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Abstract The study of orthogonal multiplications is more than 100 years old and
goes back to the works of Hurwitz and Radon. Yet, apart from the extensive lit-
erature on admissibility of domain and range dimensions near the Hurwitz-Radon
range (in codimension ≤ 8), only sporadic and fragmentary results are known about
full classification (in large codimension), more specifically, about the moduli space
Mm of orthogonal multiplications F : R

m × R
m → R

n (for various n), even for
m ≤ 4. In this paper we give an insight to the subtle geometries of M3 and M4.
Orthogonal multiplications are intimately connected to quadratic eigenmaps between
spheres via the Hopf-Whitehead construction. The 9-dimensional moduli space M3
lies on the boundary of the 84-dimensional moduli of quadratic eigenmaps of S5 into
spheres. Similarly, the 36-dimensional moduli space M4 is on the boundary of the
300-dimensional moduli of quadratic eigenmaps of S7 into spheres. We will show that
M3 is the SO(3)× SO(3)-orbit of a 3-dimensional convex body bounded by Cayley’s
nodal cubic surface with vertices in a real projective space RP3, the latter imbedded
equivariantly and minimally in an 8-sphere of the space of quadratic spherical har-
monics on S3. For M4, we show that it possesses two orthogonal 18-dimensional
slices each of which is an SO(4)× SO(4)-orbit of a 6-dimensional polytopeP ⊂ R

6.
This polytope itself is the convex hull of two orthogonal regular tetrahedra. The cor-
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responding orthogonal multiplications are explicitly constructible. Finally, we give an
algebraic description of the 24-dimensional space of diagonalizable elements in M4.
The crucial fact in R

4 is the splitting of the exterior product �2(R4) into self-dual and
anti-self-dual components. The techniques employed here can be traced back to the
work of Ziller and the author (Toth and Ziller 1999) in describing the 18-dimensional
moduli for quartic spherical minimal immersions of S3 into spheres. As a new feature,
we point out the importance of multiplicity of the zeros of the polynomials that define
the boundary ∂ Mm as a determinantal variety.

Keywords Orthogonal multiplication · Cayley’s nodal cubic · Hopf-Whitehead
construction · Moduli · Determinantal variety

Mathematics Subject Classification 52A05 · 52A38 · 52B11

1 Introduction and preliminaries

1.1 Orthogonal multiplications

A bilinear map F : R
� × R

m → V into a Euclidean vector space V of dimension n
is called an orthogonal multiplication if F is normed:

|F(x, y)| = |x | · |y|, x ∈ R
�, y ∈ R

m,

where | · | stands for the Euclidean norms of the ambient vector spaces.
(Due to specific examples, it is of slight advantage to keep V arbitrary and only specify
V = R

n if an orthonormal basis is a priori given in V .) Without loss of generality we
will always assume that 1 ≤ � ≤ m. In addition, restricting to the linear span of the
image of F in V , we can also arrange (and will tacitly assume) that F is full, that is, the
image of F is not contained in any proper linear subspace of V . With these the range
dimension of an orthogonal multiplication F : R

� × R
m → V satisfies m ≤ n ≤ �m,

where n = dim V . The lower bound is a direct consequence of normality. The upper
bound follows from bilinearity, and is attained (among others) by the tensor product
F⊗ : R

� × R
m → R

� ⊗ R
m , F⊗(x, y) = x ⊗ y, x ∈ R

�, y ∈ R
m . Two orthogonal

multiplications F : R
� × R

m → V and F ′ : R
� × R

m → V ′ are called range-
equivalent if F ′ = U · F for some (linear) isometry U : V → V ′.

The simplest examples of orthogonal multiplications are the real, complex, and
quaternionic multiplications: FR· : R × R → R, FR· (x, y) = x · y, x, y ∈ R; FC· :
C × C → C, FC· (z, w) = z · w̄, z, w ∈ C; and FH· : H × H → H, FH· (p, q) = p · q̄,
p, q ∈ H (with quaternionic conjugation).
For a less trivial example, we let F∧ : R

m × R
m → R × �2(Rm) = R

m(m−1)/2+1 be
defined by F∧(x, y) = (〈x, y〉, x ∧ y), x, y ∈ R

m . [See (Parker 1983, Remark 2, p.
371), and (Wu et al. 2015, H for t = 0).]

