial to non-integer values. The question naturally arises as to whether
the property Γ(t+ 1) = tΓ(t), t > 0 (along with the normalizing condition Γ(1) = 1)
uniquely determine the gamma function or not. The answer is clearly “no” as any
functional multiple g · Γ with periodic g (with period 1 and g(1) = 1) also satisfies
this property. According to the Bohr-Mollerup theorem,61, unicity holds, however, if
one adds the property of logarithmic convexity.

61See Artin, E., The Gamma Function, Holt, Rinehart, Winston, 1964.
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Bohr-Mollerup Theorem. The gamma function is uniquely characterized as a
function f : (0,∞) → (0,∞) satisfying the following three properties: (1) f(1) = 1;
(2) f(t + 1) = tf(t), t > 0; and (3) f is logarithmically convex; that is, ln ◦f is
convex.

First, note that we defined strict logarithmic convexity of the gamma function
by requiring that the second derivative of the composition ln ◦Γ is positive. More
generally, we say that a function62 f : (0,∞) → R is convex if, for every fixed
0 < x ∈ R, the difference quotient

mf (x+ h, x) =
f(x+ h)− f(x)

h
, −x < h ̸= 0, h ∈ R,

(as a function of h) is increasing on (−x,∞) \ {0}. Thus, for 0 < u < x < v, letting
h = u− x < 0 and k = v − x > 0, we have

f(u)− f(x)

u− x
= mf (x+ h, x) ≤ mf (x+ k, x) =

f(v)− f(x)

v − x
.

Rearranging, this is equivalent to

f(x) ≤ v − x

v − u
f(u) +

x− u

v − u
f(v), 0 < u < x < v.

The transparent geometric interpretation of this is that, for any closed interval [u, v] ⊂
(0,∞), the graph of the function f restricted to [u, v] is below its secant line segment
connecting (u, f(u)) and (v, f(v)). Note that this property, for all [u, v] ⊂ (0,∞),
implies that a convex function is continuous everywhere.63

Assume now that f is twice continuously differentiable. Differentiating with respect
to h, we obtain

d

dh
mf (x+ h, x) =

d

dh

f(x+ h)− f(x)

h
=
hf ′(x+ h)− f(x+ h) + f(x)

h2

Using the substitution u = x+ h, u > 0, the Taylor formula (centered at u) gives

(f(x) =) f(u− h) = f(u)− hf ′(u) +
h2

2
f ′′(u− (1− s)h)

for some s ∈ [0, 1], where we used the Lagrange form of the remainder (Section 2.3).
(The points u− (1− s)h parametrized by s ∈ [0, 1] fill the interval with end-points u

62We chose the domain interval as (0,∞) to fit to our purposes; clearly convexity can be defined
on any interval.

63Letting x → u, we have f(u+) ≤ f(u), and letting v → x, we have f(x) ≤ f(x+), so that
f(x+) = f(x) for all x > 0, etc.
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and u− h; the choice of 1− s, instead of s is of technical convenience.) Substituting
this back to the derivative of the difference quotient above, we obtain

d

dh
mf (x+ h, x) =

1

2
f ′′(x+ sh), −x < h ̸= 0, 0 ≤ s ≤ 1, h, s ∈ R.

After these preparations, still assuming that f is twice continuously differentiable on
(0,∞), we claim that f : (0,∞) → R is convex if and only if f ′′ ≥ 0 on (0,∞).
Indeed, by the formula just derived, if f ′′ ≥ 0 on (0,∞) then dmf (x + h, x)/dh ≥ 0,
−x < h, 0 ̸= h ∈ R, and so, by Proposition 2.1.5, the difference quotient mf is
increasing (in the variable h), and convexity of f follows. Conversely, if mf (x+ h, x),
−x < h ̸= 0, is increasing (in h), then, again by Proposition 2.1.5, dmf (x+h, x)/dh ≥
0, −x < h, 0 ̸= h ∈ R. If f ′′ < 0 at some point in (0,∞) then, by the assumed
continuity, f ′′ is negative on an open interval. Choosing x and x + h (with h small
enough) in this interval, we get a contradiction to the formula above.
Finally, we say that a function f : (0,∞) → R is strictly convex if sharp inequalities
hold throughout; that is, if the difference quotient above is strictly increasing, or if,
for any closed interval [x′, x′′] ⊂ (0,∞), the graph of the function f restricted to
[x′, x′′] is strictly below its secant line segment connecting (x′, f(x′)) and (x′′, f(x′′))
except these end-points. If f is twice continuously differentiable then strict convexity
is equivalent to positivity of the second derivative.
Finally, we call a function f : (0,∞) → R (strictly) concave if −f is (strictly) convex.

Since Γ is differentiable up to any order on (0,∞), it follows that the composition
ln ◦Γ is strictly convex according to our (more general) definition. Adopting this, we
say that Γ is strictly logarithmically convex on (0,∞).

Remark. Using the Hölder inequality (Proposition 3.4.3 naturally extended to im-
proper integrals), a quick proof of the logarithmic convexity of Γ on (0,∞) (by the
original definition of convexity as well as the Gamma function) can be given as follows.
For 1/p+ 1/q = 1, 0 < p, q < 1, and u, v > 0, we have

Γ

(
u

p
+
v

q

)
=

∫ ∞

0

x(u−1)/pe−x/px(v−1)/qe−x/q dx

≤
(∫ ∞

0

xu−1e−x dx

)1/p(∫ ∞

0

xv−1e−x dx

)1/q

= Γ(u)1/pΓ(v)1/q.

Note that strict inequality holds iff u ̸= v. Hence

ln Γ

(
1

p
u+

1

q
v

)
≤ 1

p
ln Γ(u) +

1

q
ln Γ(u),

1

p
+

1

q
= 1, p, q > 0.

Strict logarithmic convexity follows.
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Proof of the Bohr-Mollerup Theorem. Assume f : (0,∞) → R satisfies
properties (1)-(3) in the theorem. Let t ∈ (0, 1] and 2 ≤ n ∈ N. For n − 1 < n <
n+ t ≤ n+ 1, logarithmic convexity of f gives

ln f(n− 1)− ln f(n)

(n− 1)− n
≤ ln f(n+ t)− ln f(n)

(n+ t)− n
≤ ln f(n+ 1)− ln f(n)

(n+ 1)− n
.

On the other hand, by (1) and (3), we have f(k) = (k − 1)!, k ∈ N, and

f(n+ t) = t(t+ 1)(t+ 2) · · · (t+ n− 1)f(t).

Substituting these into the inequalities above and rearranging, we obtain

ln(n− 1)t ≤ ln
t(t+ 1)(t+ 2) · · · (t+ n− 1)f(t)

(n− 1)!
≤ lnnt.

Taking natural exponents, and rearranging, we have

(n− 1)t(n− 1)!

t(t+ 1)(t+ 2) · · · (t+ n− 1)
≤ f(t) ≤ nt(n− 1)!

t(t+ 1)(t+ 2) · · · (t+ n− 1)

Moving up the value n− 1 to n in the first inequality (as f(t) does not depend on n),
we get

ntn!

t(t+ 1)(t+ 2) · · · (t+ n)
≤ f(t) ≤ ntn!

t(t+ 1)(t+ 2) · · · (t+ n)

t+ n

n
.

Finally, letting n→ ∞, we obtain

f(t) = lim
n→∞

ntn!

t(t+ 1)(t+ 2) · · · (t+ n)
, t ∈ (0, 1].

The last limit is Euler’s representation of Γ(t) for t ∈ (0, 1]. Finally, replacing t by
t+ 1 in the right-hand side, the limit gets multiplied by t. This shows that the limit
satisfies the functional equation for the gamma function. Hence the equality above
holds for all t ∈ R. The theorem follows.

History. The Bohr-Mollerup theorem was proved by the Danish mathematicians Harald Bohr

and Johannes Mollerup.

As an application, we now derive the following inequalities:

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ s)1−s, x > 0, 0 < s < 1.
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Indeed, according to strict logarithmic convexity of the gamma function, we have

Γ(tu+ (1− t)v) < Γ(u)tΓ(v)1−t, u ̸= v, u, v > 0, 0 < t < 1.

Letting u = x, v = x+ 1, and t = 1− s, we get

x1−s =

(
Γ(x+ 1)

Γ(x)

)1−s

<
Γ(x+ 1)

Γ(x+ s)
.

Letting u = x+ s, v = x+ s+ 1, and t = s, we get

Γ(x+ 1)

Γ(x+ s)
<

(
Γ(x+ s+ 1)

Γ(x+ s)

)1−s

= (x+ s)1−s.

The inequalities follow.
Note the obvious consequence

lim
x→∞

Γ(x+ 1)

x1−sΓ(x+ s)
= 1, 0 < s < 1.

Remark. The inequalities above are due to Wendel64 in 1948. In about a decade later
Gautschi independently derived two inequalities for the ratio of the gamma function
with lower bounds identical to Wendel’s, and, depending on the values of x > 0 and
0 < s < 1, the two upper bounds can be stronger or weaker than Wendel’s. In 1983,
Kershaw proved stronger inequalities65

(
x+

s

2

)1−s

<
Γ(x+ 1)

Γ(x+ s)
<

(
x− 1

2
+

(
s+

1

4

)1/2
)1−s

, x > 0, 0 < s < 1.

There is a proliferation of estimates for various ratios of the gamma function.66

Exercises

1. Use the following steps to derive Euler’s reflection formula from the Legendre
duplication formula. Consider the function ϕ : R \ Z → R defined by

ϕ(t) = Γ(t)Γ(1− t) sin(πt), t ∈ R \ Z.
64See Wendel, J.G., Note on the Gamma function, Amer. Math. Monthly 55 (9) (1948) 563-564.
65See Kershaw, D., Some extensions of W. Gautsch’s inequalities for the gamma function, Math.

Comp. 41 (1983) 607-611.
66For a survey article, see Qi, F., Bounds for the ratio of two gamma functions, Journal of In-

equalities and Applications, Vol. 2010.
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(a) Show that ϕ is periodic with period 1. (b) Write

ϕ(t) = πΓ(1 + t)Γ(1− t)
sin(πt)

πt
, t ∈ R \ Z,

define ϕ(n) = π, n ∈ Z, and show that ϕ > 0 is infinitely many times differentiable
at 0, and then, by periodicity, everywhere on R. (c) Use the Legendre duplication
formula (in various settings) to derive the formula

ϕ

(
t

2

)
ϕ

(
t+ 1

2

)
= πϕ(t), t ∈ R.

(d) Letting ψ = (ln ◦ϕ)′′ andM = sup[0,1] |ψ| = supR |ψ|, use (c) to obtain |ψ| ≤M/2;
and thereby conclude M = 0, and hence ψ = 0. (e) Finally, show that (d) implies
that ϕ is constant with the value of the constant equal to π.

2. Use the Weierstrass representation of the gamma function and Euler’s reflection
formula to derive Euler’s infinite product formula for the sine.

3. Show that
3m∏
k=1

Γ

(
k

3

)
=

(2π)m
√
3
m(3m−2)

m−1∏
ℓ=1

(3ℓ)!, m ∈ N.

Solution: Use the Legendre-Gauss formula for m = 3 and split the product on the
left-hand side into groups of consecutive three’s.

4. Recall the formula

n! =

∫ ∞

0

xne−x dx =

∫ ∞

0

en ln(x)−xdx, n ∈ N.

Replace the exponent n ln(x) − x by its quadratic Taylor polynomial at its maxi-
mum c = n. Evaluate the improper integral, and show that it becomes the Stirling
approximation of n!.
Solution: The quadratic Taylor polynomial is p(x) = n ln(n)−n− (x−n)2/(2n). The
improper integral becomes∫ ∞

0

ep(x)dx = nn · e−n

∫ ∞

0

e−(x−n)2/(2n)dx =
√
2n · nn · e−n

∫ ∞

−
√

n/2

e−u2

du.

Now use Example 2.9.2:
∫∞
−∞ e−u2

du = 2
∫∞
0
e−u2

du =
√
π.
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5. Use the Weierstrass representation of the gamma function to obtain the formula67

∞∏
n=1

(
1− t

s+ n

)
et/n = eγt

Γ(s+ 1)

Γ(s− t+ 1)
, s, t ∈ R \ Z.

Solution: This is a direct computation in the use of the Weierstrass representation
twice.

6. Show that

Γ′(m+ 1) = m! (−γ +Hm) , m ∈ N.

Solution: We have

Γ′(m+ 1) = Γ(m+ 1)

(
−γ +

∞∑
n=1

(
1

n
− 1

m+ n

))
= m!

(
−γ +

m∑
n=1

1

n

)
,

since the middle sum is telescopic.

7. Show that the trigonometric identity in the lemma for the proof of the Legendre-
Gauss formula (Proposition 4.10.2) follows from the special case of the Legendre-
Gauss formula

m−1∏
k=1

Γ

(
k

m

)
= (2π)(m−1)/2m1/2

used in the proof of the Raabe integral (Proposition 4.10.3) and Euler’s reflection
fomula

Γ

(
k

m

)
Γ

(
1− k

m

)
=

π

sin(kπ/m)
, k = 1, . . . ,m− 1.

8. Use the improper integral formula at the end of Section 4.6 as well as Euler’s
infinite product formula for the sine and the Weierstrass representation of the gamma
function to derive the following68

2

π

∫ ∞

0

sin(x)

x1−t
dx = e−γt

∏∞
n=1

(
1− t

2n

)
et/(2n)∏∞

n=1

(
1 + t

2n−1

)
et/(2n−1)

67See Whittaker, E.T. and Watson, G.N. A Course in Modern Analysis, 3rd ed. Dover, 2020;
12.1, Example 3.

68See ibid. Example 4 in 12.22.
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4.11 The Beta Function

The beta function B : (0,∞)× (0,∞) → R is defined by

B(t, s) =

∫ 1

0

xt−1(1− x)s−1 dx, 0 < t, s ∈ R,

The integral is improper69 for 0 < t, s < 1; its existence needs justification. We choose
c ∈ (0, 1), and split the integral as∫ 1

0

xt−1(1− x)s−1 dx =

∫ c

0

xt−1(1− x)s−1 dx+

∫ 1

c

xt−1(1− x)s−1 dx.

Now, in the first integral on the left-hand side, the factor (1− x)s−1 of the integrand
is continuous on [0, c], and hence the first integral equiconverges with

∫ c

0
xt−1 dx. The

latter is equal to [xt/t]
c
0 = ct for t > 0. Similarly, the second integral equiconverges

with
∫ 1

c
(1 − x)s−1 dx = [−(1− x)s/s]1c = (1 − c)/s for s > 0. The existence of the

beta function is established.
The change of variables x = sin2(u) and dx = 2 sin(u) cos(u)du transforms the defi-
nition to the equivalent

B(t, s) = 2

∫ π/2

0

sin2t−1(u) cos2s−1(u) du, t, s > 0.

History. As early as 1656, Wallis was pursuing an idea to obtain the value of π by evaluating

the integral
∫ 1

0

√
1 − x2 dx (giving the area of a quarter disk). Although he could only evaluate the

non-trivial cases of the integrals
∫ 1

0
xm(1 − x)n dx, m,n ∈ Z, after some heuristic arguments, and

using modern notations, he essentially ended up with the formula∫ 1

0

√
1 − x2 dx = lim

n→∞
n

(
2 · 4 · · · (2n)

1 · 3 · · · (2n + 1)

)2

=

(
Γ

(
3

2

))2

.

This may have prompted Euler (some seven decades later) to seek a relation between the gamma

function and integrals of the type
∫ 1

0
xm(1 − x)n dx. The beta function appears first in his works in

Nov. Comm. Petrop. XVI. (1772), and those of Legendre in Exercises de Calcul Intégral, I. (1817)

p. 221; the latter called it “Eulerian integral of the first kind.”

We now derive a few properties of the beta function. Symmetry in the variables
is obvious:

B(t, s) =

∫ 1

0

xt−1(1− x)s−1 dx = −
∫ 0

1

(1− y)t−1ys−1 dy = B(s, t),

69The integrand has removable discontinuities at 0 for t = 0 and at 1 for s = 1.
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where we used the substitution x = 1− y, dx = −dy.

The change of variables x = y/(y + 1) with dx = dy/(y + 1)2 transforms the
integral in the definition of the beta function into the following

B(t, s) =

∫ ∞

0

(
y

y + 1

)t−1(
1

y + 1

)s−1
dy

(y + 1)2
=

∫ ∞

0

yt−1

(y + 1)t+s
dy.

This last representation of the beta function has an important consequence, the pair
of inductive formulas

B(t+ 1, s) =
t

t+ s
B(t, s) and B(t, s+ 1) =

s

t+ s
B(t, s), t, s > 0.

By symmetry, it is sufficient to derive the first formula. We perform integration by
parts

B(t+ 1, s) =

∫ ∞

0

yt

(y + 1)t+s+1
dy =

∫ ∞

0

tyt−1

(t+ s)(y + 1)t+s
dy =

t

t+ s
B(t, s),

where u = yt and dv = dy/(y + 1)t+s+1 (therefore du = tyt−1dy and v = −1/((t +
s)(y + 1)t+s)). Note that the boundary terms vanish:[
− yt

(t+ s)(y + 1)t+s

]∞
0

= − 1

t+ s
lim
y→∞

yt

(y + 1)t+s
= − 1

t+ s
lim
y→∞

1

(y + 1)s
= 0, t, s > 0.

The inductive formulas follow.

The same substitution as above gives the following:

Example 4.11.1. Show that70∫ 1

0

xt−1(1− x)s−1

(x+ a)t+s
dx =

B(t, s)

(1 + a)tas
, t, s, a > 0.

Indeed, the substitution x = y/(y+ 1) with dx = dy/(y+ 1)2 transforms the integral
as ∫ 1

0

xt−1(1− x)s−1

(x+ a)t+s
dx =

∫ ∞

0

yt−1

(y + a(y + 1))t+s
dy

=
1

at+s

∫ ∞

0

yt−1

((1 + a)y/a+ 1)t+s
dy

=

(
a

1 + a

)t
1

at+s

∫ ∞

0

zt−1

(z + 1)t+s
dz,

where z = (1 + a)y/a. Now the example follows from the discussion above.
70See Whittaker, E.T. and Watson, G.N., A Course in Modern Analysis, 4th Edition, Cambridge,

1927, and 3rd Edition, Dover, 2020; Exercise 28, p. 261.
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Example 4.11.2. We have∫ ∞

0

cosh(2sx)

cosh2t(x)
dx = 4t−1B(t+ s, t− s), |s| < t.

We work backwards from the beta function (with obvious substitution) as

B(t+ s, t− s) =

∫ ∞

0

t+ s− 1

(y + 1)2t
dy = 2

∫ ∞

−∞

(e2x)
t+s

(e2x + 1)2t
dx

= 2

∫ ∞

−∞

(e2x)
s

(ex + e−x)2t
dx = 21−2t

∫ ∞

−∞

e2sx

cosh2t(x)
dx

= 21−2t

∫ ∞

0

e2sx

cosh2t(x)
dx+ 21−2t

∫ ∞

0

e−2sx

cosh2t(x)
dx

= 21−2t

∫ ∞

0

e2sx + e−2sx

cosh2t(x)
dx = 22−2t

∫ ∞

0

cosh(2sx)

cosh2t(x)
dx.

The example follows.

The previous considerations can be considered preparatory for the following so-
called beta gamma relation expressing the beta function in terms of the gamma
function:

B(t, s) =
Γ(t)Γ(s)

Γ(t+ s)
t, s > 0.

To derive this, we introduce a new parameter z > 0 in the definition of the Gamma
function via the substitution x = zy as

Γ(t) =

∫ ∞

0

xt−1e−x dx = zt
∫ ∞

0

yt−1e−zy dy,

and obtain

Γ(t)

zt
=

∫ ∞

0

yt−1e−zy dy, t, z > 0.

Replacing t by t+ s, t, s > 0, and z by z + 1, z > 0, this gives

Γ(t+ s)

(z + 1)t+s
=

∫ ∞

0

yt+s−1e−(z+1)y dy.
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Using this and the representation of the beta function derived above, we now calculate

Γ(t+ s)B(t, s) = Γ(t+ s)

∫ ∞

0

zt−1

(z + 1)t+s
dz =

∫ ∞

0

zt−1 Γ(t+ s)

(z + 1)t+s
dz

=

∫ ∞

0

∫ ∞

0

zt−1yt+s−1e−(z+1)y dy dz =

∫ ∞

0

∫ ∞

0

zt−1yt+s−1e−(z+1)y dz dy

=

∫ ∞

0

yt+s−1e−y

∫ ∞

0

zt−1e−yz dz dy =

∫ ∞

0

yt+s−1e−yΓ(t)

yt
dy

= Γ(t)

∫ ∞

0

ys−1e−ydy = Γ(t)Γ(s).

In the computation we reversed the order of the iterated integral.71 This holds if the
integrand zt−1yt+s−1e−(z+1)y is continuous in the respective domain; that is, if t > 1.
Thus, this computation, and hence our proof of the formula above, holds if t > 1.
Finally, the validity of our formula extends to t > 0 via the inductive property of the
beta function, since, for t, s > 0, we have

B(t, s) =
t+ s

t
B(t+ 1, s) =

t+ s

t

Γ(t+ 1)Γ(s)

Γ(t+ s+ 1)
=
t+ s

t

tΓ(t)Γ(s)

(t+ s)Γ(t+ s)
=

Γ(t)Γ(s)

Γ(t+ s)
.

The beta gamma relation follows.

Remark. The Bohr-Molleup theorem can also be used to derive the beta gamma
relation as follows.72 Fix 0 < s ∈ R, and define f : (0,∞) → R by

f(t) = B(t, s)
Γ(t+ s)

Γ(s)
, 0 < t ∈ R.

Now, by simple evaluation, we have B(1, s) = 1/s, s > 0, and hence f(1) = 1. Thus,
condition (1) in the Bohr-Mollerup theorem holds.
Next, we calculate

f(t+ 1) = B(t+ 1, s)
Γ(t+ s+ 1)

Γ(s)
=

t

t+ s
B(t, s)

(t+ s)Γ(t+ s)

Γ(s)
= tf(t),

so that condition (2) also holds.
Finally, we have

ln f(t) = lnB(t, s) + ln Γ(t+ s)− ln Γ(s),

71The customary proof here is to rewrite the iterated integral into a double integral, and change
the Cartesian to polar coordinates. As usual, we preferred to keep the level of exposition to as
elementary as possible.

72This approach is pursued in Artin, E., The Gamma Function, New York, Holt, Rinehart and
Winston 1964, and Dover 2015.
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where the first term on the right-hand side is convex (by inspecting the dependence
in t of the beta integral), the second by logarithmic convexity of the gamma function,
and the third term is constant. Hence condition (3) in the Bohr-Mollerup theorem
also holds. This theorem now gives f(t) = Γ(t), t > 0. The beta gamma relation
follows.

History. The original integral representation of the gamma function, the Legendre duplication

formula, the Stirling formula for the gamma function, the beta gamma relation, and a host of other

identities comprise what is nowadays termed the Eulerian approach to the gamma function. The

3-volume work of Legendre73 gives the first comprehensive treatise on this. For latter works, the

most noteworthy are those of Dirichlet74 and Schlömlich.75

Example 4.11.3. 76 We have∫ 1

0

xt−1(1− x)s−1

ax+ b(1− x)
dx =

Γ(t)Γ(s)

atbsΓ(t+ s)
, 0 < t, s, a, b ∈ R.

In the formula ∫ 1

0

xt−1(1− x)s−1 dx =
Γ(t)Γ(s)

Γ(t+ s)
,

just derived, we use the substitution

x =
au

au+ b(1− u)
, 1− x =

b(1− u)

au+ b(1− u)
, dx =

ab du

(au+ b(1− u))2
.

We obtain ∫ 1

0

(au)t−1(b(1− u))s−1

(au+ b(1− u))t−1+s−1+2
ab du =

Γ(t)Γ(s)

Γ(t+ s)
.

Rearranging, the formula follows.

The next example is a simple consequence of the beta gamma relation and the
Stirling formula.

73Legendre, A.M., Exercises de calcul intégral sur divers ordres de transcendantes et sur les quadra-
tures, Mme Ve Courcier, Paris, I (1811), II (1817), III (1817).

74Dirichlet, L.G., Vorlesungen über die Lehre von den einfachen und mehrfachen bestimmten In-
tegralen, Friedrich Vieweg und Sohn, Braunschweig, 1904, pp. 100-124.

75Schlömlich, O., Compendium der höheren Analysis, vol. 2, Friedrich Vieweg und Sohn, Braun-
schweig, 1866, pp. 239-280.

76See also Andrews, G.E., Askey, R. and Roy, R., Special Functions, Encyclopedia of Mathematics
and its Applications, Vol. 71, Cambridge Uniersity Press, 1999, Exercise 17 at the end of Chapter
1.
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Example 4.11.4. We have

lim
n→∞

nxB(x, n) = Γ(x), 0 < x ∈ R.

Using the Stirling formula twice, we calculate

nxB(x, n) = nxΓ(n)Γ(x)

Γ(x+ n)
=
nx(x+ n)Γ(n+ 1)

nΓ(x+ n+ 1)
Γ(x)

∼ nx(x+ n)
√
2πnnne−n

n
√

2π(x+ n)(x+ n)x+ne−(x+n)
Γ(x) as n→ ∞

=

(
n

x+ n

)x+n−1/2

· ex · Γ(x)

Finally, by the Euler limit, we have(
x+ n

n

)x+n−1/2

=
(
1 +

x

n

)n (
1 +

x

n

)x−1/2

∼ ex as n→ ∞.

The example follows.

Example 4.11.5. Derive the integral formula77∫ ∞

0

yt−1

y + 1
dy =

π

sin(πt)
, 0 < t < 1.

The right-hand side is suggestive of using Euler’s reflection formula. We use this
backward as

π

sin(πt)
= Γ(t)Γ(1− t) = B(t, 1− t) =

∫ ∞

0

yt−1

y + 1
dy,

where, in the middle equality, we used the beta gamma relation. The example follows.

History. Dedekind’s Inauguraldissertation on the gamma function (under the supervision of

Gauss) contains an interesting proof of Euler’s reflection formula based on showing that the function

f : (0, 1) → R defined by f(t) = B(t, 1−t) satisfies the non-linear (second-order) differential equation

f ′′(t)f(t) − f ′(t)2 = f(t)4 with initial conditions f(1/2) = π and f ′(1/2) = 0. See Dedekind, R.,

Über die Elemente der Theorie der Eulerschen Integrale, dissertation, Göttingen, 1852, Gesammelte

mathematische Werke, Bd I, 1-31; and also Über ein Eulersches Integral, J. reine angewandte Math.

(1853) 370-374. See also Exercise 8 at the end of this section.

A notable consequence of the previous example is the following:

77The (indefinite) integral can, at least in principle, be calculated for t ∈ Q. See Dirichlet, G.L.,
Vorlesungen über die Lehre von der einfachen und mehrfachen bestimmten Integralen, Friedrich
Vieweg und Sohn, Braunswieg, 1904.
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Example 4.11.6. We have∫ π/2

0

tana(x) dx =
π

2 cos(πa/2)
, 0 < a < 1.

To show this, we rewrite the integral into a beta integral as∫ π/2

0

tana(x) dx =

∫ π/2

0

sina(x) cos−a(x) dx =
1

2
B

(
1 + a

2
,
1− a

2

)
=

π

2 sin(π(1 + a)/2)
,

where we used the last computation of the previous example with t = (1+ a)/2 (and
hence 1− t = (1− a)/2). The example follows.

Remark. It is instructive to compare this with Example 4.1.3; they both give the
correct value π/

√
2 for a = 1/2.

Among the many applications of the beta gamma relation, we discuss the case
t = s; this will give a short proof of the Legendre duplication formula. We first
calculate

B(t, t) = 2

∫ π/2

0

(sin(u) cos(u))2t−1 du = 22−2t

∫ π/2

0

sin2t−1(2u) du

= 21−2t

∫ π

0

sin2t−1(v) dv = 22−2t

∫ π/2

0

sin2t−1(v) dv =

= 21−2tB(t, 1/2) = 21−2tΓ(t)Γ(1/2)

Γ(t+ 1/2)
.

Since B(t, t) = Γ(t)2/Γ(2t) (and B(1/2, 1/2) = 2
∫ π/2

0
du = π = Γ(1/2)2), we recover

the Legendre duplication formula in Proposition 4.10.1:

Γ(t)Γ(t+ 1/2) = 21−2t
√
π Γ(2t), t > 0.

In the previous computation the Wallis integral of Example 4.2.6 was present. In
fact, we can automatically extend the definition of the Wallis integral for any real
parameter −1 < a ∈ R, and the computation above amounts to the following

W (a) =

∫ π/2

0

sina(x) dx =
1

2
B

(
a+ 1

2
,
1

2

)
= 2a−1B

(
a+ 1

2
,
a+ 1

2

)
, a > −1.

Example 4.11.7. Derive the integral formulas∫ π/2

0

√
sin(x) dx =

∫ π/2

0

√
cos(x) dx =

(2π)3/2

Γ(1/4)2
,
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and ∫ π/2

0

dx√
sin(x)

=

∫ π/2

0

dx√
cos(x)

=
Γ(1/4)2

2
√
2π

.

We have ∫ π/2

0

√
sin(x) dx = W1/2 =

1

2
B

(
3

4
,
1

2

)
=

1

2

Γ(3/4)Γ(1/2)

Γ(5/4)
.

Euler’s reflection formula gives Γ(1/4)Γ(3/4) = π/ sin(π/4) =
√
2π, and we also have

Γ(5/4) = Γ(1/4)/4. Putting these together, the first integral follows.
Sinilarly, we have∫ π/2

0

dx√
sin(x)

= W−1/2 =
1

2
B

(
1

4
,
1

2

)
=

1

2

Γ(1/4)Γ(1/2)

Γ(3/4)
=

Γ(1/4)2

2
√
2π

.

The example follows.

Remark. The substitution t2 = sin(x) transforms the first integral in the example
above as ∫ π/2

0

√
sin(x) dx = 2

∫ 1

0

t2√
1− t4

dt =
(2π)3/2

Γ(1/4)2
.

Similarly, the second integral becomes∫ π/2

0

1√
sin(x)

dx = 2

∫ 1

0

1√
1− t4

dt =
Γ(1/4)2

2
√
2π

.

These integrals were noted by Euler who put them together in the product∫ 1

0

1√
1− t4

dt ·
∫ 1

0

t2√
1− t4

dt =
π

4
.

We also have∫ π/2

0

dx√
sin(x)

= 2

∫ 1

0

dt√
1− t4

= 2

∫ 1

0

dt√
(1− t2)(1 + t2)

= 2

∫ π/2

0

dϕ√
2− cos2(ϕ)

=
√
2

∫ π/2

0

dθ√
1− 1

2
sin2(θ)

,

where we used the substitution t = sin(ϕ) (with dt = cos(ϕ)dϕ) followed by yet
another substitution ϕ = π/2− θ (with dϕ = −dθ).
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For the other integral, we employ the same substitutions, and obtain∫ π/2

0

√
sin(x) dx = 2

∫ 1

0

t2 dt√
1− t4

= 2

∫ π/2

0

sin2(ϕ) dϕ√
2− cos2(ϕ)

= 2

∫ π/2

0

cos2(θ) dθ√
2− sin2(θ)

= 2

∫ π/2

0

1− sin2(θ) dθ√
2− sin2(θ)

= 2
√
2

∫ π/2

0

√
1− 1

2
sin2(θ) dθ −

√
2

∫ π/2

0

dθ√
1− 1

2
sin2(θ)

.

In these two examples, as well as the period integral of the pendulum in Exercise 9 at
the end of this section, we see the same type of integrals to occur. These are called
elliptic integrals.78

Example 4.11.8. We have79∫ π

0

dx√
3− cos(x)

dx =
Γ(1/4)2

4
√
π

.

We use the substitution

cos(x) = 1− 2 tan
(u
2

)
with sin(x) dx =

(
1 + tan2

(u
2

))
du.

Since

1− cos2(x) = 4 tan
(u
2

)(
1− tan

(u
2

))
,

upon substitution, we find∫ π

0

dx√
3− cos(x)

dx =
1

2

∫ π/2

0

1 + tan2(u/2)√
1− tan2(u/2)

√
2 tan(u/2)

du

=
1

2

∫ π/2

0

√
1 + tan2(u/2)

1− tan2(u/2)

√
1 + tan2(u/2)

2 tan(u/2)
du

=
1

2

∫ π/2

0

√
sec(u) csc(u) du =

1

2

∫ π/2

0

(sin(u))−1/2(cos(u))−1/2 du

=
1

4
B

(
1

4
,
1

4

)
=

1

4

Γ(1/4)2

Γ(1/2)
=

Γ(1/4)2

4
√
π

.

78The name comes from the fact that the perimeter of an ellipse is given by an elliptic integral.
79See Whittaker, E.T. and Watson, G.N. A Course in Modern Analysis, 4th Edition, Cambridge,

1927, and 3rd Edition, Dover, 2020; Exercise 33, p. 262.
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Exercises

1. Derive the formula∫ 1

−1

(1 + x)t−1(1− x)s−1 dx = 2s+t−1Γ(t)Γ(s)

Γ(t+ s)
.

2. Show that

B(t, n) =
n!

t(t+ 1) · · · (t+ n)
, n ∈ N.

3. Let a < b, a, b ∈ R. Derive the formula∫ b

a

(x− a)t−1(b− x)s−1 dx = (b− a)t+s−1B(t, s), 0 < s, t ∈ R.

Solution: Use the substitution y = (x−a)/(b−a) in the definition of the beta function.

4. Show that
B(t, t)B(t+ 1/2, t+ 1/2) =

π

24t−1t
, t > 0.

Solution: Use the Legendre duplication formula.

5. Show that∫ ∞

0

xa dx

(xb + c)d
=
c(a+1)/b−d

b

Γ
(
a+1
b

)
Γ
(
d− a+1

b

)
Γ(d)

, a > −1 , b > 0, c > 0, d > (a+ 1)/b.

