
Solutions Manual1

Chapter 0.

0.1.1. Let A = {1}. Then P(A) = {∅, {1}}.
0.1.2. Let A = {1}, and B = C = {{1}}.
0.4.3. Let A, B, resp. C be the sets of passwords that do not contain a, b, and c, resp.
We have |A| = |B| = |C| = 28, |A∩B| = |B ∩C| = |C ∩A| = 1 and |A∩B ∩C| = 0.
By the Principle of Inclusion-Exclusion, we have |A∪B∪C| = 3 ·28−3 ·1+0. Hence
the number of passwords sought is 38 − (3 · 28 − 3).

0.4.4. The smallest sum is 1 + 2 + · · · + m = m(m + 1)/2, the largest is (n −m +
1) + (n−m+ 2) + · · ·+ n = n(n+ 1)/2− (n−m)(n−m+ 1)/2. Thus the number
sought is n(n+ 1)/2−m(m+ 1)/2− (n−m)(n−m+ 1)/2 + 1.

Chapter 1.

1.1.2. a < b means that b = a + c for some c ∈ N. If c = 1 then b = S(a) < S(a),
a contradiction. If c 6= 1 then c = S(d) for some d ∈ N, and so b = a + S(d) =
S(a+ d) < S(a), a contradiction again.

1.3.1. 19 = 2 + 17 = 3 + 5 + 11.

1.3.2. To show that 3 divides p2 − q2 = (p − q)(p + q), write p − q = 3k ± 1 and
p+q = 3l±1 with k, l ∈ N (otherwise the statement is clear). Deduce that p = 3m±1
and q = 3n±1 for some m,n ∈ N. To show that 8 = 23 divides p2−q2, write p = 2k+1
and q = 2l + 1.

1.3.3. Factor: 218 − 64 = 218 − 26 = 26(212 − 1) = 26(26 + 1)(23 + 1)(23 − 1). This
gives 218 − 64 = 26 · 32 · 5 · 7 · 13.

1.3.4. We have 400 = 24 · 52, so that n ∈ N, n ≤ 400, is relatively prime to 400 if
it is not a multiple of 2 or 5. Using the Principle of Inclusion-Exclusion, the number
of multiples of 2, 5 and 10 is this range are 400/2 = 200, 400/5 = 80, 400/10 = 40,
respectively. Hence the number sought is 400− 200− 80 + 40 = 160.

1.4.1. The general induction step n⇒ n+ 1 amounts to

n+ 1

2n

(
1− 1

(n+ 1)2

)
=

n+ 2

2(n+ 1)
.

1.4.2. The general induction step n ⇒ n + 1, after canceling the common factors
gives

n(4n+ 1)

5!
+
n+ 1

3!
=

(n+ 4)(4n+ 5)

5!
.

1Only the challenging and/or computational intensive problems are treated here.



1.4.3. For the general induction step n⇒ n+ 1, we need to show

1

2
− 1

n+ 1
+

1

2n+ 1
+

1

2n+ 2
≥ 1

2
.

Canceling and rearranging, the inequality follows.

1.4.4. Assume
√
a +
√
b ∈ Q, 0 < a, b ∈ Q. Then (

√
a +
√
b)2 = a + b + 2

√
ab ∈ Q.

Hence
√
ab ∈ Q (so that ab = n2 for some n ∈ N). Finally,

√
a(
√
a+
√
b) = a+

√
ab ∈

Q, and therefore
√
a ∈ Q.

1.4.5. Let q = a/b ∈ Q, 0 < a < b, a, b ∈ N, and assume that 3
√

1− q3 = c/d ∈ Q,
c, d ∈ N. Substituting q = a/b, we obtain 1 − (a/b)3 = (c/d)3. Eliminating the
denominators, we obtain (bd)3 = (ad)3 + (bc)3. This is impossible by Fermat’s Last
Theorem in the exponent 3. The generalization to arbitrary exponents follows the
same lines using Wiles’ resolution of the Fermat problem.

Chapter 2.

2.1.1. Split into two cases: x ≥ 0 and x < 0, and see that all x ∈ R are solutions.

2.1.2. The inequality obviously holds for x ≤ 0. If 0 < x ≤ 1 then x2 ≤ x and the
inequality gives 0 ≤ −x2 with no solutions. If x > 1 then x2 > x and the inequality
gives 0 ≤ x(x− 2). In this case, we have x > 2.

2.1.3. For i = 1, 2, . . . , n, the triangle inequality gives

|r−ri|+ |r−r2n−i+1| ≥ |r−ri|+ |r2n−i+1−r| ≥ |(r−ri)+(r2n−i+1−r)| = r2n−i+1−ri

with equality if and only if ri ≤ r ≤ r2n−i+1. Thus, we have

|r − r1|+ |r − r2|+ · · ·+ |r − r2n| ≥ (r2n − r1) + (r2n−1 − r2) + · · ·+ (rn+1 − rn)

with equality if and only if rn ≤ r ≤ rn+1.

2.1.4. Since
√

100 = 10, this is the same question as which is bigger
√

101 or 10+1/20.
Squaring, we obtain 101 < (10 + 1/20)2.

2.1.5. We have√
a+ b+ 2

√
ab =

√√
a
2

+ 2
√
a
√
b+
√
b
2

=

√
(
√
a+
√
b)2 =

√
a+
√
b.

2.1.6. We have 2 ≤
√
a +
√
b ≤ 20. Since

√
a +
√
b must be a square, the possible

values are 4, 9, 16. It is easy to see that both a and b must also be squares: a = c2

and b = d2, c, d ∈ N. Since c + d = 4, 9, 16, we obtain 4 + 9 + 16 possible values of
c, d and hence the same for a, b.

2.1.7.
√

2 = 4
√

4 < 3
√

3.



2.1.8. 4.

2.1.9. For (a), in the general induction step n ⇒ n + 1 the induction hypothesis
gives 22n − 1 = 3k for some k ∈ N. Using this, we have 22(n+1) − 1 = 4 · 22n − 1 =
4(3k + 1)− 1 = 12k + 3 = 3(4k + 1). (b) is similar.

2.1.10. Since m and n are relatively prime, we have 1 = k ·m+ l ·n for some k, l ∈ Z.
We have a = (am)k · (al)n = (bn)k · (al)n = (bkal)n. Now, bkal ∈ Q, but, since its nth
power is an integer, it is a natural number u = bkal ∈ N. With this, we also have
b = um.

2.1.11. The general induction step n⇒ n+ 1 amounts to showing

(a+ b)(an + bn) ≤ 2(an+1 + bn+1).

Multiplying out, we obtain

abn + anb ≤ an+1 + bn+1.

This factors as

0 ≤ (a− b)(an − bn) = (a− b)2(an−1 + an−2b+ · · ·+ abn−2 + bn−1).

2.1.13. n = 1, 2, . . . , 11.

2.2.1. (a) 3/11; (b) 879 (187/333) = 292, 894/333; (c) 92, 259, 159, 322/99, 900, 000.

2.2.2. 1/64.

2.2.3. Use Bernoulli’s inequality.

2.3.3. Use induction to show that the sequence (an)n∈N0 is strictly increasing and
bounded above by τ . Hence, by the Monotone Convergence Theorem, the sequence
converges. Now, let n→∞ in the inductive definition.

Chapter 3.

3.1.1. (an− bn)n∈N is a null sequence since limn→∞(an− bn)2 = limn→∞((an + bn)2−
4anbn) = 22 − 4 = 0. Thus limn→∞ an = limn→∞ bn = 1.

3.1.2. (a) Expand (
√
an+1−

√
an)2 ≥ 0. (b) Let an = 1/n if n is odd, and an = 1/n2

if n is even.