The study of existence of orthogonal multiplications F : R
� × R

m → V (without
fullness) goes back to Hurwitz (1898, 1923) and Radon (1922). For brevity, we say
that F is of type (�,m, n), and that (�,m, n) is admissible if F (not necessarily full)
exists.
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In 1898 Hurwitz proved that (m,m,m) is admissible if and only if m = 1, 2, 4, 8.
[m = 8 corresponds to multiplication of octonions (Cayley numbers).] For the exis-
tence of orthogonal multiplications of type (�,m,m)Radon gave a full answer in 1922
as follows. Let m = 2p · q with q odd. If p = 4a + b, 0 ≤ b < 4, then define (the
Hurwitz-Radon function) ρ(m) = 8a + 2b. Then (�,m,m) is admissible if and only
if � ≤ ρ(m). Equivalently, ρ(m) is the largest � such that (�,m,m) is admissible.
[Admissibility has an extensive literature; see the survey article of Shapiro (1984),
and his monograph (Shapiro 2000).]

In view of the Hurwitz-Radon results it is natural to define the codimension of
an orthogonal multiplication F : R

� × R
m → V as n − m ≥ 0, n = dim V , and

seek classification of orthogonal multiplications near the Hurwitz-Radon range, that
is those of small codimension.

Codimension 1 orthogonal multiplications have been fully classified by Adem
(1980, 1981). He showed that (up to isometries on the source and the range) an orthog-
onal multiplication of type (�,m,m + 1) extends to an orthogonal multiplication of
type (�,m+1,m+1) ifm is odd, and restricts to an orthogonal multiplication of type
(�,m,m) if m is even.

The role played by the parity ofm can be illuminated here by noting that restricting
the quaternionic multiplication FH· to purely imaginary quaternions gives rise to a
codimension 1 full orthogonal multiplication F : R

3 × R
3 → R

4, whereas, by
Adem’s result, there is no full orthogonal multiplication F : R

4 × R
4 → R

5.
The full classification of codimension 2 orthogonal multiplications has been given

byGauchman and the author (Gauchman andToth 1994,1996). They showed that a full
orthogonalmultiplication of type (�,m,m+2) extends to an orthogonalmultiplication
of type (�,m + 2,m + 2) if m is even. In addition, they also proved that, for m odd,
the only possible types (�,m,m + 2) are � = 3 and m = 4r + 1, r ≥ 1 (and
the corresponding orthogonal multiplications can be explicitly constructed from the
quaternionic vector space multiplication H × H

r → H
r by restriction).

As an application relevant to our study here, we see that there is no full orthogonal
multiplication F : R

4 × R
4 → R

6. Indeed, if F existed then it could be extended to
an orthogonal multiplication of type (4, 6, 6) which contradicts to Hurwitz-Radon’s
ρ(6) = 2.

Apart from the extensive work on admissibility, there are only sporadic results of
complete classification of orthogonal multiplications in specific domain and range
dimensions. Parker (1983) gave an algebraic classification of orthogonal multiplica-
tions of type (2, 2, n) and (3, 3, n), and,most recently, in their studies of quadratic self-
eigenmaps of S7, Wu-Xiong-Zhao (2015) proved that, up to isometries on the domain
and the range, there is only a 1-parameter family of full orthogonal multiplications
F : R

4 × R
4 → R

7. Note the specific example F∧ : R
4 × R

4 → R
7 (m = 4) above.