6. Derive the integral formula∫ a

0

xb(ac−xc)ddx =
ab+cd+1

b+ cd+ 1

Γ((b+ 1)/c)Γ(d+ 1)

Γ((b+ cd+ 1)/c)
, a, c > 0, b, d > −1, b+cd > −1.

Solution: Use the substitution xc = acu to convert the integral into a beta integral.
Specialize this to the following∫ 1

0

xb√
1− xc

dx =

√
π

c

Γ((b+ 1)/c)

Γ((b+ 1)/c+ 1/2)
, c > 0, b > −1.

7. Use the previous exercise to calculate the integrals∫ 1

0

dx√
1− xn

dx and

∫ 1

0

dx√
1− n

√
x
, n ∈ N.
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8. Use the following steps to obtain Dedekind’s proof of Euler’s reflection formula:
(a) Let f : (0, 1) → R be the function defined by f(t) =

∫∞
0
xt−1/(1+x) dx, 0 < t < 1.

Split the integral at x = 1 to derive the formula

f(t) =

∫ 1

0

xt−1 + x−t

1 + x
dx =

1

2

∫ ∞

0

xt−1 + x−t

1 + x
dx.

(b) Differentiate the identity f(t) = f(1− t) to show that f has a local minimum at
t = 1/2 with minimum value π. (f ′ is strictly increasing.) (c) Use scaling to derive
the formulas

ut−1f(t) =

∫ ∞

0

xt−1

x+ u
dx and u−tf(t) =

∫ ∞

0

xt−1

1 + xu
dx.

(d) Add the equations in (c), divide by 1+u and integrate with respect to u in [0,∞)
to obtain

f(t)2 =

∫ ∞

0

xt−1 ln(x)

x− 1
dx.

(e) Letting 0 < t < 1/2, subtract the equations in (c), divide by u− 1 and integrate
with respect to u in [0,∞) to obtain

f(t)

∫ ∞

0

ut−1 − u−t

u− 1
du = 2

∫ ∞

0

xt−1 ln(x)

x+ 1
dx = 2f ′(t).

(f) Use (d) to show that the integral on the left-hand side is
∫ t

1−t
f 2(s) ds. Conclude

from (e) that

f(t)

∫ t

1−t

f 2(s) ds = 2f ′(t);

and hence f(t)
∫ t

1/2
f 2(s) ds = f ′(t) via the symmetry f(s) = f(1 − s). Differentiate

this to obtain f(t)f ′′(t) = f ′(t)2 + f(t)4. (g) Finally, solve this differential equation
with the intitial conditions f(1/2) = π and f ′(1/2) = 0.

8. In this exercise we discuss the classical example of the motion of the pendulum.
A point-mass m is suspended from a fixed point by a rigid massless rod of (constant)
length ℓ, and it swings under the sole influence of (uniform) gravity (in a two dimen-
sional vertical plane); its weight (on the surface of the Earth) is mg, where g is the
(constant) magnitude of the gravitational field. The motion is described by the time
(t) dependent angle θ measured from the vertical (stable) equilibrium position of the
pendulum. Since the gravitational field is conservative, the total enery of the pendu-
lum is constant. The total energy is the sum of the potential energy mg(ℓ− ℓ cos(θ))
(with the stable equilibrium corresponding to zero potential energy) and the kinetic
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energy mv2/2 = m (d(ℓθ)/dt)2 /2, where ℓθ is the arc length, and the derivative is
with respect to time. We thus have80

g

ℓ
(1− cos(θ)) +

1

2

(
dθ

dt

)2

= C,

where we incorporated m and ℓ2 into the constant C. The motion also depends on
the maximum θ0 of θ, and we we set the time t = 0 when this maximum is attained.
Thus, we have the intitial condition θ(0) = θ0. The kinetic energy at the maximum
position is zero, and this gives C = (g/ℓ)(1 − cos(θ0)). Incorporating this into the
conservation of energy formula above, we obtain

dθ

dt
= −

√
2g

ℓ

√
cos(θ)− cos(θ0).

Equivalently, as (differential) forms, we have

dt = −

√
ℓ

2g

dθ√
cos(θ)− cos(θ0)

.

We assume that 0 < θ0 < π since otherwise we have the stable and unstable equilib-
rium positions with θ being constants.
Derive the following integral formula for the full period T = T (θ0) of the pendulum;
that is, the time elapsed when the pedulum returns to its initial position:

T (θ0) = 4

√
ℓ

g

∫ π/2

0

dx√
1− k2 sin2(x)

, k = sin

(
θ0
2

)
.

Solution: By symmetry, T/4 is the time elapsed from the maximum position to the
stable equilibrium. This gives

T (θ0) = 2

√
2ℓ

g

∫ θ0

0

dθ√
cos(θ)− cos(θ0)

.

Now make the substitution

sin

(
θ

2

)
= k sin(x), k = sin

(
θ0
2

)
,

80Alternatively, using Newton’s second law of motion, we have d2θ/dt2 = −(g/ℓ) sin(θ). Multi-
plying through by dθ/dt and integrating, we obtain conservation of the total energy.
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where 0 ≤ θ ≤ θ0 < π and 0 ≤ x ≤ π/2.
Squaring, the half angle formula for sine81 gives

1− cos(θ) = 2k2 sin2(x), 2k2 = 1− cos(θ0),

and hence √
cos(θ)− cos(θ0) =

√
2k
√
1− sin2(x) =

√
2k cos(x).

For the differentials, we have

cos

(
θ

2

)
dθ =

√
1− sin2

(
θ

2

)
dθ = 2k cos(x) dx,

or equivalently

dθ =
2k cos(x)√
1− k2 sin2(x)

dx.

Putting these together and simplifying, the example follows.

4.12 The Bernoulli Numbers and Bernoulli Poly-

nomials

In this section, preparatory to the next, we summarize some basic properties and
estimates of the Bernoulli numbers and the associated polynomials. Recall82 that
the Bernoulli numbers Bm, m ∈ N0, can be defined concisely by the generating
function

x

ex − 1
=

∞∑
k=0

Bk
xk

k!
.

Multiplying out by the exponential denominator ex − 1 =
∑∞

l=1 x
l/l!, we get

x =
∞∑
l=1

xl

l!

∞∑
k=0

Bk
xk

k!
.

The coefficients of the linear term give B0 = 1. Form ∈ N, the coefficients of the xm+1

term on the right-hand side are obtained by setting l + k = m + 1, k = 0, 1, . . . ,m,

81See Elements of Mathematics - History and Foundations, Section 11.3.
82See Elements of Mathematics - History and Foundations, Section 10.2.
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and multiplying the respective terms of the two sums. We obtain

m∑
k=0

Bk

k!(m− k + 1)!
= 0.

Multiplying through by (m+ 1)! allows to convert the factorials into binomials. The
resulting equality gives the well known inductive formula for the Bernoulli numbers:

Bm = − 1

m+ 1

m−1∑
k=0

(
m+ 1

k

)
Bk, m ∈ N.

As a byproduct, it follows that all Bernoulli numbers are rational.

Another simple fact is that, with the exception of B1 = −1/2, the odd Bernoulli
numbers B2k+1, k ∈ N, are zero. Indeed, this follows from the fact that the function
x/(ex − 1) + x/2 is even:

−x
e−x − 1

− x

2
=

xex

ex − 1
− x

2
=

x

ex − 1
+
x

2
.

The first few Bernoulli numbers are tabulated as follows:

k Bk k Bk

0 1 12 −691/2730
1 −1/2 14 7/6
2 1/6 16 −3617/510
4 −1/30 18 43867/798
6 1/42 20 −174611/330
8 −1/30 22 854513/138
10 5/66 24 −236364091/2730

History. As Jacob Bernoulli (1655 – 1705) first realized in his “Ars Conjectandi” (Latin for

“The Art of Conjecturing” published posthoumously in 1713 by his nephew Niklaus Bernoulli),

these numbers (that have subsequently been named after him) appear naturally in evaluating the

power sums
∑n

i=1 i
k, n ∈ N. The problem of calculating power sums has been considered by

many mathematicians of antiquity, notably by Archimedes in ancient Greece, and it occurs in the

works of the Indian mathematicians Aryabhatta (476 – 550 CE), the Persian Abū Bakr Al-Karaj̄ı in

1019, and the Muslim Arab mathematician Hasan Ibn Al-Haytham (965 – 1040). While the English

mathematician and astronomer Thomas Harriot (1560 – 1621) is believed to be the first to develop

symbolic formulas for these sums of powers, albeit only up to the fourth powers, it was the German
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mathematician Johann Faulhaber (1580 – 1635) who derived these formulas up to the seventeenth

power but he did not obtain a general pattern. We quote here Bernoulli’s well-known comment

upon the moment of compiling the first table of these numbers as follows: “With the help of this

table, it took me less than half of a quarter of an hour to find that the tenth powers of the first 1000

numbers being added together will yield the sum 91, 409, 924, 241, 424, 243, 424, 241, 924, 242, 500.”

The Bernoulli numbers have also been discovered and tabulated by the Japanese mathematician

Seki Takakazu (also known as Seki Kōwa) (c. 1642 – 1708).

We define the associated Bernoulli polynomials Bm(x), m ∈ N, through the
generating function

yexy

ey − 1
=

y

ey − 1
· exy =

∞∑
m=0

Bm(x)
ym

m!
.

The connection with the Bernoulli numbers can be shown by applying the Cauchy
product rule to the product

∞∑
k=0

Bk
yk

k!
·

∞∑
l=0

(xy)l

l!
,

and, setting k + l = m, comparing coefficients. We obtain the following simple
expansion of the Bernoulli polynomials in terms of the Bernoulli numbers:

Bm(x) =
m∑
k=0

(
m

k

)
Bkx

m−k, m ∈ N0.

In particular, we have B0(x) = B0 = 1 and Bm(0) = Bm. Moreover, for m ∈ N,
differentiating, we calculate

B′
m(x) =

m−1∑
k=0

(
m

k

)
(m− k)Bkx

m−k−1

= m

m−1∑
k=0

(
m− 1

k

)
Bkx

m−1−k = mBm−1(x).

This gives the important formula

B′
m(x) = mBm−1(x), m ∈ N.

In particular, integrating over [0, x], x ∈ R, we obtain

Bm(x) = Bm +m

∫ x

0

Bm−1(t) dt, m ∈ N.

This formula and the previous list of Bernoulli numbers give the following table



4.12. THE BERNOULLI NUMBERS AND BERNOULLI POLYNOMIALS 281

k Bk(x)
0 1
1 x− 1/2
2 x2 − x+ 1/6
3 x3 − 3x2/2 + x/2
4 x4 − 2x3 + x2 − 1/30
5 x5 − 5x4/2 + 5x3/3− x/6
6 x6 − 3x5 + 5x4/2− x2/2 + 1/42
7 x7 − 7x6/2 + 7x5/2− 7x3/6 + x/6
8 x8 − 4x7 + 14x6/3− 7x4/3 + 2x2/3− 1/30

Note that∫ 1

0

Bm(x) dx =
m∑
k=0

(
m

k

)
Bk

∫ 1

0

xm−k dx =
1

m+ 1

m∑
k=0

(
m+ 1

k

)
Bk = 0, m ∈ N.

This, along with the previous formula, gives

Bm(1) = Bm(0) = Bm, 2 ≤ m ∈ N.

We finish this sequence of formulas with one of a different genre:

Bm(x+ 1)−Bm(x) = mxm−1, m ∈ N.

This shows that Bernoulli polynomials play the same role in the calculus of finite-
differences than power functions in differential calculus.

The simplest proof is by induction with respect to m ∈ N; the formula being
immediate for m = 1. For the general induction step m ⇒ m + 1, we let Cm(x) =
Bm(x + 1) − Bm(x) − mxm−1, m ∈ N, and assume Cm(x) = 0. We have C ′

m+1 =
(m+ 1)Cm(x) = 0, so that Cm+1(x) is constant. Using the definition (at x = 0), this
constant must be Bm+1(1)− Bm+1(0) which, by the above, is zero since m ∈ N. We
conclude that Cm+1(x) = 0. The induction is complete.

History. The Bernoulli polynomials first appeared in Euler’s “Institutiones Calculi Differentialis.”

The actual term was coined by J.L. Raabe in 1851.

There is a simple but important unicity principle concerning the Bernoulli poly-
nomials; namely, the properties

Bm(x+ 1)−Bm(x) = mxm−1 and

∫ 1

0

Bm(x) dx = 0, m ∈ N,



282

uniquely determine the sequence (Bm(x))m∈N0 (along with B0(x) = 1).
Indeed, assume that a sequence of polynomials (B̄m(x))m∈N0 satisfies these two prop-
erties (along with B̄0(x) = 1). Letting Cm(x) = Bm(x)− B̄m(x), m ∈ N, by the first
property, we have Cm(x + 1) = Cm(x), x ∈ R. Since a non-constant polynomial can
assume only finitely many given values, we obtain that Cm(x) is constant. By the

second property,
∫ 1

0
Cm(x) dx = 0, so this constant must be zero. Unicity follows.

Remark. The previous unicity can be put into a more elegant linear algebraic
framework. We let R[x] denote the vector space of all polynomials of the single
variable x. For m ∈ N0, the linear subspace R[x]m ⊂ R[x] of degree ≤ m polynomials
is finite dimensional; dimR[x]m = m+1. We define the linear map L : R[x] → R[x]×R
by

L(p(x)) =

(
∆(p(x)),

∫ 1

0

p(t) dt

)
, ∆(p(x)) = p(x+ 1)− p(x), p(x) ∈ R[x],

with ∆ : R[x]m+1 → R[x]m, m ∈ N0, (and ∆|R = 0, R = R[x]0), the forward
difference operator. As above, it follows that the kernel of ∆ is R = R[x]0, and
hence the kernel of L is zero; that is, L is injective. For reasons of dimensions, it is
also onto since dimL(R[x]m+1) = dim(R[x]m+1) = dim(R[x]m × R), m ∈ N0. Finally,
since L is invertible, the sequence of Bernoulli polynomials (Bm(x))m∈N0 is uniquely
defined by B0(x) = L−1(0, 1) and Bm(x) = L−1(mxm−1, 0), m ∈ N.

Armed with this new unicity principle of the Bernoulli polynomials, we now derive
several new formulas needed in the sequel.

First, we claim

Bm(1− x) = (−1)mBm(x), m ∈ N0.

Indeed, setting Cm = (−1)mBm(1− x), m ∈ N, we calculate

∆Cm(x) = (−1)m (Bm(−x)−Bm(1− x)) = (−1)m−1∆Bm(−x)
= (−1)m−1m(−x)m−1 = mxm−1,

and ∫ 1

0

Cm(t) dt = (−1)m
∫ 1

0

Bm(1− t) dt = (−1)m
∫ 1

0

Bm(t) dt = 0.

By unicity, we have Cm(x) = Bm(x), m ∈ N0, and the claim follows.
As a direct consequence of the formula just derived, we see that the graphs of

the even Bernoulli polynomials are (reflectionally) symmetric about the vertical line
given by x = 1/2, and the graphs of the odd Bernoulli polynomials are (centrally)
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symmetric about the point (1/2, 0). Moreover, for 2 ≤ m ∈ N, we have

(−1)mBm −Bm = (−1)mBm(0)−Bm = Bm(1)−Bm(0)

=

∫ 1

0

B′
m(x) dx = m

∫ 1

0

Bm−1(x) dx = 0.

We obtain Bm(1) = (−1)mBm = Bm, 2 ≤ m ∈ N. In particular, for all odd Bernoulli
numbers, we have B2m+1(1) = B2m+1(0) = B2m+1 = 0, m ∈ N; and, for even Bernoulli
numbers, we have B2m(1) = B2m(0) = B2m, m ∈ N.

Second, we claim

1

n

n−1∑
k=0

Bm

(
x+ k

n

)
=

1

nm
Bm(x), n ∈ N, m ∈ N0.

Once again, the proof of this is based on the unicity principle. Indeed, for n ∈ N,
we let Cm(x) = nm−1

∑n−1
k=0 Bm ((x+ k)/n), m ∈ N0. Clearly, C0(x) = 1, and the

formula holds. For m ∈ N, we first calculate

∆Cm = nm−1

n−1∑
k=0

Bm

(
x+ k + 1

n

)
− nm−1

n−1∑
k=0

Bm

(
x+ k

n

)

= nm−1

(
n∑

k=1

Bm

(
x+ k

n

)
− nm−1

n−1∑
k=0

Bm

(
x+ k

n

))

= nm−1

(
Bm

(
x+ n

n

)
−Bm

(x
n

))
= nm−1∆Bm

(x
n

)
= nm−1 ·m

(x
n

)m−1

= mxm−1.

Second, for m ∈ N, we have∫ 1

0

Cm(t) dt = nm−1

n−1∑
k=0

∫ 1

0

Bm

(
t+ k

n

)
dt

= nm−1

n−1∑
k=0

∫ (k+1)/n

k/n

Bm(t) dt = nm−1

∫ 1

0

Bm(t) dt = 0.

Again by unicity, the claim follows.
Once again, a direct consequence of this (n = 2) is

Bm

(x
2

)
+Bm

(
x+ 1

2

)
= 21−mBm(x), m ∈ N0.
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Substituting x = 0, we obtain

Bm

(
1

2

)
=
(
21−m − 1

)
Bm, m ∈ N0.

We now study the behavior of the Bernoulli polynomials on the unit interval [0, 1].
Since the first Bernoulli polynomial B1(x) = x−1/2 is negative on [0, 1/2) and positive
on (1/2, 1], the second Bernoulli polynomial B2(x) = x2−x+1/6 is strictly decreasing
on [0, 1/2] and strictly increasing on [1/2, 1]. Furthermore, it takes opposite signs on
the end-points of these intervals, and so it follows that B2(x) vanishes exactly once
on (0, 1/2) and also on (1/2, 1). This is a characteristic behavior of all the Bernoulli
polynomials on [0, 1] as stated in the following:

Proposition 4.12.1. For m ∈ N, we have the following:
Im: The polynomial (−1)mB2m(x) is strictly increasing on [0, 1/2] and strictly de-
creasing on [1/2, 1], and therefore, it vanishes exactly once in (0, 1/2) and also on
(1/2, 1).
IIm: The polynomial (−1)mB2m+1(x) is negative on (0, 1/2) and positive on (1/2, 1)
and has simple zeros at 0, 1/2, 1.

Proof. Im ⇒ IIm. Assume Im holds. Consider the polynomial Cm(x) = (−1)mB2m+1(x).
Since the odd Bernoulli numbers vanish, our earlier formulas imply that Cm(0) =
Cm(1/2) = Cm(1) = 0. Moreover C ′

m(x) = (2m + 1)(−1)mB2m(x), and Im implies
that C ′

m(x) has a unique zero 0 < rm < 1/2 and another unique zero 1/2 < sm < 1;
and elsewhere C ′(x) is negative on [0, rm) ∪ (sm, 1] and positive on (rm, sm). These
imply that Cm(x) itself is strictly decreasing on [0, rm] and [sm, 1] and strictly increas-
ing on [rm, sm]. Now IIm follows.
IIm ⇒ Im+1. Assume IIm holds. Consider the polynomialDm(x) = (−1)m+1B2m+2(x).
We have D′

m(x) = −(2m + 2)(−1)mB2m+1(x) which, by IIm, is positive on (0, 1/2)
and negative on (1/2, 1) (and has simple zeros at 0, 1/2, 1). Hence Dm(x) itself is
strictly increasing on [0, 1/2] and strictly decreasing on [1/2, 1]. Moreover,

Dm(1/2) = (−1)m+1B2m+2(1/2) = (−1)m(1− 2−(2m+1))B2m+2

= −(1− 2−(2m+1))Dm(0) = −(1− 2−(2m+1))Dm(1).

By the monotonicity concluded above, we haveDm(1/2) > 0 andDm(0) = Dm(1) < 0.
In particular, Dm(x) takes opposite values at the end-points of the intervals [0, 1/2]
and [1/2, 1]. Now Im+1 follows.

Remark. As in the proof, let 0 < rm < 1/2 and 1/2 < sm < 1 be the unique zeros
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of B2m(x), m ∈ N, on [0, 1]. It is known83 that

1

4
− 1

22m+1π
< rm < rm+1 <

1

4
and

3

4
< sm+1 < sm <

3

4
+

1

22m+1π
.

Note that Im (second part of the proof) implies (−1)m+1B2m > 0, m ∈ N. It
also shows that, on [0, 1], the polynomial B2m(x) attains its extrema at 0, 1/2, 1 and
B2m(0) = B2m(1) = B2m, and B2m(1/2) = (21−2m − 1)B2m. As a byproduct, we
obtain

sup
x∈[0,1]

|B2m(x)| = |B2m| m ∈ N.

It is desirable to obtain a bound for |B2m+1(x)| for x ∈ [0, 1] as well. A simple bound
follows from the estimate just derived for B2m(x) above, and the fact that 0, 1/2, 1
are zeros of B2m+1(x). Indeed, for x ∈ [0, 1/4], we have

B2m+1(x) = B2m+1(x)−B2m+1(0) =

∫ x

0

B′
2m+1(t) dt = (2m+ 1)

∫ x

0

B2m(t) dt.

This and the estimate above gives

|B2m+1(x)| ≤ (2m+1)

∫ x

0

|B2m(t)| dt < (2m+1)|B2m|x ≤ 2m+ 1

4
|B2m|, x ∈ [0, 1/4].

Similarly, for x ∈ [1/4, 1/2], we have

B2m+1(x) =

∫ x

1/2

B′
2m+1(t) dt = (2m+ 1)

∫ x

1/2

B2m(t) dt.

This, for x ∈ [1/4, 1/2], gives

|B2m+1(x)| ≤ (2m+ 1)

∫ 1/2

x

|B2m(t)| dt < (2m+ 1)|B2m|
(
1

2
− x

)
≤ 2m+ 1

4
|B2m|.

Combining these two estimates, along with the fact that, over the interval [1/2, 1],
the same estimates hold due to the symmetry of B2m+1(x) about x = 1/2, we finally
arrive at the following

sup
x∈[0,1]

|B2m+1(x)| <
2m+ 1

4
|B2m|, m ∈ N.

83See Lehmer, D.H., On the maxima and minima of Bernoulli polynomials, Amer. Math. Monthly,
47, 8 (1940), 533-538; and Dilcher, K. Zeros of Bernoulli, generalized Bernoulli and Euler polyno-
mials, Mem. Amer. Math. Soc. 386 (1988).
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4.13 Bernoulli Numbers and Polynomials: Esti-

mates and Asymptotics

In this section we will derive some sharp estimates and asymptotic relations on the
Bernoulli numbers and Bernoulli polynomials. These will follow from the expansions

B2m(x) = (−1)m+12(2m)!

(2π)2m

∞∑
k=1

cos(2kπx)

k2m
,

B2m+1(x) = (−1)m+12(2m+ 1)!

(2π)2m+1

∞∑
k=1

sin(2kπx)

k2m+1
, m ∈ N, x ∈ [0, 1].

The sums on the right-hand sides are actually the (uniformly convergent) Fourier
series expansions84 of the periodized Bernoulli polynomials Pm : R → R given
by Pm(x) = Bm(x − [x]), x ∈ R, m ∈ N. The second formula also holds for the
somewhat exceptional case m = 0:

B1(x) = − 1

π

∞∑
k=1

sin(2kπx)

k
, x ∈ [0, 1],

where B1(x) is redefined to vanish at the points of discontinuity x = 0, 1. The conver-
gence of the series is not uniform on [0, 1] as the Gibbs phenomenon amply illustrates,
although uniform convergence holds on any closed subintevals [a, b] ⊂ (0, 1). We will
derive these formulas in the next section via a thoroughly elementary treatment that
does not use the Fourier convergence theorem nor the Riemann-Lebesgue lemma; the
only tools are the formulas for the Bernoulli numbers and polynomials in the previous
section, integration by parts, and Chebyshev polynomials. (An indication of how to
derive these expansions using Fourier series is expounded in Exercise 5 at the end of
this section.)

To begin with, as immediate consequences of these expansions, for m ∈ N and
x ∈ [0, 1], we have the estimates∣∣∣∣(−1)m+1 (2π)2m

2 · (2m)!
B2m(x)− cos(2πx)

∣∣∣∣ ≤
∞∑
k=2

1

k2m
<

(
1 +

2

2m− 1

)
1

22m∣∣∣∣(−1)m+1 (2π)2m+1

2 · (2m+ 1)!
B2m+1(x)− sin(2πx)

∣∣∣∣ ≤
∞∑
k=2

1

k2m+1
<

(
1 +

1

m

)
1

22m+1
,

84There are several classical texts on Fourier analysis; see for example Zygmund, A., Trigonometric
Series, 3rd ed. Cambridge University Press, 2002; Katznelson, Y., An Introduction to Harmonic
Analysis, 2nd ed. Dover, New York 1976; Rudin, W., Principles of Mathematical Analysis, McGraw-
Hill, Inc. New York, 1976.
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where, for the last inequalities, we used the trivial estimate

∞∑
k=2

1

kn
<

1

2n
+

∫ ∞

2

dx

x2n
=

(
1 +

2

n− 1

)
1

2n
, 2 ≤ n ∈ N.

Note that these imply the stated uniform convergence of the Fourier expansions.

Combining the expansion of B2m+1(x) above with this last formula we obtain the
estimate

sup
x∈[0,1]

|B2m+1(x)| ≤
2(2m+ 1)!

(2π)2m+1

∞∑
k=1

1

k2m+1
<

2(2m+ 1)!

(2π)2m+1

∞∑
k=1

1

k2m
=

2m+ 1

2π
|B2m|.

This gives a sharper upper bound than the one obtained at the end of the previous
section.

Substituting x = 0 into the first expansion, and rearranging, we obtain Euler’s
summation formula85

∞∑
k=1

1

k2m
= (−1)m+1 (2π)

2m

2(2m)!
B2m, m ∈ N.

Observe that the first case, m = 1, is Euler’s solution to the Basel problem:86∑∞
k=1 1/k

2 = π2/6. Finally, note also that the infinite sum above is the value of
the zeta function ζ(2m), m ∈ N. We will treat the zeta function in Section 4.17 in
detail, where we will derive this formula as a byproduct of the functional equation
using a different path.87

In the next example we will give yet another proof of Euler’s summation formula
using the product expansion of the sine hyperbolic function.88

Example 4.13.1. We start with the infinite product formula

sinh(t)

t
=

∞∏
k=1

(
1 +

t2

π2 · k2

)
,

85First published by Euler in 1740.
86For history and yet another elementary proof using trigonometry, see Elements of Mathematics

- History and Foundations, Section 11.7.
87Proofs of Euler’s summation formula abound; see, for example, De Amo, E., Carrillo, M.D. and

Hernandez-Sanchez, J., Another proof of Euler’s formula for ζ(2k), Proc. Amer. Math. Soc. 139
(2011) 1441-1444; and also below.

88See Ribeiro, P., Another proof of the famous formula for the zeta function at positive even
integers, Amer. Math. Monthly, Vol. 125, No. 9 (2018) 839-841.



288

of Exercise 4 at the end of Section 4.8. We take the natural logarithm of both sides,
expand of the logarithm into a power series, and calculate

ln

(
sinh(t)

t

)
=

∞∑
k=1

ln

(
1 +

t2

π2 · k2

)
=

∞∑
k=1

∞∑
m=1

(−1)m+1

m

t2m

π2m · k2m

=
∞∑

m=1

(−1)m+1

m

t2m

π2m

∞∑
k=1

1

k2m
,

where the interchange of the two summations is clearly allowed.
On the other hand, letting s = 2t, we have

ln

(
sinh(t)

t

)
= ln

(
es/2 − e−s/2

s

)
= ln

(
es/2(1− e−s)

s

)
= − ln(s) +

s

2
+ ln(1− e−s) =

∫ s

0

(
−1

x
+

1

2
+

1

ex − 1

)
dx.

We now notice that the integrand in the last integral can be written in terms of the
Bernoulli numbers as

1

x

(
−1 +

x

2
+

x

ex − 1

)
=

1

x

(
−B0 −B1x+

∞∑
k=0

xk

k!
Bk

)
=

1

x

∞∑
k=2

xk

k!
Bk =

∞∑
m=1

x2m−1

(2m)!
B2m,

where we used the fact that all odd Bernoulli numbers except B1 = −1/2 vanish.
Substituting, and performing the integration, we obtain

ln

(
sinh(t)

t

)
=

∞∑
m=1

B2m

(2m)!

∫ s

0

x2m−1 dx =
∞∑

m=1

22mt2m

2m(2m)!
B2m,

where, in the last step, we reverted back to t = s/2. Comparing these two formulas
for the natural logarithm of the sine hyperbolic function, Euler’s summation formula
follows.

Euler’s summation formula above can be used do derive a sharp (asymptotic)
estimate on the growth of the even Bernoulli numbers |B2m|, m ∈ N. To get to this,
we begin by replacing the infinite sum with the (equiconvergent) improper integral
as follows:

∞∑
k=3

1

k2m
<

∞∑
k=3

∫ k

k−1

dx

x2m
=

∫ ∞

2

dx

x2m
=

1

(2m− 1)22m−1
.

(Note the missing first two terms in the sum.) This gives

1 <
∞∑
k=1

1

k2m
< 1 +

1

2m
+

1

(2m− 1)22m−1
= 1 +

2m+ 1

2m− 1
· 1

22m
.
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Using the explicit formula for the infinite sum derived above, along with (−1)m+1B2m =
|B2m| > 0, m ∈ N, we obtain

2(2m)!

(2π)2m
< |B2m| ≤

(
1 +

2m+ 1

2m− 1
· 1

22m

)
2(2m)!

(2π)2m
≤
(
1 +

3

22m

)
2(2m)!

(2π)2m

This gives the asymptotic formula

|B2m| ∼
2(2m)!

(2π)2m
∼ 4

√
πm

(m
eπ

)2m
, m→ ∞,

where we also used the Stirling formula (Section 4.10).

We close this section by showing that the upper bound in the estimate for

sup
x∈[0,1]

|B2m+1(x)|

is asymptotically the best possible (as m→ ∞). We begin with substituting x = 1/4
in the series expansion of B2m+1(x) above, and obtain

B2m+1

(
1

4

)
= (−1)m+12(2m+ 1)!

(2π)2m+1

∞∑
k=0

(−1)k

(2k + 1)2m+1
.

The series on the right-hand side is altermating, and so we have

∞∑
k=0

(−1)k

(2k + 1)2m+1
> 1− 1

32m+1
.

Substituting, we obtain the lower estimate∣∣∣∣B2m+1

(
1

4

)∣∣∣∣ > (1− 1

32m+1

)
2(2m+ 1)!

(2π)2m+1
≥
(
1− 1/32m+1

1 + 3/22m

)
2m+ 1

2π
|B2m|.

Combining this with the earlier estimate, we obtain(
1− 1/32m+1

1 + 3/22m

)
2m+ 1

2π
|B2m| ≤ sup

x∈[0,1]
|B2m+1(x)| <

2m+ 1

2π
|B2m|.

This shows that asymptotically, we have

sup
x∈[0,1]

|B2m+1(x)| ∼
2m+ 1

2π
|B2m|, m→ ∞.
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Exercises

1. Show that ∫ x+1

x

Bm(t) dt = xm, 2 ≤ m ∈ N.

2. Derive the identity B′
m+1(x) = (m+ 1)Bm(x), m ∈ N0, using the unicity principle

in the text.

3. Derive the formula

Bm(x+ y) =
m∑
k=0

(
m

k

)
Bm−k(x)y

k, m ∈ N0.

4. Use the previous exercise to show that

xm =
1

m+ 1

m∑
k=0

(
m+ 1

k

)
Bk(x), m ∈ N0.

5. This and the next exercises use some facts on Fourier series. Use induction on
m ∈ N to derive, for x ∈ [0, 1], the following series expansions for the periodized
Pm(x) = Bm(x− [x]), m ∈ N, as follows

P2m(x) = (−1)m+12(2m)!

(2π)2m

∞∑
k=1

cos(2kπx)

k2m

P2m+1(x) = (−1)m+12(2m+ 1)!

(2π)2m+1

∞∑
k=1

sin(2kπx)

k2m+1
.

6. Use the Parseval identity to derive, for m,n ∈ N, the formulas∫ 1

0

Bm(x)Bn(x) dx = (−1)m+1Bm+n(
m+n
m

)∫ 1

0

|Bm(x)|2 dx =
(m!)2

(2m)!
|B2m|.

7. Use Euler’s summation formula to derive the following

∞∑
k=1

(−1)k+1

k2m
= (−1)m+1

(
22m−1 − 1

) π2m

(2m)!
B2m, m ∈ N.
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Solution: Note that the sum on the left-hand side is the value of the alternating zeta
function on 2m, m ∈ N. See also the end of Section 1.2.

8. Use the formula (1/n)
∑n−1

k=0 Bm((x+ k)/n) = (1/nm)Bm(x), n ∈ N, m ∈ N0, with
x = 0 and n = 4 to derive the following

B2m

(
1

4

)
=

1

22m
B2m

(
1

2

)
.

Conclude that we have 0 < rm < 1/4 and 3/4 < sm < 1, for the two roots of B2m(x),
m ∈ N, in [0, 1].

4.14 Fourier Expansions of the (Periodized) Bernoulli

Polynomials

In this section we derive the Fourier series expansions89

B2m(x) = (−1)m+12(2m)!

(2π)2m

∞∑
k=1

cos(2kπx)

k2m
,

B2m+1(x) = (−1)m+12(2m+ 1)!

(2π)2m+1

∞∑
k=1

sin(2kπx)

k2m+1
, m ∈ N, x ∈ [0, 1];

along with (m = 0):

B1(x) = − 1

π

∞∑
k=1

sin(2kπx)

k
, x ∈ [0, 1],

to be treated here separately (B1(0) = B1(1) = 0).

History. The Fourier expansion for B2m(x) above was first derived by Hurwitz in 1890.