3.1.3. We have

∞∑
n=0

anbn =
∞∑
n=0

(a0 + nd)b0r
n = a0b0

∞∑
n=0

rn + db0

∞∑
n=1

nrn =
a0b0
1− r

+
db0r

(1− r)2
,

where we used the Infinite Geometric Series Formula and Example 3.1.5.



3.1.4. an+1 − an = −t(an − an−1), n ∈ N. Use induction to show that an − an−1 =
(−t)n−1(a1 − a0), n ∈ N. Finally, write an − a0 =

∑n
k=1(ak − ak−1), and use the

Infinite Geometric Series Formula.

3.1.5. Let A ⊂ {1, 2, . . . , 2n} have the stated property, and denote a = minA and
b = maxA. Then, we have 1 ≤ a ≤ n and b = 2n− a+ 1. All the elements of A are
contained in the set {a, a+1, . . . , b}. This latter set has b−a−1 elements, so that the
number of choices of A with a = minA (and maxA = b) is 2b−a−1 = 22(n−a). Hence the
total number of subsets with the stated property is

∑n
a=1 22(n−a). A simple application

of the Finite Geometric Series Formula gives
∑n

a=1 22(n−a) =
∑n−1

c=0 22c = (4n − 1)/3.

3.1.6. (v) Fix m and proceed with induction with respect to n.

3.1.7. Split the number of ways to two cases according to whether the sum starts
with 1 or with 2. These give the inductive formula Fn = Fn−1 + Fn−2, 2 ≤ n ∈ N.

3.1.8. Let Bn, n ∈ N, be the number of n-digit binary integers with no consecutive
zeros. Any such integer must start with 1. If the second digit is 1 then, deleting the
first digit, it follows that the number of such binary integers is Bn−1. If the second
digit is 0 then, by assumption, the third must be 1. Deleting the first two digits, it
follows that the number of such binary integers is Bn−2. We obtain Bn = Bn−1+Bn−2.
This is the inductive formula for the Fibonacci sequence, and so Bn = Fn, n ∈ N.

3.1.9. τ and −1/τ are the two solutions of the quadratic equation x2 = x + 1. Use
induction to show that, for these solutions, we also have xn = Fnx + Fn−1, n ∈ N.
For the general induction step n⇒ n+ 1, we calculate

xn+1 = xn ·x = Fnx
2 +Fn−1x = Fn(x+1)+Fn−1x = (Fn+Fn−1)x+Fn = Fn+1x+Fn.

Therefore we have

τn = Fnτ + Fn−1 and (−1/τ)n = Fn(−1/τ) + Fn−1.

Subtracting, the Binet formula follows.

3.1.10. Fix m and proceed with induction with respect to n.

3.1.11. For (a), we use induction with respect to n ∈ N. For the general induction
step n ⇒ n + 1, we use the first identity in the previous exercise as Fm(n+1) =
Fmn+m = F(mn−1)+m+1 = FmnFm+1 + Fmn−1Fm. Thus, if Fm|Fmn then Fm|Fm(n+1),
and the induction is complete. For (b), we use induction again n ⇒ n + 1, as
gcd(Fn+1, Fn+2) = gcd(Fn+1, Fn+1 + Fn) = gcd(Fn+1, Fn) = gcd(Fn, Fn+1) = 1, and
the induction is complete. For (c), we let m ≤ n, m,n ∈ N. By the division
algorithm, we have n = mq + r, 0 ≤ r < m, q ∈ N, r ∈ N0. We first show
gcd(Fm, Fmq+1) = 1. Indeed, by (a), we have Fm|Fmq, so that, using (b), we obtain
1 ≤ gcd(Fm, Fmq+1) ≤ gcd(Fmq, Fmq+1) = 1. Turning to the main line, first note that,
by (a), we may assume 1 ≤ r. Using the inductive formula in the previous exercise



and (b) (and the identities of the greatest common divisor), we calculate

gcd(Fm, Fn) = gcd(Fm, Fmq+r) = gcd(Fm, Fmq+(r−1)+1)

= gcd(Fm, Fmq+1Fr + FmqFr−1) = gcd(Fm, Fmq+1Fr) = gcd(Fm, Fr).

This patterns the Euclidean algorithm. Using this pattern, after finitely many steps
we arrive at

gcd(Fm, Fn) = · · · = gcd(Fk, 0) = Fk,

where Fk is the last non-zero remainder. Hence k = gcd(m,n), and (c) follows.

3.1.12. We calculate

Sn = 1 + 11 + 111 + · · ·+
n︷ ︸︸ ︷

11 . . . 1 =
1

9
(9 + 99 + · · ·+

n︷ ︸︸ ︷
99 . . . 9)

=
1

9
((10− 1) + (102 − 1) + · · ·+ (10n − 1))

=
1

9
(10 + 102 + · · ·+ 10n − n)

=
1

9

(
10(10n − 1)

10− 1
− n

)
=

10n+1 − 10− 9n

81
.

3.2.1. 164x2 .

3.2.2. For the general induction step n ⇒ n + 1, we need to derive the lower and
upper bounds

2
(√

n+ 2−
√
n+ 1

)
<

1√
n+ 1

and 2
√
n+

1√
n+ 1

≤ 2
√
n+ 1.

Simplifying and rearranging, and squaring, the inequalities follow.

3.3.1. Rewrite the logarithms into powers in the exponent abc.

3.3.2. Let m = [logn(x)] = logn[x] ∈ N0. By definition of the greatest integer, we
have m ≤ logn(x) < m + 1. Equivalently, nm ≤ x < nm+1. Moreover, we also have
m = logn[x] ∈ N0; that is, nm = [x]. This gives nm ≤ x < nm + 1, m ∈ N0. Since this
is more restrictive than the previous, this is the solution.

Chapter 4.

4.2.1. For x ∈ R \ Q irrational, and 0 < ε ∈ R, let 0 < δ ∈ R be the (positive)
distance of x to the closest a/b, gcd(a, b) = 1, a ∈ Z, b ∈ N, such that b ≤ 1/ε.

4.3.2. Let g(x) = f(x) + x, x ∈ R, where f is from Example 4.3.2.

Chapter 5.



5.1.1. Let F ∈ `1 such that d(O,F )/d(O,C) = r, and L the intersection of the line
segment [C,F ] and the line through K parallel to the line extension of [O,D]. The
triangles 4[O,C, L], 4[O,L, F ], and 4[O,C, F ] remain similar for all C satisfying
the given ratio. Hence the set of L constructed as above will be on a half-line `
with end-point O. Finally, consider the half-line `′ through K parallel to `, and with
end-point H ∈ `1. Using the second given ratio, it follows that H remains constant
for all C, D, and K. Thus, the points K will stay on this half-line `′.

5.2.1. The triangle consists of 10 points:

T = {(0, 0), (2, 0), (4, 0), (6, 0), (1, 1), (3, 1), (5, 1), (2, 2), (4, 2), (3, 3)}.

There are
(
10
3

)
= 120 ways to select three points from T . We need to deduct the

collinear triples. There are 3 on the sides of T of number 3 ·
(
4
3

)
= 12, and 3 through

the center (3, 1) of number 3·
(
3
3

)
= 3. So the total number of non-degenerate triangles

is 120− 12− 3 = 105.

