
SCIENCE CHINA
Mathematics

. ARTICLES . July 2016 Vol. 59 No. 7: 1383–1394

doi: 10.1007/s11425-016-5121-x

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 math.scichina.com link.springer.com

Dual mean Minkowski measures of symmetry for

convex bodies

GUO Qi1,∗ & TOTH Gabor2

1Department of Mathematics, Suzhou University of Science and Technology, Suzhou 215009, China;
2Department of Mathematics, Rutgers University, Camden, NJ 08102, USA

Email: guoqi@mail.usts.edu.cn, gtoth@camden.rutgers.edu

Received August 21, 2015; accepted October 1, 2015; published online January 15, 2016

Abstract We introduce and study a sequence of geometric invariants for convex bodies in finite-dimensional

spaces, which is in a sense dual to the sequence of mean Minkowski measures of symmetry proposed by the second

author. It turns out that the sequence introduced in this paper shares many nice properties with the sequence

of mean Minkowski measures, such as the sub-arithmeticity and the upper-additivity. More meaningfully, it is

shown that this new sequence of geometric invariants, in contrast to the sequence of mean Minkowski measures

which provides information on the shapes of lower dimensional sections of a convex body, provides information

on the shapes of orthogonal projections of a convex body. The relations of these new invariants to the well-known

Minkowski measure of asymmetry and their further applications are discussed as well.
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1 Introduction

As one of the most important geometric invariants, the measure of symmetry (or asymmetry) of convex

bodies (i.e., compact convex sets with nonempty interior in Rn, the standard Euclidean space), formulated

by Grünbaum in his well-known paper [3], has regained much attention in recent years (see [1,4–6,9–11,

13,16] and the references therein). So, some new measures have been found (see [1,5,11,13,16,21]), and

more properties of the known ones, including the stability and the relations with other kinds of geometric

invariants, are revealed (see [1–3, 6, 14, 18, 19, 22]), and as consequences, some new geometric inequalities

are established (see [1, 2, 4, 5, 9–11,14, 22]).

In general, measures of symmetry (or asymmetry) can be used in geometry to measure how far a

convex body (as a whole) is from some particular convex bodies, e.g., centrally symmetric convex bodies,

convex cones or simplices. However, meaningfully, Toth [16] introduced a family of measures (functions) of

symmetry σm (see below for definition), m > 1, called the mean Minkowski measures of symmetry, which,

prior to most measures of symmetry (or asymmetry), measure not only convex bodies themselves but also

their lower-dimensional sections. Roughly speaking, for a convex body K, its (m-th) mean Minkowski

measure of symmetry σm is a function defined on intK, the interior of K, which, when 1 < m 6 n,

provides information on the shapes of m-dimensional sections of K.

∗Corresponding author



1384 Guo Q et al. Sci China Math July 2016 Vol. 59 No. 7

The properties and applications of the mean Minkowski measures of symmetry have been investigated

in a series of papers (see [16–22]), where, as an application of the mean Minkowski measures, readers may

find in particular a partial answer to the long-standing Grünbaum conjecture for the existence of n + 1

affine diameters meeting at one point of a convex body (see [3]).

In this paper, we introduce another family of measures (functions) of symmetry σ◦
m, m > 1, called the

dual mean Minkowski measures of symmetry, which in a sense are dual to the mean Minkowski measures.

It turns out that dual mean Minkowski measures share almost all nice properties with mean Minkowski

measures and, in sharp contrast to the mean Minkowski measures, describe the shapes of orthogonal

projections of a convex body. Furthermore, the dual mean Minkowski measures are relatively easier in

computation than the mean Minkowski measures, and can also be applied to deal with the Grünbaum

conjecture mentioned above as well (see [7]).

2 Notation and definitions

Let Kn denote the family of all convex bodies in Rn. For any subset S ⊂ Rn, convS and coneS denote the

convex hull and the convex conical hull of S, respectively. linS denotes the linear subspace generated by

S. A map T : Rn → Rm is called affine if T (λx+(1− λ)y) = λT (x) + (1−λ)T (y) for any x, y ∈ Rn and

λ ∈ R. In particular, an affine map f : Rn → R is called an affine function. It is known that f : Rn → R
is affine if and only if f(·) = 〈u, ·〉+ b for some unique u ∈ Rn and b ∈ R, where 〈·, ·〉 denotes the classical
inner product. Denote by aff(Rn) the family of affine functions on Rn and by Aff(Rn) the family of affine

maps from Rn to Rn . We refer the readers to [15] for other notation and terms.

The (n − 1)-dimensional unit sphere is denoted by Sn−1. An n-dimensional simplex (n-simplex for

brevity) is denoted by ∆n, i.e., ∆n := conv{v0, v1, . . . , vn}, where v0, v1, . . . , vn ∈ Rn, called the vertices

of ∆n, are affinely independent.

We recall the well-known Minkowski measure of asymmetry: Given a convex body K ∈ Kn and x ∈
intK, for a hyperplane H through x and the pair of support hyperplanes H1, H2 of C parallel to H , let

r(H,x) be the ratio, not less than 1, in which H divides the distance between H1 and H2. Note

as∞(x) = as∞(K,x) := max{r(H,x) | H ∋ x},

and the Minkowski measure as∞(K) of asymmetry of K is defined by (see [3, 12])

as∞(K) = min
x∈int(K)

as∞(K,x).

A point x ∈ int(K) such that as∞(K,x) = as∞(K) is called a Minkowski (or ∞-) critical point (of

K). The set of all ∞-critical points of K is denoted by C∞. Another equivalent definition is as follows:

Let l := pq be a chord of K passing through x, where p, q ∈ bdK, the boundary of K. If defining

γ(K,x) := maxl∋x
d(p,x)
d(x,q) , where d(·, ·) is the Euclidean metric, then γ(K,x) = as∞(K,x) (see [12]) and

so as∞(K) = minx∈int(K) γ(K,x).