To begin with, we denote by B̃2m(x) resp. B̃2m+1(x), m ∈ N, the sums on the
right-hand sides of the expansions above. Now, termwise differentiation of the infinite
sum in B̃2m(x) gives 2mB̃2m−1(x), and termwise differentiation of the infinite sum
in B̃2m+1(x) gives (2m+ 1)B̃2m(x). In each case, the convergence is uniform so that
Proposition 2.2.4 applies, and we obtain

B̃
′
2m(x) = 2mB̃2m−1(x) and B̃

′
2m+1(x) = (2m+ 1)B̃2m(x), x ∈ [0, 1], m ∈ N.

89Here and below, the term Fourier expansion is tacitly understood to be valid on the stated
interval of period, or equivalently, for the respective periodized function.
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We conclude that the inductive formula for the Bernoulli polynomials (Section 4.13)
is satisfied:

B̃
′
m(x) = mB̃

′
m−1(x), m ∈ N.

Now the crux is that this uniquely defines the Bernoulli polynomials provided that
we can show the following two relations:

B̃1(x) = B1(x), x ∈ [0, 1],

and

B̃2m(0) = B2m(0) = B2m, m ∈ N.

(The corresponding odd-indexed relation B̃2m+1(0) = B2m+1(0) = B2m+1 = 0, m ∈ N,
is obvious as the infinite sum reduces to zero.) Once these are proved, by unicity,
we obtain Bm(x) = B̃m(x), x ∈ [0, 1], m ∈ N, and all the Fourier expansions stated
above follow.

The first relation to be proved is equivalent to the Fourier expansion

∞∑
k=1

sin(2kπx)

πk
=

1

2
− x, 0 < x < 1.

(Here we omitted the end-points for convenience as the limit is a mismatch to the
actual values of the respective function.) After scaling, this takes the form

∞∑
n=1

sin(nα)

n
=
π − α

2
, 0 < α < 2π,

where the convergence of the sum is pointwise, and uniform on every closed intervals
in (0, 2π). As noted above and as expected, the usual proof requires the Fourier
convergence theorem. As usual, we insist on an elementary approach via a recourse
to Chebyshev polynomials.

The second relation to be proved can be written as Euler’s summation formula

∞∑
k=1

1

k2m
= (−1)m+1 (2π)

2m

2(2m)!
B2m =

(2π)2m

2(2m)!
|B2m|, m ∈ N.

We now derive the Fouries series expansion above. We first note that, by the
Dirichlet test for convergence of a series (Proposition 2.3.2), the sum on the left-hand
side converges pointwise. Indeed, given α ∈ (0, 2π), we let an = 1/n and bn = sin(nα),
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n ∈ N. Then the sequence (1/n)n∈N is (strictly) decreasing, and, for every n ∈ N, by
the Lagrange identity for sine,90 we have∣∣∣∣∣

n∑
k=1

sin(kα)

∣∣∣∣∣ = | sin((n+ 1)α/2) sin(nα/2)|
sin(α/2)

≤ 1

sin(α/2)
, 0 < α < 2π.

Since the upper bound here is independent of n, the conditions in the Dirichlet test
for convergence are satisfied, and convergence follows. The statement on uniform
convergence also holds since 1/ sin(α/2) is bounded on every closed interval in (0, 2π).

To derive the stated equality, we may assume that 0 < α < π since the formula
stays the same by replacing α by 2π − α (and it holds trivially for α = π). We first
claim

∞∑
n=0

sin((n+ 1)α)

sin(α)
tn =

1

1− 2t · cos(α) + t2
, 0 < α < π, |t| < 1.

For fixed α ∈ (0, π), the left-hand side is a power series (in t) with radius of conver-
gence ρ = 1. This formula is actually the generating function formula for the
second Chebyshev polynomials Un, n ∈ N0, (which we briefly met in the lemma fol-
lowing the Legendre-Gauss formula for the gamma function in Proposition 4.10.2):91

∞∑
n=0

sin((n+ 1)α)

sin(α)
tn =

∞∑
n=0

Un(cos(α))t
n =

1

1− 2t · cos(α) + t2
, 0 < α < π, |t| < 1.

Equivalently
∞∑
n=0

Un(x) t
n =

1

1− 2tx+ t2
, |x| < 1, |t| < 1.

where the sum is absolutely convergent since max[−1,1] Un = n + 1, n ∈ N0, with the
maxima and minima attained at the end-points.92 We briefly indicate how to derive
this last formula. The (2-step) inductive formula for the Chebyshev polynomials is

Un+1(x) = 2xUn(x)− Un−1(x), n ∈ N, x ∈ R,

which can be easily verified by converting Un, n ∈ N0, into rational expressions in the
sine function. Multiplying through by tn+1 and summing up with respect to n, we
obtain

∞∑
n=1

Un+1(x)t
n+1 = 2xt

∞∑
n=1

Un(x)t
n − t2

∞∑
n=1

Un−1(x)t
n−1

90See Elements of Mathematics - History and Foundations, Example 11.3.6.
91For a brief account of the Chebyshev polynomials, see also Elements of Mathematics - History

and Foundations, Section 11.3.
92See Exercise 11.3.14 in Elements of Mathematics - History and Foundations.
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Using U0(x) = 1 and U1(x) = 2x, after simplifying and rearranging, we arrive at

(t2 − 2tx+ 1)
∞∑
n=0

Un(x) t
n = 1.

The claim follows.
Returning to the main line of the proof, as above, we regard the left-hand side of the
formula

∞∑
n=0

sin((n+ 1)α) tn =
sin(α)

1− 2t · cos(α) + t2
, 0 < α < π, |t| < 1.

as a power series expansion in the variable |t| < 1 with radius of convergence ρ = 1.
Using the corollary to Proposition 3.2.1, for fixed 0 < α < π, we integrate over [0, b],
0 < b < 1, and obtain

∞∑
n=0

sin((n+ 1)α)

n+ 1
bn+1 = sin(α)

∫ b

0

dt

1− 2t · cos(α) + t2
=

[
arctan

(
t− cos(α)

sin(α)

)]b
0

=

(
arctan

(
b− cos(α)

sin(α)

)
+ arctan

(
cos(α)

sin(α)

))
= arctan

(
b sin(α)

1− b cos(α)

)
,

where we used the identity

arctan(u) + arctan(v) = arctan

(
u+ v

1− uv

)
, uv < 1.

For fixed 0 < α < π, the left-hand side is a power series in the variable b with
radius of convergence ρ = 1. Now the crux is that, at the beginning of this proof, we
showed that it is convergent at the boundary b = 1 (with the index shifted by 1). By
Proposition 2.3.3, this means that this power series is uniformly convergent on [0, 1],
and hence its left limit as b→ 1− is equal to its value at b = 1. Hence, we have

∞∑
n=1

sin(nα)

n
=

∞∑
n=0

sin((n+ 1)α)

n+ 1
= lim

b→1−
arctan

(
b sin(α)

1− b cos(α)

)
= arctan

(
sin(α)

1− cos(α)

)
= arctan

(
cot
(α
2

))
=
π − α

2
,

where we used the half-angle conversions

sin(α) =
2 tan

(
α
2

)
1 + tan2

(
α
2

) and cos(α) =
1− tan2

(
α
2

)
1 + tan2

(
α
2

) .
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The Fourier expansion follows.

It remains to prove the second relation, Euler’s summation formula above.93

We begin with the Fourier coefficients:94

I(m, k) =

∫ 1

0

B2m(x) cos(kπx) dx, m ∈ N0, k ∈ N.

Clearly, I(0, k) = 0, k ∈ N, since B0(x) = B0 = 1. For m, k ∈ N, we claim

I(m, k) =

{
0 if k is odd

(−1)m−1(2m)!/(k2mπ2m) k is even.

To derive this, we use integration by parts (with obvious choices) twice and the
inductive formula for the Bernoulli polynomials, and calculate

I(m, k) = −2m

kπ

∫ 1

0

B2m−1(x) sin(kπx) dx

=
2m

k2π2
[B2m−1(x) cos(kπx)]

1
0 −

2m(2m− 1)

k2π2
I(m− 1, k).

For m = 1 (and k ∈ N), this gives

I(1, k) =
2

k2π2
[B1(x) cos(kπx)]

1
0 =

1

k2π2
(cos(kπ) + 1) =

{
0 if k is odd

2/(k2π2) k is even.

For 2 ≤ m ∈ N, since the B2m−1 = 0, we obtain the inductive formula

I(m, k) = −2m(2m− 1)

k2π2
I(m− 1, k), 2 ≤ m ∈ N, k ∈ N.

Applying this inductively, and combining the case m = 1, the claim follows.
We now make a minor change of technical importance, and replace the Bernoulli

polynomials Bm(x) by B
0
m(x) = Bm(x)−Bm(0) = Bm(x)−Bm, m ∈ N; these having

the effect of deleting the constant terms. The corresponding integral clearly stays the
same:

I0(m, k) =

∫ 1

0

B0
2m(x) cos(kπx) dx = I(m, k), m ∈ N, k ∈ N.

93There are several elementary proofs of this. We follow here Ciaurri, Ó., Navas, L.M., Ruiz,
F.J., Varona, J.L., A simple computation of ζ(2k), Amer. Math Monthly, Vol. 122, No. 5 (May
2015) 444-451. See also Osler, T., Finding ζ(2p) from a product of sines, Amer. Math. Monthly,
111 (2004) 52-54; and Sittinger, B.D., Computing ζ(2m) by using telescopic sums, Amer. Math.
Monthly, 123 (August-September 2016) 710-715.

94These integrals are the Fourier coefficients of the Bernoulli polynomials B2m(x), m ∈ N.
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Summing over k ∈ N and using the result of our computations above, for m ∈ N, we
obtain

∞∑
k=1

I0(m, k) =
∞∑
k=1

I0(m, 2k) = (−1)m+1 (2m)!

π2m

∞∑
k=1

1

(2k)2m
= (−1)m+1 (2m)!

(2π)2m

∞∑
k=1

1

k2m
.

Rearranging, we obtain

∞∑
k=1

1

k2m
= (−1)m+1 (2π)

2m

(2m)!

∞∑
k=1

I0(m, k), m ∈ N.

For the Euler summation formula, it remains to show that(
∞∑
k=1

I0(m, k) =

)
∞∑
k=1

∫ 1

0

B0
2m(x) cos(kπx) dx =

B2m

2
, m ∈ N.

The key technical step is to use the product to sum trigonometric identity

2 sin
(u
2

)
cos(ku) = sin

(
2k + 1

2
u

)
− sin

(
2k − 1

2
u

)
, k ∈ N,

and rewrite the integrands (with u = πx) so that the infinite sum becomes telescopic.
We calculate

∞∑
k=1

∫ 1

0

B0
2m(x) cos(kπx) dx = lim

n→∞

n∑
k=1

∫ 1

0

B0
2m(x) cos(kπx) dx

= lim
n→∞

∫ 1

0

B0
2m(x)

sin ((2n+ 1)πx)/2)

2 sin (πx/2)
− 1

2

∫ 1

0

B0
2m(x)dx.

The second term calculates as

1

2

∫ 1

0

B0
2m(x)dx =

1

2

∫ 1

0

(B2m(x)−B2m) dx = −B2m

2
,

since the integral
∫ 1

0
B2m(x) dx vanishes (Section 4.12).

It remains to show that

lim
n→∞

∫ 1

0

B0
2m(x)

2 sin (πx/2)
sin

(
(2n+ 1)πx

2

)
= 0.

The fraction in the integrand is a function f : (0, 1] → R given by

f(x) =
B0

2m(x)

2 sin (πx/2)
=
B0

2m(x)

πx
· πx

2 sin(πx/2)
.
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The first factor is a polynomial (since the constant term in B0
2m(x) is (by setup)

missing), and the second (positive) factor is the reciprocal of sin(u)/u, u = πx/2,
that extends continuously to u = 0, and is infinitely many times differentiable for
0 ≤ u ≤ π/2. We now perform integration by parts, and our integral becomes∫ 1

0

f(x) sin

(
(2n+ 1)πx

2

)
dx = − 2

(2n+ 1)π

∫ 1

0

f(x)

(
cos

(
(2n+ 1)πx

2

))′

dx

= − 2

(2n+ 1)π

[
f(x) cos

(
(2n+ 1)πx

2

)]1
0

+
2

(2n+ 1)π

∫ 1

0

f(x) cos

(
(2n+ 1)πx

2

)
dx

All boundary expressions vanish, except

f(0) = lim
x→0

B0
2m(x)

πx
= lim

x→0

B′
2m(x)

π
= 2m lim

x→0

B2m−1(x)

π
=

2m

π
B2m−1(0) =

2m

π
B2m−1

which also vanishes for 2 ≤ m ∈ N, but equals −1/π for m = 1. The last integral
estimates as ∣∣∣∣∫ 1

0

f(x) cos

(
(2n+ 1)πx

2

)
dx

∣∣∣∣ ≤ ∫ 1

0

|f(x)| dx,

in particular, it is independent of n ∈ N. We obtain that, due to the presence of
the factor 2/(2n + 1), the limit as n → ∞ is zero. Euler’s summation formula, and
therefore the Fourier expansions follow.

Exercises

1. Derive the generating function formula

∞∑
n=1

Hnx
n = − ln(1− x)

1− x
,

for the harmonic number Hn =
∑n

k=1 1/k, n ∈ N.

2. Derive the formula95

∞∑
k=1

1

k2m+1
= (−1)m+1 (2π)2m+1

2(2m+ 1)!

∫ 1

0

B2m+1(x) cot
(πx

2

)
dx, m ∈ N,

using the following steps: (1) Calculate the integrals

J(m, k) =

∫ 1

0

B2m+1(x) sin(kπx) dx =

{
0 if k is odd

(−1)m−1(2m+ 1)!/(k2m+1π2m+1) k is even.

95See ibid. Note that the left-hand side is the value of the zeta function on odd itegers; see Section
4.17.
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(2) Use the trigonometric identity

2 sin
(u
2

)
sin(ku) = − cos

(
2k + 1

2
u

)
+ cos

(
2k − 1

2
u

)
, k ∈ N,

to obtain the formula

∞∑
k=1

J(m, k) = (−1)m+1 (2m+ 1)!

π2m+1

∞∑
k=1

1

(2k)2m+1

= − lim
n→∞

∫ 1

0

B2m+1(x)
cos ((2n+ 1)πx)/2)

2 sin (πx/2)
dx+

1

2

∫ 1

0

B2m+1(x) cot
(πx

2

)
dx.

(3) Letting n→ ∞ argue as the the text to conclude that the first limit is zero.

3. Use the Fourier expansion

∞∑
n=1

sin(nα)

n
=
π − α

2
, 0 < α < 2π,

(proved in the text) to derive the analogous expansion

∞∑
n=1

cos(nα)

n
= − ln

(
2 sin

(α
2

))
, 0 < α < 2π,

via the following steps. (1) Letting n ∈ N, integrate both sides of the trigonometric
identity

n∑
k=1

sin(kx) =
cos(x/2)− cos((n+ 1/2)x)

2 sin(x/2)
, 0 < x < 2π,

over [π, α], 0 < α < 2π, to obtain

n∑
k=1

cos(kα)

k
=

n∑
k=1

(−1)k

k
−
∫ α

π

cos(x/2)− cos((n+ 1/2)x)

2 sin(x/2)
dx.

(2) Rewrite this as

n∑
k=1

cos(kα)

k
= − ln(2)− ln sin

(α
2

)
+

∫ α

π

cos((n+ 1/2)x)

2 sin(x/2)
dx.

(3) Use integration by parts (with u = 1/(2 sin(x/2)) and dv = cos((n + 1/2)x) dx)
in the last integral to show that it converges to zero as n→ ∞.
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4.15 The Euler-Maclaurin Summation Formula

The derivation of the Stirling formula in Section 4.10 was based on the estimate of
the difference

∫ n

1
ln(x) dx−

∑n
k=1 ln(k), 2 ≤ n ∈ N. There is a more general method,

discovered independently by Euler and Maclaurin, to develop more sophisticated esti-
mates for the difference

∫ n

1
f(x) dx−

∑n
k=1 f(k), 2 ≤ n ∈ N, for more general functions

f : [1,∞) → R. In this section we present this method and illustrate it with a number
of examples.

We fix 2 ≤ n ∈ N, and let f : [1, n] → R a continuously differentiable function.
We first write ∫ n

1

f(x) dx−
n−1∑
k=1

f(k) =
n−1∑
k=1

∫ k+1

k

(f(x)− f(k)) dx.

For k = 1, . . . , n − 1, we perfom integration by parts in the last integral with u =
f(x)−f(k) and v = x−k−1/2, where the choice of the constant will be given below.
We obtain∫ k+1

k

(f(x)− f(k)) dx

=

[
(f(x)− f(k))

(
x− k − 1

2

)]k+1

k

−
∫ k+1

k

(
x− k − 1

2

)
· f ′(x) dx

=
1

2
(f(k + 1)− f(k))−

∫ k+1

k

(
x− [x]− 1

2

)
· f ′(x) dx,

where, in the last integral, we used the greatest integer function [·]. Substituting this
into the sum in the formula above, and noticing that the first terms are telescopic,
after rearraging we arrive at the following

n∑
k=1

f(k) =

∫ n

1

f(x) dx+

∫ n

1

P1(x) · f ′(x) dx+
1

2
(f(n) + f(1)),

where P1 : R → R, P1(x) = x− [x]−1/2, x ∈ R. (Note that we moved the upper limit
of the summation from n−1 to n.) This is the first Euler-Maclaurin summation
formula.

We now assume that (the extended) function f : [1,∞) → R is continuously
differentiable and that the improper integral

∫∞
1
P1(x) · f ′(x) dx exists. Since P1 is
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bounded, in fact |P1(x)| ≤ 1/2, x ∈ R, the latter holds if the improper integral96∫∞
1

|f ′(x)| dx < ∞. In this case, the first Euler-Maclaurin summation formula can
also be written as

n∑
k=1

f(k) =

∫ n

1

f(x) dx+ Cf + Ef (n),

where

Cf =
1

2
f(1) +

∫ ∞

1

P1(x) · f ′(x) dx and Ef (n) =
1

2
f(n)−

∫ ∞

n

P1(x) · f ′(x) dx.

Here the constant Cf depends only on f , and the improper integral in the “error
term” Ef (n) converges to zero. If, in addition, limn→∞ f(n) = 0 then the entire error
term Ef (n) converges to zero as n→ ∞.

Example 4.15.1. For f(x) = 1/x, 1 ≤ x ∈ R, we have∣∣∣∣∫ ∞

n

P1(x)

x2
dx

∣∣∣∣ ≤ ∫ ∞

n

|P1(x)|
x2

dx <
1

2

∫ ∞

n

dx

x2
=

1

2n
, n ∈ N.

Suppressing the functional subscript, for the nth harmonic number Hn =
∑n

k=1 1/k,
n ∈ N, we obtain97

Hn = ln(n) + C + E(n),

where

C =
1

2
−
∫ ∞

1

P1(x)

x2
dx and E(n) =

1

2n
+

∫ ∞

n

P1(x)

x2
dx.

As 0 < E(n) < 1/n, n ∈ N, we have limn→∞E(n) = 0. Hence the limit limn→∞(Hn−
ln(n)) exists; this is the classical Euler-Mascheroni constant γ. As a byproduct,
we obtain

γ =
1

2
−
∫ ∞

1

P1(x)

x2
dx.

Example 4.15.2. For f(x) = ln(x), 1 ≤ x ∈ R, the Euler-Maclaurin summation
formula takes the form

n∑
k=1

ln(k) = ln(n!) = (n+ 1/2) ln(n)− n+ 1 +

∫ n

1

P1(x)

x
dx,

96This is certainly the case if f is decreasing and limx→∞ f(x) = 0; the Euler-Maclaurin summation
formula then asserts the integral test for convergence: the infinite sum

∑∞
k=1 f(k) and the

improper integral
∫∞
1

f(x) dx equiconverge. Note that the integral test for convergence is due to
Maclaurin in his Fluxions, I., pp. 289-290, and Cauchy in Oeuvres (2), VII. p. 269.

97For a direct elementary geometric derivation of a somewhat sharper estimate, see Young, R.M.,
Euler’s constant, Math. Gazette 75, No. 472 (1991), 187-190.
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In this example we will calculate the improper integral (in the error term) as98∫ ∞

1

P1(x)

x
dx =

∫ 1/2

0

(
8x2

1− 4x2
− πx tan(πx)

)
dx = ln(

√
2π)− 1.

With this, supressing the functional subscript, we have

C = ln(
√
2π)− 1 and E(n) =

ln(n)

2
−
∫ ∞

n

P1(x)

x
dx.

Rearranging, we find

ln

(
n!√

2πn · nn · e−n

)
= −

∫ ∞

n

P1(x)

x
dx.

Since the right-hand side converges to zero as n→ ∞, we recover the classical Stirling
formula (Section 4.10).
We now turn to the evaluation of the improper integral∫ ∞

1

P1(x)

x
dx =

∫ ∞

0

P1(x)

1 + x
dx

where we shifted the variable in the last integral by one (and used periodicity of P1)
for technical convenience. Using P1(x) = x− [x]− 1/2, x ∈ R, we have∫ ∞

0

P1(x)

1 + x
dx =

∞∑
n=0

(∫ n+1/2

n

x− n− 1/2

1 + x
dx+

∫ n

n+1/2

x− n− 1/2

1 + x
dx

)

=
∞∑
n=0

(∫ 1/2

0

x− 1/2

1 + n+ x
dx+

∫ 1/2

0

x

3/2 + n+ x
dx

)

=
∞∑
n=0

(
−
∫ 1/2

0

x

3/2 + n− x
dx+

∫ 1/2

0

x

3/2 + n+ x
dx

)

= −
∞∑
n=0

∫ 1/2

0

2x2

(3/2 + n)2 − x2
dx = −

∫ 1/2

0

∞∑
n=0

2x2

(3/2 + n)2 − x2
dx

= −
∫ 1/2

0

∞∑
n=0

8x2

(2n+ 3)2 − 4x2
dx

98We follow here Neuschel, Th., A new proof of Stirling’s formula, Amer. Math. Monthly, Vol 121,
No. 4 (April 2014) 350-352. Note also that, as we will see below, the improper integral converges
albeit not absolutely.
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where we performed obvious linear substitutions, and, in the last step we interchanged
the integral and the infinite sum (which is allowed due to uniform convergence of the
latter). Comparing this with the expansion of the tangent (Section 4.8)

πx tan(πx) =
∞∑
n=0

8x2

(2n+ 1)2 − 4x2
, −1

2
< x <

1

2
,

we obtain ∫ ∞

1

P1(x)

x
dx =

∫ 1/2

0

(
8x2

1− 4x2
− πx tan(πx)

)
dx.

It remains to evalue the last integral on the right-hand side. Using the partial fraction
decomposition

8x2

1− 4x2
=

1

1− 2x
+

1

1 + 2x
− 2,

and integrating the trivial terms, this reduces to∫ ∞

1

P1(x)

x
dx = ln(

√
2)− 1 +

∫ 1/2

0

(
1

1− 2x
− πx tan(πx)

)
dx.

The last integral is improper (at the upper bound 1/2). Letting 0 < b < 1/2, we first
use integration by parts (with obvious choices) for the second term in the integrand
as ∫ b

0

πx tan(πx) dx = −b ln(cos(πb) +
∫ b

0

ln(cos(πx)) dx

Putting this together with the first term, we calculate∫ b

0

(
1

1− 2x
− πx tan(πx)

)
dx = −1

2
ln(1− 2b) + b ln(cos(πb))−

∫ b

0

ln(cos(πx)) dx

=

(
b− 1

2

)
ln(cos(πb)) +

1

2
ln

(
cos(πb)

1− 2b

)
−
∫ b

0

ln(cos(πx)) dx

We now let b → 1/2− and evaluate each of the three terms on the right-hand side
separately. For the first term, we have

lim
b→1/2−

(
b− 1

2

)
ln(cos(πb)) = − 1

π
lim
u→0−

u ln(sin(u))

= − 1

π
lim
u→0−

ln(sin(u))

1/u
=

1

π
lim
u→0−

cos(u)/ sin(u)

1/u2

=
1

π
lim
u→0−

u2

sin(u)
cos(u) = 0,
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where we used the limit rule for indeterminate forms. For the second term, we
calculate

1

2
lim

b→1/2−
ln

(
cos(πb)

1− 2b

)
=

1

2
ln

(
lim

b→1/2−

cos(πb)

1− 2b

)
=

1

2
ln

(
lim

b→1/2−

π sin(πb)

2

)
=

1

2
ln
(π
2

)
.

The third term is the improper integral∫ 1/2

0

ln(cos(πx)) dx =
1

π

∫ π/2

0

ln(cos(u)) du = − ln(
√
2),

treated in Example 4.1.6.
Finally, putting everything together, we obtain∫ ∞

1

P1(x)

x
dx = ln(

√
2)− 1 +

1

2
ln
(π
2

)
+ ln(

√
2) = ln(

√
2π)− 1.

The example follows.

Assuming higher order differentiability of the function f , repeated integrations
by part now yield all the subsequent Euler-Maclaurin summation formulas. The key
is to introduce higher order analogues of the function P1 that will appear next to
the higher order derivatives of f . We view P1 as the periodized linear polynomial
B1(x) = x − 1/2; that is P1(x) = B1(x − [x]), x ∈ R. We streamline the integration
by parts first by imposing the inductive relation B′

m(x) = mBm−1(x), m ∈ N, with
B0(x) = 1. Equivalently, we set

Bm(x) = m

∫ x

0

Bm−1(t) dt+Bm, Bm = Bm(0), m ∈ N.

Periodizing, that is, setting Pm(x) = Bm(x− [x]), x ∈ R, m ∈ N0, results a periodic
function with period 1. (Clearly, all Pm, m ∈ N0, are differentiable up to any order
away from the integers.) Second, to ensure continuity and progressive smoothness of
Pm, 2 ≤ m ∈ N, at the integers, we impose the condition Bm(1) = Bm(0) = Bm, or
equivalently ∫ 1

0

Bm(x) dx = 0, m ∈ N.

Now, P1 is discontinuous at the integers, but this gives B1 = −1/2, explaining the
choice of constant in the first integration by parts above. For 2 ≤ m ∈ N, this
condition gives continuity of Pm at the integers; and, by the first condition, for 3 ≤
n ∈ N, the function Pm is differentiable up to order n− 2 at the integers.

As shown in Section 4.12, the two relations above define the sequence (Bm(x))m∈N
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of Bernoulli polynomials, and the sequence (Bm)m∈N0 of Bernoulli numbers
(with B0 = 1).

We now state the main result of this section.

Euler-Maclaurin Summation Theorem. Let 2 ≤ n ∈ N and m ∈ N0, and
f : [1, n] → R a continuously differentiable function up to order 2m+ 1. We have

n∑
k=1

f(k) =

∫ n

1

f(x) dx+
1

2
(f(n) + f(1)) +

m∑
ℓ=1

B2ℓ

(2ℓ)!

(
f (2ℓ−1)(n)− f (2ℓ−1)(1)

)
+

1

(2m+ 1)!

∫ n

1

P2m+1(x) · f (2m+1)(x) dx.

(For m = 0, the sum on the right-hand side is absent.)

Proof. We proceed by induction with respect to m ∈ N0. For m = 0 the stated
formula reduces to the first Euler-Maclaurin summation fomula derived above. For
the general induction step m− 1 ⇒ m, m ∈ N, (assuming that the formula holds for
m replaced by m− 1) we perform integration by parts on the integral

Im,n =

∫ n

1

P2m−1(x) · f (2m−1)(x) dx

with u = f (2m−1)(x) and v =
∫ x

0
P2m−1(t) dt = (P2m(x) − B2m)/(2m). We have

du = f (2m)(x)dx and dv = P2m−1(x)dx. We calculate

Im,n =
1

2m

[
(P2m(x)−B2m) · f (2m−1)(x)

]n
1
− 1

2m

∫ n

1

(P2m(x)−B2m) · f (2m)(x) dx

= − 1

2m

∫ n

1

P2m(x) · f (2m)(x) dx+
B2m

2m

∫ n

1

f (2m)(x) dx

= − 1

2m

∫ n

1

P2m(x) · f (2m)(x) dx+
B2m

2m

(
f (2m−1)(n)− f (2m−1)(1)

)
.

where, by periodicity, P2m(n) = P2m(1) = B2m, m ∈ N. We perform yet another
integration by parts on the last integral with u = f (2m)(x) and v =

∫ x

0
P2m(t) dt =

P2m+1(x)/(2m+ 1), where B2m+1 = 0, m ∈ N. We obtain∫ n

1

P2m(x) · f (2m)(x) dx = − 1

2m+ 1

∫ n

1

P2m+1(x) · f (2m+1)(x) dx.

Putting everything together, we arrive at∫ n

1

P2m−1 · f (2m−1)(x) dx =
1

(2m)(2m+ 1)

∫ n

1

P2m+1(x) f
(2m+1)(x) dx

+
B2m

2m

(
f (2m−1)(n)− f (2m−1)(1)

)
.
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Substituting this back to the original formula, the induction is complete, and the
proposition follows.

History. The Euler-Maclaurin formula has a bit of convoluted history.99 Euler published it in

the Comm. Acad. Imp. Petrop. VI with year of publication 1732 (but with actual appearance in

1738), and four years later, in June 9, 1736, he jotted it down in a letter to Stirling. The latter

responded somewhat belatedly, in April 16, 1738, stating that it was a generalization of one of his

own results, and also noted that a more general formula had already been discovered by Maclaurin

somewhat earlier. In response to this Euler rescinded the primary authorship of the formula, but

Maclaurin’s work appeared only in 1742 in his Treatise on Fluxions, p. 672. Finally, note that a

common generalization of this and the Taylor expansion was given by Darboux well over a century

later.100

As before, letting f : [1,∞) → R and assuming that the improper integral∫∞
1
P2m+1(x) · f (2m+1) dx exists, we obtain

n∑
k=1

f(k) =

∫ n

1

f(x) dx+ Cm
f + Em

f (n),

where

Cm
f =

1

2
f(1)−

m∑
ℓ=1

B2ℓ

(2ℓ)!
f (2l−1)(1) +

1

(2m+ 1)!

∫ ∞

1

P2m+1(x) · f (2m+1)(x) dx.

and

Em
f (n) =

1

2
f(n) +

m∑
ℓ=1

B2ℓ

(2ℓ)!
f (2l−1)(n)− 1

(2m+ 1)!

∫ ∞

n

P2m+1(x) · f (2m+1)(x) dx.

By the estimates of the Bernoulli polynomial (on [0, 1]) along with periodicity, for
1 ≤ x ∈ R, we have

|P2m(x)| ≤ |B2m| and |P2m+1(x)| ≤
2m+ 1

2π
|B2m|, m ∈ N.

(As noted above, we also have |B1(x)| ≤ 1/2, x ∈ [0, 1], and hence |P1(x)| ≤ 1/2 for
all x ∈ R.)

99See Barnes, Proc. London Math. Soc. (2), III. (1905), p. 258. For complete accounts, see
Hardy, G.H., Divergent Series, Cambridge University Press, 1949, pp. 318-348; and Olver, F.W.J.,
Asymptotics and Special Functions,Academic press, New York, 1974, 279-289.
100See Darboux, Journal de Math. (3), II (1876), p. 271; and also Whittaker, E.T. and Watson,

G.N., A Course in Modern Analysis, 4th Edition, Cambridge, 1927, and 3rd Edition, Dover, 2020;
7.1.
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Finally, note that, as a consequence of the second estimate, the improper integrals in
the formulas above exist if

lim
n→∞

∫ ∞

n

|f (2m+1)(x)| dx = 0.

History. Finding a continuous function that “interpolates” the harmonic numbers Hn = 1 +
1/2 + · · ·+ 1/n, n ∈ N, has been a central problem of Euler, Goldbach, and Daniel Bernoulli. While
the latter two have been unsuccesful, Euler, in a letter to Goldbach dated October 13, 1729, hinted
that not only did he find such a function but also that the value of this function at 1/2 is equal to
2 − 2 ln(2). A few years later Euler did publish this discovery in De summatione innumerabilium
progressionum, Commentarii academiae scientiarium imperialis Petropolitanae 5 (1730/31) 1738,
pp. 91-105. Reprinted in Opera Omnia I.14 pp. 42-72. The function in question is the integral101∫ 1

0

1 − xt

1 − x
dx, 0 < t ∈ R.

For t = n ∈ N, using the geometric series fomula, the integral reduces to Hn. For t = 1/2, the
integral calculates as∫ 1

0

1 −
√
x

1 − x
dx =

∫ 1

0

1

1 +
√
x
dx =

[
2
√
x− 2 ln

(
1 +

√
x
)]1

0
= 2 − 2 ln(2),

as Euler claimed.

Example 4.15.3. Derive the following formulas for the Euler-Mascheroni constant102

γ = lim
n→∞

(∫ 1

0

(
1−

(
1− t

n

)n)
dt

t
−
∫ n

1

(
1− t

n

)n
dt

t

)
=

∫ 1

0

1− e−t

t
dt−

∫ ∞

1

e−t

t
dt =

∫ 1

0

1− e−t − e−1/t

t
dt.

Indeed, the first equality follows directly from the definition γ = limn→∞(Hn− ln(n))
via

Hn =

∫ 1

0

1− xn

1− x
dx =

∫ 1

0

1− (1− t)n

t
dt =

∫ n

0

(
1−

(
1− t

n

)n)
dt

t
.

(see the historical insert above) and ln(n) =
∫ n

1
dt/t. The third equality follows from

the second by replacing t by 1/t in the second integral.
Finally, the second equality is via interchanging the limit with the integration, and
the latter hinges on the estimates

0 ≤ e−t −
(
1− t

n

)n

≤ t2e−t/n, 0 ≤ t ≤ n.