5.2.2. We may assume d 6= 0 6= e. We have an = a0 + nd and bn = b0 + ne,
n ∈ N0. These give (an − a0)/d = (bn − b0)/e, and hence the equation of the line is
(x− a0)/d = (y − b0)/e.
5.2.4. The set A can be defined as the set of points (x, y) ∈ [0, 1] × [0, 1] such that
(1 − r)x + ry = r(1 − r) holds for some r ∈ [0, 1]. Define p(r, x, y) = (1 − r)x +
ry − r(1 − r) = r2 − (1 + x − y)r + x, (x, y) ∈ [0, 1] × [0, 1], r ∈ R. We have
p(0, x, y) = x ≥ 0 and p(1, x, y) = y ≥ 0. For a given (x, y) ∈ [0, 1] × [0, 1], p(r, x, y)
is a quadratic polynomial in r, and therefore it attains a zero in r ∈ [0, 1] if and only
if p((1 + x− y)/2, x, y) ≤ 0. This gives 4x ≤ (1 + x− y)2. Substitute x = u2, y = v2,
u, v ∈ [0, 1], factor, and obtain u+ v ≤ 1.

5.4.1. For the side lengths a, b, c of the right-triangle, we have a = b/q and c = bq.
After simplification, the triangle inequalities give q2 < 1+q, 1 < q+q2, and q < 1+q2.
Since the roots of the polynomial x2 − x − 1 are τ and −1/τ , the first inequality
q2 − q − 1 < 0 gives −1/τ < q < τ . The second inequality can be rewritten as
0 < (−q)2 − (−q) − 1, and therefore it gives −q < −1/τ or −q > τ , or equivalently
q > 1/τ or q < −τ . The second alternative is not realized. Finally, the last inequality
is automatic.

5.5.1. 2.

5.5.2. The line segment [O,C] splits the triangle 4[A,B,C] into two isosceles sub-
triangles. Now apply the pons asinorum to both sub-triangles along with the fact
that the sum of the interior angle measures in a triangle is equal to π. The proof of
the central angle theorem is similar.

5.5.3. (a) Consider first the line through P and O that meets the circle in the diagonal
points A0, B0 ∈ S. Clearly, pS(P ) = d(O,A0) · d(O,B0). Assuming A ∈ [B,P ]



and A0 ∈ [B0, P ], use Thales’ theorem to show that the triangles 4[P,A,A0] and
4[P,B,B0] are similar. Finally, use Birkhoff’s Postulate of Similarity. (c) There is a
unique point Q on the line segment [O1, O2] such that pS1(Q) = pS2(Q). The radical
line is perpendicular to [O1, O2] and passes through Q.

5.5.4. By scaling, we may assume d(A,C ′) = 1. Let x = d(A′, C ′). The equilateral
triangle with vertices the midpoints of the sides of the original triangle 4[A,B,C] is
congruent to 4[A′, B′, C ′], in particular, its (common) side length is also x. There-
fore, the side length of the original triangle 4[A,B,C] must be 2x. Applying the
intersecting chord theorem (Exercise 5.5.3) to the line through the points A and A′,
we obtain d(A,C ′)d(A,A′) = x2. This gives 1 + x = x2. Since x > 0 it must be the
golden number τ .

5.5.5. By Thales’ theorem this set is the open disk with diameter [A,B] and, for
non-degeneracy, the diameter is removed.

5.5.6. We may assume that A = (0, 0) and B = (1, 0). The condition d(P,A)2 =
q2 ·d(P,B)2, P = (x, y) ∈ R2, can be written as x2+y2 = q2((x−1)2+y2). Expanding
and simplifying, we obtain (x+ q/(1− q2))2 + y2 = q2(2− q2)/(1− q2), the equation
of a circle.

5.5.7. Let B1 be the foot of the altitude from B of the triangle 4[A,B,D], and C1

the foot of the altitude from C of the triangle 4[A,C,D]. The points B1 and C1 are
on the angular bisector from A. Using Birkhoff’s Postulate of Similarity for various
similar triangles, we obtain

d(A,B)

d(A,C)
=
d(B,B1)

d(C,C1)
=
d(B,D)

d(C,D)
.

5.5.8. Let ` be the common perpendicular bisector of the three chords. Let x
and y be the heights of the two disjoint circular domains whose boundaries are the
circular arcs surmounted on the first two parallel chords. Using the power of the
(three) intersection points of this line with the chords, by Exercise 5.5.3, we obtain
x(y + d) = (a/2)2, (x+ d/2)(y + d/2) = (c/2)2, (x+ d)y = (b/2)2. Add the first and
the third equations and compare it with the second.

5.5.9. Let O1, O2, O3 be the centers of the three circles of radius r, and O the center of
the circle of radius R. Due to the tangency conditions, O is the center of the equilat-
eral triangle 4[O1, O2, O3] with side length 2r. Hence d(O,Oi) = (2/3)(2r)

√
3/2 =

2r
√

3/3, i = 1, 2, 3. (a) With the tangency condition of the outer circle, we have
R = r + 2r

√
3/3. We obtain R/r = 1 + 2

√
3/3. (b) Once again the tangency condi-

tion for the sides of the outer triangle give the side length as 2r+ 2r
√

3 = 2r(1 +
√

3)
so that the perimeter is 6r(1 +

√
3).

5.5.10. Let 0 < r ∈ R be the radius of the small circle. The tangency conditions
give 2(1 + r) = 2

√
2, and so r =

√
2− 1.



5.5.11. Let d = d(A,O), and P and Q the points of tangency of the two tangent
lines from A to the circle such that B ∈ [A,P ] and C ∈ [A,Q]. Let R be the point
of tangency of the third tangent line to the circle. We have d(A,P ) = d(A,Q) =√
d2 − r2. By tangency again, we have d(B,P ) = d(B,R) and d(C,Q) = d(C,R).

Hence the perimeter is equal to 2
√
d2 − r2.

5.5.12. Splitting the sides at the points of tangency, the two legs of the trapezoid
have length (a + c)/2. Since the height is 2r, by the Pythagorean theorem, we have
4r2 + (a− c)2/4 = (a+ c)2/4. Hence, r =

√
ac/2.

5.7.1. Let d(A,B) = a, d(B,C) = b, d(B,E ′) = u, d(C,E ′′) = v. By the angle
trisection condition we have d(A,E ′) = 2u and d(A,E ′′) = 2(a−v). The Pythagorean
theorem now gives a2 + u2 = 4u2 and b2 + (a− v)2 = 4(a− v)2. Hence a =

√
3u and

b =
√

3(
√

3u− v).

5.7.2. It is clear that the overlap is a rhombus. Let x be its side length. The
Pythagorean theorem gives x2 = (a− x)2 + b2. Hence x = (a2 + b2)/(2a).

5.7.3. The two line segments connecting the center of each smaller circle and the
center of the big circle are hypotenuses of right triangles with vertical and horizontal
sides. Since these hypotenuses go through the points of tangency, their lengths are
3 + 1 = 4 and 3 + 2 = 5. Since all three circles touch the left vertical side of the
rectangle, the lengths of the horizontal sides of the right triangles are 3− 1 = 2 and
3 − 2 = 1. The Pythagorean theorem gives the vertical sides as

√
42 − 22 =

√
12 =

2
√

3 and
√

52 − 12 =
√

24 = 2
√

6. Adding these up plus the vertical contribution of
the small circles to the height, we obtain 1 + 2

√
3 + 2

√
6 + 2 = 3 + 2

√
3 + 2

√
6.

5.7.4. Let Om = (2m, 0), O0 = 0, and P ∈ Sn the point of tangency of ` with Sn.
Let Q ∈ S1 be the foot of the altitude from O1 to the chord [An, Bn] of S1. Since
the triangles4[0, O1, Q] and4[0, On, P ] are similar (right-)triangles, we have 2n/2 =
1/d(O1, Q). This gives d(O1, Q) = 1/n. Finally, the Pythagorean theorem applied
to the right-triangle 4[O1, An, Q] gives d(An, Bn)/2 = d(An, Q) =

√
12 − d(O1, Q)2.

With these, we obtain d(An, Bn) = 2
√

1− 1/n2.