It is known that for any K ∈ Kn, 1 6 as∞(K) 6 n, and as∞(K) = 1 iff K is (centrally) symmetric

and as∞(K) = n iff K is an n-dimensional simplex (see [3, 12]).

Next, we recall the definition of the mean Minkowski measure (function) of symmetry introduced

in [16]. Some notation is needed first.

Let K ∈ Kn and x ∈ intK. A multi-set {c0, c1, . . . , cm} (m > 1 and repetitions are allowed), where

c0, c1, . . . , cm ∈ bdK, is called an m-configuration of K with respect to (w.r.t. for brevity) x if x ∈
conv{c0, c1, . . . , cm}. Denote by Cm(x) = CK,m(x) the family of m-configurations of K w.r.t. x.

Definition 2.1 (See [16]). Given K ∈ Kn, for each m > 1, we define its (m-th) mean measure

(function) of symmetry σm = σK,m : intK → R by

σm(x) := inf
{c0,...,cm}∈Cm(x)

m
∑

i=0

1

Λ(ci, x) + 1
, x ∈ intK,
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where Λ(c, x) = ΛK(c, x) := d(c,x)
d(co,x) is the distortion and co ∈ bdK denotes the opposite point of c ∈ bdK

against x.

Clearly, for each m > 1, σm is affinely invariant. The following theorem was proved in [17].

Theorem 2.2 (See [17]). Let K ∈ Kn. For m > 1, we have

1 6 σm 6
m+ 1

2
.

If m > 2, then σm(x) = (m+2)/2 for some x ∈ intK iff K is symmetric with respect to x. If σm(x) = 1

for some x ∈ intK, then m 6 n and K has an m-dimensional simplicial intersection across x, i.e., there

is an m-dimensional hyperplane H such that x ∈ H and K ∩H is an m-simplex. Conversely, if K has

a simplicial intersection with an m-dimensional hyperplane H, then σm = 1 identically on K ∩H.

From Theorem 2.2, we see that the mean Minkowski measures provide indeed information about the

lower dimensional sections of a convex body.

Now we introduce a dual measure to the mean Minkowski measure, called the dual mean Minkowski

measure. In order to do so, we need some more notation. Given K ∈ Kn, we define the set Ka
[0,1] by

Ka
[0,1] := {f ∈ aff(Rn) | f(K) = [0, 1]}.

It is easy to see that if f ∈ Ka
[0,1], then {f = 0} and {f = 1} are a pair of (parallel) support hyperplanes

of K, from which it follows that as∞(K,x) = max{ 1−f(x)
f(x) | f ∈ Ka

[0,1]}, x ∈ intK (see [4, 5]).

Given K ∈ Kn, for each m > 1, we define its m-support configuration in the following way: A

multi-set {f0, . . . , fm} ⊂ Ka
[0,1] (repetitions are allowed) is called an m-support configuration of K if

⋂m

i=0{fi 6 0} = ∅, where {fi 6 0} := {x ∈ Rn | fi(x) 6 0}. The family of m-support configurations of K

is denoted by C◦
m = C◦

K,m.

Remark 2.3. In contrast to Cm(x), C◦
m does not depend on any point in the interior of K.

Definition 2.4. Let K ∈ Kn. For each m > 1, its (m-th) dual mean Minkowski measure (function)

σ◦
m = σ◦

K,m : intK → R is defined by

σ◦

m(x) := inf

{ m
∑

i=0

fi(x)

∣

∣

∣

∣

{f0, . . . , fm} ∈ C◦

m

}

, x ∈ intK.

A point x∗ ∈ intK satisfying σ◦
m(x∗) = supx∈intK σ◦

m(x) is called a σ◦
m-critical point of K.

Remark 2.5. (1) The dual mean Minkowski measure is indeed a dual concept of the mean Minkowski

measure (see Corollary 3.5).

(2) Each σ◦
m is concave in intK since it is the infimum of some concave functions

∑m

i=0 fi(x), whereas

σm is not concave in general (see [19]). Thus σ◦
m and σm do not coincide in general.

(3) Since σ◦
m is concave, σ◦

m(x) > 1, x ∈ intK (see Corollary 3.11) and limx→bdK σ◦
m(x) = 1 (see

Proposition 4.4), there exists at least one σ◦
m-critical point.

(4) σ◦
1 ≡ 1 trivially in intK since {f0, f1} ∈ C◦

1 iff f1 = 1− f0.

Among other conclusions, one of the main results in this paper is the following theorem.

Theorem 2.6. Let K ∈ Kn. For m > 1, we have 1 6 σ◦
m 6

m+1
2 . If m > 2, then σ◦

m(x) = (m+1)
2 for

some x ∈ intK iff K is a symmetric body centered at x. If σ◦
m(x) = 1 for some x ∈ intK, then m 6 n,

σ◦
m ≡ 1 and K has an m-dimensional simplicial projection, i.e., there is a projection PH : Rn → H,

where H is an m-dimensional subspace, such that PH(K) is an m-simplex. Conversely, if K has an

m-dimensional simplicial projection (2 6 m 6 n), then σm ≡ 1.

From Theorem 2.6, we see that the dual mean Minkowski measures provide indeed information about

the lower-dimensional orthogonal projections of a convex body.

The paper is organized as follows: Section 3 discusses the characteristics and properties of the support

configurations. Section 4 studies the basic properties, such as sub-arithmeticity and upper-additivity

etc., of the dual mean Minkowski measure sequences. Section 5 is devoted to the proof of Theorem 2.6.