101Note that the integrand has removable discontinuity at x = 1 since limx→1−(1−xt)/(1−x) = t.
102See also Whittaker, E.T. and Watson, G.N., A Course in Modern Analysis, 4th Edition, Cam-

bridge, 1927, and 3rd Edition, Dover, 2020; Example 2 in 12.1, and Example 4 in 12.2.
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The first inequality in this estimate is well known.103 For the second, we calculate

e−t −
(
1− t

n

)n

≤ e−t

(
1− et

(
1− t

n

)n)
≤ e−t

(
1−

(
1 +

t

n

)n(
1− t

n

)n)
= e−t

(
1−

(
1− t2

n2

)n)
≤ e−t t

2

n
.

Here the last inequality is the Bernoulli inequality104 in disguise

1− n

(
t2

n2

)
≤
(
1− t2

n2

)n

The second equality, and the example now follows.

We now revisit Example 4.15.1.

Example 4.15.4. Let f(x) = 1/x, 1 ≤ x ∈ R. Suppressing the functional subscript,
for m ∈ N0, a simple computation gives

Hn = ln(n) + Cm + Em(n),

where

Cm =
1

2
+

m∑
ℓ=1

B2ℓ

2ℓ
−
∫ ∞

1

P2m+1(x)

x2m+2
dx

and

Em(n) =
1

2n
−

m∑
ℓ=1

B2ℓ

2ℓ

1

n2ℓ
+

∫ ∞

n

P2m+1(x)

x2m+2
dx.

We denote the last improper integral by Ẽ
m
(n), and estimate as∣∣Ẽm

(n)
∣∣ ≤ ∫ ∞

n

|P2m+1(x)|
x2m+2

dx ≤ 2m+ 1

2π
|B2m|

∫ ∞

n

dx

x2m+2
=

1

2π

|B2m|
n2m+1

.

It follows that the improper integrals in the formulas above exist, and, for m ∈ N0,
we have limn→∞Em(n) = 0. Since limn→∞ (Hn − ln(n)) = γ, the Euler-Mascheroni
constant, we obtain that Cm = C0 = γ for all m ∈ N0. Summarizing, for m ∈ N0, we
arrive at

Hn − ln(n) = γ +
1

2n
−

m∑
l=1

B2ℓ

2ℓ

1

n2ℓ
+ Ẽ

m
(n),

103See Elements of Mathematics - History and Foundations, Section 10.5.
104See ibid. Section 3.2.
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where ∣∣Ẽm
(n)
∣∣ ≤ 1

2π

B2m

n2m+1
.

Remark. Note that, by Section 4.13,
∑∞

ℓ=0B2ℓ/(2ℓ) = ∞, so that, albeit tempting,
letting m→ ∞ in the formulas above do not yield feasible results.

History. In 1736 Euler used the formula above to obtain the approximation

γ ∼ Hn − ln(n) − 1

2n
+

m∑
l=1

B2ℓ

2ℓ

1

n2ℓ
.

For n = 10 and m = 7, he obtained the value of γ in 16 decimal precisison as

γ ∼ 0.5772156649015328 . . .

with the upper bound of the error term as above being 1.856807669405446 · 10−16. In 1809, in his
Adnotationes ad calculum integrale Euleri Mascheroni made similar calculations, and went up to 40
decimal places. As dicovered later by Johann von Soldner (1766 – 1833), Mascheroni’s calculations
contained an error in the 20th decimal place. Urged by Gauss, a young mathematical prodigy,
Nicolai (1793 – 1846), redid the calculations up to 40 decimals, and found agreement with Soldner’s
value:

γ ∼ 0.5772156649015328606065120900824024310422 . . .

There is a proliferation of various refinements of estimates for the Euler-Mascheroni
constant γ above, especially by replacing ln(n), n ∈ N, by an equiconvergent expres-
sion as n → ∞. We give here one example;105 see also Exercise 2 at the end of this
section.

Example 4.15.5. We have

1

24(n+ 1)2
< Hn − ln

(
n+

1

2

)
− γ <

1

24n2
, n ∈ N.

To derive this, we define the function f : (0,∞) → R by

f(x) = − 1

x+ 1
− ln

(
x+

1

2

)
+ ln

(
x+

3

2

)
, x > 0.

Clearly, limx→∞ f(x) = 0. The choice of f is justified by the simple observation that

f(n) = En − En+1, n ∈ N,
105See DeTemple, D. W., A quicker convergence to Euler’s constant, Amer. Math. Monthly, Vol.

100, No. 5 (May 1993)0, 468-470.
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where

En = Hn − ln

(
n+

1

2

)
, n ∈ N.

By the definition of the Euler-Mascheroni constant, we have limn→∞En = γ. Differ-
entiating and simplifying, we obtain

f ′(x) = − 1

4(x+ 1/2)(x+ 1)2(x+ 3/2)
, x > 0.

In particular, f is decreasing.
For the upper bound stated above, we need an estimate of the rate of decrease of f .
First, the simple estimate

−f ′(x) =
1

4(x+ 1/2)(x+ 1)2(x+ 3/2)
<

1

4(x+ 1/2)4
, x > 0,

gives

f(n) = −
∫ ∞

n

f ′(x) dx <
1

4

∫ ∞

n

dx

(x+ 1/2)4
=

1

12

1

(n+ 1/2)3

=
1

24

2n+ 1

(n+ 1/2)4
<

1

24

2n+ 1

n2(n+ 1)2
=

1

12

∫ n+1

n

dx

x3
.

We use this to calculate as

En − γ =
∞∑
k=n

(Ek − Ek+1) =
∞∑
k=n

f(k) <
1

12

∫ ∞

n

dx

x3
=

1

24n2
.

The upper estimate follows.
For the lower bound stated above, we use the estimate

−f ′(x) =
1

4(x+ 1/2)(x+ 1)2(x+ 3/2)
>

1

4(x+ 1)4
, x > 0.

As before, we estimate

f(n) >
1

4

∫ ∞

n

dx

(x+ 1)4
=

1

12

1

(n+ 1)3
>

1

24

2n+ 3

(n+ 1)2(n+ 2)2
=

1

12

∫ n+2

n+1

dx

x3
.

This gives

En − γ >
1

12

∫ ∞

n+1

dx

x3
=

1

24(n+ 1)2
.

The lower estimate also follows.
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Example 4.15.6. Let f(x) = xp, p ∈ N. We apply the Euler-Maclaurin formula
for m = [p/2]. Since (xp)(2m+1) is zero for p even, and equals p! for p odd, and∫ n

1
P2m+1(x) dx = 0 by periodicity and

∫ 1

0
B2m+1(x) dx = 0, we see that the integral

Im+1,n =
∫ n

1
P2m+1(x)(x

p)(2m+1) dx = 0. The Euler-Maclaurin formula becomes

1p + 2p + · · ·+ np =
n∑

k=1

kp =
np+1 − 1

p+ 1
+

[p/2]∑
ℓ=1

(
p

2ℓ− 1

)
B2ℓ

2ℓ

(
np−2ℓ+1 − 1

)
+
np + 1

2
,

where we used
∫ n

1
xp dx = (np+1 − 1)/(p+ 1), and the differentiation

(xp)(2ℓ−1) = (2ℓ− 1)!

(
p

2ℓ− 1

)
xp−2ℓ+1, ℓ = 1, . . . , [p/2].

We rewrite this using classical notation as

sp(n) = 1p + 2p + · · ·+ (n− 1)p

=
np+1 − 1

p+ 1
+

1

p+ 1

[p/2]∑
ℓ=1

(
p+ 1

2ℓ

)
B2ℓ

(
np−2ℓ+1 − 1

)
− np − 1

2

=
1

p+ 1

p∑
k=0

(
p+ 1

k

)
Bk

(
np−k+1 − 1

)
,

where in the last equality we used the fact that all odd Bernoulli numbers are zero
except B1 = −1/2. Finally, since

p∑
k=0

(
p+ 1

k

)
Bk = 0,

the constants (the terms that do not depend on n) cancel, and we arrive at the
classical formula for the power sums

sp(n) = 1p + 2p + · · ·+ (n− 1)p =
1

p+ 1

p∑
k=0

(
p+ 1

k

)
Bkn

p−k+1.

Next, we treat a refinement of the Stirling formula.

Example 4.15.7. We let f(x) = ln(x), 1 ≤ x ∈ R. After a simple computation the
Euler-Maclaurin formula takes the form

n∑
k=1

ln(k) = ln(n!) = (n+ 1/2) ln(n)− n+ 1 +
m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

(
1

n2ℓ−1
− 1

)
+

1

2m+ 1

∫ n

1

P2m+1(x)

x2m+1
dx.



4.15. THE EULER-MACLAURIN SUMMATION FORMULA 311

Equivalently

ln

(
n!

nn+1/2e−n

)
= ln(n!)− (n+ 1/2) ln(n) + n

= 1 +
m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

(
1

n2ℓ−1
− 1

)
+

1

2m+ 1

∫ n

1

P2m+1(x)

x2m+1
dx.

As in the previous section, the Wallis product formula gives limn→∞ n!/(nn+1/2e−n) =√
2π. Extracting the constants form the right-hand side, by a simple computation, we

then arrive at the Euler-Maclaurin formula for the Stirling approximation:

ln

(
n!√

2π · nn+1/2e−n

)
=

m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

1

n2ℓ−1
− 1

2m+ 1

∫ ∞

n

P2m+1(x)

x2m+1
dx

We wish to estimate the (improper) integral on the left-hand side.106 For k ∈ N0, we
consider the integral∫ k+1

k

P2m+1(x)

x2m+1
dx =

∫ k+1

k

B2m+1(x− [x])

x2m+1
dx =

∫ 1

0

B2m+1(u)

(u+ k)2m+1
du

=

∫ 1/2

0

B2m+1(u)

(u+ k)2m+1
du+

∫ 1

1/2

B2m+1(u)

(u+ k)2m+1
du

=

∫ 1/2

0

B2m+1(u)

(u+ k)2m+1
du−

∫ 1/2

0

B2m+1(v)

(1− v + k)2m+1
dv,

where we made linear substitutions, and used the identity B2m+1(1−v) = −B2m+1(v),
0 ≤ v ≤ 1 (Section 4.12).
We now assume thatm ∈ N is odd. We write the last difference of integrals as ak−bk,
k ∈ N0. By Proposition 4.12.1 (IIm), the numerators of the integrands are positive
(on (0, 1/2)). Since the denominator of the integrands are increasing functions, we
have ak > bk > ak+1 > 0, k ∈ N0, and limk→∞ ak = limk→∞ bk = 0.
The improper integral itself is thus an alternating sum∫ ∞

n

P2m+1(x)

x2m+1
dx = an − bn + an+1 − bn+1 + · · · =

∞∑
k=n

(ak − bk).

Since an − bn <
∑∞

k=n(ak − bk) < an, we obtain the estimate∫ n+1

n

P2m+1(x)

x2m+1
dx <

∫ ∞

n

P2m+1(x)

x2m+1
dx <

∫ n+1/2

n

P2m+1(x)

x2m+1
dx

106Most authors consider the entire right-hand side as the “error term.” Since the first sum is finite,
and can be evaluated directly (at least for low values of m), we consider estimating the improper
integral only.
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Using the estimate for the Bernoulli polynomial in Section 4.13, we finally arrive at

0 <
1

2m+ 1

∫ ∞

n

P2m+1(x)

x2m+1
dx <

|B2m|
2π

∫ 1/2

0

du

(u+ n)2m+1

=
|B2m|
4πm

(
1

n2m
− 1

(n+ 1/2)2m

)
.

The case when m ∈ N is even is entirely analogous. We obtain

|B2m|
4πm

(
1

(n+ 1/2)2m
− 1

n2m

)
<

1

2m+ 1

∫ ∞

n

P2m+1(x)

x2m+1
dx < 0.

The two cases (regardless the parity of m) can be summarized as

1

2m+ 1

∣∣∣∣∫ ∞

n

P2m+1(x)

x2m+1
dx

∣∣∣∣ < |B2m|
4πm

(
1

n2m
− 1

(n+ 1/2)2m

)
.

For example, m = 1 gives∣∣∣∣ln( n!√
2π nn+1/2e−n

)
− 1

12n

∣∣∣∣ < 1

24π

4n+ 1

n2(2n+ 1)2
, n ∈ N.

Taking into account of the sign of the improper integral only (with respect to parity),
as a simple byproduct, we obtain the following

2m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

1

n2ℓ−1
< ln

(
n!√

2π · nn+1/2e−n

)
<

2m+1∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

1

n2ℓ−1
.

As a final quest, and as a generalization of the previous example, we derive the
Euler-Maclaurin refinement of the gamma function.

Example 4.15.8. In order to derive the Euler-Maclaurin formula for the gamma
function, we need to consider the function f(x, t) = ln(t+ x), where 1 ≤ x ∈ R, and
0 ≤ t ∈ R is treated as a parameter. Differentiation gives

d2m+1 ln(t+ x)

dx2m+1
=

(2m)!

(t+ x)2m+1
, m ∈ N0.

using this in the Euler-Maclaurin formula, after a simple integration and calculation,
we arrive at the following

n∑
k=1

ln(t+ k) = (t+ n+ 1/2) ln(t+ n)− (t+ 1/2) ln(t+ 1)− n+ 1

+
m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

(
1

(t+ n)2ℓ−1
− 1

(t+ 1)2ℓ−1

)
+

1

2m+ 1

∫ n

1

P2m+1(x)

(t+ x)2m+1
dx, −1 < t ∈ R, 2 ≤ n ∈ N.
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To get any further, we now bring in Euler’s original definition of the gamma
function

Γ(t+1) = lim
n→∞

n!nt+1

(t+ 1)(t+ 2) · · · (t+ n+ 1)
= lim

n→∞

n!nt

(t+ 1)(t+ 2) · · · (t+ n)
, −1 < t ∈ R,

where we moved up the value of the parameter, and discarded limn→∞ n/(t+n+1) = 1.
Taking the natural logarithms, we obtain

ln Γ(t+ 1) = lim
n→∞

(
ln(n!) + t ln(n)−

n∑
k=1

ln(t+ k)

)
.

We replace the first and third terms in the limit on the right-hand side. For the first
term, from Example 4.15.7 above, we have

ln(n!) = ln
√
2π + (n+ 1/2) ln(n)− n

+
m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)n2ℓ−1
− 1

2m+ 1

∫ ∞

0

P2m+1(x)

(x+ n)2m+1
dx,

where we used periodicity of P and shifted the variable by n as∫ ∞

n

P2m+1(x)

x2m+1
dx =

∫ ∞

0

P2m+1(x)

(x+ n)2m+1
dx.

For the third term, we use the formula above. Substituting, after a short calculation
in taking the limit as n→ ∞, we arrive at the following

ln Γ(t+ 1) = ln
√
2π + (t+ 1/2) ln(t+ 1)− (t+ 1)

+
m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

1

(t+ 1)2ℓ−1
− 1

2m+ 1

∫ ∞

1

P2m+1(x)

(t+ x)2m+1
dx.

In the calculation, we used the limit rule for indeterminate forms as

lim
n→∞

(t+ n+ 1/2) ln

(
n

t+ n

)
= lim

n→∞
n ln

(
n

t+ n

)
= lim

x→∞

ln(x/(t+ x))

1/x

= lim
u→∞

(t+ x)t/(x(t+ x)2)

−1/x2
= − lim

x→∞
tx/(t+ x) = −t.

We make two final adjustments. First, we add ln(t+1) to both sides. On the left-hand
side this results in

ln(t+ 1) + ln Γ(t+ 1) = ln ((t+ 1)Γ(t+ 1)) = ln Γ(t+ 2), −1 < t ∈ R.
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Using this, we have

ln Γ(t+ 2) = ln
√
2π + (t+ 3/2) ln(t+ 1)− (t+ 1)

+
m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

1

(t+ 1)2ℓ−1
− 1

2m+ 1

∫ ∞

1

P2m+1(x)

(t+ x)2m+1
dx.

Second, we replace t+1 by t, and finally obtain the Euler-Maclaurin formula for
the gamma function:

ln Γ(t+ 1) = ln
√
2π + (t+ 1/2) ln(t)− t

+
m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

1

t2ℓ−1
− 1

2m+ 1

∫ ∞

0

P2m+1(x)

(t+ x)2m+1
dx, 0 < t ∈ R.

(Notice that the lower limit in the last integral moved down to 0.)

Returning to the main line, the estimate of the (improper) integral on the right-
hand side is entirely analogous to the process in Example 4.15.7. For k ∈ N0, we
have∫ k+1

k

P2m+1(x)

(t+ x)2m+1
dx =

∫ 1/2

0

P2m+1(u)

(t+ u+ k)2m+1
du−

∫ 1/2

0

P2m+1(v)

(t+ 1− v + k)2m+1
dv.

Assuming first that m ∈ N is odd, we write this as ak − bk, k ∈ N0. We then have
ak > bk > ak+1 > 0, k ∈ N0, and limk→∞ ak = limk→∞ bk = 0; and the improper
integral itself is an alternating sum∫ ∞

0

P2m+1(x)

(t+ x)2m+1
dx = a0 − b0 + a1 − b1 + · · · =

∞∑
k=0

(ak − bk), 0 < t ∈ R.

Hence ∫ 1

0

P2m+1(x)

(t+ x)2m+1
dx <

∫ ∞

0

P2m+1(x)

(t+ x)2m+1
dx <

∫ 1/2

0

P2m+1(x)

(t+ x)2m+1
dx.

Using the estimate for the Bernoulli polynomial in Section 4.15, we finally arrive at

0 <
1

2m+ 1

∫ ∞

0

P2m+1(x)

(t+ x)2m+1
dx <

|B2m|
2π

∫ 1/2

0

du

(t+ u)2m+1

=
|B2m|
4πm

(
1

t2m
− 1

(t+ 1/2)2m

)
, 0 < t ∈ R.

The case when m ∈ N is even is entirely analogous. We obtain

|B2m|
4πm

(
1

(t+ 1/2)2m
− 1

t2m

)
<

1

2m+ 1

∫ ∞

0

P2m+1(x)

(t+ x)2m+1
dx < 0.
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The two cases (regardless the parity of m) can be summarized as

1

2m+ 1

∣∣∣∣∫ ∞

0

P2m+1(x)

(t+ x)2m+1
dx

∣∣∣∣ < |B2m|
4πm

(
1

t2m
− 1

(t+ 1/2)2m

)
.

The first case m = 1, for 0 < t ∈ R, gives∣∣∣∣ln Γ(t+ 1)− ln
√
2π − (t+ 1/2) ln(t) + t− 1

12t

∣∣∣∣ < 1

24π

4t+ 1

t2(2t+ 1)2
.

We close this section by a formula due to Darboux which is a common general-
ization of the Taylor formula and the Euler-Maclaurin formula.
We let pn be a polynomial of degree n, n ∈ N0; and assume that f : [0,∞) → R is a
function differentiable up to order n+ 1 with f (n+1) integrable on closed intervals in
[0,∞). The Darboux formula is the following:

p(n)n (f(x)− f(c)) =
n∑

k=1

(−1)k+1(x− c)k
(
p(n−k)
n (1)f (k)(x)− p(n−k)

n (0)f (k)(c)
)

+ (−1)n(x− c)n+1

∫ 1

0

pn(t)f
(n+1)(c+ t(x− c)) dt, c, x > 0.

(Since pn is a degree n polynomial, p
(n)
n is constant.) Note that, using integration

by parts, the last (nth) term in the sum cancels, and the Darboux formula takes the
equivalent form

p(n)n (f(x)− f(c)) =
n−1∑
k=1

(−1)k+1(x− c)k
(
p(n−k)
n (1)f (k)(x)− p(n−k)

n (0)f (k)(c)
)

+ (−1)n+1(x− c)n+1

∫ 1

0

p′n(t)f
(n)(c+ t(x− c)) dt.

For the proof, we first perform a reduction step. Setting g(t) = f(c + t(x − c)), the
(first) Darboux formula simplifies as

p(n)n (g(1)− g(0)) =
n∑

k=1

(−1)k+1
(
p(n−k)
n (1)g(k)(1)− p(n−k)

n (0)g(k)(0)
)

+ (−1)n
∫ 1

0

pn(t)g
(n+1)(t) dt.

For the proof of this, we first claim that

d

dt

(
n∑

k=1

(−1)kp(n−k)
n g(k)(t)

)
= −p(n)n g′(t) + (−1)npn(t)g

(n+1)(t)
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since the sum on the left-hand side is telescopic. Indeed, performing the differentation
of the kth term of the sum

d

dt
(−1)kp(n−k)

n g(k)(t) = (−1)kp(n−k+1)
n g(k)(t) + (−1)kp(n−k)

n g(k+1)(t);

we see that the first term on the right-hand side becomes the opposite of the second
by k 7→ k + 1; and the claim follows.
Once this holds, we integrate both sides over the interval [0, 1], and the Darboux
formula follows.

As the first application of the Darboux formula, we set pn(t) = (t − 1)n. Since

p
(n−k)
n (t) = n!/k! · (t− 1)k, k = 1, . . . , n, a simple computation gives

f(x) = f(c) +
n∑

k=1

f (k)(c)

k!
(x− c)k +

(−1)n

n!
(x− c)n+1

∫ 1

0

(t− 1)nf (n+1)(c+ t(x− c)) dt.

For the integral remainder, we perform the substitution u = c+ t(x− c) (and hence
(x− u)n = (1− t)n(x− c)n and du = (x− c)dt), and obtain

Rn(x) =

∫ x

c

f (n+1)(u)

n!
(x− u)n du.

This is the Taylor remainder in Proposition 4.2.2. The Taylor formula follows.

As the second application of the Darboux formula, we set pn(t) = Bn(t), the
nth Bernoulli polynomial, n ∈ N0. To evaluate the Bernoulli polynomials and their
derivatives at 0 and 1, we need to recall two identities. First, we have B′

n(t) =
nBn−1(t), n ∈ N, so that

B(n−k)
n (0) =

n!

k!
Bk(0) =

n!

k!
Bk, k = 0, 1, . . . , n.

In particular, we have B
(n)
n = n! and B

(n−1)
n (0) = −n!/2.

Second, we have Bn(t + 1) = Bn(t) + ntn−1, n ∈ N, and hence B
(n−k)
n (t + 1) =

B
(n−k)
n (t) + n!/(k − 1)! · tk−1, k = 1, . . . , n. This gives

B(n−k)
n (1) = B(n−k)

n (0) =
n!

k!
Bk, k = 2, . . . , n,

whereas

B(n−1)
n (1) = B(n−1)

n (0) + n! = −n!
2
+ n! =

n!

2
.
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Using these, the second version of the Darboux formula, with the simplified substi-
tution g(t) = f(c+ t(x− c)), takes the form

g(1)− g(0) =
1

2
(g′(1) + g′(0)) +

n−1∑
k=2

(−1)k+1Bk

k!

(
g(k)(1)− g(k)(0)

)
+

(−1)n+1

(n− 1)!

∫ 1

0

Bn−1(t)g
(n)(t) dt,

where we used B′
n(t) = nBn−1(t). We now set n = 2m+ 2, m ∈ N0, and use the fact

that all odd Bernoulli numbers vanish except B1 = −1/2. We obtain

g(1)− g(0) =
1

2
(g′(1) + g′(0))−

m∑
ℓ=1

B2ℓ

(2ℓ)!

(
g(2ℓ)(1)− g(2ℓ)(0)

)
− 1

(2m+ 1)!

∫ 1

0

B2m+1(t)g
(2m+2)(t) dt.

Recall that, up to this point, c, x > 0 were arbitrary. For k ∈ N, we now set107 c = k
and x = k + 1, and hence g(t) = f(t+ k). Playing everything back to f , this gives

f(k + 1)− f(k) =
1

2
(f ′(k + 1) + f ′(k))−

m∑
ℓ=1

B2ℓ

(2ℓ)!

(
f (2ℓ)(k + 1)− f (2ℓ)(k)

)
− 1

(2m+ 1)!

∫ 1

0

B2m+1(t)f
(2m+2)(t+ k) dt

=
1

2
(f ′(k + 1) + f ′(k))−

m∑
ℓ=1

B2ℓ

(2ℓ)!

(
f (2ℓ)(k + 1)− f (2ℓ)(k)

)
− 1

(2m+ 1)!

∫ k+1

k

P2m+1(t)f
(2m+2)(t) dt,

where, in the last step, we had to replace the Bernoulli polynomial B2m+1(t) by its
periodized P2m+1(t).

As a final substitution, we let h = f ′. Using
∫ k+1

k
h(t) dt =

∫ k+1

k
f ′(t) dt = f(k+1)−

f(k), and rearranging, we find∫ k+1

k

h(t) dt =
1

2
(h(k + 1) + h(k))−

m∑
ℓ=1

B2ℓ

(2ℓ)!

(
h(2ℓ−1)(k + 1)− h(2ℓ−1)(k)

)
− 1

(2m+ 1)!

∫ k+1

k

P2m+1(t)h
(2m+1)(t) dt.

107Not to be confused with the previous index k.
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Summing up with respect to k = 1, . . . , n− 1, n ∈ N, we obtain the Euler-Maclaurin
formula∫ n

1

h(t) dt =
n∑

k=1

h(k)− 1

2
(h(n) + h(1))−

m∑
ℓ=1

B2ℓ

(2ℓ)!

(
h(2ℓ−1)(n)− h(2ℓ−1)(1)

)
− 1

(2m+ 1)!

∫ n

1

P2m+1(t)h
(2m+1)(t) dt.

Example 4.15.9. Let f : R → R be odd and differentiable up to order 2n+1, n ∈ N,
with f (2n+1) integrable on closed intervals. Then we have

f(x) = xf ′(x)−
n∑

ℓ=1

22ℓ

(2ℓ)!
B2ℓx

2ℓf (2ℓ)(x) +
22n

(2n)!
x2n+1

∫ 1

0

B2n(t)f
(2n+1)((2t− 1)x) dt.

To derive this, we apply the Darboux formula for c = −x and pn(t) = Bn(t). Re-
placing n by 2n, and using that fact that the odd derivatives of f are even functions
and the even derivatives of f are odd functions, by a computation similar to the one
above, the example follows.

Exercises

1. Show that, for f(x) = ln(x), 1 ≤ x ∈ R, the first Euler-Maclaurin formula reduces
to the identity

n!

nn
=

n−1∏
k=1

(
1 +

1

k

)k

, 2 ≤ n ∈ N.

2.108 Derive the following refinement of Example 4.15.5:

− 1

48n3
< Hn − ln

(
n+

1

2
+

1

24n

)
− γ < − 1

48(n+ 1)3
, n ∈ N,

using the following steps: (a) Let En = Hn − ln(n+1/2+ 1/(24n)), n ∈ N, and show
that the sequence (an)n∈N given by an = En + 1/(48n3), n ∈ N, is decreasing with
limn→∞ an = γ. For the difference an+1 − an, consider the function f : (0,∞) → R
defined by

f(x) =
1

x+ 1
− ln

(
x+

3

2
+

1

24(x+ 1)

)
+ ln

(
x+

1

2
+

1

24x

)
+

1

48(x+ 1)3
− 1

48x3
.

108See Negoi, T., A faster convergence to Euler’s constant, The Math. Gazette, Vol. 83, No. 498
(Nov. 1999), 487-489.
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Differentiate and obtain109

f(x) =
2656x6 + 10096x5 + 15008x4 + 10836x3 + 3870x2 + 652x+ 37

16x4(x+ 1)4(24x2 + 60x+ 37)(24x2 + 12x+ 1)
> 0, x > 0.

Observe that f is strictly increasing, and hence negative, and therefore the sequence
(an)n∈N is strictly decreasing. Finally, use an > γ, n ∈ N, to conclude En − γ =
an − 1/(48n3) − γ > −1/(48n3), n ∈ N, and hence we obtain the first inequality.
(b) The treatment of the second inequality is analogous in considering the sequence
(bn)n∈N given by bn = En + 1/(48(n+ 1)3), n ∈ N.

3. Derive the following version of the Euler-Maclaurin formula for the gamma func-
tion110

ln Γ(t+ 1) = ln
√
2π + (t+ 1/2) ln(t)− t+

∞∑
k=1

∫ ∞

0

sin(2kπx)

kπ

dx

x+ t
, 0 < t ∈ R.

Solution: Use the Fourier series expansion of P1 in Section 4.14 in the Euler-Maclauring
formula for the gamma function for m = 0.

4. Derive an Euler-Maclaurin formula for the function f(x) = x · ln(x), 1 ≤ x ∈ R.

5. Let f : [1,∞) → R be a positive, decreasing, and continuous function with
limx→∞ f(x) = 0. Show that the limit

lim
x→∞

(
n∑

k=1

f(k)−
∫ k

1

f(x) dx

)
exists.

4.16 The Binet Formulas for the Gamma Function

In the Euler-Maclaurin formula for the gamma function, the last two “error terms”
(the sum with the Bernoulli coefficients and the improper integral) can be more
compactly expressed by single (exponential) integrals in two formulas due to Binet111

The (first) Binet formula for the gamma function is

ln Γ(t+ 1) = ln
√
2π +

(
t+

1

2

)
ln(t)− t+

∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
e−tx

x
dx, t > 0.

109A computer algebra system is recommended here.
110Attributed to Bourguet by Stieltjes; see Journal de Math. v. p. 432.
111Journal de l’École Polytechnique, XVI. (1839) 123-143.
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Remark 1. Since Γ(t + 1) = tΓ(t), this formula is often written in the equivalent
form

ln Γ(t) = ln
√
2π + (t− 1/2) ln(t)− t+

∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
e−tx

x
dx, t > 0.

In this section we give an elementary proof of this formula.112

Remark 2. As in Section 4.15, the expression in the parentheses in the improper
integral can be written in terms of the Bernoulli numbers as

1

x

(
−1 +

x

2
+

x

ex − 1

)
=

∞∑
ℓ=1

x2ℓ−1

(2ℓ)!
B2ℓ.

(We elaborate on this in Exercise 2 at the end of this section.) In particular, it follows
that

sup
x>0

∣∣∣∣12 − 1

x
+

1

ex − 1

∣∣∣∣1x = C <∞.

Hence, we obtain the estimate∣∣ln Γ(t)− ln
√
2π − (t− 1/2) ln(t) + t

∣∣ ≤ C

∫ ∞

0

e−tx dx =
C

t
, t > 0.

This allows to estimate Γ(t) for large t > 0 with increasing accuracy.

The Binet formula above can be written in “Stirling form” as

Γ(t+ 1) =

(
t

e

)t√
2πteF (t),

where

F (t) =

∫ ∞

0

(
1

ex − 1
− 1

x
+

1

2

)
e−tx

x
dx.

Note that, since limt→∞ F (t) = 0, this immediately gives the Stirling approximation
of the Gamma function.
Turning to the proof, we write start with the definition of the gamma function

Γ(t+ 1) =

∫ ∞

0

xte−x dx = tt+1

∫ ∞

0

xte−tx dx, t > 0,

112We follow here Sasvári, Z., An elementary proof of Binet’s formula for the gamma function,
Amer. Math. Monthly, Vol. 106, No. 2 (February 1999) 156-158.
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where we replaced the variable x by tx. We write this in “Stirling form” as

Γ(t+ 1) =

(
t

e

)t √
2πteG(t),

where

eG(t) =
1√
2π

∫ ∞

0

√
t
(
xe1−x

)t
dx.

For the proof we need to show

F (t) = G(t), t > 0.

Lemma 1. We have

F (t)− F (t+ 1) = G(t)−G(t+ 1) =

(
t+

1

2

)
ln

(
1 +

1

t

)
− 1, t > 0.

Proof. First, we have

t+ 1 =
Γ(t+ 2)

Γ(t+ 1)
=

((t+ 1)/e)t+1
√
2π(t+ 1)eG(t+1)

(t/e)t
√
2πteG(t)

,

where we used Γ(t+ 2) = (t+ 1)Γ(t+ 1). This simplifies to

e

(
t

t+ 1

)t+1/2

= eG(t+1)−G(t).

Taking the natural logarithm of both sides and rearranging, we obtain

G(t)−G(t+ 1) =

(
t+

1

2

)
ln

(
1 +

1

t

)
− 1.

Second, we take derivatives and calculate

F ′(t)− F ′(t+ 1) =
d

dt

∫ ∞

0

(
1

ex − 1
− 1

x
+

1

2

)
e−tx − e−(t+1)x

x
dx

= −
∫ ∞

0

(
1

ex − 1
− 1

x
+

1

2

)(
e−tx − e−(t+1)x

)
dx

=

∫ ∞

0

etx − e−(t+1)x

x
dx−

∫ ∞

0

etx + e−(t+1)x

2
dx,
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where the interchange of the differentiation and integration is allowed, and the last
equality follows using the identity(

1

ex − 1
+

1

2

)
(1− e−x) =

1 + e−x

2
.

Recalling Example 4.4.1, we now finish the computation and obtain

F ′(t)− F ′(t+ 1) = ln

(
1 +

1

t

)
− 1

2

(
1

t
+

1

t+ 1

)
=

((
t+

1

2

)
ln

(
1 +

1

t

)
− 1

)′

.

Up to this point, we obtained that the formula to be proved

F (t)− F (t+ 1) =

(
t+

1

2

)
ln

(
1 +

1

t

)
− 1

holds up to an additive constant. On the other hand, this constant must be zero
as both sides tend to zero as t → ∞. This is obvious for the left-hand side since
limt→∞ F (t) = limt→∞ F (t+1) = 0, and, for the right-hand side, it follows by an easy
application of Proposition 2.2.5 as

lim
t→∞

(
t+

1

2

)
ln

(
1 +

1

t

)
= lim

t→∞

(
t+

1

2

)2
t

t+ 1

1

t2
= 1.

The lemma follows.

Lemma 2. We have

F

(
1

2

)
= G

(
1

2

)
=

1

2
− 1

2
ln(2).

Proof. First, by the definition of G (evaluated at t = 1/2 and using Γ(3/2) =
√
π/2,

we have
√
e/2 = eG(1/2), and hence G(1/2) = (1− ln(2))/2.

Second, to evaluate F (1/2), we start with113

F (1) =

∫ ∞

0

(
1

ex − 1
− 1

x
+

1

2

)
e−x

x
dx =

∫ ∞

0

(
1

ex/2 − 1
− 2

x
+

1

2

)
e−x/2

x
dx.