5.7.5. After simplification, the Pythagorean equation reduces to F 2
n +F 2

n−1 = F 2
2n−1.

This is a special case of Exercise 3.1.10.

5.7.7. For the side lengths a, b, c of the right-triangle, we have a = b−d and c = b+d.
The Pythagorean equation (b− d)2 + b2 = (b+ d)2 simplifies to b = 4d. With this we
obtain a = 3d and c = 5d.

5.7.8. Let h denote the length of the altitude. By assumption, we have h = c/2. The
altitude line splits the triangle into two similar triangles; in particular a/h = c/b, or
equivalently, 2ab = 2hc = c2. The Pythagorean theorem then gives a2+b2 = c2 = 2ab.
This rewrites as (a− b)2 = 0, so that a = b.

5.8.1. Let ρl′(A) = A′ and ρl′′(A) = A′′. Since reflection in a line is distance preserv-



ing, for any choice of B ∈ `′ and C ∈ `′′, the perimeter of the triangle 4[A,B,C] is
equal to the length of the open polygonal path consisting of the line segments [A′, B],
[B,C], and [C,A′′]. The shortest path between A′ and A′′ is realized by the length of
the (single) line segment [A′, A′′]. Since our angle is acute, this line segment intersects
the half-lines `′, resp. `′′, at B0, resp. C0. By construction, the triangle 4[A,B0, C0]
has the least perimeter.

5.9.1. Start with a constructible circle with a constructible point on its perime-
ter. Construct a square and a regular hexagon inscribed into the circle with one
vertex being the given point. Since the perpendicular bisector of two constructible
points is constructible, Archimedes’ duplication gives a constructible octagon, and a
constructible dodecagon.

Chapter 6.

6.1.1. p(x− 1) = x3 − 3x2.

6.1.2. Assume that |x| + |y| + |z| is the smallest natural number that x, y, z is a
solution. Since x is even, x = 2w say, we have 8w3 = 2y3 + 4z3, or y3 = 2(−z)3 +
4w3. Observe that (y,−z, w) is another solution which has less absolute value sum.
Conclude that (0, 0, 0) is the only solution.

6.1.3. We factor as ax2 + bx + b − a = a(x2 − 1) + b(x + 1) = (x + 1)(ax + b − a).
The first root is −1, the second is 1− b/a, Since a does not divide b, the second root
is not an integer.

6.2.1. Since p(x) is odd (p(−x) = −p(x), x ∈ R) it is enough to show that p(n) ∈ Z
for n ∈ N. We use induction with respect to n ∈ N0. For the general induction step
n⇒ n+ 1, we calculate

p(n+ 1) =
(n+ 1)5

5
+

(n+ 1)3

3
+

7(n+ 1)

15

=
n5 + 5n4 + 10n3 + 10n2 + 5n+ 1

5
+
n3 + 3n2 + 3n+ 1

3
+

7n+ 7

15

= p(n) + (n4 + 2n3 + 2n2 + n) + (n2 + n) +

(
1

5
+

1

3
+

7

15

)
.

The constant is p(1) = 1.

6.2.2. 9993 = (1000− 1)3 = 10003 − 3 · 10002 + 3 · 1000− 1 = 997, 002, 999.

6.2.3. Expand and rewrite as (x3 − 1)2 + x2(x − 1)2 = 0. Thus, x = 1 is the only
solution.

6.2.4. Letting u = x − a and v = y + a, the equation rewrites as (u + v)2 = uv.
Squaring and rearranging, we obtain u2 + uv + v2 = 0. Using the cubic identity, we
have u3 − v3 = (u− v)(u2 + uv + v2) = 0. This gives u3 = v3, and hence u = v. The



equation for u, v then implies u = v = 0. Reverting back to the original variables, we
obtain that x = a and y = −a is the only solution.

6.3.3. For p(x) constant, this follows from identity x in Exercise 6.3.2 above (k = n).
In general, take repeated derivatives of the binomial expansion of the polynomial
(1− x)n at x = 1.

6.3.5. a > 1 may be assumed (since otherwise we take the reciprocal of a). Show
that 1 < a1/n < 1 + a/n for n ∈ N. Indeed, assume that a1/n ≥ 1 + a/n. Then, by
the Binomial Formula, we have a ≥ (1 + a/n)n ≥ 1 + a, a contradiction.

6.3.6. The first three cards must have ranks from the set {2, 3, 4, 5, 6}, so that
the number of these arrangements is

(
5
3

)
(with strictly increasing rank). The last

three cards must have ranks from the set {8, 9, 10, J,Q,K,A}, so that the number of
arrangements is

(
7
3

)
. As for the suites, the middle card can be any of the 4 suites.

For each of the rest of the cards we can have 3 choices for the suite. Thus, the total
number of arrangements is 4 · 36 ·

(
5
3

)
·
(
7
3

)
= 1, 020, 600.

6.3.7. Given k = 1, 2, . . . , n, there are n − 1 choices for a derangement to map k
to j 6= k, j = 1, 2, . . . , n. The number of derangements such that k is mapped to j
but j is not mapped back to k is Dn−1. The number of derangements such that k is
mapped to j and j is mapped back to k is Dn−2.

6.4.1. x3y3− x3− y3 + 1 = (x3− 1)(y3− 1) = (x− 1)(x2 + x+ 1)(y− 1)(y2 + y+ 1).

6.4.2. Observing that −a − 1 is a solution, we obtain the factorization (x + 1)(x +
a)(x+ a+ 2)(x+ 2a+ 1)− a2 = (x2 + 2(a+ 1)x+ 2a)(x+ a+ 1)2.

6.5.1. The sum of the coefficients of p(x) is zero. This means that 1 is a root, and
hence x− 1 is a factor. We now perform synthetic division:

1 − 1 − 3 2 3 − 1 − 1

1 1 0 − 3 − 1 2 1

1 0 − 3 − 1 2 1 0

This gives the factorization

p(x) = (x− 1)(x5 − 3x3 − x2 + 2x+ 1).

The quotient still has the property that the sum of the coefficients is zero. Performing
another synthetic division, we have

1 0 − 3 − 1 2 1

1 1 1 − 2 − 3 − 1

1 1 − 2 − 3 − 1 0



This gives

p(x) = (x− 1)2(x4 + x3 − 2x2 − 3x− 1).

This time the alternating sum of the coefficients is zero. This means that −1 is a
root, and hence x+ 1 is a factor. Performing yet another synthetic division, we get

1 1 − 2 − 3 − 1

− 1 − 1 0 2 1

1 0 − 2 − 1 0

At this point, we have

p(x) = (x− 1)2(x+ 1)(x3 − 2x− 1).

Since the alternating sum of coefficients (including the zero coefficient of x2) is still
zero, we proceed with yet another synthetic division

1 0 − 2 − 1

− 1 − 1 1 1

1 − 1 − 1 0

This gives

p(x) = (x− 1)2(x+ 1)2(x2 − x− 1).

Finally, the last quotient is quadratic, x2−x−1, and the Quadratic Formula gives two
irrational roots (1 ±

√
5)/2, the golden number τ and its negative reciprocal −1/τ .

These, along with the roots x = ±1 of multiplicity 2, give all the roots of the sextic
polynomial p(x).

6.5.2. Polynomial division gives

n2 + 15

n+ 5
= n− 5 +

40

n+ 5
.

Hence, n = 3, 5, 15, 35.

6.5.4. The difference of cubes identity gives

x15 − 1 = (x5)3 − 1 = (x5 − 1)((x5)2 + x5 + 1)

= (x5 − 1)(x10 + x5 + 1)

= (x− 1)(x4 + x3 + x2 + x+ 1)(x10 + x5 + 1).