Finally, Section 6 presents the conclusions and further considerations.
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3 Properties of support configurations

In this section, we discuss the properties of support configurations and show some of their characteristics.

We first prove the following theorem.

Theorem 3.1. Let fi(x) ∈ Ka
[0,1], i = 0, 1, . . . ,m, where fi(·) = 〈ui, ·〉 + bi. Then, the following

statements are equivalent:

(1) {fi}mi=0 ∈ C◦
m.

(2) For each u ∈ Rn, 〈ui, u〉 6 0 for some i.

(3) o ∈ ri(conv{ui0 , . . . , uil}) for some affinely independent ui0 , . . . , uil , 1 6 l 6 min{m,n}, i.e., there
are positive αik such that

∑l

k=0 αikuik = o.

(4) cone{ui0 , ui1 , . . . , uil} = lin{ui0 , ui1 , . . . , uil} for some affinely independent ui0 , ui1 , . . . , uis , 1 6

l 6 min{m,n}.
In order to prove Theorem 3.1, we need the following lemma.

Lemma 3.2. Let fi(x) ∈ Ka
[0,1], i = 0, 1, . . . ,m, where fi(·) = 〈ui, ·〉+bi. Then, for any (um+1, bm+1) ∈

cone{(u0, b0), . . . , (um, bm)}, we have

m
⋂

i=0

{fi 6 0} =

m+1
⋂

i=0

{fi 6 0},

where fm+1(·) = 〈um+1, ·〉+ bm+1.

Proof. If
⋂m

i=0{fi 6 0} = ∅, then the equality is obvious. If
⋂m

i=0{fi 6 0} 6= ∅, then this is just a

reformulation of the well-known generalized Farkas lemma (see [8, p. 60]).

Proof of Theorem 3.1. (1) ⇒ (2) Let {fi}mi=0 ∈ C◦
m and u ∈ Rn. If 〈ui, u〉 > 0 or 〈ui,−u〉 < 0 for all i,

then fi(−λu) = 〈ui,−λu〉 + bi → −∞ as λ → +∞ for all i. Thus, −λu ∈
⋂m

i=0{fi 6 0} for sufficiently

large λ, a contradiction to (1).

(2) ⇒ (3) Consider the linear subspace V := cone{ui}mi=0 ∩ (−cone{ui}mi=0). If V = {o}, then by the

separation theorem for cones there is u ∈ Rn such that {ui}mi=0 ∈ {x | 〈u, x〉 > 0}, which contradicts (2).

So dimV > 1. Now, it is easy to see by the definition that V = cone{ui0 , . . . , uis} = lin{u0, . . . , us} for

some ui0 , . . . , uis (1 6 s 6 m).

Thus, since −ui0 ∈ lin{uik}sk=0 = cone{uik}sk=0, we have −ui0 = α′
0ui0+

∑s

k=1 αikuik with α′
0, αik > 0.

Thus o =
∑s

k=0 αikuik , where αi0 := 1 + α′
0 > 0. Now, let l be the smallest positive integer such that

o =
∑l

k=0 αikuik for some ui0 , . . . , uil with αik > 0. Clearly l > 1. We claim that ui0 , . . . , uil are affinely

independent. Suppose ui0 , . . . , uil are not affinely dependent, then
∑l

k=0 βikuik = o for some (not all

zero) βi0 , . . . , βil with
∑l

k=0 βik = 0. Let

λ := min

{−αik

βik

∣

∣

∣

∣

βik < 0

}

= (say)
−αil

βil

,

then

o =

l
∑

k=0

αikuik +

l
∑

k=0

λβikuik =

l
∑

k=0

(αik + λβik)uik =

l−1
∑

k=0

(αik + λβik)uik ,

where αik + λβik > 0 (0 6 k 6 l − 1) and at least one of them is positive, a contradiction to the choice

of l.

Thus,

o =
1

∑l

k=0 αik

·
l

∑

k=0

αikuik =

l
∑

k=0

αik
∑l

k=0 αik

uik ∈ ri(conv{ui0 , . . . , uil}),

where l 6 min{m,n} clearly.

(3) ⇒ (4) Without loss of generality, suppose that u0, . . . , ul, 1 6 l 6 min{m,n}, are affinely indepen-

dent and o ∈ ri(conv{u0, . . . , ul}), i.e., o =
∑l

i=0 αiui with αi > 0. Then for each 0 6 i 6 l, we have

−ui =
∑l

j 6=i

αj

αi
uj ∈ cone{u0, . . . , ul}. Thus lin{u0, . . . , ul} = cone{u0, . . . , ul}.
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(4) ⇒ (1) Without loss of generality, suppose cone{u0, . . . , ul} = lin{u0, . . . , ul} with affinely indepen-

dent u0, . . . , ul for some 1 6 l 6 min{m,n}, then −u0 =
∑l

i=0 αiui, where αi > 0 with at least one αi

positive. Thus, setting fm+1(·) := 〈−u0, ·〉+
∑l

i=0 αibi, we have, by Lemma 3.1,

m
⋂

i=0

{fi 6 0} =

m+1
⋂

i=0

{fi 6 0} = ∅

since {f0 6 0} ∩ {fm+1 6 0} = ∅ (observing that

inf
x∈intK

fm+1(x) = inf
x∈intK

t
∑

i=0

αi〈ui, x〉+
t

∑

i=0

αibi

>

t
∑

i=0

αi inf
x∈intK

〈ui, x〉+
t

∑

i=0

αibi

=

t
∑

i=0

αi

(

inf
x∈intK

〈ui, x〉+ bi

)

= 0

and so {fm+1 6 0} ⊂ {f0 > 1}). Therefore {f0, f1, . . . , fm} ∈ C◦
m.

We now present some other basic properties of support configurations.