113This is an idea due to A. Pringsheim, Math. Ann. XXXI. (1988) p. 473.
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We use this to calculate

F (1/2) = (F (1/2)− F (1))− F (1)

=

∫ ∞

0

(
1

x
+

1

ex − 1
− 1

ex/2 − 1

)
e−x/2

x
dx+

∫ ∞

0

(
1

ex − 1
− 1

x
+

1

2

)
e−x

x
dx

=

∫ ∞

0

(
e−x/2

x
− 1

ex − 1

)
dx

x
+

∫ ∞

0

(
1

ex − 1
− 1

x
+

1

2

)
e−x

x
dx

=

∫ ∞

0

(
e−x/2 − e−x

x
− e−x

2

)
dx

x

= −
∫ ∞

0

(
d

dx

(
e−x/2 − e−x

x

)
+
e−x/2 − e−x

2x

)
dx

= lim
x→0

e−x/2 − e−x

x
−
∫ ∞

0

e−x/2 − e−x

2x
dx =

1

2
− 1

2
ln(2),

where we used Example 4.4.1 (with a = t = 1/2). The lemma follows.

Proof of the First Binet Formula Letting n ∈ N0, and applying Lemma 1 to
x+ k, k = 1, . . . , n− 1, we obtain

F (t)− F (t+ n) = G(t)−G(t+ n), t > 0,

as both differences are telescopic. We now note as above that limn→∞ F (t + n) = 0,
t > 0. Hence, we get

F (t) = G(t)− g(t), t > 0,

where g : (0,∞) → R is given by g(t) = limn→∞G(t+ n), t > 0.

g(t) = lim
n→∞

G(t+ n) = lim
n→∞

ln

∫ ∞

0

√
t+ n

(
xe1−x

)t+n
dx− ln

√
2π.

First, the function g is periodic with period 1:

g(t)− g(t+ 1) = lim
n→∞

(G(t+ n)−G(t+ n+ 1))

= lim
n→∞

(
t+ n+

1

2

)
ln

(
1 +

1

t+ n

)
− 1 = 0.

Second, we claim that g is decreasing. Indeed, for 0 ≤ s < t, and 0 ≤ a ≤ 1, we have

√
t+ n at+n−

√
s+ n as+n ≤

√
t+ n as+n−

√
s+ n as+n = (

√
t+ n−

√
s+ n) a, n ∈ N.
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Applying this to a = xe1−x, x ≥ 0, we calculate

eG(t+n) − eG(s+n) ≤ 1√
2π

(
√
t+ n−

√
s+ n))

∫ ∞

0

xe1−x dx

=
1√
2π

t− s√
t+ n+

√
s+ n

∫ ∞

0

xe1−x dx.

Letting n→ ∞, we obtain eg(t)− eg(s) ≤ 0, and hence g(t) ≤ g(s). The claim follows.
We conclude that g must be constant. On the other hand, the equality above con-
necting F and G at t = 1/2 gives

F (1/2) = G(1/2)− g(1/2).

By Lemma 2, F (1/2) = G(1/2) so that g = g(1/2) = 0. Thus, F (t) = G(t), t > 0,
and the first Binet formula for the gamma function follows.

The second Binet formula for the gamma function is

ln Γ(t+ 1) = ln
√
2π + (t+ 1/2) ln(t)− t+ 2

∫ ∞

0

arctan(x/t)

e2πx − 1
dx, t > 0.

The proof is preceded by the following:

Example 4.16.1. We have∫ ∞

0

sin(ux)

e2πx − 1
dx = −1

2

(
1

u
− coth(u/2)

2

)
=

1

2

(
1

2
− 1

u
+

1

eu − 1

)
, u > 0.

Indeed, using the infinite geometric series formula, we calculate∫ ∞

0

sin(ux)

e2πx − 1
dx =

∫ ∞

0

sin(ux)
e−2πx

1− e−2πx
dx =

∫ ∞

0

sin(ux)
∞∑
k=1

e−2πkx dx

=
∞∑
k=1

∫ ∞

0

sin(ux)e−2πkx dx =
∞∑
k=1

u

(2πk)2 + u2
=

1

2π

∞∑
k=1

u/(2π)

k2 + (u/(2π))2

where, in the last but one step, we also used the formula∫ ∞

0

sin(ux)e−ax dx =
u

a2 + u2
, a > 0,

via integration by parts (twice). For the last infinite sum, we now use the expansion
of the hyperbolic cotangent function in Exercise 4(c) at the end of Section 4.8:

π coth(πt)

2
− 1

2t
=

∞∑
k=1

t

k2 + t2
.
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After scaling, and simplifying, we obtain∫ ∞

0

sin(ux)

e2πx − 1
dx =

coth(u/2)

4
− 1

2u
.

The first equality of the example follows. For the second, we use the definition of the
hyperbolic cotangent function:

coth
(u
2

)
=
eu/2 + e−u/2

eu/2 − e−u/2
=
eu + 1

eu − 1
= 1 +

2

eu − 1
,

and the second equality also follows.

We now turn to the proof of the second Binet formula. We begin with the obser-
vation that the arctangent function in the integrand in this formula appeared in an
improper integral in Example 4.7.1. We write this, for t, x > 0, as

arctan
(x
t

)
=
π

2
− arctan

(
t

x

)
=

∫ ∞

0

e−tv/x sin(v)

v
dv =

∫ ∞

0

sin(ux)
e−tu

u
du,

where, in the last step, we performed the substitution v = ux. We substitute this into
the improper integral I(t), say, in the second Binet formula, and begin to calculate
as

I(t) = 2

∫ ∞

0

arctan(x/t)

e2πx − 1
dx = 2

∫ ∞

0

1

e2πx − 1

∫ ∞

0

sin(ux)
e−tu

u
du dx

= 2

∫ ∞

0

∫ ∞

0

sin(ux)

e2πx − 1
dx
e−tu

u
du

=

∫ ∞

0

(
1

2
− 1

u
+

1

eu − 1

)
e−tu

u
du,

where we used Fubini’s theorem to interchange the improper integrals (Section 4.5).
This, however, is the improper integral in the first Binet formula. Hence the second
Binet formula follows from the first.

To close this section, we note yet another formula discovered by Kummer. It is
usually written as

ln

(
Γ(a)√
2π

)
= −1

2
ln(2 sin(πa))+

1

2
(γ + ln(2π)) (1−2a)+

1

π

∞∑
n=1

ln(n)

n
sin(2nπa), 0 < a < 1.

We will give a proof of Kummer’s formula in Section 4.20 as a more or less direct
consequence of the Hurwitz formula.
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Exercises

1. Show that

Γ′(t)

Γ(t)
= ln(t)− 1

2t
− 2

∫ ∞

0

x dx

(t2 + x2)(e2πx − 1)
, t > 0.

2. For m ∈ N, approximate the expression in parentheses in the improper integral
of the first Binet formula by

∑m
ℓ=1 x

2ℓ−1B2ℓ/(2ℓ)!. (See the (second) remark after the
statement of the first Binet formula.) Use the definition of the gamma function and
its basic properties to show that the corresponding improper integral is∫ ∞

0

m∑
ℓ=1

x2ℓ−1

(2ℓ)!
B2ℓ

e−tx

x
dx =

m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

1

t2ℓ−1
.

in agreement with the Euler-Maclaurin formula for Γ(t+ 1) in Example 4.15.8.

4.17 The Riemann Zeta Function

We introduce the Riemann zeta function ζ : (1,∞) → R by the Dirichlet se-
ries:114

ζ(s) =
∞∑
n=1

1

ns
, 1 < s ∈ R.

Note that the sum converges for the stated parameter values since

ζ(s) =
∞∑
n=1

1

ns
< 1 +

∫ ∞

1

dx

xs
= 1 +

1

s− 1
, 1 < s ∈ R.

The connection of the zeta function to number theory is given by the following
famous formula of Euler:115

ζ(s) =
∏
p∈Π

(
1− 1

ps

)−1

, 1 < s ∈ R,

114A Dirichlet series is a series of the form
∑∞

n=1 an/n
s, where (an)n∈N is a sequence. Clearly, if

this sequence is bounded then the series converges absolutely for s > 1.
115This is the starting point of Riemann’s original paper Ueber die Anzahl der Primzahlen unter

einer gegebener Grösse, Monatsberichte der Berliner Akademie, Novermber, 1859.
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where Π denotes the set116 of all prime numbers.

For the proof of Euler’s formula, we use the fundamental theorem of arithmetic
which asserts that any natural number 2 ≤ n ∈ N can be written as n =

∏
p∈Π p

ap ,
where ap ∈ N0 is zero except for finitely many primes p ∈ Π.
To derive Euler’s formula, for fixed q ∈ Π and m ∈ N, we let

Nq,m =

{
2 ≤ n ∈ N | n =

∏
p∈Π

pap , p ≤ q, ap ≤ m

}
.

We then have the finite sum∑
n∈Nq,m

1

ns
=
∏
p≤q
p∈Π

m∑
a=0

1

pas
=
∏
p≤q
p∈Π

(
1 +

1

ps
+

1

p2s
+ · · ·+ 1

pms

)
.

Letting m→ ∞, the infinite geometric series formula gives

∑
n∈Nq

1

ns
=
∏
p≤q
p∈Π

∞∑
a=0

1

pas
=
∏
p≤q
p∈Π

(
1− 1

ps

)−1

,

where Nq = ∪m∈NNq,m, the set of all natural numbers 2 ≤ n ∈ N that can be written
as a product of primes p ≤ q. Finally, since the natural numbers 2 ≤ n ∈ N for which
n ≤ q automatically belong to Nq, we have∣∣∣∣∣∣∣∣ζ(s)−

∏
p≤q
p∈Π

(
1− 1

ps

)−1

∣∣∣∣∣∣∣∣ ≤
1

(q + 1)s
+

1

(q + 2)s
+ · · ·

where the limit of the last sum as q → ∞ is zero due to the condition s > 1. Euler’s
formula follows.

It follows from the above that Euler’s formula

ζ(s) =
∞∑
n=1

1

ns
=
∏
p∈Π

(
1− 1

ps

)−1

is an analytic reformulation of the fundamental theorem of arithmentic.

116Since the product is absolutely convergent, the order in which the prime numbers are listed is
irrelevant.
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There are several consequences of this formula. First, for s = 1 Euler’s formula
specializes to

∏
p∈Π

(
p

p− 1

)
= ζ(1) =

∞∑
n=1

1

n
= ∞,

showing the infinitude of primes.
Second, taking the natural logarithm, we obtain the equivalent form of the convergent
series

ln(ζ(s)) = −
∞∑
p∈Π

ln

(
1− 1

ps

)
, 1 < s ∈ R.

Using the Taylor series ln(1 − x) = −
∑∞

m=1 x
m/m, |x| < 1, the right-hand side can

be written as117

ln(ζ(s)) =
∞∑
p∈Π

∞∑
m=1

1

mpms
=

∞∑
n=2

Λ(n)

ln(n)

1

ns
, 1 < s ∈ R,

where Λ : (0,∞) → R is the von Mangoldt function defined by

Λ(n) =

{
ln(p) if n = pm, p ∈ Π, m ∈ N
0 otherwise.

We now introduce the prime-counting function π : (0,∞) → N0 by

π(x) =
∑
p≤x
p∈Π

1, 0 < x ∈ R.

117A comprehensive account of the number theoretical aspects of the Riemann zeta function is in
Titmarsch, E.C., The Theory of the Riemann Zeta Function, 2nd edition, Oxford, 1986.
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With this, for 1 < s ∈ R, we calculate

ln(ζ(s)) = −
∞∑
n=2

(π(n)− π(n− 1)) ln

(
1− 1

ns

)
= −

∞∑
n=2

π(n)

(
ln

(
1− 1

ns

)
− ln

(
1− 1

(n+ 1)s

))
= −

∞∑
n=2

π(n)

[
ln

(
1− 1

xs

)]n+1

n

=
∞∑
n=2

π(n)

∫ n+1

n

s

x(xs − 1)
dx

= s

∫ ∞

2

π(x)

x(xs − 1)
dx.

Note that the initial rearrangement of the series is permitted as it effects only consec-
utive terms, and the corresponding partial sums differ only by a null sequence since
π(n) ≤ n, 2 ≤ n ∈ N, and118

1

ns
≤ − ln

(
1− 1

ns

)
≤ 1

ns

1

1− 1/ns
, 1 < s ∈ R.

In addition, we also employed the fundamental theorem of calculus to the effect(
ln

(
1 +

1

xs

))′

=
sx−s−1

1− x−s
=

s

x(xs − 1)
.

Remark. The prime number theorem says that

π(x) ∼ x

ln(x)
, as x→ ∞.

Differentiating the log equivalent of Euler’s formula (with respect to s), we obtain

ζ ′(s)

ζ(s)
= (ln(ζ(s)))′ = − d

ds

∑
p∈Π

ln
(
1− p−s

)
=
∑
p∈Π

p−s ln(p)

1− p−s
=
∑
p∈Π

∞∑
m=1

ln(p)

pms
,

118See the fundamental inequality for the natural logarithm in Section 10.3 in Elements of Mathe-
matics - History and Foundations.
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where the interchange of differentiation and the summation is allowed because the
sum

∑∞
n=2 ln(n)/(n

s − 1), 1 < s ∈ R, is uniformly convergent on closed intervals in
(1,∞) (Proposition 1.3.10). The last double sum can be written as the Dirichlet sum

ζ ′(s)

ζ(s)
=

∞∑
n=1

Λ(n)

ns
, 1 < s ∈ R.

There is an important link between the zeta and gamma functions which allows
to express the zeta function in terms of an improper integral:

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx, 1 < s ∈ R.

We call this the zeta gamma relation.
To derive this, we start with the Gamma function

Γ(s) =

∫ ∞

0

xs−1e−x dx = ns

∫ ∞

0

us−1e−nu du, n ∈ N,

where we performed the substitution x = nu with fixed n ∈ N. Dividing and summing
up (using the infinite geometric series formula), we obtain119

ζ(s) =
∞∑
n=1

1

ns
=

1

Γ(s)

∞∑
n=1

∫ ∞

0

us−1e−nu du =
1

Γ(s)

∫ ∞

0

us−1

∞∑
n=1

e−nu du

=
1

Γ(s)

∫ ∞

0

us−1 e−u

1− e−u
du =

1

Γ(s)

∫ ∞

0

us−1

eu − 1
du, 1 < s ∈ R,

where the interchange of the infinite sum and the improper integral is clearly allowed.
The formula follows.

Remark. Although we will do this in a more general and systematic way shortly,
this formula can be used to give a direct proof that the zeta function is analytic on
(1,∞). See Exercise 1 at the end of this section.

The next example expresses the Bernoulli numbers in terms of an improper inte-
gral.

Example 4.17.1. We have120∫ ∞

0

x2n−1

e2πx − 1
dx = (−1)n+1B2n

4n
, n ∈ N.

119Here and below, we follow Riemann’s original paper Ueber die Anzahl der Primzahlen unter
einer gegebener Grösse, Monatsberichte der Berliner Akademie, Novermber, 1859.
120For a proof using contour integration on the complex plane, see Carda, Monatshefte für Math.

und Phys. v. (1894) 321-324.
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Indeed, the zeta gamma relation derived above specializes to

ζ(2n) =
1

(2n− 1)!

∫ ∞

0

x2n−1

ex − 1
dx =

(2π)2n

(2n− 1)!

∫ ∞

0

x2n−1

e2πx − 1
dx,

where we performed a linear change of variables. Euler’s summation formula (Section
4.13) gives the value of ζ(2n) in terms of the Bernoulli number B2n. The example
follows.

We make a short detour here, and give a more transparent interpretation of the
improper integral in the Euler-Maclaurin formula for the gamma function (Section
4.15) using the second Binet formula (Section 4.16). Recall that the integral in
question is ∫ ∞

0

arctan(x/t)

e2πx − 1
dx, t > 0.

We first use the finite geometric series formula as

arctan(x) =

∫ x

0

du

1 + u2
=

∫ x

0

m∑
ℓ=1

(−1)ℓ−1u2(ℓ−1) du+ (−1)m
∫ x

0

u2m

1 + u2
du

=
m∑
ℓ=1

(−1)ℓ−1

2ℓ− 1
x2ℓ−1 + (−1)m

∫ x

0

u2m

1 + u2
du.

Replacing x by x/t, t > 0, and changing the variable in the integral, we obtain

arctan
(x
t

)
=

m∑
ℓ=1

(−1)ℓ−1

2ℓ− 1

x2ℓ−1

t2ℓ−1
+

(−1)m

t2m−1

∫ x

0

u2m

t2 + u2
du.

We now substitute this into the improper integral of the second Binet formula and
calculate∫ ∞

0

arctan(x/t)

e2πx − 1
dx =

m∑
ℓ=1

(−1)ℓ−1

2ℓ− 1

1

t2ℓ−1

∫ ∞

0

x2ℓ−1

e2πx − 1
dx

+
(−1)m

t2m−1

∫ ∞

0

∫ x

0

u2m

t2 + u2
du

dx

e2πx − 1

=
m∑
ℓ=1

B2ℓ

4ℓ(2ℓ− 1)

1

t2ℓ−1
+

(−1)m

t2m−1

∫ ∞

0

∫ x

0

u2m

t2 + u2
du

dx

e2πx − 1
.

With this, the second Binet formula takes the form

ln Γ(t+ 1) = ln
√
2π + (t+ 1/2) ln(t)− t+

m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

1

t2ℓ−1

+2
(−1)m

t2m−1

∫ ∞

0

∫ x

0

u2m

t2 + u2
du

dx

e2πx − 1
,
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where we used Example 4.17.1 above. We recognize here that the finite sum involving
the Bernoulli numbers is the same as in the Euler-Maclaurin formula for the gamma
function. Although the double integral here looks more complex than the improper
integral in that formula; in fact, it is much easier to estimate. We have∣∣∣∣∫ ∞

0

∫ x

0

u2m

t2 + u2
du

dx

e2πx − 1

∣∣∣∣ ≤ 1

t2

∣∣∣∣∫ ∞

0

∫ x

0

u2m du
dx

e2πx − 1

∣∣∣∣
=

1

2m+ 1

1

t2

∫ ∞

0

x2m+1

e2πx − 1
dx =

1

t2
|B2m+2|

4(m+ 1)(2m+ 1)
,

where, one again, we used Example 4.17.1. Summarizing, we have∣∣∣∣∣ln Γ(t+ 1)− ln
√
2π −

(
t+

1

2

)
ln(t) + t−

m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

1

t2ℓ−1

∣∣∣∣∣
≤ |B2m+2|

2(m+ 1)(2m+ 1)

1

t2m+1
.

The upper bound is the absolute value of the next (m+1st term) of the sum. Hence
this estimate is equivalent to the statement that the expression

ln Γ(t+ 1)− ln
√
2π −

(
t+

1

2

)
ln(t) + t

is always between the sums

m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

1

t2ℓ−1
and

m+1∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

1

t2ℓ−1
.

Finally, it is instructive to compare this with the estimate obtained in Section 4.15:∣∣∣∣∣ln Γ(t+ 1)− ln
√
2π −

(
t+

1

2

)
ln(t) + t−

m∑
ℓ=1

B2ℓ

2ℓ(2ℓ− 1)

1

t2ℓ−1

∣∣∣∣∣
≤ |B2m|

4πm

(
1

t2m
− 1

(t+ 1/2)2m

)
.

The ratio of the Euler-Maclaurin and Binet upper bounds above is

t

m

(
1− 1

(1 + 1/(2t))2m

) ∣∣∣∣ B2m

B2m+2

∣∣∣∣ (m+ 1)(2m+ 1)

2π

∼ π
t

m

(
1− 1

(1 + 1/(2t))2m

)
as m→ ∞,
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where we used the asymptotics for the Bernoulli numbers in Section 4.13. On the
other hand, for fixed m ∈ N, we have

lim
t→∞

t

m

(
1− 1

(1 + 1/(2t))2m

)
= 1.

Both estimates give excellent approximations; for example, for t = 10 and m =
1, 2, 3, 4, 5, the Euler-Maclaurin and Binet estimates are given in pairs below:

m = 1 [1.233059838 · 10−5, 2.777777778 · 10−6]

m = 2 [2.351481461 · 10−8, 7.936507936 · 10−9]

m = 3 [1.602820401 · 10−10, 5.952380952 · 10−11]

m = 4 [2.143025539 · 10−12, 8.417508418 · 10−13]

m = 5 [4.655122283 · 10−14, 1.917526918 · 10−14].

We now return to the main line. The Dirichlet sum defining the zeta function
diverges for s ≤ 1. The simplest idea to extend it to 0 < s < 1 is to consider the
alternating zeta function121 ζa : (0,∞) → R defined by

ζa(s) =
∞∑
n=1

(−1)n+1

ns
0 < s ∈ R.

This sum converges122 for all s > 0 by the alternating series test. Alternatively, this
can be seen directly as

ζa(s) =
∞∑
n=1

(
1

(2n− 1)s
− 1

(2n)s

)
=

∞∑
n=1

∫ 2n

2n−1

s

xs+1
dx ≤ s

∞∑
n=1

1

(2n− 1)s+1

which converges for s > 0.
Moreover, for s > 1, we have

ζ(s)− ζa(s) =
∞∑
n=1

1− (−1)n+1

ns
=

∞∑
n=1

2

(2n)s
=

1

2s−1
ζ(s),

and hence

ζ(s) =
1

1− 21−s
ζa(s), s > 1.

121Also called the Dirichlet eta function. Note that this function was studied by Euler in 1749.
122Not absolutely, but uniformly on closed subintervals of (0,∞). It is a basic fact (that we will

not show here) that the sum of the series is an analytic function.
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This formula allows us to extend the zeta function ζ(s) to s > 0, s ̸= 1.
As an immediate byproduct, we have

lim
s→1

(s− 1)ζ(s) = lim
s→1

(s− 1)ζa(s)

1− 21−s
=
ζa(1)

ln(2)
= 1,

since ζa(1) =
∑∞

n=1(−1)n+1/n = ln(2). One we show that the zeta function is analytic
away from 1, this indicates that it has a first order pole at s = 1 with residue 1.

In analogy with the zeta function, we have the integral formula

ζa(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex + 1
dx, 0 < s ∈ R.

Indeed, we have

ζa(s) =
∞∑
n=1

(−1)n+1

ns
=

1

Γ(s)

∞∑
n=1

∫ ∞

0

(−1)n+1us−1e−nu du

=
1

Γ(s)

∫ ∞

0

us−1

∞∑
n=1

(−1)n+1e−nu du =
1

Γ(s)

∫ ∞

0

us−1 e−u

1 + e−u
du

=
1

Γ(s)

∫ ∞

0

us−1

eu + 1
du, 1 < s ∈ R,

where the interchange of the infinite sum and the improper integral is clearly allowed.
The formula follows.

Remark. As in the case of the zeta function, this formula can be used to give a
direct proof that the alternating zeta function is analytic on (0,∞). See Exercise 2 at
the end of this section. In particular, the formula connecting ζ and ζa above provides
an analytic continuation of the zeta function from s > 1 to s > 0.

The zeta and gamma relation gives us a hint that there may be other integral
formulas for the zeta function with more extended domains. The first and simplest
attempt is to use the first Euler-Maclaurin fomula of the previous section to this effect

n∑
k=1

1

ks
=

∫ n

1

dx

xs
− s

∫ n

1

P1(x)

xs+1
dx+

1

2

(
1

ns
+ 1

)
= − 1

s− 1

(
1

ns−1
− 1

)
+

1

2

(
1

ns
+ 1

)
− s

∫ n

1

P1(x)

xs+1
dx, 2 ≤ n ∈ N.

Keeping 1 < s ∈ R, we let n→ ∞, and obtain

ζ(s) =
∞∑
k=1

1

ns
=

1

s− 1
+

1

2
− s

∫ ∞

1

P1(x)

xs+1
dx.
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The improper integral (absolutely) converges for s > 0 (and conditionally for s > −1).
We will prove below (in a more general setting) the simple fact that the improper
integral on the right-hand side above defines an analytic function on (0,∞). Hence,
the entire right-hand side is an analytic continuation of the zeta function from (1,∞)
to (0,∞) across a simple pole at 1 with residue 1. (The same fact has been indicated
for the previous extension of the zeta function (using ζa) for 0 < s < 1.)

An interesting byproduct is the following:

Example 4.17.2. 123 We have

lim
s→1+

∞∑
n=1

(
1

ns
− 1

sn

)
= lim

s→1+

(
ζ(s)− 1

s− 1

)
= γ.

Indeed, we have

lim
s→1+

(
ζ(s)− 1

s− 1

)
=

1

2
−
∫ ∞

1

P1(x)

x2
dx = γ,

where, in the last equality, we used Example 4.15.2. By the infinite geometric series
formula, the example follows.

Returning to the Euler-Maclaurin summation formula, we now perform integration
by parts on the last improper integral before the example as∫ ∞

1

P1(x)

xs+1
dx =

1

2

∫ ∞

1

P ′
2(x)

xs+1
dx = − 1

12
+
s+ 1

2

∫ ∞

1

P2(x)

xs+2
dx,

since the boundary terms[
P2(x)

xs+1

]∞
1

= −P2(1) = −B2 = −1

6
.

Substituting, we obtain

ζ(s) =
1

s− 1
+

1

2
+

s

12
− s(s+ 1)

2

∫ ∞

1

P2(x)

xs+2
dx.

Since the improper integral converges for −1 < s ∈ R, this gives an extension of ζ(s)
to s > −1. It also shows ζ(0) = −1/2 = B1.

123For an elementary and direct proof, see Sondow, J., An antisymmetric formula for Euler’s
constant, Math. Magazine, Vol. 71, No.3 (Jun. 1998) 219-220.
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Performing integration by parts can be inductively applied to the improper integral.124

In general, we obtain

ζ(s) =
1

s− 1
−B1 +

s

2!
B2 +

s(s+ 1)

3!
B3 + · · ·+ s(s+ 1)(s+ 2) · · · (s+m− 1)

(m+ 1)!
Bm+1

− s(s+ 1)(s+ 2) · · · (s+m)

(m+ 1)!

∫ ∞

1

Pm+1(x)

xs+m+1
dx, s > −m, m ∈ N.

This extends the zeta function to all real numbers except at 1, where it has a simple
pole with residue 1.

We now show that these extensions (for various m ∈ N0) are analytic, and hence
they define successive analytic continuations of the zeta function.
Since, the coefficients of the Bernoulli numbers (as well as the integral) are polyno-
mials in s, it is enough to prove that the improper integral on the right-hand side is
analytic for s > −m.
To do this we give an estimate of the growth rate of the higher derivatives of the
integral in s. The nth derivative n ∈ N is

dn

dsn

∫ ∞

1

Pm+1(x)

xs+m+1
dx = (−1)n

∫ ∞

1

Pm+1(x)

xs+m+1
(ln(x))n dx,

where the differentiation can be interchanged with the improper integral by Proposi-
tion 4.4.2. For n ∈ N0, we estimate as∣∣∣∣∫ ∞

1

Pm+1(x)

xs+m+1
(ln(x))n dx

∣∣∣∣ ≤ sup
x∈[0,1]

|Bm+1(x)|
∫ ∞

1

(ln(x))n

xs+m+1
dx = K

n!

(s+m)n+1
,

where K stands for the supremum, and we used Example 4.3.1. The claimed analitic-
ity now follows (Section 2.4).

As a byproduct of the expansion of the zeta function above, we also obtain

ζ(−m) = (−1)m
Bm+1

m+ 1
, m ∈ N0.

Indeed, substituting s = −m in the formula above, the initial sum of m + 1 terms
cancel due to the inductive formula for the Bernoulli numbers (Section 4.12), and
the fact that all odd Bernoulli numbers are zero except B1 = −1/2. A notable
consequence of this is that the zeta function vanishes on all negative even integers.
These are called the trivial zeros of the zeta function.

124Alternatively, we can also use the Euler-Maclaurin summation formulas of the previous section.
Our direct method is of slight technical convenience as it involves derivatives of all order, not just
the odd ones.
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A more compact expression can be obtained from the first Euler-Maclaurin formula
by making a more precise estimate of the improper integral error term; indeed, the
following formula was Riemann’s principal observations about the zeta function

Γ(s/2)

πs/2
ζ(s) =

1

s(s− 1)
+

∫ ∞

1

(
t−(s+1)/2 + ts/2−1

)
ψ(t) dt, 1 < s ∈ R,

where

ψ(t) =
∞∑
n=1

e−πn2t, 0 < t ∈ R.

The importance of this is that the right-hand side is invariant under the transforma-
tion s↔ 1− s. This allows to define the zeta function for s < 0 by a single formula.
This formula, to be proved below, is the so called functional equation:

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s), s ∈ R \ {1}.

History. The functional equation was originally conjectured by Euler, and was given two proofs

in Riemann’s famous paper Ueber die Anzahl der Primzahlen unter einer gegebener Grösse, Monats-

berichte der Berliner Akademie, Novermber, 1859, written on the occasion of his admission to the

Prussian Academy of Sciences in 1859. He also proved analytic continuation of the zeta function to

the whole complex plane except a simple pole at 1.

Note that, evaluating the functional equation on negative odd integers s = −2n+1,
n ∈ N, and using our earlier result, we obtain

ζ(−2n+ 1) = −B2n

2n
= (−1)n2−2n+1π−2n(2n− 1)!ζ(2n).

As a byproduct, we recover Euler’s summation formula in Section 4.13:

ζ(2n) =
∞∑
k=1

1

k2n
= (−1)n+1B2n(2π)

2n

2(2n)!
, n ∈ N.

Remark. No simple formula is known for ζ(2n + 1), n ∈ N. For n = 1, in 1979, R.
Apery used the series representation for the so-called Catalan number

ζ(3) =
5

2

∞∑
n=1

(−1)n

n3
(
2n
n

) ,
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to prove that it is irrational. More recently, Zudilin125 proved that one of the four
numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational. A general result of Ball and Rivoal126

asserts that the number of irrationals in the set {ζ(2k + 1) | k = 1, . . . , n}, n ∈ N, is
≥ 1/(2(1 + ln(2))) for large n.

For an elementary proof of the functional equation, we need some preparations.127

We make a minor modification of technical convenience in that we consider a
continuously differentiable function f : [−m,n] → R, 2 ≤ m,n ∈ N, and write

n∑
k=−m

f(k) =

∫ n

−m

f(x) dx+
1

2
(f(n) + f(−m)) +

∫ n

−m

P1(x)f
′(x) dx, 2 ≤ m,n ∈ N.

We now extend f : (−∞,∞) → R, and let m,n→ ∞. We have

∞∑
n=−∞

f(n) =

∫ ∞

−∞
f(x) dx+

∫ ∞

−∞
P1(x)f

′(x) dx,

where we assume that the infinite sum, and the improper integrals exist (in particular,
limn→±∞ f(x) = 0). We now substitute the (Fourier) expansion of P1 derived in
Section 4.14 into the last integral and obtain

∞∑
n=−∞

f(n) =

∫ ∞

−∞
f(x) dx−

∫ ∞

−∞

∞∑
n=1

sin(2πnx)

πn
f ′(x) dx

=

∫ ∞

−∞
f(x) dx− 1

π

∞∑
n=1

1

n

∫ ∞

−∞
f ′(x) sin(2πnx) dx,

where, once again, we assume that the intechange of the improper integral and the
infinite sum is legitimate. Finally, we perform integration by parts, and arrive at the
formula

∞∑
n=−∞

f(n) =

∫ ∞

∞
f(x) dx+ 2

∞∑
n=1

∫ ∞

−∞
f(x) cos(2πnx) dx,

or equivalently
∞∑

n=−∞

f(n) =
∞∑

n=−∞

∫ ∞

−∞
f(x) cos(2πnx) dx.

125See Zudilin, W., One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational, Russ. Math. Surv. 56
(2001) 193-206.
126See Ball, K. and Rivoal, T., Irrationaité d’une infinite de la fonction zeta aux entiers impairs,

Invent. Math. 146 (2001) 193-207.
127Note that there are no less than seven methods of proof of the functional equation in Titmarsch,

E.C. The Theory of the Riemann Zeta Function, 2nd edition, Oxford, 1986.
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This is (the real form of) the Poisson summation formula. The assumptions on f
for this to be valid hold for Schwarz functions, continuously differentiable functions
f : R → R up to any order such that, for any c ∈ R and n ∈ N0, we have

lim
x→±∞

|f (n)(x)|
|x|c

= 0.

History. The Poisson summation formula was discovered by the French mathematician and

physicist Siméon Denis Poisson (1781 – 1840).

We apply the Poisson summation formula for the parametric (Schwarz) function
f : R× (0,∞) → R defined by

f(x, t) = e−πx2t, x ∈ R, 0 < t ∈ R.

We calculate128 ∫ ∞

−∞
e−πx2t cos(2πnx) dx = 2

∫ ∞

0

e−πx2t cos(2πnx) dx

=
2√
πt

∫ ∞

0

e−u2

cos

(
2
√
πn√
t
u

)
du =

1√
t
e−

πn2

t .

Substituting this into the Poisson formula, we obtain

∞∑
n=−∞

e−πn2t =
1√
t

∞∑
n=−∞

e−
πn2

t , t > 0.

We now begin with the proof of the functional equation for the zeta function.129

Substituting a = s/2− 1, 0 < s ∈ R, n = n2π, n ∈ N, and c = 1 into the formula in
the remark after Example 4.6.3, we obtain∫ ∞

0

ts/2−1e−πn2t dt =
Γ(s/2)

πs/2ns
, s > 0, n ∈ N.

We now impose s > 1, sum up with respect to n ∈ N and rearrange as

Γ(s/2)

πs/2
ζ(s) =

Γ(s/2)

πs/2

∞∑
n=1

1

ns
=

∞∑
n=1

∫ ∞

0

ts/2−1e−πn2t dt =

∫ ∞

0

ts/2−1

∞∑
n=1

e−πn2t dt,

128For the last equality, letting I(s) =
∫∞
0

e−u2

cos(su) du, s ∈ R, differentiating and integrating

by parts, we obtain I ′(s) = −(s/2)I(s), I(0) =
√
π/2, and hence I(s) = (

√
π/2)e−s2/4, s ∈ R.