On the other hand, we also have

x15 − 1 = (x3)5 − 1

= (x3 − 1)((x3)4 + (x3)3 + (x3)2 + x3 + 1)

= (x3 − 1)(x12 + x9 + x6 + x3 + 1)

= (x− 1)(x2 + x+ 1)(x12 + x9 + x6 + x3 + 1).

Now, we note that gcf (x2+x+1, x4+x3+x2+x+1) = 1. Indeed, using the Euclidean
Algorithm, we have

x4 + x3 + x2 + x+ 1 = (x2 + x+ 1)x2 + x+ 1

x2 + x+ 1 = (x+ 1)x+ 1.

Comparing the computations above, we obtain that x2+x+1 is a factor of x10+x5+1.
Using long division, we obtain

x8 − x7 + x5 − x4 + x3 − x + 1

x2 + x+ 1
)

x10 + x5 + 1
− x10 − x9 − x8

− x9 − x8
x9 + x8 + x7

x7 + x5

− x7 − x6 − x5

− x6
x6 + x5 + x4

x5 + x4

− x5 − x4 − x3

− x3
x3 + x2 + x

x2 + x + 1
− x2 − x− 1

0

Thus, we have

x10 + x5 + 1 = (x2 + x+ 1)(x8 − x7 + x5 − x4 + x3 − x+ 1).

Remark. The complete factorization of the polynomial x8−x7 +x5−x4 +x3−x+ 1
in the previous example is more involved. We give the details without proof.2 The

2Since x10 + x5 + 1 = (x5)2 + x5 + 1, over the complex number field C, the ten roots of this
polynomial are the two sets of 5th roots of (−1 ± i

√
3)/2. Taking conjugate pairs, the quadratic

factors can be recovered.



polynomial has no real root so that it splits into four irreducible quadratic factors.
First, the polynomial can be written as the product of two quartic polynomials as

follows:

x8 − x7 + x5 − x4 + x3 − x+ 1

= (x4 − τx3 + τx2 − τx+ 1)(x4 + (1/τ)x3 − (1/τ)x2 + (1/τ)x+ 1),

where τ = (1 +
√

5)/2 is the golden number.
Second, each quartic splits into a product of two quadratic polynomials as

x4 − τx3 + τx2 − τx+ 1

=

(
x2 − 1 +

√
5 +
√

6
√

5−
√

5

4
x+ 1

)(
x2 − 1 +

√
5−
√

6
√

5−
√

5

4
x+ 1

)
x4 + (1/τ)x3 − (1/τ)x2 + (1/τ)x+ 1

=

(
x2 − 1−

√
5 +
√

6
√

5−
√

5

4
x+ 1

)(
x2 − 1−

√
5−
√

6
√

5−
√

5

4
x+ 1

)

6.6.1. There are no solutions beyond the obvious x = 0, y = 1 and x = 1, y = 0.
First, notice that that |x| ≤ 1 and |y| ≤ 1. Clearly, −1 < x, y < 0 are impossible.
Finally, for 0 < x, y < 1, we can use the fact that 0 < x4 < x3 and 0 < y4 < y3.

6.6.2. Let x, y, z be the roots of the monic cubic polynomial p(t) = (t − x)(t −
y)(t − z). The Newton-Girard formulas give s1 = p1 = 3, s21 − 2s2 = p2 = 3,
s31 − 3s2s1 + 3s3 = p3 = 3. These give s1 = s2 = 3 and s3 = 1. Thus, we have
p(t) = t3 − 3t2 + 3t− 1 = (t− 1)3. Hence x = y = z = 1 is the only solution.

6.6.4. Since D is symmetric with respect to r1, r2, r3 as indeterminates, by the
Fundamental Theorem of Symmetric Polynomials, it can be written as a polynomial
in the elementary symmetric polynomials s1, s2, s3 as indeterminates. Now use the
Viète relations.

6.6.5. Since the roots are real and distinct, we have 4ac < b2. Moreover, the quadratic
formula gives

−b < ±
√
b2 − 4ac < 2a− b.

The first inequality is equivalent to
√
b2 − 4ac < b. This holds if and only if b > 0

and 4ac > 0. Since a > 0, this gives c > 0. The second inequality immediately gives
b < 2a, and, after squaring, it simplifies to b < a+ c. Finally, b < 2a is equivalent to
b2 < 4a2, so that 4ac < b2 < 4a2 gives c < a.

6.6.6. r = 1 − c is a root for all c ∈ R so that we have the factorization p(x) =
(x+ c− 1)(x2 + x+ c+ 1). Thus the discriminant D of the quadratic factor must be
negative. This gives c > −3/4.



6.7.1. By symmetry, we may assume a1 ≤ a2 ≤ · · · ≤ an, so that s− a1 ≥ s− a2 ≥
· · · ≥ s − an, and therefore a1/(s − a1) ≤ a2/(s − a2) ≤ · · · ≤ an/(s − an). Now use
the Chebyshev sum inequality for the last two sequences.

6.7.2. Use the AM-GM-inequality three times for each parentheses.

6.7.3. Use the AM-GM-inequality three times for each pair of terms on the left-hand
side.

Chapter 7.

7.2.2. A simple comparison with the Cubic Formula shows that this is a root of the
cubic x3 + 2x+ 3. This cubic has a single real root. On the other hand, −1 is clearly
a root. It follows that this expression is equal to −1.

7.3.1. Divide by x2 and set t = x+1/x. Since t2 = x2+1/x2+2, we obtain p(x)/x2 =
q(t) = at2 + bt+ c− 2a = 0. Assuming the discriminant D = b2 − 4a(c− 2a) ≥ 0, we
have q(t) = a(t− r1)(t− r2), where r1, r2 = (−b±

√
D)/(2a). Reverting back to the

original polynomial, we obtain p(x) = (x2 − r1x+ 1)(x2 − r2x+ 1).

7.4.1. Use the Rational Root Test to obtain 4 as a root. After factoring the other
two roots are −2±

√
3.

7.4.2. Use the Rational Root Test to obtain 2 as a root. The other two roots are
complex conjugates.

7.5.1. First we dehomogenize as in Example 7.5.4. This amounts to setting y = 1.
Using the Finite Geometric Series Formula, we have

x10−1 = (x5)2−1 = (x5−1)(x5+1) = (x−1)(x4+x3+x2+x+1)(x+1)(x4−x3+x2−x+1).

(Note the symmetry with respect to the substitution x 7→ −x.) We now claim

x4 + x3 + x2 + x+ 1 =
(
x2 + τx+ 1

) (
x2 − (1/τ)x+ 1

)
,

where the coefficients of the two linear terms on the right-hand side are the golden
number and its negative reciprocal. We now use the method of Exercise 7.3.1 and
write

x4 + x3 + x2 + x+ 1 = x2
(
x2 + x+ 1 +

1

x
+

1

x2

)
.

For the expression in the parentheses on the right-hand side, we use the substitution
t = x+ 1/x. Squaring, we then have t2 = x2 + 1/x2 + 2 so that

x2 + x+ 1 +
1

x
+

1

x2
= t2 + t− 1.



The roots of the quadratic polynomial equation t2 + t− 1 = 0 are −(1±
√

5)/2. By
the Factor Theorem, we then have

t2 + t− 1 = (t+ τ) (t− 1/τ) .

In terms of the original indeterminate x, this is equal to(
x+

1

x
+ τ

)(
x+

1

x
− 1/τ

)
=

1

x2
(
x2 + τx+ 1

) (
x2 − (1/τ)x+ 1

)
.

The claim above now follows.
Using this (with ±x), we obtain

x10 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)(x+ 1)(x4 − x3 + x2 − x+ 1)

= (x− 1)
(
x2 + τx+ 1

) (
x2 − (1/τ)x+ 1

)
×(x+ 1)

(
x2 − τx+ 1

) (
x2 + (1/τ)x+ 1

)
.