Proposition 3.3. Let K ∈ Kn, f0, . . . , fm ∈ Ka
[0,1],m > 1.

(1) {f0, . . . , fm} ∈ C◦
m iff {1− f0, . . . , 1− fm} ∈ C◦

m.

(2)
⋂m

i=0{fi 6 0} = ∅ iff
⋂m

i=0{fi < 0} = ∅.
(3) C◦

m is compact in R(n+1)(m+1).

Proof. (1) Write fi(·) = 〈ui, ·〉+bi, then 1−fi(x) = 〈−ui, x〉−bi+1, i = 0, 1, . . . ,m. Thus {f0, . . . , fm}
∈ C◦

m, by Theorem 3.1(2), iff for each −u ∈ Rn, 〈−u, ui〉 6 0 for some 0 6 i 6 m, i.e., iff for each u ∈ Rn,

〈u,−ui〉 6 0 for some 0 6 i 6 m, and so, by Theorem 3.1 again, iff {1− f0, . . . , 1− fm} ∈ C◦
m.

(2)
⋂m

i=0{fi 6 0} = ∅ implies clearly
⋂m

i=0{fi < 0} = ∅.
If
⋂m

i=0{fi 6 0} 6= ∅, choosing x1 ∈ ⋂m

i=0{fi 6 0} and x2 ∈ intK (so fi(x2) > 0 for all i), we have, since

fi(λx1 + (1 − λ)x2) = λfi(x1) + (1 − λ)fi(x2) → −∞ as λ → +∞ for each i, fi(λ0x1 + (1 − λ0)x2) < 0

for some λ0 > 0 and all i. Thus, λ0x1 + (1− λ0)x2 ∈
⋂m

i=0{fi < 0}, i.e.,
⋂m

i=0{fi < 0} 6= ∅.
(3) Since Ka

[0,1] is compact in Rn+1 (see [9, Lemma 1]) and so is Ka
[0,1] × · · · ×Ka

[0,1] ((m+1)-fold), we

need only to show that C◦
m ∈ Ka

[0,1] × · · · ×Ka
[0,1] is closed.

Let {f (k)
0 , . . . , f

(k)
m } ∈ C◦

m, k = 1, 2, . . . , and {f (k)
0 , . . . , f

(k)
m } → {f0, . . . , fm} ∈ Ka

[0,1] × · · · ×Ka
[0,1] as k

→ ∞, which is equivalent to f
(k)
i → fi for each i. Now, suppose {f0, . . . , fm} /∈ C◦

m, i.e.,
⋂m

i=0{x | fi(x)
6 0} 6= ∅, then by (2) just proved above, there exists x0 ∈

⋂m

i=0{x | fi(x) < 0}, i.e., fi(x0) < 0 for each i.

Thus, since f
(k)
i (x0) → fi(x0) as k → ∞, we conclude that there is k0 such that f

(k)
i (x0) 6 0 for all

k > k0 and all i, which contradicts that {f (k)
0 , . . . , f

(k)
m } ∈ C◦

m, k > k0.

Corollary 3.4. The infimum in the definition of σ◦
m is attainable, i.e., for given x ∈ intK, there is

an m-support configuration {f0, . . . , fm} ∈ C◦

K,m such that
∑m

i=0 fi(x) = σ◦
m(x).

Proof. This follows from Proposition 3.3(3) and the fact that
∑m

i=0 fi(x) is continuous w.r.t.

{f0, . . . , fm}.

An m-support configuration {fi} such that
∑m

i=0 fi(x) = σ◦
m(x) is called an m-minimizer w.r.t. x ∈

intK.

The next corollary shows a kind of duality between σm and σ◦
m. Before stating the corollary, we need

some preparations.

Given K ∈ Kn and x ∈ intK, we define the support function hx(·) = hx(K, ·) based at x of K by

hx(K,u) := sup{〈u, y − x〉 | y ∈ K}, u ∈ Rn,
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the gauge function gx(·) = gx(K, ·) based at x of K by

gx(K,u) := inf{λ > 0 | u ∈ λ(K − x)}, u ∈ Rn,

and the dual body Kx based at x of K by

Kx := {y | 〈y, z − x〉 6 1, z ∈ K}+ x.

Clearly, when x = o ∈ intK, ho, go and Ko are exactly the classical ones, and

hx(K,u) = ho(K − x, u), gx(K,u) = go(K − x, u), Kx := (K − x)o + x,

hx(K
x, u) = ho((K − x)o, u), gx(K

x, u) = go((K − x)o, u).

[15, Lemma 1.7.13] states an elegant relation between the support and the gauge function: If o ∈ intK,

then for any u ∈ Rn, go(K,u) = ho(K
o, u).

Corollary 3.5. Let K ∈ Kn and m > 1. Then,

σK,m(x) = σ◦

Kx,m(x), σ◦

K,m(x) = σKx,m(x).

Proof. We first point out a fact that for each u ∈ Rn \ {o}, there are (unique) µ > 0 and b ∈ R
such that f(·) := 〈µu, ·〉 + b ∈ Ka

[0,1] (choosing b = b1/a and µ = 1/a, where b1 := − infx∈K〈u, x〉 and

a := supx∈K〈u, x〉+ b1).

Then, for ci ∈ bdK, defining fi(·) := 〈µi(ci − x), ·〉 + bi ∈ (Kx)a[0,1], 0 6 i 6 m, where µi > 0 as

mentioned above, we have

{c0, c1, . . . , cm} ∈ CK,m(x)

⇔ x ∈ conv{c0, c1, . . . , cm} (by definition)

⇔ x =

l
∑

k=0

αikcik , where l > 1, {cik} ⊂ {ci}, αik > 0,

l
∑

k=0

αik = 1 (by x /∈ bdK)

⇔ o =

l
∑

k=0

αik

µik

µik(cik − x) ⇔ {f0, f1, . . . , fm} ∈ C◦

Kx,m (by Theorem 3.1).