129Once again, here we follow Riemann’s original paper Ueber die Anzahl der Primzahlen unter
einer gegebener Grösse, Monatsberichte der Berliner Akademie, Novermber, 1859. This includes his
notations except for the Gamma function which he denoted by Π(s) = Γ(s−1). See also Titmarsch,
E.C., The Theory of the Riemann Zeta Function, 2nd edition, Oxford, 1986.
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where the interchange of the summation with the improper integral is allowed by
absolute convergence. It is convenient to introduce the shorthand notation ψ(t) =∑∞

n=1 e
−πn2t, t > 0. With this, we have so far

Γ(s/2)

πs/2
ζ(s) =

∫ ∞

0

ts/2−1ψ(t) dt =

∫ 1

0

ts/2−1ψ(t) dt+

∫ ∞

1

ts/2−1ψ(t) dt,

where we split the integral for future purposes. In terms of ψ, the Poisson formula is
equivalent to

2ψ(t) + 1 =
1√
t
(2ψ(1/t) + 1) , t > 0.

We use this to replace the integrand in the first integral on the right-hand side as

Γ(s/2)

πs/2
ζ(s) =

∫ 1

0

ts/2−1ψ(t) dt+

∫ ∞

1

ts/2−1ψ(t) dt

=

∫ 1

0

ts/2−3/2ψ

(
1

t

)
dt+

1

2

∫ 1

0

ts/2−1

(
1√
t
− 1

)
+

∫ ∞

1

ts/2−1ψ(t) dt

=

∫ ∞

1

t−s/2−1/2ψ(t) dt+
1

s− 1
− 1

s
+

∫ ∞

1

ts/2−1ψ(t) dt,

where, in the last step, we changed the variable t to 1/t. Simplifying, we obtain

Γ(s/2)

πs/2
ζ(s) = − 1

s(1− s)
+

∫ ∞

1

(
t−s/2−1/2 + ts/2−1

)
ψ(t) dt.

The crux is that the right-hand side is invariant under the change 1 − s 7→ s. This
gives

Γ(s/2)

πs/2
ζ(s) =

Γ(1/2− s/2)

π1/2−s/2
ζ(1− s).

By Euler’s reflection formula Γ(s/2)Γ(1 − s/2) = π/ sin(πs/2) in Proposition 4.9.1,
this can be written as

ζ(s) = Γ(1/2− s/2)Γ(1− s/2)πs−3/2 sin
(πs
2

)
ζ(1− s).

Finally, using the Legendre duplication formula with t = 1/2 − s/2 in Proposition
4.10.1, this simplifies to the following

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s).

The functional equation for the zeta function follows.



4.17. THE RIEMANN ZETA FUNCTION 341

We close this chapter by presenting another proof of the functional equation for
the zeta function due to Hardy.130 (We will give yet another proof as a special case
of Hermite’s formula in Section 4.20.) We start by recalling from Section 4.14 the
Fourier expansion

∞∑
n=1

sin(nx)

n
=
π − x

2
, 0 < x < 2π.

Splitting the sum into odd-even parts, for 0 < x < π, we calculate

π − x

2
=

∞∑
n=1

sin(nx)

n
=

∞∑
n=0

sin((2n+ 1)x)

2n+ 1
+

1

2

∞∑
n=1

sin(n(2x))

n
=

1

2

π − 2x

2
.

This gives

∞∑
n=0

sin((2n+ 1)x)

2n+ 1
=
π − x

2
− π − 2x

4
=
π

4
, 0 < x < π.

It is straightforward to extend this using periodicity to the expansion131

∞∑
n=0

sin((2n+ 1)x)

2n+ 1
= (−1)m

π

4
, mπ < x < (m+ 1)π, m ∈ Z.

We now multiply both sides by xs−1, 0 < s < 1, and integrate over (0,∞) with respect
to x. We will do this for each side separately. For the left-hand side, we have∫ ∞

0

xs−1

∞∑
n=0

sin((2n+ 1)x)

2n+ 1
dx =

∫ ∞

0

∞∑
n=0

1

2n+ 1

sin((2n+ 1)x)

x1−s
dx

=
∞∑
n=0

1

2n+ 1

∫ ∞

0

sin((2n+ 1)x)

x1−s
dx =

∞∑
n=0

1

(2n+ 1)s+1
Γ(s) sin

(πs
2

)
,

where we used the (scaled) formula∫ ∞

0

sin(ax)

xs−1
= a−sΓ(s) sin

(πs
2

)
, a > 0,

130See Hardy, G.H. A new proof of the functional equation for the zeta function, Mat. Tidsskrift,
B (1922) 71-73. The proof uses analiticity of the alternatig zeta function ζa on (0,∞) as in Exercise
2 at the end of this section.
131This is actually the Fourier series of the saltus function f : R → R defined by f(x) = (−1)mπ/4

if mπ < x < (m + 1)π and f(x) = 0 if x = mπ, m ∈ Z.
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at the end of Section 4.6. The infinite sum can be written in terms of the zeta function
since

ζ(s+1) =
∞∑
n=1

1

ns+1
=

∞∑
n=0

1

(2n+ 1)s+1
+

1

2s+1

∞∑
n=1

1

ns+1
=

∞∑
n=0

1

(2n+ 1)s+1
+

1

2s+1
ζ(s+1),

so that
∞∑
n=0

1

(2n+ 1)s+1
=

(
1− 1

2s+1

)
ζ(s+ 1), 0 < s < 1.

With this, the left hand-side is∫ ∞

0

xs−1

∞∑
n=0

sin((2n+ 1)x)

2n+ 1
dx =

(
1− 1

2s+1

)
ζ(s+ 1)Γ(s) sin

(πs
2

)
The right-hand side can be written as

π

4

∞∑
m=0

(−1)m
∫ (m+1)π

mπ

xs−1 dx.

We first note that the series here converges132 for s < 1, and gives an analytic function.
Assuming s < 0, we calculate

π

4

∞∑
m=0

(−1)m
∫ (m+1)π

mπ

xs−1 dx =
π

4s

∞∑
m=0

(−1)m [xs](m+1)π
mπ

=
πs+1

4s

∞∑
m=0

(−1)m ((m+ 1)s −ms) =
πs+1

2s

∞∑
n=1

(−1)n+1

n−s

=
πs+1

2s
ζa(−s) =

πs+1

2s

(
1− 2s+1

)
ζ(−s).

where we used the alternating zeta function, and its relation for the zeta function.
Since the left-hand side and the right-hand side overlap for 0 < s < 1, by the unicity
of analytic functions, they are equal everywhere on their domain of analiticity. We
obtain (

1− 1

2s+1

)
ζ(s+ 1)Γ(s) sin

(πs
2

)
=
πs+1

2s

(
1− 2s+1

)
ζ(−s).

Rearranging, we have

ζ(s+ 1)Γ(s+ 1) sin
(πs
2

)
= −2sπs+1ζ(−s),

132Albeit not absolutely.
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where we used sΓ(s) = Γ(s+ 1). Finally, replacing s by its opposite −s, we arrive at

ζ(1− s)Γ(1− s)
(πs
2

)
= 2−sπs−1ζ(s).

This is the functional equation for the zeta function.

Exercises

1. Use the formula

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx, 1 < s ∈ R.

in the text to prove that the zeta function is analytic on (1,∞) by the following steps.
(a) Notice first that it is enough to prove that the improper integral is analytic in
s > 1 (as the quotient of analytic functions is analytic, and the gamma function is
analytic; see Section 4.6.). (b) For n ∈ N, derive the formula

dn

dsn

(∫ ∞

0

xs−1

ex − 1
dx

)
=

∫ ∞

0

xs−1

ex − 1
(ln(x))n dx, s > 1.

(c) Use the estimate ex − 1 = 2ex/2 sinh(x/2) ≥ 2xex/2, x ≥ 0, and the method at the
beginning of Section 4.6 (t = s− 1) to estimate∣∣∣∣∫ ∞

0

xs−1

ex − 1
(ln(x))n dx

∣∣∣∣ ≤ ∫ ∞

0

xs−1

ex − 1
|ln(x)|n dx

≤ 1

2

∫ ∞

0

xs−2e−x/2 |ln(x)|n dx ≤ 1

2

n!

(s− 1)n+1
+K 4n n!, s > 1, n ∈ N,

where xb−2 ≤ Kex/4, x ≥ 1, and 1 < s < b. (d) Finally, use condition on the growth
rate of the Taylor coefficients (Section 2.4) to conclude that ζ is analytic on (1,∞).

2. Make the necessary changes in Exercise 1 in the use of the integral formula

ζa(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex + 1
dx, 1 < s ∈ R.

to prove that the alternating zeta function is analytic on (0,∞).

3. Show that

ln(n) =
∑
d|n

Λ(d), n ∈ N.
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4. Show that

1

ζ(s)
=
∏
p∈Π

(
1− 1

pm

)
=

∞∑
n=1

µ(n)

ns
,

where µ is the Möbius function given by µ(1) = 1, µ(n) = (−1)k if n is the product
of k distinct primes, and zero otherwise.

4.18 The Digamma and Polygamma Functions

The digamma function Ψ : R \ (−N0) → R is defined as the logarithmic derivative
of the Gamma function

Ψ(t) =
Γ′(t)

Γ(t)
, t ∈ R \ (−N0).

In section 4.10, using the Weierstrass representation of the Gamma function, we ac-
tually obtained an absolutely convergent series representation of the digamma func-
tion133

Ψ(t) = −γ +
∞∑
n=1

(
1

n
− 1

t+ n− 1

)
= −γ +

∞∑
n=1

t− 1

n(t+ n− 1)

as well as its derivative

Ψ′(t) =
∞∑
n=1

1

(t+ n− 1)2
.

An immediate consequence of the last formula is that the digamma function Ψ is
strictly increasing everywhere. Note that these series are uniformly convergent on
closed subintervals of R \ (−N0). In addition, we have

Ψ′′(t) = −2
∞∑
n=1

1

(t+ n− 1)3
,

showing that the digamma function is strictly concave on (0,∞).
Some specific values of Ψ and Ψ′ are readily obtained (with increasing complexity)

133In Section 4.10, we resricted the domain to (0,∞); however, these representations are clearly
valid for R \ (−N0).
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as follows:

Ψ(1) = −γ

Ψ(2) = −γ +
∞∑
n=1

1

n(n+ 1)
= −γ +

∞∑
n=1

(
1

n
− 1

n+ 1

)
= 1− γ

Ψ(1/2) = −γ − 2
∞∑
n=1

1

2n(2n− 1)
= −γ − 2

∞∑
n=1

(
1

2n− 1
− 1

2n

)
= −γ − 2 ln(2)

Ψ′(1) =
∞∑
n=1

1

n2
= ζ(2) =

π2

6

Ψ′(2) =
∞∑
n=1

1

(n+ 1)2
= ζ(2)− 1 =

π2

6
− 1

Ψ′(1/2) = 4
∞∑
n=1

1

(2n− 1)2
= 4

(
∞∑
n=1

1

n2
−

∞∑
n=1

1

(2n)2

)
= 3

∞∑
n=1

1

n2
= 3ζ(2) =

π2

2
.

The series representation of Ψ above is revealing. It shows that, at every non-
positive integer −m, m ∈ N0, the digamma function Ψ has a simple pole; in fact, for
|t +m| < 1, the function Ψ(t) is equal to −1/(t +m) plus an absolutely convergent
series. It follows that the graph of Ψ consists of strictly increasing branches between
consecutive non-positive integers, whereas it has a single strictly increasing branch
over the non-positive integers. Hence Ψ has a simple zero x0 on the positive axis with
1 < x0 < 2 (by the intermediate value theorem as Ψ(1) = −γ < 0 < 1 − γ = Ψ(2)),
and, for every m ∈ N, it has a simple zero xm ∈ (−m,−m + 1). The sequence
(xm)m∈N0 of zeros of the digamma function is of importance as the Gamma function
takes local extrema at exactly on these points. (This follows as they are critical points
of the logaritmically convex Γ.)

History. The zeros of the digamma function can be approximated to any precision. Setting the
number of digits to 25, say, a standard computer algebra system gives

x0 ≈ 1.461632144968362341262660

x1 ≈ −.5040830082644554092582693

x2 ≈ −1.573498473162390458778286

x3 ≈ −2.610720868444144650001538

x4 ≈ −3.635293366436901097839182

x5 ≈ −4.653237761743142441714598

x6 ≈ −5.667162441556885535849474.
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In 1881 Hermite showed that

lim
m→∞

(ln(m))
2

(
xm + m− 1

ln(m)

)
= 0.

A better approximation is provided by the asymptotic relation

xm ∼ −m +
1

π
arctan

(
π

ln(m) + 1/(8m)

)
, m → ∞.

The zeros also satisfy the following134

∞∑
n=0

1

x2
m

= γ2 +
π2

2
,

and similar formulas for
∑∞

n=0 1/x3
m and

∑∞
n=0 1/x4

m.

As we will see in this section, the study of the digamma function provides impor-
tant information about the properties of the gamma function. The following result,
due to Gautschi,135 illustrates this point.

Proposition 4.18.1. We have

2
1

Γ(t)
+ 1

Γ(1/t)

≥ 1, t > 0,

and equality is attained at t = 1.

Remark. The expression on the left-hand side of the Gautschi inequality is the
harmonic mean of Γ(t) and Γ(1/t), t > 0. It is well-known136 that the harmonic
mean is dominated by the geometric mean, which, in turn, is dominated by the
arithmetic mean. It follows that we also have

Γ(t)Γ

(
1

t

)
≥ 1 and Γ(t) + Γ

(
1

t

)
≥ 2, t > 0.

Proof of Proposition 4.19.1. By the discussion above, x0 ∈ (1, 2) is the only
critical point of the (logarithmically convex and positive) gamma funtion on (0,∞).
Hence Γ on (0,∞) attains its (unique) absolute minimum at x0. The expression on
the left-hand side of the inequality to be proven is then strictly increasing on (x0,∞).

134See Mezö, I. and Hoffman, M., Zeros of the digamma function and its Barnes G-function ana-
logue, Integral Transforms and Special Functions, 28 (11) (2017) 846-858.
135See Gautschi, W., A harmonic mean inequality for the gamma function, SIAM J. Math. Anal.,

Vol. 5.No. 2 (1974) 278-281. We follow this original proof.
136See Elements of Mathematics - History and Foundations; Section 9.5.
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Therefore, it is enough to show that the inequality holds on the interval (1, x0] (as the
expression on the left-hand side is invariant under the substitution t→ 1/t, t > 0).
It is technically convenient to use the variable s = ln(t), 0 < t ∈ R, with t = es,
s ∈ R, and also to introduce the function g : R → R by g(s) = 1/Γ(es), s ∈ R. With
this, the inequality to be proven rewrites as

g(s) + g(−s) < 2g(0) = 2, s ∈ (0, ln(x0)]

Expanding g into Taylor series with the Lagrange form of the remainder (Section 2.3),
we obtain

g(s) = g(0) + sg′(0) +
s2

2
g′′(u), 0 < u < s;

g(−s) = g(0)− sg′(0) +
s2

2
g′′(v), −s < v < 0.

Adding, we arrive at

g(s) + g(−s)− 2g(0) =
s2

2
(g′′(u) + g′′(v)) , −s < v < 0 < u < s.

Thus, it remains to show that

g′′(u) + g′′(v) < 0, ln(1/x0) ≤ −s < v < 0 < u < s ≤ ln(x0).

To calculate g′′ we begin

g′(s) =
d

ds

1

Γ(es)
= −es Γ

′(es)

Γ2(es)
= −tΨ(t)

Γ(t)
,

where, in the last equality, we reverted to the variable t. Differentiating again, and
using dt/ds = (d/ds)(es) = es = t, we have

g′′(s) = −t d
dt

(
t
Ψ(t)

Γ(t)

)
= −tΨ(t)

Γ(t)
− t2

Ψ′(t)Γ(t)−Ψ(t)Γ′(t)

Γ2(t)

= − 1

Γ(t)

(
tΨ(t) + t2Ψ′(t)− t2Ψ2(t)

)
.

Next, we claim that both tΨ(t) and t2Ψ′(t) are strictly increasing on (1/2, x0]. (Since
1/2 < 1/x0 < 1 < x0, this covers the interval [1/x0, x0].) For the first expression, we
use the infinite series representation above

tΨ(t) = −γt+
∞∑
n=1

t(t− 1)

n(t+ n− 1)
= −1 + (1− γ)t+

∞∑
n=1

t(t− 1)

(n+ 1)(t+ n)
,
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where we split off the first term and moved the summation index up by one. Now, it
is elementary to observe that the expression t(t − 1)/(t + n) has positive derivative
for t > n(

√
1 + 1/n− 1) = 1/(

√
1 + 1/n+ 1), and hence, for t > 1/2.

This shows that tΨ(t) is strictly increasing on (1/2,∞); and we also note that tΨ(t) <
0 for 0 < t < x0 (since Ψ(x0) = 0).
The second expression t2Ψ′(t) is strictly increasing on (0,∞) as it is obvious by the
expansion above

t2Ψ′(t) =
∞∑
n=1

(
t

t+ n− 1

)2

,

since the same holds for the generic term t/(t+n− 1) = 1− 1/(t+n− 1), t > 0. We
also note that t2Ψ′(t) > 0 for t > 0.
We now derive two estimates on the expression tΨ(t) + t2Ψ′(t) − t2Ψ2(t). The first
estimate is for 1 < t < x0. Using the monotonicity properties above, we have

tΨ(t) + t2Ψ′(t)− t2Ψ2(t) ≥ Ψ(1) +Ψ′(1)−Ψ2(1) = −γ + π2

6
− γ2 = 0.7345404792 . . .

The second estimate is for 1/2 < t < x0. Once again, using the monotonicity proper-
ties above, we have

tΨ(t) + t2Ψ′(t)− t2Ψ2(t) >
1

2
Ψ

(
1

2

)
+

1

4
Ψ′
(
1

2

)
− 1

4
Ψ2

(
1

2

)
= −1

2
(γ + 2 ln(2)) +

π2

8
− 1

4
(γ + 2 ln(2))2 = −0.7118973685 . . .

In terms of the variable s = ln(t), and the intermediate points in the Taylor remain-
ders u, v with ln(1/x0) < −s < v < 0 < u < s < ln(x0), these give

g′′(u)Γ(eu) ≤ −0.7345404792 . . . and g′′(v)Γ(ev) ≤ 0.7118973685 . . .

in particular, g′′(u) < 0. Adding, we obtain

g′′(u)Γ(eu) + g′′(v)Γ(ev) < 0.

Now, if g′′(v) ≤ 0 then g′′(u) + g′′(v) < 0 and we are done. Thus, we may assume
that g′′(v) > 0. Then, we have

0 > g′′(u)Γ(eu) + g′′(v)Γ(ev) > g′′(u)Γ(eu) + g′′(v)Γ(eu) = (g′′(u) + g′′(v)) Γ(eu),

where Γ(ev) > Γ(eu) since 1/x0 < ev < 1 < eu < x0. Hence, g
′′(u)+ g′′(v) < 0 follows

again.
The proof of the proposition is complete.
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Remark. There is a proliferation of variants of the Gautschi inequality; see, for
example Alzer, H., Gamma function inequalities, Numer. Algor. 49 (2008) 53-84,
and the references therein. Some of the estimates on the ratio of gamma functions
discussed at the end of Section 4.10 also involve the digamma functions; for example,
Gautschi’s original estimate

Γ(x+ 1)

Γ(x+ s)
≤ exp ((1− s)Ψ(x+ 1)) , x > 0, 0 <, s < 1,

as well as the sharper Kershaw inequalities137

exp
(
(1− s)Ψ

(
x+

√
s
))
<

Γ(x+ 1)

Γ(x+ s)
< exp

(
(1− s)Ψ

(
x+

1

2
(s+ 1)

))
, x > 0, 0 < s < 1.

See also the survey article of Qi, F., Bounds for the ratio of two gamma functions,
Journal of Inequalities and Applications, Vol. 2010.

Returning to the main line, the series representation of the digamma function
above gives

Ψ(t+ 1)−Ψ(t) =
∞∑
n=1

(
1

t+ n− 1
− 1

t+ n

)
=

1

t
;

that is

Ψ(t+ 1) = Ψ(t) +
1

t
, t ∈ R \ (−N0).

Iterating, we obtain the inductive formula for the digamma function

Ψ(t+m) = Ψ(t) +
1

t
+

1

t+ 1
+ · · ·+ 1

t+m− 1
, t ∈ R \ (−N0), m ∈ N.

In particular (t = 1 and m shifted down):

Ψ(m) = −γ +Hm−1, 2 ≤ m ∈ N,

where Hℓ =
∑ℓ

k=1 1/k, m ∈ N, is the ℓth harmonic number.

Taking the logarithmic derivative of both sides of Euler’s reflection formula (Propo-
sition 4.9.1), a straightforward computation gives the reflection formula for the
digamma function

Ψ(1− t) = Ψ(t) + π cot(πt), t ∈ R \ Z.
137See Kershaw, D., Some extensions of W. Gautschi’s inequalities for the gamma function, Math.

Comp. 41 (1983) 607-611.



350

In a similar vein, taking the logarithmic derivative of both sides of the Legendre
duplication formula, we obtain

Ψ(t) + Ψ(t+ 1/2) =
22t−1

Γ(2t)

(
Γ(2t)

22t−1

)′

= 2 (Ψ(2t)− ln(2))

since (22t−1)
′
=
(
eln(2)·(2t−1)

)′
= ln(2) ·22t. Rearranging, we arrive at the duplication

formula for the digamma function:

Ψ(2t) =
1

2
(Ψ(t) + Ψ(t+ 1/2)) + ln(2).

In particular, substituting t = 1/2 and using Ψ(1) = −γ, we get

Ψ(1/2) = −γ − 2 ln(2).

Moreover, substituting t = m+ 1/2, m ∈ N, we obtain

Ψ(2m+ 1) =
1

2
(Ψ(m+ 1/2) + Ψ(m+ 1)) + ln(2).

Using Ψ(m+ 1) = −γ +Hm and Ψ(2m+ 1) = −γ +H2m, after rearranging, we have

Ψ(m+ 1/2) = −γ − 2 ln(2) + 2
m∑
k=1

1

2k − 1
, n ∈ N,

since 2H2m −Hm = 2
∑m

k=1 1/(2k − 1).

The Legendre-Gauss multiplication theorem for the digamma function
can be obtained from that of the gamma function by logarithmic differentiation in a
straightforward way:

mΨ(t) = m ln(m) +
m−1∑
k=0

Ψ

(
t+ k

m

)
, m ∈ N, t ∈ R \ (N0).

Example 4.18.1. We have

ζ ′(0) = − ln(2π)

2
.

To derive this, we begin by the version of the functional equation of the zeta function
above (after using the invariance 1− s 7→ s; see Section 4.17), which, by merging the
powers of π, we write as

ζ(1− s) = π−s+1/2 Γ(s/2)

Γ(1/2− s/2)
ζ(s).
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Using the functional equation of the gamma function:

Γ

(
1

2
− s

2

)
=

2

1− s
Γ

(
3

2
− s

2

)
,

this becomes

−ζ(1− s) = π−s+1/2 Γ(s/2)

2Γ(3/2− s/2)
(s− 1)ζ(s).

We now perform logarithmic differentiation on each factor (and multiply through −1),
and obtain

ζ ′(1− s)

ζ(1− s)
= lnπ − 1

2
Ψ
(s
2

)
− 1

2
Ψ

(
3− s

2

)
+

(d/ds)((s− 1)ζ(s))

(s− 1)ζ(s)
,

where we used the fact that the digamma function is the logarithmic derivative of
the gamma function. We now evaluate this on s = 1. We have ζ(0) = −1/2 (Section
4.17), Ψ(1/2) = −γ − 2 ln(2), and Ψ(1) = −γ. For the last term, we first note that
lims→1(s− 1)ζ(s) = 1 (Section 4.17), and then

lim
s→1

(s− 1)ζ(s)− 1

s− 1
= lim

s→1

(
ζ(s)− 1

s− 1

)
= γ.

(See Example 4.17.2.) Putting everything together, the example follows.

We now discuss integral representations of the digamma function. We introduce
the parametric integral I : (0,∞) → R by

I(t) =

∫ 1

0

(
t

1− x
+

1− xt

1− x

1

ln(x)

)
dx =

∫ 1

0

t ln(x) + 1− xt

(1− x) ln(x)
dx, t > 0.

We first note that the integrand has removable discontinuities at the end-points, and
hence the integral exists. Indeed, this is obvious at x = 0. For the end-point x = 1,
this follows from the equivalent form

I(t) = t

∫ 1

0

(
1

1− x
+

1

ln(x)

)
dx+

∫ 1

0

(
1− xt

1− x
− t

)
1

ln(x)
dx,

and the fundamental estimate of the natural logarithm138

x

1 + x
≤ ln(1 + x) ≤ x, −1 < x ∈ R.

138See Elements of Mathematics - History and Foundations, Section 10.3.
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(The range of the first integrand is [0, 1] with removable discontinuities at the end-
points.)
Moreover, we have

I(0) = lim
t→0+

I(t) = 0.

(The interchange of the limit and the integration is allowed by the Arzelà bounded
convergence theorem; Section 3.2.)
Differentiating, we have

I ′(t) =
d

dt

∫ 1

0

(
t

1− x
+

1− xt

1− x

1

ln(x)

)
dx

=

∫ 1

0

d

dt

(
t

1− x
+

1− xt

1− x

1

ln(x)

)
dx

=

∫ 1

0

1− xt

1− x
dx, t > 0.

The last integral here is Euler’s harmonic number Ht, 0 < t ∈ R. The name
comes form the fact that, for t = n ∈ N, by the geometric series formula, this integral
reduces to the harmonic number Hn =

∑n
k=1 1/k; see history insert in Section 4.15.

Note that the interchange of the differentiation with the integration is allowed as
the conditions of the corollary to Proposition 4.4.1 are satisfied. (The integrand has
removable discontinuity at x = 1.) Note also that

I ′(0) = lim
t→0+

I ′(t) = 0.

(Once again, here the interchange of the limit and the integration is allowed by the
Arzelà bounded convergence theorem; Section 3.2.)
Finally, differentiating again, for t > 0, we obtain

I ′′(t) =
d

dt

∫ 1

0

1− xt

1− x
dx = −

∫ 1

0

xt ln(x)

1− x
dx

= −
∫ 1

0

∞∑
n=0

xn+t · ln(x) dx = −
∞∑
n=0

∫ 1

0

xn+t · ln(x) dx

= −
∞∑
n=0

∫ 1

0

d

dt
xn+t dx = −

∞∑
n=0

d

dt

∫ 1

0

xn+t dx

= −
∞∑
n=0

d

dt

(
1

n+ t+ 1

)
=

∞∑
n=0

1

(n+ t+ 1)2
= Ψ′(t+ 1).

where, one again, the interchanges of the infinite sum and differentiation with the
integration are allowed. Integrating both sides, we obtain

I ′(t) = Ψ(t+ 1) + C, t > 0.
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Substituting t = 0, and using I ′(0) = 0 and Ψ(1) = −γ, we obtain C = γ. Thus, up
to this point, we have

I ′(t) = Ψ(t+ 1) + γ, t > 0.

Since Ψ(t+ 1) = (d/dt) ln Γ(t+ 1), another integration gives

I(t) = ln Γ(t+ 1) + γt+ C, t > 0.

Finally, substituting t = 0, we have 0 = I(0) = ln Γ(1) + C = C, and hence

I(t) = ln Γ(t+ 1) + γt, t > 0.

Summarizing, we arrive at the integral formula∫ 1

0

(
t

1− x
+

1− xt

1− x

1

ln(x)

)
dx = lnΓ(t+ 1) + γt, t > 0.

In particular, for t = 1, this specializes to∫ 1

0

(
1

1− x
+

1

ln(x)

)
dx = γ.

Substituting this back to the previous expression for ln Γ(t+ 1), we obtain

ln Γ(t+ 1) =

∫ 1

0

(
xt − 1

x− 1
− t

)
dx

ln(x)
, t > 0.

We interrupt the computation by the following formula of Euler:

Example 4.18.2. We have139

lnB(t, s) = ln

(
t+ s

ts

)
+

∫ 1

0

(1− xt)(1− xs)

(1− x) ln(x)
dx, t, s > 0.

Indeed, using the formula just derived, we calculate

lnB(t, s) = = ln

(
Γ(t)Γ(s)

Γ(t+ s)

)
= ln

(
t+ s

ts

)
+ ln

(
Γ(t+ 1)Γ(s+ 1)

Γ(t+ s+ 1)

)
= ln

(
t+ s

ts

)
+

∫ 1

0

(
1− xt

1− x
− t+

1− xs

1− x
− s− 1− xt+s

1− x
+ (t+ s)

)
dx

ln(x)

= ln

(
t+ s

ts

)
+

∫ 1

0

(1− xt)(1− xs)

(1− x) ln(x)
dx.

The example follows.

139See Whittaker, E.T. and Watson, G.N., A Course in Modern Analysis, 4th Edition, Cambridge,
1927, and 3rd Edition, Dover, 2020; Exercise 36, p. 262.
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Returning to our computation, as a byproduct of the computation above (I ′(t)),
we obtain the integral formula

Ψ(t+ 1) = −γ +

∫ 1

0

1− xt

1− x
dx.

Substituting x = e−u, this transforms into

Ψ(t+ 1) = −γ +

∫ ∞

0

1− e−tu

eu − 1
du.

On the other hand, making the same substitution into the formula for γ in the example
above, we obtain ∫ ∞

0

(
1

eu − 1
− 1

ueu

)
du = γ.

Substituting this value of γ into the previous formula and shifting the argument of
Ψ, we arrive at

Ψ(t) =

∫ ∞

0

(
e−x

x
− e−tx

1− e−x

)
dx, t > 0,

where we also reverted to the previous variable. This is the Gauss representation
of Ψ.
The substitution x = ln(1+u) for the integral corresponding to the second term gives∫ ∞

0

e−tx

1− e−x
dx =

∫ ∞

0

du

u(1 + u)t
, t > 0,

and we arrive at the Dirichlet form of the digamma function140

Ψ(t) =

∫ ∞

0

(
e−x − 1

(1 + x)t

)
dx

x
, t > 0.

Remark. Note the special case (t = 1) that gives yet another expression for the
Euler-Mascheroni constant:

γ =

∫ ∞

0

(
1

1 + x
− e−x

)
dx

x
.

Example 4.18.3. We have141∫ 1

0

xt−1

1 + x
dx =

1

2
Ψ

(
t+ 1

2

)
− 1

2
Ψ

(
t

2

)
.

140See ibid.
141See ibid; Exercise 30, p. 262.
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Using the initial integral representation of Ψ above, we calculate

Ψ

(
t+ 1

2

)
−Ψ

(
t

2

)
= −γ +

∫ 1

0

1− x
t+1
2

−1

1− x
dx+ γ −

∫ 1

0

1− x
t
2
−1

1− x
dx

=

∫ 1

0

x
t
2
−1 − x

t+1
2

−1

1− x
dx =

∫ 1

0

x
t
2
−1

1 + x
1
2

dx =

∫ 1

0

ut−1

1 + u
du,

where, in the last equality, we used the substitution x = u2. The example follows.

To complete the circle, we now show that the Gauss representation above and the
Stirling formula imply the first Binet formula (Section 4.16) for the gamma function.
We start with the derivative

I ′(t) =

∫ ∞

0

(
1

u
− 1

2
− e−u

1− e−u

)
e−tu du

of the improper integral in the Binet formula, and compare it with the Gauss repre-
sentation above

Ψ(t+ 1) =

∫ ∞

0

(
e−u

u
− e−(t+1)u

1− e−u

)
du,

where we moved up the value of the parameter t to t+ 1. Taking the difference, and
rearranging, we obtain

I ′(t)−Ψ(t+ 1) = −
∫ ∞

0

e−u − etu

u
du− 1

2

∫ ∞

0

e−tu du = − ln(t)− 1

2t
,

where we used Exercise 1 at the end of Section 4.4. Now, recalling that Ψ(t + 1) =
(ln Γ(t+ 1))′ and integrating the right-hand side, we get

ln Γ(t+ 1) =

(
t+

1

2

)
ln(t)− t+

∫ ∞

0

(
1

2
− 1

u
+

1

eu − 1

)
e−tu

u
du+ C.

This is the first Binet formula for the gamma function, up to the value of the constant
C. We now let t → ∞, and note that the improper integral tends to zero. Finally,
we use the Stirling formula for the gamma function (Section 4.10):

lim
t→∞

Γ(t+ 1)

tt+1/2e−t
=

√
2π,

to conclude that C = ln
√
2π.

As a byproduct of the computations above, we obtained the integral formula∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
e−tx dx = −Ψ(t+1)+ln(t)+

1

2t
= −Ψ(t)+ln(t)− 1

2t
, t > 0,
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interesting in its own right. For example, for x > 0, the trivial inequality 1 + x < ex

gives 1/x > 1/(ex − 1), and hence∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
e−tx dx <

1

2

∫ ∞

0

e−tx dx =
1

2t
, t > 0.

On the other hand, for 0 < x < 2, the trivial inequality ex < 1+ x+ x2/(2− x) gives
1/(ex − 1) > 1/x− 1/2, x > 0 (since this obviously holds for x ≥ 2). Hence∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
e−tx dx > 0, t > 0.

Combining these with the integral representation of the digamma function above, we
arrive at the fundamental estimate of the digamma function

ln t− 1

t
< Ψ(t) < ln t− 1

2t
, t > 0.

This is due to Horst Alzer.142 The sharper estimate

ln

(
t+

1

2

)
− 1

t
< Ψ(t) < ln

(
t+ e−γ

)
− 1

t
, t > 0.

was proved by Elezovic, Giordano and Pecaric.143

Next we reexamine Example 4.1.6 from a point of view of the beta and digamma
functions:

Example 4.18.4. We have∫ π/2

0

ln(sin(x)) dx = −π
2
ln 2.