Finally, homogenizing, we arrive at

x10 − y10 = (x− y)(x4 + x3y + x2y2 + xy3 + y4)(x+ y)(x4 − x3y + x2y2 − xy3 + y4)

= (x− y)
(
x2 + τxy + y2

) (
x2 − (1/τ)xy + y2

)
×(x+ y)

(
x2 − τxy + y2

) (
x2 + (1/τ)xy + y2

)
.

7.5.2. 8.

Chapter 8.

8.1.1. Substituting y = x2/
√
p into y2+x(x+q/p) = 0, we obtain x4/p+x(x+q/p) =

0. Factoring x and simplifying, we obtain x3 + px+ q = 0.

8.2.1. This follows from the discussion on the reflective property of the parabola.
For each tangent line, the midpoint M is on `.

8.2.2. It is enough to prove this for the unit parabola given by y = x2. A simple
calculation gives

Q1 =

(
x1, y2 +

y3 − y2
x3 − x2

(x1 − x2)
)

and Q2 =

(
x2, y1 +

y4 − y1
x4 − x1

(x2 − x1)
)
.

Taking slopes the condition of the two secants being parallel is equivalent to

y3 − y2
x3 − x2

+
y4 − y1
x4 − x1

=
y2 − y1
x2 − x1

+
y4 − y3
x4 − x3

.

Substituting y1 = x21, y2 = x22, y3 = x23, y4 = x24, the equality holds.



8.2.3. It is enough to show this for the unit parabola given by y = x2. Let P0 =
(x0, y0) be a point of intersecting tangent lines. The equation of a line through P0

with slope m ∈ R has the form y = y0 + m(x − x0). Substituting y = x2, we
obtain x2 − mx + mx0 − y0 = 0. A line is tangent to the parabola if and only if
this quadratic equation has a unique solution; that is, its discriminant is zero. We
have D = m2 − 4(mx0 − y0) = 0. This gives us two slopes. The corresponding two
tangent lines are perpendicular if and only if the product of their slopes is equal to
−1. By the second Viète relation, this product is the constant term of this quadratic
equation; that is 4y0 = −1. We obtain y0 = −1/4, or equivalently, the point P0 is on
the directrix.

8.2.4. Given m ∈ R, consider the pencil of parallel lines given by y = mx+ t, t ∈ R.
Intersecting these parallel lines with the unit parabola y = x2 amounts to solve the
quadratic equation x2 −mx− t = 0. Solutions exists if and only if the discriminant
D = m2 + 4t ≥ 0; that is, t ≥ −m2/4. The midpoints of the first coordinates of the
intersections is the constant m/2, the arithmetic mean of the roots. It follows that
these midpoints fill the vertical half-line given by (m/2,m2/2 + t), t ≥ −m2/4.

8.2.5. We have x1 + x2 = 0 and a(x21 + x22) + 2c = 0. Solving, we obtain x1 = −x2 =
±
√
−c/a.

8.3.1. The solution follows the method of Exercise 8.2.3 above. Let P0 = (x0, y0) be
a point of intersecting tangent lines. The equation of a line through P0 with slope
m ∈ R has the form y = y0 + m(x − x0). Substituting this into x2/a2 + y2/b2 = 1,
and expanding, we obtain(

1

a2
+
m2

b2

)
x2 +

2m(y0 +mx0)

b2
x+

(y0 +mx0)
2

b2
− 1 = 0.

The vanising of the discriminant D, after simplification, gives

m2

b2
− (y0 +mx0)

2

a2b2
+

1

a2
= 0.

This is a quadratic equation in the slope m. The product of the two roots must be
equal to −1. Using the second Viète relation, we obtain

1
a2
− y20

a2b2

1
b2
− x20

a2b2

= −1.

This is equivalent to x20 + y20 = a2 + b2.

8.3.2. This is clearly true for circles. Now the unit cicle given by x2 + y2 = 1 can
be transformed to the normal hyperbola by the transformation (x, y) 7→ (x/a, y/b),



(x, y) ∈ R2. This transformation preserves lines and ratios, so the same statement
holds for ellipses.

8.4.1. This follows along the same lines as Exercise 8.2.3 with simple modifications.

8.4.2. First we reduce this to the rectangular hyperbola given by y = 1/x. We now
follow the method of Exercise 8.2.4 as follows. Given m ∈ R, consider the pencil
of parallel lines given by y = mx + t, t ∈ R. Clearly, chords exist only if m < 0.
Intersecting these parallel lines with y = 1/x amounts to solve the quadratic equation
mx2 + tx− 1 = 0. The discriminant D = t2 + 4m ≥ 0. This gives t2 ≥ −4m. Finally,
the midpoints of the first coordinates of the intersections is −t/(2m). With this, the
midpoints can be parametrized by t as (−t/(2m), t/2). Equivalently, the equation of
the line is y = −mx.

8.4.4. Using the notation in the parametrization of the hyperbola in the main text,
the parallelogram is given by the points O, Pt, Qt, Qt − Pt, where

Pt = (at, bt) and Qt =

(
a

2

(
2t+

1

2t

)
,
b

2

(
2t− 1

2t

))
.

The line through O and Pt − (Qt − Pt) = 2Pt − Qt is parallel to the other diagonal.
Since

2Pt −Qt =

(
a

2

(
2t− 1

2t

)
,
b

2

(
2t+

1

2t

))
,

the corresponding slope is
b
(
2t+ 1

2t

)
a
(
2t− 1

2t

) .
On the other hand, the slope of the tangent line through Qt is

1
a

(
2t+ 1

2t

)
1
b

(
2t− 1

2t

) .
The two slopes are equal.

8.4.6. Clearly the three vertices cannot be on a single branch of the hyperbola.
By symmetry, we may assume that one vertex is at (−1,−1) and the other two are
(a, 1/a) and (1/a, a), for some 0 < a ∈ R. The condition that the side lengths are
equal is 2(1/a − a)2 = (1/a + 1)2 + (a + 1)2. Expanding and simplifying (in the use
of the new variable b = a+ 1/a) we obtain a = 2±

√
3.

Chapter 9.

9.1.1. Using the identity3 a4 + 4b4 = (a2 + 2b2− 2ab)(a2 + 2b2 + 2ab), the numerator
factors as (x2 + 1)(5x2 + 4x+ 1), so that the fraction becomes x2 + 1.

3Sometimes termed as the Sophie Germain identity.



9.1.3. (c) 1/(1+x) = 1/(1−x2)−x/(1−x2) and 1/(x4+x) = x2/(x6−1)−1/(x7−x).

9.2.1. (a) −1/(x− 2) + 5/(x+ 3) + 2/(x+ 1); (b) 1/(x− 1) + 1/(x− 1)2 + 1/(x− 1)3;
(c) (3x+ 2)/(x2 + 1) + (x− 2)/(x2 + x+ 1).

9.2.2. Using partial fraction decomposition, we have

n∑
k=1

k

k4 + k2 + 1
=

n∑
k=1

k

(k2 − k + 1)(k2 + k + 1)

=
1

2

n∑
k=1

(
1

k2 − k + 1
− 1

k2 + k + 1

)
=

1

2

n∑
k=1

(
1

k(k − 1) + 1
− 1

(k + 1)k + 1

)
=

1

2

(
1− 1

n2 + n+ 1

)
,

since the last sum is telescopic.

9.3.1. We have
1 + 2x− x2

1− x2
= 1 +

2x

1− x2
.

Hence, y = 1 is a horizontal asymptote, and x = ±1 are two vertical asymptotes.

9.4.1. xy/z.

9.4.2. (x1/2 − y1/2)(x+ x1/2y1/2 + y).