Next, observing that for c ∈ bdK, d(x,ci)
d(x,c◦

i
) = go(K−x, x− c) and go(K−x, c−x) = 1 since c−x, c◦−x ∈

bd(K − x), we obtain

1

Λ(ci, x) + 1
=

1
d(x,ci)
d(x,c◦

i
) + 1

=
go(K − x, ci − x)

go(K − x, x− ci) + go(K − x, ci − x)

=
ho((K − x)◦, ci − x)

ho((K − x)◦, x− ci) + ho((K − x)◦, ci − x)
(by [15, Lemma 1.7.13])

=
hx(K

x, ci − x)

hx(Kx, x− ci) + hx(Kx, ci − x)
= 1− fi(x).

Hence, with the help of Proposition 3.3, we have

σK,m(x) = inf
{c0,c1,...,cm}∈CK,m(x)

m
∑

i=0

1

Λ(ci, x) + 1

= inf
{f0,f1,...,fm}∈C◦

Kx,m

m
∑

i=0

(1− fi(x)) = inf
{f0,f1,...,fm}∈C◦

Kx,m

m
∑

i=0

fi(x) = σ◦

Kx,m(x).

The second equality follows from the fact that (Kx)x = K.

One kind of particular support configurations will play an important role in the study of dual mean

Minkowski measures of symmetry.
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Definition 3.6. Let 1 6 m 6 n. For 1 6 m 6 n, an {f0, . . . , fm} ∈ C◦
m, where fi(·) = 〈ui, ·〉 + bi, is

called simplicial if
⋂m

i=0{fi > 0} ∩ lin{ui}mi=0 is an m-simplex, where a 1-simplex means a segment.

Theorem 3.7. Let {f0, . . . , fm} ∈ C◦
m with fi(·) = 〈ui, ·〉 + bi (1 6 m 6 n). Then the following are

equivalent:

(1) {f0, . . . , fm} is simplicial.

(2) u0, . . . , um are affinely independent and cone{ui}mi=0 = lin{ui}mi=0.

(3)
∑m

i=0 αiui = o for some positive α0, . . . , αm and if
∑m

i=1 βiui = o with non-negative βi, then either

βi > 0 for all i or βi = 0 for all i.

(4) {f0, . . . , fm} has no proper sub-support configurations.

Proof. (1) ⇒ (2) If {f0, . . . , fm} is simplicial, then u0, . . . , um are exactly the m + 1 inner normals

of facets of the m-simplex ∆m :=
⋂m

i=0{fi > 0} ∩ lin{ui}mi=0. So {ui}mi=0 are affinely independent and

dim(lin{ui}mi=0) = m. Suppose that cone{ui}mi=0 ( lin{ui}mi=0. Then by the Separation Theorem for

cones, cone{ui}mi=0 ⊂ {x ∈ lin{ui}mi=0 | 〈u, x〉 > 0} for some u ∈ lin{ui}mi=0. Thus, choosing x0 ∈ ∆m, we

have

fi(x0 + tu) = 〈ui, x0 + tu〉+ bi = 〈ui, x0〉+ bi + t〈ui, u〉 > 0

for all t > 0 and all i, i.e., {x0+ tu | t > 0} ⊂ ∆m, which contradicts the boundedness of ∆m in lin{ui}mi=0

(noticing that x0 + tu ∈ lin{ui}mi=0 for all t).

(2) ⇒ (3) Since cone{ui}mi=0 = lin{ui}mi=0, we have −u0 =
∑m

i=0 γiui for some γi > 0. Thus
∑m

i=0 αiui = o, where α0 = 1 + γ0 > 0 and αi = γi > 0 for 1 6 i 6 m.

Before showing that all αi above are positive, we first show the second conclusion. Assume that
∑m

i=0 βiui = o for some non-negative β0, . . . , βm. Suppose that some βi are zeros and some βi are positive.

Without loss of generality, we assume βm = 0 (and so
∑m−1

i=0 βi 6= o). Observing that −um =
∑m

i=0 β
′
iui

or equivalently
∑m−1

i=0 β′

iui + (1 + β′
m)um = o for some β′

i > 0, we have

m−1
∑

i=0

(µβi − β′

i)ui − (1 + β′

m)um = o and
m−1
∑

i=0

(µβi − β′

i)− (1 + β′

m) = 0,

where µ = (
∑m−1

i=0 βi)
−1(

∑m−1
i=0 β′

i + (1 + β′
m)), which contradicts the affine independence of u0, . . . , um

since 1 + β′
m 6= 0.

Now the fact that all αi are positive is just a simple consequence of the second conclusion.

(3) ⇒ (4) Without loss of generality, suppose {f0, . . . , fm1
} ∈ C◦

m1
, where 1 6 m1 < m, then by

Theorem 3.1(3), there are affinely independent ui0 , . . . , uil , 1 6 l 6 min{m1, n} < m, such that o ∈
ri(conv{uik}lk=0), i.e.,

∑l

k=1 αikuik = o with αik > 0, which contradicts (3) since l < m.

(4) ⇒ (1) By Theorem 3.1, o ∈ ri(conv{ui0 , . . . , uil}) for some affinely independent ui0 , . . . , uil , 1 6

l 6 m, which in turn shows {fi0 , . . . , fil} ∈ C◦

l by Theorem 3.1 again. Thus l = m by (4) and so

o =
∑m

k=0 αiui with all αi > 0. Now we claim that the non-empty set ∆m :=
⋂m

i=0{fi > 0} ∩ lin{ui}mi=0

is bounded in the m-dimensional subspace lin{ui}mi=0 which means that {f0, . . . , fm} is simplicial.