The crux here is that the integral can be obtained from the Wallis integral (Section
4.11)

W (t) =

∫ π/2

0

sint(x) dx =
1

2
B

(
t+ 1

2
,
1

2

)
, t > −1,

by differentiation

W ′(0) =
d

dt

∫ π/2

0

sint(x) dx

∣∣∣∣
t=0

=

∫ π/2

0

d

dt
sint(x)

∣∣∣∣
t=0

dx =

∫ π/2

0

ln(sin(x)) dx,

142See Alzer, H., On some inequalities for the gamma and psi functions, Math. Comp. 66 (217)
(1997) 373-389.
143See Elezovic, N., Giordano, C. and Pecaric, J., The best bounds in Gautschi’s inequality, Math.

Inequal. Appl. 2 (2000) 239-252; and for the constants being the best possible, Qi, F. and Guo.
B.-N., Sharp inequalities for the psi function and harmonic numbers, arXiv:0902.2524.
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where the interchange of differentiation and the improper integral is allowed by the
remark following Proposition 4.4.2. (See also the higher derivative of the gamma
function in Section 4.6.) We now calculate

d

dt
B

(
t+ 1

2
,
1

2

) ∣∣∣∣
t=0

= Γ

(
1

2

)
d

dt

Γ
(
t+1
2

)
Γ
(
t+2
2

)∣∣∣∣
t=0

=
1

2
Γ

(
1

2

)(
Γ′
(
1

2

)
Γ(1)− Γ

(
1

2

)
Γ′(1)

)
=

1

2
Γ

(
1

2

)2(
Ψ

(
1

2

)
− Γ′(1)

)
=
π

2
(−γ − 2 ln 2 + γ) = −π ln 2.

The example follows.

The values of the digamma function are known for all positive rational numbers
in (0, 1) via the Gauss digamma theorem:

Proposition 4.18.2. Let p < q, p, q ∈ N. Then we have

Ψ

(
p

q

)
= −γ − ln(2q)− π

2
cot

(
pπ

q

)
+

q−1∑
k=1

cos

(
2pπ

k

q

)
ln sin

(
π
k

q

)
.

We will give a proof of this in Section 4.19. One of the stunning features of this
formula is that it expresses the value of the digamma function on rational numbers
by using only elementary functions. The first few values are as follows

Ψ

(
1

2

)
= −γ − 2 ln 2

Ψ

(
1

3

)
= −γ − 3 ln 3

2
− π

√
3

6

Ψ

(
1

4

)
= −γ − 3 ln 2− π

2

Ψ

(
1

6

)
= −γ − 2 ln 2− 3 ln 3

2
− π

√
3

2
.

We now introduce the polygamma functions Ψn : R\ (−N0) → R as the higher
derivatives Ψn = Ψ(n), n ∈ N. By repeated differentiation of the series representation
of the digamma function at the beginning of this section, we obtain the expansion

Ψn(t) = (−1)n+1n!
∞∑
k=1

1

(t+ k − 1)n+1
, n ∈ N, t ∈ R \ (−N0).
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Substitution (t = 1) yields

Ψn(1) = (−1)n+1n!ζ(n+ 1), n ∈ N.

Differentiating the inductive formula of the digamma function at the beginning of
this section, we obtain the inductive formula for the polygamma functions as

Ψn(t+ 1) = Ψn(t) + (−1)n
n!

tn+1
, n ∈ N, t ∈ R \ (−N0)

Differentiating the duplication formula for the digamma function n times, we
obtain

2n+1Ψn(2t) = Ψn(t) + Ψn(t+ 1/2), n ∈ N.

In particular, substituting t = 1/2 and using Ψn(1) = (−1)n+1n!ζ(n+ 1), we get

Ψn(1/2) = (−1)n+1
(
2n+1 − 1

)
n!ζ(n+ 1), n ∈ N.

Moreover, substituting t = m+ 1/2, m ∈ N, gives

2n+1Ψn(2m+ 1) = Ψn(m+ 1/2) + Ψn(m+ 1), m, n ∈ N.

We now use

Ψn(m+ 1) = (−1)n+1n!
∞∑
k=1

1

(m+ k)n+1
= (−1)n+1n!

(
ζ(n+ 1)−

m∑
k=1

1

kn+1

)
,

to obtain

Ψn(m+1/2) = (−1)n+1n!

(
(1− 2n+1)ζ(n+ 1) + 2n+1

2m∑
k=1

1

kn+1
−

m∑
k=1

1

kn+1

)
, m, n ∈ N.

(Note that this also holds for m = 0 with the finite sums absent.)

The Legendre-Gauss multiplication theorem for the polygamma func-
tions can be obtained from that of the digamma function by differentiation in a
straightforward way:

mn+1Ψn(t) =
m−1∑
k=0

Ψn

(
t+ k

m

)
, m, n ∈ N, t ∈ R \ (N0).
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Differentiating both sides of the Gauss representation of the digamma function
immediately gives the following integral representation of the polygamma functions

Ψn(t) = (−1)n+1

∫ ∞

0

xne−tx

1− e−x
dx = −

∫ 1

0

xt−1

1− t
(ln(x))n dx, t > 0, n ∈ N.

Using the zeta gamma relation, in Example 4.17.1 we gave a formula expressing
the Bernoulli numbers as improper integrals. There is yet another (somewhat more
subtle) formula of this kind that we are now able to derive as follows.144

Example 4.18.5. We have∫ ∞

0

x2n−1

sinh(x)
dx = (−1)n+1 (2

2n − 1)π2n

2n
B2n, n ∈ N.

To derive this, we first differentiate n times both sides of the formula

Ψ(t+ 1) = −γ +

∫ ∞

0

1− e−tx

ex − 1
dx,

and obtain

Ψn(t+ 1) = Ψ(n)(t+ 1) = (−1)n+1

∫ ∞

0

xne−tx

ex − 1
dx = (−1)n+12n+1

∫ ∞

0

xne−2tx

e2x − 1
dx

= (−1)n+12n+1

∫ ∞

0

xne−(2t+1)x

ex − e−x
dx = (−1)n+12n

∫ ∞

0

xne−(2t+1)x

sinh(x)
dx.

At t = −1/2, this gives

Ψn(1/2) = (−1)n+12n
∫ ∞

0

xn

sinh(x)
dx, n ∈ N.

Combining this with our previous expression of Ψn(1/2), we arrive at∫ ∞

0

xn

sinh(x)
dx =

2n+1 − 1

2n
n!ζ(n+ 1), n ∈ N.

Replacing n by 2n− 1, we obtain∫ ∞

0

x2n−1

sinh(x)
dx =

22n − 1

22n−1
(2n− 1)!ζ(2n).

Finally, Euler’s summation formula finishes the proof.

144See also Whittaker, E.T. and Watson, G.N., A Course in Modern Analysis, 4th Edition, Cam-
bridge, 1927, and 3rd Edition, Dover, 2020; Exercise, p. 126.
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The higher order derivatives of the digamma function at t = 1 obtained above can
be written as Taylor coefficients

Ψn(1)

n!
=

Ψ(n)(1)

n!
= (−1)n+1ζ(n+ 1), n ∈ N.

These give the Taylor expansion

Ψ(1 + t) = −γ +
∞∑
k=2

(−1)kζ(k) tk−1, |t| < 1,

or, inserting the geometric series formula:

Ψ(1 + t) = − 1

1 + t
− (γ − 1) +

∞∑
k=2

(−1)k (ζ(k)− 1) tk−1, |t| < 1.

Remark. As an interesting byproduct, the Taylor expansion of Ψ above gives the
expansion of the cotangent function at t = 0. Indeed, using Euler’s reflection formula
along with the inductive formula for Ψ as in the beginning of this section, we calculate

π cot(πt) =
1

t
+Ψ(1− t)−Ψ(1 + t) =

1

t
−

∞∑
k=2

ζ(k)tk−1 −
∞∑
k=1

(−1)kζ(k)tk−1

=
1

t
−

∞∑
k=2

(
1 + (−1)k

)
ζ(k)tk−1 =

1

t
− 2

∞∑
k=1

ζ(2k)t2k−1

=
1

t
+

∞∑
k=1

(−1)k
(2π)2k

(2k)!
B2kt

2k−1,

where, in the last step, we used Euler’s summation formula.

One of the advantages of the Taylor expansion of Ψ is that it leads directly (by
integration) to the series expansion of the Gamma function:

ln(Γ(1 + t)) = −γt+
∞∑
k=2

(−1)k
ζ(k)

k
tk, |t| < 1,

or equivalently

ln(Γ(1 + t)) = − ln(1 + t)− (γ − 1)t+
∞∑
k=2

(−1)k
ζ(k)− 1

k
tk, |t| < 1,
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Note that, substituting t = 1 into the first expansion, we obtain the formula

γ =
∞∑
k=2

(−1)k
ζ(k)

k

due to Euler. (The alternating series converges.) Using the substitution t = 1/2 and
rearranging, we obtain

γ = ln

(
4

π

)
+ 2

∞∑
k=2

(−1)k
ζ(k)

k · 2k
.

The series that involve the zeta function on integer values as part of the coefficients
converge slowly. To remedy this, we may consider the more symmetric form

1

2
ln

Γ(1 + t)

Γ(1− t)
= −1

2
ln

(
1 + t

1− t

)
− (γ − 1)t−

∞∑
k=1

ζ(2k + 1)− 1

2k + 1
t2k+1.

We also observe that the Euler reflection formula (Proposition 4.9.1) can be writ-
ten as

Γ(1 + t)Γ(1− t) =
πt

sin(πt)
.

Taking the natural logarithm, and using it in the formula above, we arrive at the
faster converging formula due to Legendre:

ln Γ(1 + t) =
1

2
ln

(
πt

sin(πt)

)
− 1

2
ln

(
1 + t

1− t

)
− (γ − 1)t−

∞∑
k=1

(ζ(2k + 1)− 1)

2k + 1
t2k+1

History. The symmetrized formula for t = 1/2 specializes to

γ = 1 − ln

(
3

2

)
−

∞∑
k=1

ζ(2k + 1) − 1

4k(2k + 1)
.

In 1887 Stieltjes calculated ζ(k), k = 2, . . . , 70 up to 32 decimal precisison (extending previous

computations of Legendre for k = 2, . . . , 35 up to 16 digits). He then used this formula to calculate

γ up to 32 decimal digits.

In the remainder of this section we give various estimates on the polygamma
functions.
We start with the trivial estimate 1 + x < ex, x > 0, of the natural exponential
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function. We write this as x/(1 − e−x) < 1 + x, x > 0. Multiplying through by
xn−1e−tx, n ∈ N, and integrating, we obtain∫ ∞

0

xne−tx

1− e−x
dx <

∫ ∞

0

xn−1e−tx dx+

∫ ∞

0

xne−tx dx, t > 0.

By Example 4.6.1, and the integral formula for the polygamma functions, this gives

(−1)n+1Ψn(t) <
(n− 1)!

tn
+

n!

tn+1
, t > 0, n ∈ N.

On the other hand, since tanh(x) < x, x > 0, we have 1 < (x/2) coth(x/2), x > 0.
We

x

2
coth

(x
2

)
=
x

2

ex/2 + e−x/2

ex/2 − e−x/2
=
x

2

(
2

1− e−x
− 1

)
=

x

1− e−x
− x

2
,

so that we obtain
1 +

x

2
<

x

1− e−x
, x > 0.

As before this gives

(n− 1)!

tn
+

n!

2tn+1
< (−1)n+1Ψn(t), t > 0, n ∈ N.

Combining these, we obtain the fundamental estimate for the polygamma func-
tions

(n− 1)!

tn
+

n!

2tn+1
< (−1)n+1Ψn(t) <

(n− 1)!

tn
+

n!

tn+1
, t > 0, n ∈ N.

A sharper upper bound can be obtained by using the inequality

x

ex − 1
< 1− x

2
+
x2

12
, x > 0.

Although the right-hand side is the first three terms of the series expansion of the
left-hand side in terms of the Bernoulli numbers (Section 4.12), an elementary proof
of this inequality can be obtained by using

∑6
k=1 x

k/k! < ex−1, x > 0, and by noting
that (

1− x

2
+
x2

12

) 6∑
k=1

xk

k!
= x+

x5

6!
+

x6

2 · 6!
+

x8

12 · 6!
, x > 0.

Now, the inequality just proved can be written as

x

1− e−x
< 1 +

x

2
+
x2

12
, x > 0.
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The procedure above then gives

(−1)n+1Ψn(t) <
(n− 1)!

tn
+

n!

2tn+1
+

(n+ 1)!

12tn+2
, t > 0, n ∈ N.

Remark. For n = 1, an alternative derivation145 of the inequalities

1

t
+

1

2t2
< Ψ1(t) <

1

t
+

1

2t2
+

1

6t3
, t > 0,

can be given as follows. Define f : (0,∞) → R by

f(t) =
1

t
+

1

2t2
+

1

6t3
−Ψ1(t), t > 0.

Then, by the inductive formula for Ψ1, we have Ψ1(t)−Ψ1(t+ 1) = 1/t2, so that

f(t+ 1)− f(t) =
1

t+ 1
+

1

2(t+ 1)2
+

1

6(t+ 1)3
− 1

t
− 1

2t2
− 1

6t3
+

1

t2

= − 1

6(t+ 1)3t3
< 0.

Hence, inductively,

f(t) > f(t+ 1) > f(t+ 2) > · · · > lim
t→∞

f(t) = 0,

where we used that limt→∞ Ψ1(t) = 0. The upper bound follows. The proof for the
lower bound is similar (with the cubic term absent).

As an application of these inequalities, and complementing Proposition 4.18.1, we
now prove that the digamma function satisfies the following harmonic mean inequality
due to Horst Alzer and Graham Jameson:146

Proposition 4.18.3. We have

2
1

Ψ(t)
+ 1

Ψ(1/t)

≥ −γ,

where equality holds if and only if t = 1.

145This method is used in Guo, B.-N. and Qi, F., Refinements of lower bounds for polygamma
functions, Proc. Amer. Math. Soc., Vol. 141, No. 3 (March 2013) 1007-1015; see the proof of
Lemma 1 for the weaker upper bound Ψ1(t) < e1/t − 1, t > 0. The extension of this method for
2 ≤ n ∈ N is possible but leads to combinatorial complexity.
146See Alzer, J. and Jameson, G., A harmonic mean inequality for the digamma function and related

results, Rend. Sem. Mat. Univ. Padova, Vol. 137 (2017) 203-209.
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Recall that, as the series expansion of the digamma function Ψ shows, it is strictly
increasing (everywhere) as well as strictly concave on (0,∞). In addition, as noted
in the proof of Proposition 4.18.1 above, t2Ψ′(t) is strictly increasing on (0,∞). Since

d

dt
Ψ

(
1

t

)
= − 1

t2
Ψ′
(
1

t

)
, t > 0,

we see that Ψ(1/t) is strictly convex on (0,∞).
For the proof of Proposition 4.18.3, we need three lemmas.

Lemma 1. We have

Ψ(t) + Ψ

(
1

t

)
≤ −2γ.

The upper bound is attained if and only if t = 1.

Proof. We define the function F : (0,∞) → R by F (t) = Ψ(t) + Ψ(1/t), t > 0.
For future reference, note that F (1) = −2γ and F ′(1) = 0. We now claim that F is
strictly concave.To show this, we differentiate as

t4F ′′(t) = 2tΨ′
(
1

t

)
+Ψ′′

(
1

t

)
+ t4Ψ′′ (t)

= 2t

(
Ψ′
(
1 +

1

t

)
+ t2

)
+Ψ′′

(
1 +

1

t

)
− 2t3 + t4Ψ′′ (t)

= 2tΨ′
(
1 +

1

t

)
+Ψ′′

(
1 +

1

t

)
+ t4Ψ′′ (t) ,

where in the second step we used the inductive formulas for the polygamma functions
Ψ1 = Ψ′ and Ψ′′

2. Finally, we bring in the the fundamental estimate for Ψ′′ and that
of Ψ′ with the refined upper bound as above, and calculate

t4F ′′(t) = 2t

(
1

1 + 1/t
+

1

2(1 + 1/t)2
+

1

6(1 + 1/t)3

)
− 1

(1 + 1/t)2
− 1

(1 + 1/t)3
− t4

(
1

t2
+

1

t3

)
= − t

3(t+ 1)3
(
3t4 + 2t3 + 9t2 + 9t+ 3

)
< 0, t > 0.

The claim follows.
Since F is strictly concave, F ′ is strictly decreasing. Since F ′(1) = 0, it follows that
F ′ is positive on (0, 1) and negative on (1,∞). Hence, F attains its unique absolute
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maximum at t = 1 with value −2γ. Reverting to the definition of F , we obtain the
estimate

Ψ (t) + Ψ

(
1

t

)
≤ −2γ,

with strict inequality for t ̸= 1.

Lemma 2. For 0 < s < 1, we have

Ψ(1 + s)Ψ(1− s) < γ2,

and the upper bound is sharp.

Proof. For 0 < x0 − 1 ≤ s < 1 the inequality is obvious since then (0 <) 1 − s <
x0 ≤ 1 + s, and hence Ψ(1 − s) ≤ 0 ≤ Ψ(1 + s). Thus, we may assume that
0 < s < x0 − 1 (< 1/2). We now use the Taylor series expansion of Ψ above as

−Ψ(1 + s) = γ +
∞∑
k=2

(−1)k+1ζ(k)sk−1.

(Note that s is within the radius of convergence 1.) Since the series is alternating, we
obtain

0 < −Ψ(1 + s) ≤ γ − ζ(2)s+ ζ(3)s2,

and

0 < −Ψ(1−s) ≤ γ+ζ(2)s+ζ(3)
∞∑
k=2

sk = γ+ζ(2)s+ζ(3)
s2

1− s
≤ γ+ζ(2)s+2ζ(3)s2.

Combining these, we obtain

Ψ(1− s)Ψ(1 + s) ≤ γ2 − (ζ(2)2 − 3γζ(3))s2 − ζ(2)ζ(3)s3 + 2ζ(3)2s4.

Now, numerical evaluation shows that ζ(3) < π4/(108γ) so that the coefficient of the
quadratic term (s2) is negative. Since ζ(2)ζ(3) > ζ(3)2 > 2ζ(3)2s, the sum of the last
two terms is also negative. The lemma follows. Note finally that Ψ(1)2 = γ2 so that
the estimate is sharp.

Lemma 3. We have

Ψ(t)Ψ

(
1

t

)
≤ γ2.

The upper bound is attained if and only if t = 1.
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Proof. We may assume that t > 1. Moreover, if t ≥ x0 then Ψ(1/t) < 0 ≤ Ψ(t), so
that we may actually assume 1 < t ≤ x0. Letting t = 1+s, we have 0 < s < x0−1 < 1
and 1− s < 1/(1 + s) = 1/t. Hence, by Lemma 2:

Ψ(t)Ψ

(
1

t

)
< Ψ(1 + s)Ψ(1− s) < γ2,

as Ψ(t) = Ψ(1 + s) < 0. The lemma follows.

Proof of Proposition 4.18.3. Combining Lemmas 1 and 3, for t > 0, t ̸= 1, we
calculate

2
Ψ(t)Ψ(1/t)

Ψ(t) + Ψ(1/t)
> 2

γ2

Ψ(t) + Ψ(1/t)
> 2

γ2

−2γ2
= −γ.

The proposition follows.

Exercises

1. Use the representation of ln Γ as in Example 4.18.2 along with the technique in
Example 4.18.3 to derive the following formula of Kummer147

∫ 1

0

xt−1 − xs−1

(1 + x) ln(x)
dx = ln

(
Γ
(
t+1
2

)
Γ
(
s
2

)
Γ
(
s+1
2

)
Γ
(
t
2

)) .
2. Use the Gauss representation of Ψ to obtain

Ψ(t) = −
∫ 1

0

(
xt−1

1− x
+

1

ln(x)

)
dx, t > 0.

3. Differentiate the formula Γ′ = Γ ·Ψ and evaluate it at 1 to obtain

Γ(n+1)(1) = −γ Γ(n)(1) +
n∑

k=1

(−1)k+1 n!

(n− k)!
ζ(k + 1)Γ(n−k)(1).

Use this inductively to derive an expression for

Γ(m)(1) =

∫ ∞

0

e−x(ln(x))m dx, m = 2, 3, 4, . . . ,

147Ibid.
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in terms of γ and the zeta function on positive integers. The first few cases are∫ ∞

0

e−x ln(x) dx = −γ∫ ∞

0

e−x(ln(x))2 dx =
π2

6
+ γ2∫ ∞

0

e−x(ln(x))3 dx = −π
2

2
γ − γ3 − 2ζ(3)∫ ∞

0

e−x(ln(x))4 dx =
3π4

20
+ π2γ2 + γ4 + 8γζ(3)∫ ∞

0

e−x(ln(x))5 dx = −3π4

4
γ − 5π2

3
γ3 − γ5 − 10π2

3
ζ(3)− 20γ2ζ(3)− 24ζ(5).

4. Take the mth derivative, m ∈ N, of both sides of the formula∫ ∞

0

xt−1 sin(x) dx = Γ(t) sin

(
πt

2

)
= Γ(t+ 1)

sin
(
πt
2

)
t

, 0 ≤ t < 1,

(see the remark at the end of 4.6) to obtain∫ ∞

0

sin(x)

x
(ln(x))m dx =

m∑
k=0

(
m

k

)
dk

dtk
sin
(
πt
2

)
t

∣∣∣∣
t=0

Γ(m−k)(1)

=

[m/2]∑
k=0

(−1)k

2k + 1

(
m

2k

)(π
2

)2k+1

Γ(m−2k)(1).

Now, use the previous exercise to compile the following list:∫ ∞

0

sin(x)

x
ln(x) dx = −π

2
γ∫ ∞

0

sin(x)

x
(ln(x))2 dx =

π3

24
+
π

2
γ2∫ ∞

0

sin(x)

x
(ln(x))3 dx = −π

3

8
γ − π

2
γ3 − πζ(3)∫ ∞

0

sin(x)

x
(ln(x))4 dx =

19π5

480
+
π3

4
γ2 +

π

2
γ4 + 4πγζ(3)∫ ∞

0

sin(x)

x
(ln(x))5 dx = −19π5

96
γ − 5π3

12
γ3 − π

2
γ5 − 5π3

6
ζ(3)− 10πγ2ζ(3)− 12πζ(5).
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4.19 The Hurwitz Zeta Function

The Hurwitz zeta function is defined by

ζ(s, a) =
∞∑
n=0

1

(n+ a)s
, 1 < s ∈ R, 0 < a ∈ R.

In what follows, we will tacitly assume that the ‘parameter’ a is a positive real number
as powers with negative base (such as as = es ln(a)) would lead to complex numbers and
multiple valuedness.148 Clearly, the Hurwitz zeta function is absolutely convergent
for s > 1, and uniformly convergent in s on any closed interval in (1,∞).
By definition, we have ζ(s, 1) = ζ(s), the Riemann zeta function.

The functional equation of the Hurwitz zeta function follows directly from
the definition:149

ζ(s, a+ 1) = ζ(s, a)− 1

as
, 1 < s ∈ R.

By induction, for n ∈ N, we obtain

ζ(s, a) = ζ(s, a+ n) +
n−1∑
k=0

1

(a+ k)s
, 1 < s ∈ R.

Remark. The expansion of the polygamma function Ψn in Section 4.18 reveals its
relation to the Hurwitz zeta function as

ζ(n+ 1, a) =
(−1)n+1

n!
Ψn(a), n ∈ N.

Indeed, we have

Ψn(a) = (−1)n+1n!
∞∑
k=0

1

(a+ k)n+1
= (−1)n+1n!ζ(n+ 1, a),

where we moved the index of the summation down by one.

History Adolf Hurwitz (1859 – 1919) was 22 years old when he invented the generalization of the

Riemann zeta function named after him. A year later he already finished his habilitation and worked

as a private dozent in Göttingen under the supervision of Felix Klein (1849 – 1925), and in contact

with his mentor Weierstrass in Berlin and his friend Luigi Bianchi (1856 –1928) in Munich. Hans

von Mangoldt (1854 – 1925) was also a private dozent in Göttingen at the time.

148Most authors, including Hurwitz himself, considered only 0 < a ≤ 1.
149It is because of this that most authors restrict to 0 < a ≤ 1.
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As expected, the Hurwitz zeta function participates in several (mostly integral)
formulas that are similar to the ones we developed in the previous sections. The first
and most basic integral representation is the following:

ζ(s, a) =
1

Γ(s)

∫ ∞

0

xs−1e−ax

1− e−x
dx, 1 < s ∈ R.

For a = 1, this reduces to the zeta gamma relation. For this reason, we call this the
Hurwitz zeta gamma relation.
To derive this, we calculate

ζ(s, a)Γ(s) =
∞∑
n=0

1

(n+ a)s

∫ ∞

0

xs−1e−x dx =
∞∑
n=0

∫ ∞

0

xs−1e−(n+a)x dx

=

∫ ∞

0

xs−1e−ax

∞∑
n=0

e−nx dx =

∫ ∞

0

xs−1e−ax

1− e−x
dx,

where, in the second step, we replaced x by (n + a)x within the infinite sum. The
integral formula follows.

As for the gamma and zeta functions, we could use this formula to show that the
Hurwitz zeta function is analytic in s > 1. We defer the proof of analiticity to a later
development; for a direct proof using this formula, see Exercise 1 at the end of this
section.

We wish to extend the definition of the Hurwitz zeta function below 1 < s. The
simplest extension (to −1 < s) is the following.
Assuming 0 < a ≤ 1, a simple algebraic manipulation of the original definition gives

ζ(s, a) = ζ(s)− asζ(s+ 1) +
1

as
+

∞∑
n=1

(
1 + a

n

)−s −
(
1− s a

n

)
ns

.

By Newton’s binomial theorem, for fixed n ∈ N, the numerator of the fraction under
the infinite sum can be written as(

1 +
a

n

)−s

−
(
1− s

a

n

)
=

1

n2

∞∑
k=2

(−1)k
s(s+ 1) · · · (s+ k − 1)

k!

ak

nk−2
.

For fixed n ∈ N, the power series (in a) here is absolutely convergent since 0 < a ≤ 1
and the radius of convergence is n; and actually the convergence is uniform on closed
intervals in (0, 1] (Section 2.3.) Combining this fact with the denominator ns · n2 =
ns+2, we see that the infinite series above (in n) converges for s + 2 > 1; that is, for
s > −1. Since the zeta function is defined everywhere except at s = 1 where it has a



370

simple pole, this shows that the the formula above defines the Hurwitz zeta function
for s > −1 except at s = 1.
As an immediate byproduct, for s = 0 (in the limiting sense), the formula above gives

ζ(0, a) = −1

2
− a lim

s→0
sζ(s+ 1) + 1 =

1

2
− a lim

s→1
(s− 1)ζ(s) =

1

2
− a,

where we used ζ(0) = −1/2.
As for a more sophisticated extension, in 1930 Helmut Hasse derived the following

series representation of the Hurwitz zeta function:

ζ(s, a) =
1

s− 1

∞∑
n=0

1

n+ 1

n∑
k=0

(−1)k
(
n

k

)
(a+ k)1−s.

The advantage of this formula is that the infinite series is uniformly convergent on
any closed interval (see the remark below).
To derive Hasse’s formula (for s > 1), first use a special case of Example 4.6.1:

(a+ k)1−s =
1

Γ(s− 1)

∫ ∞

0

xs−2e−(a+k)x dx, s > 1.

Using Γ(s−1) = Γ(s)/(s−1), upon substitution and rearrangement of the right-hand
side, we obtain

1

s− 1

∞∑
n=0

1

n+ 1

n∑
k=0

(−1)k
(
n

k

)
(a+ k)1−s

=
1

Γ(s)

∞∑
n=0

1

n+ 1

∫ ∞

0

(
n∑

k=0

(−1)k
(
n

k

)
(e−x)k

)
xs−2e−ax dx

=
1

Γ(s)

∞∑
n=0

1

n+ 1

∫ ∞

0

(1− e−x)nxs−2e−ax dx

=
1

Γ(s)

∫ ∞

0

∞∑
n=0

(1− e−x)n

n+ 1
xs−2e−ax dx

=
1

Γ(s)

∫ ∞

0

xs−1e−ax

1− e−x
dx = ζ(s, a),

where we used
∞∑
n=1

(−1)n
(1− e−x)n

n
= − ln(e−x) = x, x ≥ 0.

The Hasse formula follows.
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Remark. Using powers of the forward difference operator ∆ (Section 4.12), the finite
sum in Hasse’s formula can be concisely interpreted as

∆na1−s =
n∑

k=0

(−1)n−k

(
n

k

)
(a+ k)1−s,

where ∆(a1−s) = (a + 1)1−s − a1−s, ∆2(a1−s) = (a + 2)1−s − 2(a + 1)1−s + a1−s, etc.
With this, Hasse’s formula takes the form

ζ(s, a) =
1

s− 1

∞∑
n=0

(−1)n

n+ 1
∆n(a1−s) =

1

s− 1

1

∆
ln(I +∆)(a1−s).

A thoroughly elementary, albeit fairly long-winded, argument then proves that the
infinite series in Hasse’s formula converges uniformly on closed intervals, and that the
Hurwitz zeta extension defined by this formula is analytic everywhere except having
a simple pole at s = 1.150

We now begin to derive Euler-Maclaurin summation formulas for the Hurwitz zeta
function. The treatment here parallels those in Section 4.17.
Using the first Euler-Maclaurin formula (with index starting at k = 0) in Section
4.16, we obtain

n∑
k=0

1

(k + a)s
=

∫ n

0

dx

(x+ a)s
dx− s

∫ n

0

P1(x)

(x+ a)s+1
dx+

1

2

(
1

(n+ a)s
+

1

as

)
, n ∈ N,

where we used (d/dx)(x+ a)−s = −s(x+ a)−s−1. The first integral calculates as∫ n

0

dx

(x+ a)s
dx =

1

1− s

(
1

(n+ a)s−1
− 1

as−1

)
.

Substituting and rearranging, we obtain

n∑
k=0

1

(k + a)s
=

1

2(n+ a)s
− 1

s− 1

1

(n+ a)s−1
+

1

s− 1

1

as−1
+

1

2as
− s

∫ n

0

P1(x)

(x+ a)s+1
dx.

Letting n→ ∞, we arrive at the first Euler-Maclaurin formula for the Hurwitz
zeta function:

ζ(s, a) =
∞∑
n=0

1

(n+ a)s
=

1

s− 1

1

as−1
+

1

2as
− s

∫ ∞

0

P1(x)

(x+ a)s+1
dx.

150See the original paper Hasse, H., Ein Summierungsverfahren für die Riemannsche ζ-
Reihe, Mathematische Zeitschrift, 32 (1) (1930) 458-464; and, for a modern approach, Kanous-
sis, D.P., A new proof of H. Hasse’s global expression for the Riemann’s zeta function,
https://reserachgate.net/publication/317823796, and the references therein.
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The improper integral converges absolutely for s > 0, and conditionally for s > −1.
As we will see below, it is also analytic for s > 0. This implies that ζ(s, a) is analytic
for s > 0 with a simple pole at s = 1 of residue 1.

Example 4.19.1. For −1 < s < 0 and 0 < a ≤ 1, we have

ζ(s, a) = −s
∫ ∞

−a

P1(x)

(x+ a)s+1
dx,

Indeed, we have∫ 0

−a

P1(x)

(x+ a)s+1
dx =

∫ 0

−a

x− [x]− 1/2

(x+ a)s+1
dx =

∫ 0

−a

x+ 1/2

(x+ a)s+1
dx

=

∫ a

0

u− a+ 1/2

us+1
du =

∫ a

0

du

us
−
(
a− 1

2

)∫ a

0

du

us+1
du

= − 1

s− 1

1

as−1
+

1

s

(
a− 1

2

)
1

as
,

where we used the substitution x = u− a. Incorporating this into the formula above,
the example follows.

We now return to the first Euler-Maclaurin formula for the Hurwitz zeta function,
and integrate by parts as∫ ∞

0

P1(x)

(x+ a)s+1
dx =

1

2

∫ ∞

0

P ′
2(x)

(x+ a)s+1
dx = − 1

12as+1
+
s+ 1

2

∫ ∞

0

P2(x)

(x+ a)s+1
dx,

where the contribution from the boundary term is[
P2(x)

(x+ a)s+1

]∞
0

= −P2(0)

as+1
= − B2

as+1
= − 1

6as+1
.

Substituting, we obtain

ζ(s, a) =
1

s− 1

1

as−1
+

1

2as
+

s

12as+1
− s(s+ 1)

2

∫ ∞

0

P2(x)

(x+ a)s+2
dx

Since the improper integral converges absolutely for s > −1 (and conditionally for
s > −2) this gives an extension of the Hurwitz zeta function for s > −1. It also
shows that ζ(0, a) = 1/2− a, a result that we obtained previously.
We recognize the Bernoulli numbers in the coefficients, and write

ζ(s, a) =
1

s− 1

1

as−1
− B1

as
+
s

2!

B2

as+1
− s(s+ 1)

2

∫ ∞

0

P2(x)

(x+ a)s+2
dx.
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For future purposes, note also that ζ(0, a) = 1/2 − a = −B1(a), where B1(a) is the
first Bernoulli polynomial in the indeterminate a.

We now perform integration by parts inductively, and arrive at the general
Euler-Maclaurin formula for the Hurwitz zeta function:

ζ(s, a) =
1

(s− 1)as−1
− B1

as
+
s

2!

B2

as+1
+
s(s+ 1)

3!

B3

as+2
+ · · ·

· · ·+ s(s+ 1)(s+ 2) · · · (s+m− 1)

(m+ 1)!

Bm+1

as+m

− s(s+ 1)(s+ 2) · · · (s+m)

(m+ 1)!

∫ ∞

0

Pm+1(x)

(x+ a)s+m+1
dx, s > −m, m ∈ N.