9.4.3. First calculate (1 −
√

2 +
√

3)(1 −
√

2 −
√

3) = −2
√

2. With this, we have
1/(1−

√
2 +
√

3) = −
√

2(1−
√

2−
√

3)/4.

9.5.1. By Thales’ Theorem, the triangle 4[A,B,C] has right angle at the vertex
C. As usual, we let d(A,B) = c, d(B,C) = a, d(C,A) = b, and d(C,D) = h. (a)
Applying the Pythagorean theorem to the three right triangles4[A,B,C],4[B,D,C]
and 4[A,D,C], we obtain

a2 + b2 = c2 = (x+ y)2

a2 = y2 + h2

b2 = x2 + h2.

Subtracting the second and third equality from the first, and rearranging, we arrive
at

d(C,D) = h =
√
xy =

√
d(A,D)d(B,D).

This is the geometric interpretation of the geometric mean. Note that, since
d(O,A) = d(O,B) = (x + y)/2, the AM-GM inequality

√
xy ≤ (x + y)/2 also



follows with equality if and only if x = y. (b) Let [D,E] be the altitude line of
the triangle 4[O,C,D] from the vertex D. We claim that d(C,E) is the harmonic
mean of x = d(A,D) and y = d(B,D). Indeed, letting d(C,E) = u, d(O,E) = v, as
above, we get d(D,E) =

√
uv. The Pythagorean theorem aplied to the right triangle

4[C,D,E] then gives
u2 + uv = xy.

On the other hand, we have u + v = (x + y)/2. Combining these two equations, we
obtain

d(C,E) = u =
u2 + uv

u+ v
=

xy
x+y
2

=
2

1
x

+ 1
y

.

For (c), the Pythagorean theorem applied to the triangle 4[O,D, F ] gives d(D,F ] =√
(x+ y)2 + (x− y)2/2 =

√
(x2 + y2)/2.

9.5.2. For 0 < x ∈ R, by the general AM-GM inequality, we have

xm +
1

xn
=

xm

n
+ · · ·+ xm

n
+

1

mxn
+ · · ·+ 1

mxn

≥ (m+ n) m+n

√(
xm

n

)n
·
(

1

mxn

)m
=

m+ n
m+n
√
mm · nn

.

Equality holds if and only if xm/n = 1/(mxn); that is, if and only if x = m+n
√
n/m.

9.6.1. n must be a multiple of 6.

9.6.2. 1 ≤ x < 16.

Chapter 10.

10.1.1. This follows from the general lower and upper estimate of exp(x) for x = 1.
For n = 1, 2, 3, 4, we obtain 2 < e < 3, 5/2 < e < 11/4, 8/3 < e < 49/18, 65/24 <
e < 87/32.

10.1.2. This is the Bernoulli inequality in disguise (y = ex).

10.1.3. Use induction with respect to n ∈ N.

10.3.1. As in the first solution of Example 3.2.6, we let 0 < b < a, and c = b/a. (Note
the switched roles of a and b.) Since limn→∞

n
√
an + bn = a limn→∞

n
√

1 + (b/a)n,
we need to show limn→∞

n
√

1 + cn = 1 for 0 < c < 1. Taking the natural loga-
rithm (and using continuity), we have ln

(
limn→∞

n
√

1 + cn
)

= limn→∞ ln
(

n
√

1 + cn
)

=
limn→∞ ln(1 + cn)/n = 0.

10.3.2. This is the AM-GM inequality in disguise.

10.3.7. sinh(ln q) = (q−1/q)/2 and cosh(ln q) = (q+1/q)/2; in particular sinh(ln 2) =
(2− 1/2)/2 = 3/4 and cosh(ln 2) = (2 + 1/2)/2 = 5/4.



10.4.1. First, assume that x ∈ (0, 1) is rational, and write x = m/n with 0 < m < n
and m,n ∈ N. Use the general AM-GM inequality with x1 = · · · = xn−m = ax0 and
xn−m+1 = · · · = xn = ax1 , and conclude that convexity holds in this case. For real
x ∈ [0, 1] use (sequential) continuity. The geometric meaning of this inequality is
that, for a 6= 1, the graph of the exponential function y = ax on the interval [x0, x1]
is below its secant line passing through the points (x0, a

x0) and (x1, a
x1).

10.5.1. Using continuity of the natural exponential and logarithmic functions and
the Euler limit, we have

lim
x→∞

(
1 +

1

x2

)x
= lim

x→∞

((
1 +

1

x2

)x2)1/x

= e0 = 1.

10.5.2. Take the products of both sides of the inequality (1 + 1/k)k < e for k =
1, 2, . . . , n− 1, and obtain nn−1/(n− 1)! < en−1.

10.5.3. (1 + x/n)n ≤ ex, −n < x, with equality only at x0 = 0. If n is odd then
(1 +x/n)n is negative for x < −n, so that the only solution is x0 = 0. If n even then,
for x ≤ −n, the polynomial (1 + x/n)n is decreasing (to zero), while ex is increasing
with a horizontal asymptote being the negative first axis. By the Intermediate Value
Theorem, the graphs meet at a unique point x1 < −n.

10.5.4. Let 1 < t = x/y ∈ R. Eliminating x, we obtain e(t+1)y = t. This gives
y = ln t/(t + 1) and hence x = t · ln t/(t + 1). Thus, t ∈ (1,∞) parametrizes all
solutions.

Chapter 11.

11.1.1. We have d(B,E) = d(B,C)/ tan(5π/12)) = d(B,C)/(2 +
√

3). Hence
d(A,E) = d(A,B)− d(B,E) = d(B,C)(2− 1/(2 +

√
3) = d(B,C)

√
3 = d(A,D)

√
3.

Thus, µ∠AED = π/6 so that µ∠DEC = 5π/12.
A more ad hoc approach is to define E ′ ∈ [A,B] such that d(D,C) = d(D,E ′) and
verify that E ′ = E by calculating angles.

11.2.1. By the Principle of Least Distance, the shortest path is along two tangential
segments from (0, 0) and (2a, 2b) to points of tangency at S with an intermediate
circular path of S with end-points, the points of tangency. Letting d =

√
a2 + b2, by

the Pythagorean theorem, the common length of the tangential segments is
√
d2 − 1

while the angle subtended by the circular arc connecting the two points of tangency
is π − 2 arccos(1/d). Thus the total length is 2

√
d2 − 1 + π − 2 arccos(1/d).

11.2.2. Let x be the shorter side length of the slimmer rectangle, and α the angle of
tilt. We then have x sinα+ cosα = 1 and x+x cosα+ sinα = 1. These give α = π/6
and x = 2−

√
3.



11.3.1. This follows by inspection of the accompanying figure.

11.3.2. Let a = cosα, b = sinα, c = cos β, d = sin β, α, β ∈ R. Then |ac + bd| =
| cosα cos β + sinα sin β| = | cos(α− β)| ≤ 1.

11.3.3. By the Cauchy-Schwarz inequality, we have cn+1 = a · cn + b ·
√

1− c2n ≤√
a2 + b2 = 1, n ∈ N0, and the first statement follows by induction. For the second,

let a = cos θ, b = sin θ, 0 < θ < π/2, and define 0 ≤ θn < π/2 with cn = cos(θn),
n ∈ N0. Rewrite the inductive definition as cos(θn+1) = cos θ ·cos(θn)+sin θ ·sin(θn) =
cos(θ−θn). Verify that θ ≥ θn, that is, a ≤ cn, n ∈ N, by induction. Finally, conclude
that θn+1 = θ − θn, n ∈ N.