Suppose that ∆m is not bounded in lin{ui}mi=0, then {x0 + tu | t > 0} ⊂ ∆m for some x0 ∈ ∆m and

non-zero u ∈ lin{ui}mi=0 (so fi(x0 + tu) > 0 for all t > 0 and all i). However, since 0 =
∑m

i=0 αi〈ui, u〉, we
have 〈ui0 , u〉 < 0 for some i0 and furthermore

0 6 fi0(x0 + tu) = 〈ui0 , x0〉+ t〈ui0 , u〉+ bi0 → −∞ as t → +∞,

a contradiction.

The next proposition shows that the simplicial support configurations are not very special.

Proposition 3.8. Any {f0, . . . , fm} ∈ C◦
m (m > 1) has a simplicial sub-support configuration {fi0 ,

. . . , fil} ∈ C◦

l , where 1 6 l 6 min{m,n}.
Proof. Denote fi(·) = 〈ui, ·〉+bi. Then, let l be the smallest positive integer such that

∑l

k=0 αikuik = o

for some {uik}lk=0 ⊂ {ui}mi=0 and αik > 0, 0 6 k 6 l (by Theorem 3.1, such l exists and 1 6 l 6

min{m,n}). Thus, {fi0 , . . . , fil} ∈ C◦

l by Theorem 3.1 again, and further {fi0 , . . . , fil} is l-simplicial by

Theorem 3.7(3).



1390 Guo Q et al. Sci China Math July 2016 Vol. 59 No. 7

We end this section with the following proposition and its corollary.

Proposition 3.9. Let K ∈ Kn. If {f0, . . . , fn} ∈ C◦

K,n is n-simplicial, then
∑n

i=0 fi(x) > 1 for all

x ∈ intK and the equality holds for some x ∈ intK iff K =
⋂n

i=0{x | fi(x) > 0}, i.e., K is an n-simplex.

In order to prove Proposition 3.9, we need the following well-known fact and we repeat the proof here

for completeness (see [4]).

Lemma 3.10. Let ∆ ∈ Kn be an n-simplex with vertices v0, . . . , vn and gi ∈ ∆a
[0,1] be such that

gi(vj) = δij, the Kronecker symbol. Then
∑n

i=0 gi ≡ 1 in Rn.

Proof. Observing that for any x ∈ Rn, x =
∑n

i=0 αivi for some α0, . . . , αn ∈ R with
∑n

i=0 αi = 1, we

have,
n
∑

i=0

gi(x) =

n
∑

i=0

gi

( n
∑

j=0

αjvj

)

=

n
∑

i=0

n
∑

j=0

αjgi(vj) =

n
∑

i=0

αi = 1.

Proof of Proposition 3.9. Denote ∆ :=
⋂n

i=0{x | fi(x) > 0} which is an n-simplex with vertices, say,

v0, . . . , vn. Let gi ∈ ∆a
[0,1], 0 6 i 6 n, be such that gi(vj) = δij . Then it is easy to check that gi(x) 6 fi(x)

for all x ∈ K and all i since K ⊂ ∆. Thus, we obtain
∑n

i=0 fi(x) >
∑n

i=0 gi(x) = 1 by Lemma 3.10.

For the equality case,
∑n

i=0 fi(x) = 1 for x ∈ intK iff gi(x) = fi(x) and iff gi = fi for all i and so iff

K = ∆.

Corollary 3.11. Let K ∈ Kn and m > 1. Then σ◦
m(x) > 1 for all x ∈ intK.

Proof. For any x ∈ intK, let {f0, . . . , fn} ∈ C◦

K,n, where fi(·) = 〈ui, ·〉 + bi, be a minimizer w.r.t. x,

i.e.,
∑m

i=0 fi(x) = σ◦
m(x). By Theorem 3.7, there is a simplicial l-support configuration {fi0 , . . . , fil}

⊂ {f0, . . . , fn} (1 6 l 6 min{m,n}). Therefore, with the help of Proposition 3.9, we obtain that, for any

x ∈ intK,

σ◦

m(x) =

m
∑

i=0

fi(x) >

l
∑

k=0

fik(x) =

l
∑

k=0

fik(Px) > 1,

where P is the orthogonal project from Rn to lin{ui0 , . . . , uil}.

4 Properties of the sequence {σ◦

m
}m>1

In this section, we show that the dual measures σ◦
m share many nice properties with the mean Minkowski

measures.

First we show that, similar to {σm}m>1, the sequence {σ◦
m} is sub-arithmetic.

Theorem 4.1. For any K ∈ Kn, x ∈ intK and m, k > 1, we have

σ◦

m+k(x) 6 σ◦

m(x) + kf̂(x), x ∈ intK,

where f̂ = f̂x ∈ Ka
[0,1] satisfies f̂(x) = inff∈Ka

[0,1]
f(x), or equivalently

1−f̂(x)

f̂(x)
= as∞(K,x). Moreover, the

equality holds for m = n and k > 1, i.e., the sequence {σ◦

n+k}k>1 is arithmetic.

Proof. For any {f0, . . . , fm} ∈ C◦
m, denote by {f0, . . . , fm, f̂ , . . . , f̂} the (m+ k)-support configuration

with k copies of f̂ added to {f0, . . . , fm}. Then we have

σ◦

m(x) + kf̂(x) = inf
{f0,...,fm}∈C◦

m

m
∑

i=0

fi(x) + kf̂(x)

= inf
{f0,...,fm,f̂ ,...,f̂}∈C◦

m+k

( m
∑

i=0

fi(x) + kf̂(x)

)

> inf
{f0,...,fm+k}∈C◦

m+k

m+k
∑

i=0

fi(x) = σ◦

m+k(x).
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If k > 1, then, for any {f0, . . . , fn+k} ∈ C◦

n+k, by Helly’s theorem we have, say, {f0, . . . , fn} ∈ C◦
n.