Before going any further, we derive the following important connection between
the values of the Hurwitz zeta function on non-positive integers and the Bernoulli
polynomials:

ζ(−m, a) = −Bm+1(a)

m+ 1
, m ∈ N0.

Indeed, a direct substitution in the general Euler-Maclaurin formula for the Hurwitz
zeta function gives

ζ(m, a) = − 1

m+ 1

(
am+1 +

m+ 1

1!
B1a

m +
(m+ 1)m

2!
B2a

m−1

+
(m+ 1)m(m− 1)

3!
B3a

m−2 + · · ·+Bm+1

)
= − 1

m+ 1

m+1∑
k=0

(
m+ 1

k

)
Bka

m−k+1 = −Bm+1(a)

m+ 1
,

where the alternating signs disappear as every odd Bernoulli number vanishes except
B1, and, in the last equality, we used the expansion of the Bernoulli polynomials in
terms of the Bernoulli numbers (Section 4.12). The stated formula follows.

As an obvious byproduct, for s = −m, m ∈ N0, the Hasse formula above gives

ζ(−m, a) = − 1

m+ 1

m+1∑
n=0

1

n+ 1

n∑
k=0

(−1)k
(
n

k

)
(a+ k)m+1 = −Bm+1(a)

m+ 1
.

(The sum in k, for s = −m, interpreted as ∆n(am+1) is zero for n > m + 1 since
the forward difference operator ∆ reduces the degree of polynomials by one; see the
remark after the proof of Hasse’s formula.) Hence

Bm(x) =
m∑

n=0

1

n+ 1

n∑
k=0

(−1)k
(
n

k

)
(x+ k)m, m ∈ N0.
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where we replaced a with the generic variable x.
In view of this, the Hurwitz zeta function may be considered as a generalization

of the Bernoulli polynomials to non-integer values.

We now return to the general Euler-Maclaurin formula above, and show that it
implies analiticity of the Hurwitz zeta function ζ(s, a) in s > −m, m ∈ N. The
treatment here parallels the analogous result for the zeta function in Section 4.17.
The nth derivative, n ∈ N, of the improper integral in the general Euler-Maclaurin
formula is

dn

dsn

∫ ∞

0

Pm+1(x)

(x+ a)s+m+1
dx = (−1)n

∫ ∞

0

Pm+1(x)

(x+ a)s+m+1
(ln(x+ a))n dx

= (−1)n
∫ ∞

a

Pm+1(u− a)

us+m+1
(ln(u))n du,

where the differentiation was interchanged with the improper integral by Proposition
4.4.2. For n ∈ N0, we estimate the last integral as∣∣∣∣∫ ∞

a

Pm+1(u− a)

us+m+1
(ln(u))n du

∣∣∣∣ ≤ K

∫ ∞

a

| ln(u)|n

us+m+1
du,

where K = supu∈[0,1] |Bm+1(u)| (Section 4.14). Now, if a ≥ 1 then, as in the case of
the zeta function, this is dominated by ≤ Kn!/(s + m)n+1. If 0 < a < 1, then the
last integral estimate needs to be augmented by∫ 1

a

(− ln(u))n

us+m+1
du ≤ (− ln(a))n

∫ 1

a

du

us+m+1
=

(− ln(a))n

s+m

(
1

as+m
− 1

)
, s > −m.

In either case the claimed analiticity now follows (Section 2.4). In particular, by
unique continuation, the extension of the Hurwitz zeta function at the beginning of
this section is the same as the one we just obtained.

The following result, due to Lerch,151 is a generalization (s = 1) of Example 4.18.1:

Proposition 4.19.1. We have

dζ(s, a)

ds

∣∣∣∣
s=0

= ln

(
Γ(a)√
2π

)
.

Proof. We begin with differentiating both sides of the defining equality of the
Hurwitz zeta function as

d2ζ(s, a)

da2
= s(s+ 1)

∞∑
n=0

1

(n+ a)s+2
.

151See Weil, A., Elliptic Functions according to Eisenstein and Kronecker, Springer-Verlag, New
York, 1976, p. 60.
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This gives

d2

da2
dζ(s, a)

ds

∣∣∣∣
s=0

=
d

ds

d2ζ(s, a)

da2

∣∣∣∣
s=0

=
∞∑
n=0

1

(n+ a)2
=
d2 ln Γ(a)

da2
,

where the last equality is a property of the logarithmic derivative of the gamma
function (Section 4.10). Hence

d2

da2

(
dζ(s, a)

ds

∣∣∣∣
s=0

− ln Γ(a)

)
= 0,

and we get
dζ(s, a)

ds

∣∣∣∣
s=0

= lnΓ(a) +Bs+ C,

for some B,C ∈ R.
On the other hand, differentiating the functional equation of the Hurwitz zeta func-
tion, we obtain

dζ(s, a+ 1)

ds

∣∣∣∣
s=0

− dζ(s, a)

ds

∣∣∣∣
s=0

= ln(a).

Combining these, we obtain B = 0 since ln Γ(a+ 1) = ln(aΓ(a)) = ln(a) + ln Γ(a).
Finally, for a = 1, Example 4.18.1 gives C = − ln

√
2π. The proposition follows.

Remark. In the course of the proof, we established the following

dmζ(s, a)

dam
= (−1)ms(s+1) · · · (s+m−1)ζ(s+m, a), s ̸= 1, 0,−1, . . . ,−m+1, m ∈ N.

Another simple consequence of the Hurwitz zeta gamma relation is obtained by a
simple rearrangement and various uses of the gamma function:

ζ(s, a) =
a−s

2
+

a1−s

s− 1
+

1

Γ(s)

∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
xs−1

eax
dx.

Indeed, we calculate the integral as∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
xs−1

eax
dx =

1

2

∫ ∞

0

xs−1e−ax dx−
∫ ∞

0

xs−2e−ax dx

+

∫ ∞

0

xs−1e−(a+1)x

1− e−x
dx =

Γ(s)

2as
− Γ(s− 1)

2as−1
+ Γ(s)ζ(s, a+ 1)

= Γ(s)

(
a−s

2
− a1−s

s− 1
+ ζ(a, s)− a−s

)
= Γ(s)

(
−a

−s

2
− a1−s

s− 1
+ ζ(a, s)

)
,
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where we also used the functional equation for the Hurwitz zeta function. The stated
integral formula now follows.

Note the special case (a = 1):

ζ(s) =
1

2
+

1

s− 1
+

1

Γ(s)

∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
xs−1

ex
dx.

As a consequence of integral formula just derived, we show that

lim
s→1

(
ζ(s, a)− 1

s− 1

)
= −Ψ(a), a > 0.

To prove this, we calculate

lim
s→1

(
ζ(s, a)− 1

s− 1

)
= lim

s→1

a−s

2
+ lim

s→1

a1−s − 1

s− 1
+

∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
e−ax dx

=
1

2a
− ln(a) +

∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
e−ax dx.

The last integral can be extracted from the proof of the first Binet formula via the
Gauss representation (Section 4.18 before Example 4.18.4):∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
e−ax dx = −Ψ(a+ 1) + ln(a) +

1

2a
= −Ψ(a) + ln(a)− 1

2a
.

The stated limit relation follows.

The expression in parentheses of the improper integral in the left-hand side of
the formula above can be approximated by

∑m
ℓ=1 x

2ℓ−1B2ℓ/(2ℓ)!, m ∈ N. (See the
(second) remark after the statement of the first Binet formula.) Thus, we have

−Ψ(a) + ln(a)− 1

2a
=

∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
e−ax dx

≈
m∑
ℓ=1

B2ℓ

(2ℓ)!

∫ ∞

0

x2ℓ−1e−ax dx =
m∑
ℓ=1

B2ℓ

(2ℓ)!a2ℓ
Γ(2ℓ) =

∞∑
ℓ=1

B2ℓ

2ℓa2ℓ

Rearranging, we obtain

Ψ(a) ≈ ln(a)− 1

2a
−

m∑
ℓ=1

B2ℓ

2ℓa2ℓ
, a > 0
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To get an estimate for the error term of the approximation, we can use the Euler-
Maclaurin summation formula above (withm replaced by 2m). We calculate as above

Ψ(a) = − lim
s→1

(
ζ(s, a)− 1

s− 1

)
= − lim

s→1

a1−s − 1

s− 1
+
B1

a
−

2m+1∑
k=2

Bk

kak
+

∫ ∞

0

Pm+1(x)

(x+ a)2m+2
dx

= ln(a)− 1

2a
−

m∑
k=1

B2ℓ

2ℓa2ℓ
+

∫ ∞

0

P2m+1(x)

(x+ a)2m+2
dx.

Thus, we have the error estimate∣∣∣∣∫ ∞

0

P2m+1(x)

(x+ a)2m+2
dx

∣∣∣∣ ≤ sup
x∈[0,1]

|B2m+1(x)|
∫ ∞

0

dx

(x+ a)2m+2
≤ |B2m|

2πa2m+1
.

(See Section 4.14.)
Note finally that, letting m → ∞, the power series (in 1/a) in the asymptotic
formula

Ψ(a) ∼ ln(a)− 1

2a
−

∞∑
ℓ=1

B2ℓ

2ℓa2ℓ
, a > 0,

has radius of convergence 0 (by the asymptotics of the Bernoulli numbers), that is,
the infinite sum does not converge for any a > 0. Nevertheless, the partial sums
approximate the digamma function with increasing accuracy as a→ ∞.

Returning to the main line, we now derive yet another another integral represen-
tation of the Hurwitz zeta function knows as the Hermite formula:

ζ(s, a) =
a−s

2
+

a1−s

s− 1
+ 2

∫ ∞

0

sin(s arctan(x/a))

(a2 + x2)s/2(e2πx − 1)
dx.

To pass from the integral representation just derived to the Hermite formula, we need
to show that the respective indefinite integrals match. We first note that, according
to Example 4.16.1, we have

1

2

(
1

2
− 1

x
+

1

ex − 1

)
=

∫ ∞

0

sin(xu)

e2πu − 1
du.

Using this, we calculate

1

Γ(s)

∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
xs−1

eax
dx =

2

Γ(s)

∫ ∞

0

(∫ ∞

0

sin(xu)

e2πu − 1
du

)
xs−1

eax
dx

=
2

Γ(s)

∫ ∞

0

∫ ∞

0

xs−1e−ax sin(ux) dx
du

e2πu − 1
= 2

∫ ∞

0

sin(s arctan(u/a))

(a2 + u2)s/2(e2πu − 1)
du,
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where we used Example 4.6.3. The Hermite formula follows.

As a special case, the Hermite formula provides important integral representations
for the polygamma functions Ψn, n ∈ N. Substituting s = n+ 1, n ∈ N, we have

(−1)n+1

n!
Ψn(a) = ζ(n+ 1, a) =

1

2an+1
+

1

nan
+ 2

∫ ∞

0

sin((n+ 1) arctan(x/a))

(a2 + x2)(n+1)/2(e2πx − 1)
dx

The crux here is that the trigonometric expression in the numerator of the integrand
is a rational function (in both x and a), and it is expressible by the Chebyshev
polynomials Un, n ∈ N0 (Section 4.10). Using the definition, we have

sin((n+ 1) arctan(x/a)) = Un(cos(arctan(x/a)) sin(arctan(x/a))

= Un

(
a√

a2 + x2

)
x√

a2 + x2
.

Substituting, we arrive at

(−1)n+1

n!
Ψn(a) =

1

2an+1
+

1

nan
+ 2

∫ ∞

0

Un

(
a√

a2 + x2

)
x dx

(a2 + x2)n/2+1(e2πx − 1)
.

For completeness, note that integrating both sides of the formula for n = 1, we obtain

Ψ(a) = − 1

2a
+ ln(a)− 2

∫ ∞

0

x dx

(a2 + x2)(e2πx − 1)
.

Remark. Using the integral equality in the proof of the Hermite formula, we also
have

(−1)n+1Ψn(a) =
n!

2an+1
+

(n− 1)!

an
+

∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
xn

eax
dx,

and, for completeness again

Ψ(a) = − 1

2a
+ ln(a)−

∫ ∞

0

(
1

2
− 1

x
+

1

ex − 1

)
e−ax dx.

We now return to the compact form of the first Euler-Maclaurin formula in Exam-
ple 4.19.1, and expand the periodized Bernoulli polynomial P1(x) in the numerator
of the integrand into Fourier series as in Section 4.14. For −1 < s < 0 and 0 < a ≤ 1,
we calculate

ζ(s, a) = −s
∫ ∞

−a

P1(x)

(x+ a)s+1
dx = −s

∫ ∞

0

P1(x− a)

xs+1
dx

=
s

π

∫ ∞

0

∞∑
n=1

sin(2nπ(x− a))

n

dx

xs+1
=
s

π

∞∑
n=1

1

n

∫ ∞

0

sin(2nπ(x− a))

xs+1
dx
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We work out the improper integral using the formulas in the remark after Example
4.6.3 as∫ ∞

0

sin(2nπ(x− a))

xs+1
dx = cos(2nπa)

∫ ∞

0

sin(2nπx)

xs+1
dx− sin(2nπa)

∫ ∞

0

cos(2nπx)

xs+1
dx

= (2nπ)s cos(2nπa)

∫ ∞

0

sin(u)

us+1
du− (2nπ)s sin(2nπa)

∫ ∞

0

cos(u)

us+1
du

= −(2nπ)sΓ(−s)
(
cos(2nπa) sin

(πs
2

)
+ sin(2nπa) cos

(πs
2

))
= (2π)s

Γ(1− s)

s

(
sin
(πs
2

) cos(2nπa)

n−s
+ cos

(πs
2

) sin(2nπa)

s−n

)
Substituting, for s < 0 and 0 < a ≤ 1, we obtain the Hurwitz formula152

ζ(s, a) =
2Γ(1− s)

(2π)1−s

(
sin
(πs
2

) ∞∑
n=1

cos(2nπa)

n1−s
+ cos

(πs
2

) ∞∑
n=1

sin(2nπa)

n1−s

)
.

Note that, for a = 1, we recover the functional equation for the Riemann zeta
function (Section 4.17):

ζ(s) =
2Γ(1− s)

(2π)1−s
sin
(πs
2

)
ζ(1− s), s < 0.

Kummer’s formula for the gamma function, noted in Section 4.16, is a direct
consequence of the Hurwitz formula via Proposition 4.19.1.
Indeed, lettting 0 < a < 1, performing the differentiation, we calculate

ln

(
Γ(a)√
2π

)
=

dζ(s, a)

ds

∣∣∣∣
s=0

=

(
−Γ′(1)

π
+

Γ(1)

π
ln(2π)

) ∞∑
n=1

sin(2nπa)

n

+
Γ(1)

π

(
π

2

∞∑
n=1

cos(2nπa)

n
+

∞∑
n=1

sin(2nπa)

n
ln(n)

)

= (γ + ln(2π))

(
1

2
− a

)
− 1

2
ln(2 sin(πa)) +

1

π

∞∑
n=1

sin(2nπa)
ln(n)

n
.

152For other proofs, see Apostol, T., Introduction to analytic number theory, Springer, NY, 1976,
p. 257; Whittaker, E.T. and Watson, G.N., A Course in Modern Analysis, 4th Edition, Cambridge,
1927, pp. 268-269, and 3rd Edition, Dover, 2020; and Kanemitsu, S., Tanigawa, Y., Tsukada, H.
and Yoshimoto, M., Contributions to the theory of the Hurwitz zeta function, Hardy-Ramanujan
Journal, 30 (2007) 31-55; Section 4.
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where we used the Fourier expansions

1

π

∞∑
n=1

sin(2nπa)

n
=

1

2
− a and

∞∑
n=1

cos(2nπa)

n
= − ln(2 sin(πa)), 0 < a < 1.

(See Section 4.14 as well as Exercise 3 at the end of the section.)
We obtain Kummer’s formula, usually written as

ln

(
Γ(a)√
2π

)
= −1

2
ln(2 sin(πa))+

1

2
(γ + ln(2π)) (1−2a)+

1

π

∞∑
n=1

ln(n)

n
sin(2nπa), 0 < a < 1.

It is interesting to observe that ln Γ is expressed in the right-hand side by elementary
functions only.

Returning to the main line, we now show an important consequence of the Hurwitz
formula for rational a = p/q, p ≤ q, p, q ∈ N, as

ζ

(
1− s,

p

q

)
=

2Γ(s)

(2πq)s

q∑
k=1

cos

(
πs

2
− 2kπ

p

q

)
ζ

(
s,
k

q

)
,

with no restriction on s.
To derive this, we first replace s by 1 − s in the Hurwitz formula, and join the two
infinite sums:

ζ(1− s, a) =
2Γ(s)

(2π)s

(
cos
(πs
2

) ∞∑
n=1

cos(2nπa)

ns
+ sin

(πs
2

) ∞∑
n=1

sin(2nπa)

ns

)

=
2Γ(s)

(2π)s

∞∑
n=1

cos
(πs
2

− 2nπa
) 1

ns
, s > 1.

Evaluating this at a = p/q as above, we obtain

ζ

(
1− s,

p

q

)
=

2Γ(s)

(2π)s

∞∑
n=1

cos

(
πs

2
− 2nπ

p

q

)
1

ns
, s > 1.

The crux is to write n = mq+ k, and replace the infinite sum with variable n ∈ N by
a double sum with m ∈ N0 and k = 1, . . . , q. This gives

ζ

(
1− s,

p

q

)
=

2Γ(s)

(2π)s

∞∑
m=0

q∑
k=1

cos

(
πs

2
− 2(mq + k)π

p

q

)
1

(mq + k)s

=
2Γ(s)

(2πq)s

q∑
k=1

cos

(
πs

2
− 2kπ

p

q

) ∞∑
m=0

1

(m+ k/q)s
.
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Since the last factor is ζ(s, k/q), the stated formula follows. This holds for s > 1 and,
by analytic continuation, for all s.
For p = q = 1, this relation reduces (via Euler’s reflection formula) to the functional
equation of the zeta function.

We close this section by giving a proof of the Gauss formula for the digamma
function stated in Proposition 4.19.2.
We need the following:

Lemma. For p = 1, . . . , q − 1, we have

(1)
∑q

k=1 sin
(
2pπ k

q

)
= 0;

(2)
∑q

k=1 cos
(
2pπ k

q

)
= 0;

(3)
∑q

k=1 sin
(
2pπ k

q

)
k
q
= −1

2
cot
(

pπ
q

)
;

(4)
∑q

k=1 cos
(
2pπ k

q

)
k
q
= 1

2
.

Proof. All these are consequences of the Lagrange identities153

q∑
k=1

sin(kα) =
cos(α/2)− cos((2q + 1)α/2)

2 sin(α/2)

q∑
k=1

cos(kα) =
− sin(α/2) + sin((2q + 1)α/2)

2 sin(α/2)
.

For (1)-(2) we use the direct substitution α = 2pπ/q. For (3), we take the derivative
of the Lagrange identity for cosine (with respect to α) as

q∑
k=1

k sin(kα) =
sin((2q + 1)α/2) cos(α/2)− (2q + 1) cos((2q + 1)α/2) sin(α/2)

4 sin2(α/2)
,

and substitute α = 2pπ/q. Finally, for (4), we take the derivative of the Lagrange
identity for sine (with respect to α) as

q∑
k=1

k cos(kα) =
cos((2q + 1)α/2) cos(α/2) + (2q + 1) sin((2q + 1)α/2) sin(α/2)− 1

4 sin2(α/2)
,

and substitute α = 2pπ/q. The lemma follows.

153See Elements of Mathematics - History and Foundations, Exercise 11.3.16.
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proof of Gauss’ Digamma Theorem. We first replace s by 1− s (for technical
convenience) in the Hurwitz formula for rational a = p/2 just derived above

(2qπ)1−sζ

(
s,
p

q

)
= 2Γ(1− s)

q∑
k=1

sin

(
πs

2
+ 2pπ

k

q

)
ζ

(
1− s,

k

q

)
, p < q, p, q ∈ N.

In the first step we extract the residues at s = 1 from both sides of this equality
as

lim
s→1

(s− 1)(2qπ)1−sζ

(
s,
p

q

)
= lim

s→1
(s− 1)ζ

(
s,
p

q

)
= 1,

and

2 lim
s→1

(s− 1)Γ(1− s)

q∑
k=1

sin

(
πs

2
+ 2pπ

k

q

)
ζ

(
1− s,

k

q

)

= −2

q∑
k=1

sin

(
π

2
+ 2pπ

k

q

)
ζ

(
0,
k

q

)
= −2

q∑
k=1

cos

(
2pπ

k

q

)
ζ

(
0,
k

q

)
.

Hence, the equality of the residues gives

1 = −2

q∑
k=1

cos

(
2pπ

k

q

)
ζ

(
0,
k

q

)
.

On the other hand, since ζ(0, a) = 1/2− a, this can be written as

1 = −2

q∑
k=1

cos

(
2pπ

k

q

)(
1

2
− k

q

)
= −

q∑
k=1

cos

(
2pπ

k

q

)
+ 2

q∑
k=1

cos

(
2pπ

k

q

)
k

q
.

By the summation formulas in (2) and (4) of the lemma above, however, this always
holds. Hence the equality of the residues gives nothing new.

In the second step, we return to our equation, deduct the poles with the calculated
residues, and let s→ 1.154 For the left-hand side, we obtain

lim
s→1

(
(2πq)1−sζ

(
s,
p

q

)
− 1

s− 1

)
= lim

s→1

(
ζ

(
s,
p

q

)
− 1

s− 1

)
+ lim

s→1

(2πq)1−s − 1

s− 1
lim
s→1

(s− 1)ζ

(
s,
p

q

)
= −Ψ

(
p

q

)
− ln(2πq).

The corresponding limit of the right-hand side (suppressing the factor 2) is

lim
s→1

(
Γ(1− s)

q∑
k=1

sin

(
πs

2
+ 2pπ

k

q

)
ζ

(
1− s,

k

q

)
+

1

s− 1

q∑
k=1

cos

(
2pπ

k

q

)
ζ

(
0,
k

q

))
.

154This amounts to taking the constant term in the Laurent series expansions at s = 1.
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We rearrange this into two terms as

lim
s→1

(
Γ(1− s)− 1

1− s

) q∑
k=1

sin

(
πs

2
+ 2pπ

k

q

)
ζ

(
1− s,

k

q

)

−
q∑

k=1

lim
s→1

1

s− 1

(
sin

(
πs

2
+ 2pπ

k

q

)
ζ

(
1− s,

k

q

)
− cos

(
2pπ

k

q

)
ζ

(
0,
k

q

))
.

Clearly, the first limit is

−γ
q∑

k=1

cos

(
2pπ

k

q

)
ζ

(
0,
k

q

)
= −γ

q∑
k=1

cos

(
2pπ

k

q

)(
1

2
− k

q

)
=
γ

2
,

where we used (2) and (4) of the lemma above.
The generic limit within the (finite) sum in the second term is the derivative

d

ds

(
sin

(
πs

2
+ 2pπ

k

q

)
ζ

(
1− s,

k

q

) ∣∣∣∣
s=1

=
π

2
cos

(
π

2
+ 2pπ

k

q

)
ζ

(
0,
k

q

)
− sin

(
π

2
+ 2pπ

k

q

)
ζ ′
(
0,
k

q

)
= −π

2
sin

(
2pπ

k

q

)
ζ

(
0,
k

q

)
− cos

(
2pπ

k

q

)
ζ ′
(
0,
k

q

)
.

Putting everything together, so far we have

−Ψ

(
p

q

)
− ln(2πq) = γ + π

q∑
k=1

sin

(
2pπ

k

q

)
ζ

(
0,
k

q

)
+2

q∑
k=1

cos

(
2pπ

k

q

)
ζ ′
(
0,
k

q

)
.

We calculate the first sum on the right-hand side as

q∑
k=1

sin

(
2pπ

k

q

)
ζ

(
0,
k

q

)
=

q∑
k=1

sin

(
2pπ

k

q

)(
1

2
− k

q

)

=
1

2

q∑
k=1

sin

(
2pπ

k

q

)
−

q∑
k=1

sin

(
2pπ

k

q

)
k

q
=

1

2
cot

(
pπ

q

)
,

where we used (1) and (3) of the lemma above. With this, we now have

−Ψ

(
p

q

)
− ln(2πq) = γ +

π

2
cot

(
pπ

q

)
+ 2

q∑
k=1

cos

(
2pπ

k

q

)
ζ ′
(
0,
k

q

)
.
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For the last sum, we use Proposition 4.19.1 as

q∑
k=1

cos

(
2pπ

k

q

)
ζ ′
(
0,
k

q

)
=

q∑
k=1

cos

(
2pπ

k

q

)
ln Γ

(
k

q

)
,

where the term − ln(
√
2π)

∑q
k=1 cos(2pπk/q) vanishes again by (2) of the lemma

above. Substituting and rearranging, we arrive at

Ψ

(
p

q

)
= −γ − ln(2πq)− π

2
cot

(
pπ

q

)
− 2

q−1∑
k=1

cos

(
2pπ

k

q

)
ln Γ

(
k

q

)
.

(Note the change in the upper limit of the finite sum as the respective term vanishes.)
As the final step, taking the logarithm of both sides of Euler’s reflection formula
(Proposition 4.9.1), and evaluating at k/q, we have

ln Γ

(
k

q

)
+ lnΓ

(
q − k

q

)
= lnπ − ln sin

(
π
k

q

)
, k = 1, . . . , q − 1.

Multiplying through by cos(2πpk/q) = cos(2πp(q − k)/q) and summing up with re-
spect to k = 1, . . . , q − 1, we obtain

2

q−1∑
k=1

cos

(
2pπ

k

q

)
ln Γ

(
k

q

)
= − lnπ −

q−1∑
k=1

cos

(
2pπ

k

q

)
ln sin

(
π
k

q

)
,

Using this to replace the sum in our formula above, we finally arrive at the Gauss
digamma theorem

Ψ

(
p

q

)
= −γ− ln(2q)− π

2
cot

(
pπ

q

)
+

q−1∑
k=1

cos

(
2pπ

k

q

)
ln sin

(
π
k

q

)
, p < q, p, q ∈ N.

Remark. This formula has various equivalent forms. A minor modification (using
the trigonometric summation for cosine above) gives

Ψ

(
p

q

)
= −γ − ln q − π

2
cot

(
pπ

q

)
+

q−1∑
k=1

cos

(
2pπ

k

q

)
ln

(
2 sin

(
π
k

q

))
.

A more interesting version can be obtained from the original Gauss digamma formula
above by noticing that the terms in the (finite) sum stay the same under the symmetry
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k → q − k, k = 1, . . . , q − 1. This allows to pair up the respective terms. For q odd,
the sum becomes

q−1∑
k=1

cos

(
2pπ

k

q

)
ln

(
sin

(
π
k

q

))
= 2

q−1
2∑

k=1

cos

(
2pπ

k

q

)
ln

(
sin

(
π
k

q

))
.

For q even, the middle term for k = q/2 vanishes and we have

q−1∑
k=1

cos

(
2pπ

k

q

)
ln

(
sin

(
π
k

q

))
= 2

q
2
−1∑

k=1

cos

(
2pπ

k

q

)
ln

(
sin

(
π
k

q

))
.

The two cases can be combined, and we obtain

Ψ

(
p

q

)
= −γ − ln(2q)− π

2
cot

(
pπ

q

)
+ 2

[ q−1
2 ]∑

k=1

cos

(
2pπ

k

q

)
ln sin

(
π
k

q

)
.

There is a proliferation of (finite) summation formulas of the digamma function
on rational numbers. The next example is also due to Gauss;

Example 4.19.2. We have

q∑
p=1

Ψ

(
p

q

)
= −q(γ + ln q), q ∈ N.

Indeed, splitting off the top term Ψ(1) = −γ and using the Gauss digamma theorem,
we calculate

q∑
p=1

Ψ

(
p

q

)
= −γ +

q−1∑
p=1

Ψ

(
p

q

)
= −qγ − (q − 1) ln(2q)

−π
2

q−1∑
p=1

cot

(
pπ

q

)
+

q−1∑
k=1

(
q−1∑
p=1

cos

(
2pπ

k

q

))
ln sin

(
π
k

q

)
By (2) of the lemma above, we have

q−1∑
p=1

cos

(
2pπ

k

q

)
=

q−1∑
p=1

cos

(
2kπ

p

q

)
= −1;

and, by (1) and (3), of the same lemma

q−1∑
p=1

cot

(
pπ

q

)
= −2

q−1∑
p=1

q∑
k=1

sin

(
2pπ

k

q

)
k

q
= −2

q∑
k=1

(
q∑

p=1

sin

(
2kπ

p

q

))
k

q
= 0.
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Incorporating these, we have

q∑
p=1

Ψ

(
p

q

)
= −qγ − (q − 1) ln(2q)−

q−1∑
k=1

ln sin

(
π
k

q

)
Finally, using the lemma in the proof of the Legendre-Gauss theorem (Proposition
4.10.2), we have

q−1∑
k=1

ln sin

(
π
k

q

)
= ln

q−1∏
k=1

sin

(
π
k

q

)
= ln

( q

2q−1

)
= ln(q)− (q − 1) ln 2.

The example now follows.

Exercises.

1. Use the formula

ζ(s, a) =
1

Γ(s)

∫ ∞

0

xs−1e−ax

1− e−x
dx, s > 1,

in the text to prove that the Hurwitz zeta function is analytic in s > 1 by the following
steps. (a) Notice first that it is enough to prove that the improper integral is analytic
in s > 1 (as the quotient of analytic functions is analytic, and the gamma function is
analytic; see Section 4.6.). (b) For n ∈ N, derive the formula

dn

dsn

(∫ ∞

0

xs−1e−ax

1− e−x
dx

)
=

∫ ∞

0

xs−1e−ax

1− e−x
(ln(x))n dx, s > 1.

(c) Use the inequality e−x < 1− x + x2/2, x ≥ 0, and the method in Section 4.6, to
estimate∣∣∣∣∫ 1

0

xs−1e−ax

1− e−x
(ln(x))n dx

∣∣∣∣ ≤ ∫ 1

0

xs−2e−ax

1− x/2
(− ln(x))n dx

≤ 2

∫ 1

0

xs−2e−ax (− ln(x))n dx ≤ 2

∫ 1

0

xs−2(− ln(x))n dx = 2
n!

(s− 1)n+1
, n ∈ N0.

(d) Fix b > 1. Assuming 1 < s < b and 2 ≤ n ∈ N, estimate∫ ∞

1

xs−1e−ax

1− e−x
(ln(x))n dx ≤ 1

1− 1/e

∫ ∞

1

xs−1e−ax(ln(x))n dx

≤ K

1− 1/e

∫ ∞

1

e−ax/2(ln(x))n dx ≤ K

1− 1/e

2nn!

an

∫ ∞

1

(
ln(x)

x

)n

dx

≤ K

1− 1/e

2nn!

an
n!

(n− 1)n+1
≤ K

1− 1/e

2n+1n!

an
,
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where xs−1 ≤ xb−1 ≤ Keax/2, x ≥ 1, (with K depending on a), and eax/2 ≥
(ax/2)n/n!, n ∈ N. (e) Finally, use (c)-(d) and the condition on the growth rate
of the Taylor coefficients (Section 2.4) to conclude that ζ(s, a) is analytic for s > 1.

2. Derive the limit relation

lim
s→1

(
ζ(s, a)− 1

s− 1

)
= −Ψ(a),

using the Hermite formula along with Exercise 1 at the end of Section 4.16.
Solution: Calculate

lim
s→1

(
ζ(s, a)− 1

s− 1

)
= lim

s→1

a−s

2
+ lim

s→1

a1−s − 1

s− 1
+ 2

∫ ∞

0

sin(arctan(x/a))

(a2 + x2)1/2(e2πx − 1)
dx

=
1

2a
− ln(a) lim

s→1
a1−s + 2

∫ ∞

0

sin(arctan(x/a))

(a2 + x2)1/2(e2πx − 1)
dx

=
1

2a
− ln(a) + 2

∫ ∞

0

x dx

(a2 + x2)(e2πx − 1)

For the last integral, Exercise 1 at the end of Section 4.16 gives

Ψ(a) =
Γ′(a)

Γ(a)
= ln(a)− 1

2a
− 2

∫ ∞

0

x dx

(a2 + x2)(e2πx − 1)
.

3. Use the method of the proof of the fundamental equation for the Hurwitz zeta
function for rational a to derive the multiplication theorem

qsζ(s) =

q∑
p=1

ζ

(
s,
p

q

)
, p ≤ q, p, q ∈ N.

4. Show that, applying the differentiation formula in Proposition 4.19.1 to the general
Euler-Maclaurin formula for the Hurwitz zeta function, we obtain the Euler-Maclaurin
formula for the gamma function in Section 4.15. Similarly, performing analogous
computations for the Hermite formula, obtain the second Binet formula for the gamma
function.

5. Use the method of the proof of the Gauss digamma theorem to derive the formula

q−1∑
p=1

Ψ

(
p

q

)
p

q
= −(q − 1)

γ

2
− q ln(q)

2
− π

2

q−1∑
p=1

cot

(
pπ

q

)
p

q
, 2 ≤ q ∈ N.
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1976.

4. Farrel, O.J. and Ross, B., Solved problems in analysis, Dover, 2013.

5. Hijab, O., Introduction to Calculus and Classical Analysis, Springer, 1997.

6. Katznelson, Y., An Introduction to Harmonic Analysis, 2nd ed. Dover, New York
1976.

7. Nielsen, N., Handbuch der Theorie der Gamma-function, Leipzig, 1906.

7. Rudin, W., Principles of Mathematical Analysis, McGraw-Hill, Inc. New York,
1976.

8. Titmarsch, E.C., The Theory of the Riemann Zeta Function, 2nd edition, Oxford,
1986.

9. Walker, P.L., The Theory of Fourier Series and Integrals, Wiley, 1986.

10. Whittaker, E.T. and Watson, G.N., A Course in Modern Analysis, 4th Edition,
Cambridge, 1927, and 3rd Edition, Dover, 2020.

11. Zygmund, A., Trigonometric Series, 3rd ed. Cambridge University Press, 2002.