11.3.4. The cubic formulas are reformulations of the triple angle formulas for sine
and cosine. For quadruple angles, we have

sin4(α) =
3− 4 cos(2α) + cos(4α)

8
and cos4(α) =

3 + 4 cos(2α) + cos(4α)

8

11.3.5. Using the double angle formula sin(2α) = 2 sin(α) cos(α), these identities
can be converted to powers of sine in the double angle 2α. With this, the identities
follow from the half angle formula for sine and the previous exercise.

11.3.6. This follows form the definitions of arcsin and arccos.

11.3.7. We use here the identities sin(2α) + sin(2β) = 2 sin(α + β) cos(α − β) and
cos(α − β) − cos(α + β) = 2 sin(α) sin(β) both of which are consequences of the
addition formulas for sine and cosine. (See also Exercise 11.3.15 below.) With these,
we calculate

sin(2α) + sin(2β) + sin(2γ) = 2 sin(α + β) cos(α− β) + 2 sin(γ) cos(γ)

= 2 sin(π − γ) cos(α− β) + 2 sin(γ) cos(π − (α + β))

= 2 sin(γ) cos(α− β)− 2 sin(γ) cos(α + β)

= 2 sin(γ)(cos(α− β)− cos(α + β)) = 4 sin(γ) sin(α) sin(β).

11.3.8. We have α + β = π − γ so that tan(α + β) = tan(π − γ) = − tan(γ). The
addition formula for tangent gives

tan(α) + tan(β)

1− tan(α) tan(β)
= − tan(γ).

Multiplying out and rearranging, the identity follows.

11.3.9. Rewrite the cases n = 3k + 1, resp. n = 3k + 2, k ∈ N0, as π/3− k · π/n =
π/(3n), resp. π/3− k · π/n = 2π/(3n).

11.3.10. This follows by direct substitution x = cos(α), and using Tn(cos(α)) =
cos(nα) and Un−1(cos(α)) = sin(nα)/ sin(α).



11.3.11. For α = 0, we have Tn(1) = Tn(cos 0) = cos 0 = 1, and, for α = π,
we have Tn(−1) = Tn(cosπ) = cos(nπ) = (−1)n, n ∈ N. Similarly, we have
Un−1(1) = limα→0 Un−1(cos(α)) = limα→0 sin(nα)/ sin(α) = n and Un−1(−1) =
limα→π Un−1(cos(α)) = limα→π sin(nα)/ sin(α) = (−1)nn.

11.3.12. This is a direct consequence of the identity 2 cos(mα) cos(nα) = cos((m +
n)α) + cos((m− n)α) which itself follows from the addition formulas for cosine.

11.3.13. These follow again from the defining formula Tn(cos(α)) = cos(nα), n ∈ N.
Restricted to α ∈ [0, π], we have cos(α) ∈ [−1, 1], and the n roots are cos((2k +
1)π/(2n)), k = 0, 1, . . . , n− 1.

11.3.14. Straightforward computation using the addition formulas for cosine and
sine.

11.4.1. We have α + β = π/2− γ so that cot(α + β) = cot(π/2− γ) = tan(γ). The
addition formula for cotangent gives

cot(α) cot(β)− 1

cot(α) + cot(β)
=

1

cot(γ)
.

Multiplying out and rearranging, the identity follows.

11.4.2. See Section 11.4.

11.4.3. Using the triple angle formulas for sine and cosine, we calculate

tan(3α) =
sin(3α)

cos(3α)
=

3 sin(α)− 4 sin3(α)

4 cos3(α)− 3 cos(α)

3 tan(α) sec2(α)− 4 tan3(α)

4− 3 sec2(α)
=

3 tan(α)− tan3(α)

1− 3 tan2(α)
.

The second formula follows form the first by taking reciprocals.

11.4.5. For (a), we consider 2π/3 a double angle. Using the double angle formulas,
we calculate

cos
(

2 ·
(π

3

))
= 2 cos2

(π
3

)
− 1 = 2

(
1

2

)2

− 1 = −1

2

and

sin
(

2 ·
(π

3

))
= 2 cos

(π
3

)
sin
(π

3

)
= 2 ·

√
3

2
· 1

2
=

√
3

2
.

For (b), we consider 3π/4 a half angle. Using the half angle formulas we calculate

cos

(
3π

4

)
= −

√
1 + cos

(
3π
2

)
2

= −
√

1 + 0

2
= −
√

2

2
.



Here we used the negative square root due to the fact the 3π/4 falls into Quadrant II
in which the cosine function is negative. We do the same for the sine function (with
positive square root), and calculate

sin

(
3π

4

)
=

√
1− cos

(
3π
4

)
2

=

√
2

2
.

For (c), we first write 5π/12 = π/4 + π/6. Using the addition formulas, we calculate

cos

(
5π

12

)
= cos

(π
4

)
cos
(π

6

)
−sin

(π
4

)
sin
(π

6

)
=

√
2

2
·
√

3

2
−
√

2

2
·1
2

=

√
2

2

(√
3− 1

2

)
and

sin

(
5π

12

)
= sin

(π
4

)
cos
(π

6

)
+cos

(π
4

)
sin
(π

6

)
=

√
2

2
·
√

3

2
+

√
2

2
·1
2

=

√
2

2

(√
3 + 1

2

)
.

11.4.6. We use the notations in the remark and figure following Example 5.5.2. We
have u = (−a+ b+ c)/2 = s− a, where s = (a+ b+ c)/2. If O denotes the incenter,
the center of the incircle of the triangle 4[A,B,C], then 4[A,P,O] has right angle
at P . The definition of cotangent gives cot(α/2) = (s − a)/r. Applying this to all
sides of the triangle 4[A,B,C], the Law of Cotangents follows.

11.4.8. We have cosα/ sinα + cos γ/ sin γ = 2 cos β/ sin β. By the Law of Sines this
reduces to cosα/a+ cos γ/c = 2 cos β/b. Now apply the Law of Cosines to each angle
and simplify.

11.4.9. Since the sequence is geometric, we obtain cos3(α) = sin2(α), or equivalently,
cos3(α) + cos2(α)− 1 = 0. Hence, x = cos(α) is the real root of the cubic x3 +x2− 1.
Thus, x is the negative of the real root of the cubic in Example 7.2.3 (c).

11.8.1. We denote the angles subtended by the chords [A,B], [B,C], [C,D], [D,A]
by α, β, γ, δ. Since the angle sum in a triangle is equal to π, we have

α + β + γ + δ = π.

We now make use of the geometric meaning of the fractions in the law of sines as the
diameter of the circumscribed circle. Since every sub-triangle of our quadrilateral has
the same circumscribed circle of radius R > 0, say, we have

sin(α)

d(A,B)
=

sin(β)

d(B,C)
=

sin(γ)

d(C,D)
=

sin(δ)

d(D,A)
=

sin(α + δ)

d(B,D)
=

sin(α + β)

d(A,C)
=

1

2R
.

Substituting (and canceling 4R2), Ptolemy’s equation rewrites as

sin(α) · sin(γ) + sin(β) · sin(δ) = sin(α + β) · sin(α + δ).



We now make use of the identity 2 sin(α) · sin(β) = cos(α−β)− cos(α+β). Applying
this (twice) to the left-hand side of Ptolemy’s equation, we obtain

sin(α) · sin(γ) + sin(β) · sin(δ)

= cos(α− γ)− cos(α + γ) + cos(β − δ)− cos(β + δ)

= cos(α− γ) + cos(α− δ),

since
cos(β + δ) = cos(π − α− γ) = − cos(α + γ).

Similarly, applying this identity to the right-hand side (again twice), we have

sin(α + β) · sin(α + δ) = cos(β − δ)− cos(2α + β + δ)

= cos(β − δ)− cos(α− γ + π)

= cos(β − δ) + cos(α− γ).

Ptolemy’s Theorem follows.