Thus, for x ∈ intK,

n+k
∑

i=0

fi(x) =

n
∑

i=0

fi(x) +

m+k
∑

i=n+1

fi(x)

> σ◦

n(x) + kf̂(x),

which leads clearly to σ◦

n+k(x) > σ◦
n(x) + kf̂(x) and in turn (together with the reverse inequality just

proved above) leads to σ◦

n+k(x) = σ◦
n(x) + kf̂(x), i.e., the sequence {σ◦

n+k}k>1 is arithmetic.

We now show that, similar to {σm}, the sequence {σ◦
m} is also upper-additive.

Theorem 4.2. Let K ∈ K and m, k > 1. Then we have

σ◦

m+k − σ◦

m+1 > σ◦

k − σ◦

1 .

Proof. Let {f0, . . . , fm+k} ∈ C◦

m+k be an (m+ k)-minimizer w.r.t. x ∈ intK.

If {f0, . . . , fm} ∈ C◦
m, then by applying Theorem 4.1 repeatedly, we have

σ◦

m+k(x) =

m
∑

i=0

fi(x) +

m+k
∑

i=m+1

fi(x)

> σ◦

m(x) + kf̂(x)

> σ◦

m+1(x) + (k − 1)f̂(x)

= σ◦

m+1(x) + (σ◦

1(x) + (k − 1)f̂(x))− σ◦

1(x)

> σ◦

m+1(x) + σ◦

k(x)− σ◦

1(x),

where f̂ is the same as in Theorem 4.1.

If {fm+1, . . . , fm+k} ∈ C◦

k−1, we have, by applying Theorem 4.1 repeatedly again,

σ◦

m+k(x) =

m
∑

i=0

fi(x) +

m+k
∑

i=m+1

fi(x)

> (m+ 1)f̂(x) + σ◦

k−1(x)

= (mf̂(x) + σ◦

1(x)) + (f̂(x) + σ◦

k−1(x))− σ◦

1(x)

> σ◦

m+1(x) + σ◦

k(x)− σ◦

1(x).

Now, suppose that {f0, . . . , fm} /∈ C◦
m and {fm+1, . . . , fm+k} /∈ C◦

k−1. We first observe that, by The-

orem 3.1, there are non-negative αi, i = 0, 1, . . . ,m + k, with αi0 > 0 for at least one i0 such that
∑m+k

i=0 αiui = o, from which we get
∑m

i=0 αiui = −
∑m+k

i=m+1 αiui =: u. We claim that u 6= o (so not all

αi, i = 0, . . . ,m, are zero and not all αi, i = m+1, . . . ,m+ k, are zero) for otherwise we would have by

Theorem 3.1 again {f0, . . . , fm} ∈ C◦
m or {fm+1, . . . , fm+k} ∈ C◦

k−1.

We set f(·) := 〈u, ·〉+ b ∈ Ka
[0,1] (and so 1− f = 〈−u, ·〉+ 1− b ∈ Ka

[0,1] as well), where b =
∑m

i=0 αibi.

Thus, it is easy to check that by Lemma 3.2
⋂m

i=0{fi 6 0} ∩ {1 − f 6 0} =
⋂m

i=0{fi 6 0} = ∅, i.e.,
{f0, . . . , fm, 1− f} ∈ C◦

m+1. Similarly, {fm+1, . . . , fm+k, f} ∈ C◦

k . Thus,

σ◦

m+k(x) =

m
∑

i=0

fi(x) +

m+k
∑

i=m+1

fi(x)

=

( m
∑

i=0

fi(x) + (1− f(x))

)

+

( m+k
∑

i=m+1

fi(x) + f(x)

)

− 1

> σ◦

m+1(x) + σ◦

k(x)− σ◦

1(x),

where we used the fact σ◦
1 ≡ 1.
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The following are some applications of Theorem 4.1: The first one reveals the relation between the

Minkowski measure of asymmetry and the dual mean Minkowski measure of symmetry and the second

one implies that the concave function σ◦
m : intK → R can be continuously extended to the whole K by

setting it equal to 1 on bdK.

Proposition 4.3. Let K ∈ Kn. Then limm→∞

σ◦

m(x)
m

= 1
1+as∞(x) .

Proof. By Theorem 4.1 and the fact that σ◦
m(x) > (m+1)f̂(x), where f̂ is the same as in Theorem 4.1,

we have

f̂(x) = lim
m→∞

m+ 1

m
f̂(x) 6 lim

m→∞

σ◦
m(x)

m
= lim

m→∞

σ◦

1+(m−1)(x)

m

6 lim
m→∞

σ◦
1(x) + (m− 1)f̂(x)

m
= f̂(x).

So limm→∞

σ◦

m(x)
m

= f̂(x) = 1
1+as∞(x) .

Proposition 4.4. Let K ∈ Kn and x0 ∈ bdK. Then limx→x0
σ◦
m(x) = 1.

Proof. By Corollary 3.11 and Theorem 4.1, we have

1 6 lim
x→x0

σ◦

m(x) 6 lim
x→x0

(σ◦

1(x) + (m− 1)f̂x(x))

= lim
x→x0

(1 + (m− 1)f̂x(x)) = 1,

where we used the obvious facts that σ◦
1 ≡ 1 and limx→x0

f̂x(x) = 0. Therefore limx→x0
σ◦
m(x) = 1.

5 Proof of the main theorem

We start this section with two lemmas which will be needed for the proof of Theorem 2.6.

Lemma 5.1. If σ◦
n(x) = 1 for some x ∈ intK and there is a simplicial n-minimizer w.r.t. x, then K

is an n-simplex (and so σ◦
n ≡ 1).

Proof. Suppose σ◦
n(x) = 1 for some x ∈ intK and {f0, . . . , fn} ∈ C◦

n is a simplicial minimizer w.r.t. x,

i.e., ∆ :=
⋂n

i=0{fi > 0} is an n-simplex. For 0 6 i 6 n, let gi ∈ ∆a
[0,1] be such that {gi = 0} = {fi = 0},

then gi(x) 6 fi(x) (since K ⊂ ∆).

If K is not an n-simplex, then there exists at least one i such that gi(x) < fi(x). Thus σ◦
n(x) =

∑n

i=0 fi(x) >
∑n

i=0 gi(x) = 1 (where the last equality follows from Lemma 3.10), a contradiction.

Lemma 5.2. If σ◦
m(x) = 1 (m 6 n) for some x ∈ intK, then all m-minimizers w.r.t. x are simplicial.

Proof. If {f0, . . . , fm} ∈ C◦
m is not m-simplicial, then by Theorem 3.7 and Proposition 3.8, {f0, . . . , fm}

has a proper sub-support configuration, say, {f0, . . . , fl}, where l < m. Thus we have

m
∑

i=0

fi(x) =
l

∑

i=0

fi(x) +
m
∑

i=l+1

fi(x) > σ◦

l (x) > 1.

So {f0, . . . , fm} is not an m-minimizer w.r.t. x.

Now, it is the time to prove Theorem 2.6.

Proof of Theorem 2.6. First, we consider the inequalities. Since σ◦
m > 1 was already shown in Corol-

lary 3.11, we need only to show σ◦
m 6

m+1
2 .

By Theorem 4.1,

σ◦

m(x) = σ◦

1+(m−1)(x) 6 σ◦

1(x) + (m− 1)f̂(x) 6 1 +
m− 1

2
=

m+ 1

2
,

where we used the fact that f̂(x) 6 1
2 for all x ∈ intK (which can be easily seen from the definition of f̂).
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We now discuss the equality cases.

Suppose that K is a symmetric body centered at x. Then f(x) = 1
2 for all f ∈ Ka

[0,1] and so
∑m

i=0 fi(x)

= m+1
2 for any {f0, . . . , fm} ∈ C◦

m, and in turn σ◦
m(x) = m+1

2 .

Conversely, if σ◦
m(x) = m+1

2 for some x ∈ intK, then by Theorem 4.1,

m+ 1

2
= σ◦

m(x) 6 σ◦

m−1(x) + f̂(x) 6
m

2
+

1

2
=

m+ 1

2
,

where we used the fact that σ◦
m−1(x) 6

m
2 and f̂(x) 6 1

2 , which implies clearly f̂(x) = 1
2 . Thus, by the

definition of f̂ , we have f(x) = 1
2 for all f ∈ Ka

[0,1] and in turn that K is a symmetric body centered at x.

Now suppose there is an orthogonal project PH : Rn → H , an m-dimensional subspace (2 6 m 6

n), such that ∆ := PH(K) is an m-simplex in H with vertices, say, v0, . . . , vm. Let affine functions

f̃i : H → R (0 6 i 6 m) be such that f̃i(vj) = δij . Then {f̃0, f̃1, . . . , f̃m} ∈ C◦

∆,m and
∑m

i=0 f̃i ≡ 1 in

int∆. Now, setting fi := f̃i ◦ PH : Rn → R (0 6 i 6 m), we have clearly {f0, . . . , fm} ∈ C◦

K,m and
∑m

i=0 fi(x) =
∑m

i=0 f̃i(PHx) = 1 for x ∈ intK, i.e., σ◦
m ≡ 1.

Conversely, if σ◦
m(x) = 1 for some x ∈ intK and {f0, . . . , fm} ∈ C◦

m is an m-minimizer w.r.t. x,

i.e.,
∑m

i=0 fi(x) = 1, then m 6 n for otherwise, by Helly’s theorem there are, say, f0, . . . , fn such that

{f0, . . . , fn} ∈ C◦
n, and so we would have 1 = σ◦

m(x) =
∑m

i=0 fi(x) =
∑n

i=0 fi(x) +
∑m

i=n+1 fi(x) >

σ◦
n(x) +

∑m

i=n+1 fi(x) > 1.

By Lemma 5.2, {f0, . . . , fm} is m-simplicial. Now setting H := lin{ui}mi=0 where u0, . . . , um are such

that fi(·) = 〈ui, ·〉+ bi, we have, by the definition of simplicial support configurations, that PH(K) is an

m-simplex in H .

The proof is complete.

6 Conclusions and further considerations

As mentioned in Introduction and shown in later sections, in contrast to the mean Minkowski measures

which describe the shapes of low-dimensional sections of a convex body, the dual mean Minkowski mea-

sures of symmetry provide indeed some valuable information on low-dimensional orthogonal projections

of a convex body, in particular, on low-dimensional simplicial projections. To the best of our knowledge,

the mean Minkowski and the dual mean Minkowski measures of symmetry are probably the only mea-

sures which provide information not only on the shape of a convex body itself but also on the shapes of

its sections or projections. We expect more such kinds of measures of symmetry (or asymmetry) to be

found.

In this paper, we pay attention mainly to the best lower/upper bounds of dual mean Minkowski

measures and determining the corresponding extremal projections. There are still more problems to be

studied, e.g., the stabilities of dual mean Minkowski measures at both the extremal values, i.e., 1 and
m+1
2 ; the properties of the set of σ◦

m-critical points. Also, we think it hopeful that Grünbaum’s conjecture

is valid at a σ◦
n-critical point, i.e., there should be n+1 affine diameters meeting at one σ◦

n-critical point

of a convex body (see [7]).
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