1.2 Connection to eigenmaps: the Hopf-Whitehead construction

TheHopf-Whitehead construction associates to an orthogonal multiplication F : R
�×

R
m → V the quadratic polynomial map fF : R

�+m → R × V defined by

fF (x, y) = (|x |2 − |y|2, 2 F(x, y)), x ∈ R
�, y ∈ R

m . (1)
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By normality, fF is automatically spherical, that is, its restriction to the unit sphere
S�+m−1 ⊂ R

�+m maps to the unit sphere SR×V of R × V and we obtain fF :
S�+m−1 → SR×V . Moreover, by bilinearity, all but the first component of fF (with
respect to a basis in V , say) are harmonic, and the first component is harmonic if and
only if � = m.

In general, a spherical map f : Sm → SV into the unit sphere of a Euclidean vector
space SV of V , defined by harmonic k-homogeneous polynomials (or, by restriction,
spherical harmonics of order k) is said to be a k-eigenmap (between the respective
spheres). Eigenmaps furnish important examples of harmonicmaps (of constant energy
density) between spheres. By (1), the Hopf-Whitehead construction associates to an
orthogonal multiplication F : R

m × R
m → V a quadratic eigenmap fF : S2m−1 →

SR×V . Since our main motivation and interest are in quadratic eigenmaps between
spheres, from now on we will assume that � = m.

Examples of the Hopf-Whitehead construction include the complex square fFR· :
S1 → S1, the (classical) Hopf map fFC· : S3 → S2, and the quaternionic Hopf

map fFH· : S7 → S4. Moreover, we have fF⊗ : S2m−1 → Sm
2
, and fF∧ : S2m−1 →

Sm(m−1)/2+1; in particular, form = 4,weobtain fF⊗ : S7 → S16, and fF∧ : S7 → S7.
The classification of all k-eigenmaps and orthogonal multiplications of type

(m,m, n) (for various n) are long standing and difficult problems; see Eells-Lemaire’s
reports (Eells and Lemaire 1978, 1980; Toth 2002).

The space of components of an orthogonal multiplication F : R
m ×R

m → V is the
linear subspace VF = {α · F | α ∈ V ∗} of the space of bilinear forms (Rm ⊗ R

m)∗ =
(Rm)∗ ⊗ (Rm)∗ ∼= R

m ⊗ R
m . [We will identify R

m with its dual (Rm)∗ via the
standard basis {ei }mi=1 ⊂ R

m .] Since F is full, precomposition with F gives a linear
isomorphism V ∗ ∼= VF ; in particular, we have dim VF = dim V = n. Note that
range-equivalent orthogonal multiplications have the same space of components.

1.3 Construction of the moduli Mm

Since an orthogonal multiplication F : R
m × R

m → V is bilinear, there is a unique
linear map A : R

m ⊗ R
m → V such that F = A · F⊗. Since F is full, A is onto. For

x, y ∈ R
m , we have

|F(x, y)|2 − |x |2|y|2 = |A(x ⊗ y)|2 − |x ⊗ y|2
=

〈
(A� · A − I )(x ⊗ y), x ⊗ y

〉

=
〈
A� · A − I, (x ⊗ y)2

〉
,

where the last scalar product is the one induced on the symmetric (tensor) square
S2(Rm ⊗ R

m). We obtain that normality of F is equivalent to

A� · A − I ∈ Em,

where

Em =
{
(x ⊗ y)2 | x, y ∈ R

n
}⊥ ⊂ S2(Rm ⊗ R

m). (2)
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(Once again, the orthogonal complement ⊥ is understood with respect to the scalar
product in S2(Rm ⊗ R

m).) Since A� · A ≥ 0, (automatically) positive semi-definite,
we obtain that, associating to F the symmetric endomorphism

〈F〉 = A�A − I ∈ S2(Rm ⊗ R
m),

gives rise to a parametrization of the range-equivalence classes of orthogonal multi-
plications F : R

m ×R
m → V (with various Euclidean vector spaces V ) by the convex

body
Mm = {C ∈ Em |C + I ≥ 0}. (3)

(Injectivity of the parametrization on the range-equivalence classes follows easily by
using polar decomposition.) The inverse of the parametrization is given by Mm �
C �→ (C + I )1/2 · F⊗ (made full by restriction).

By construction, the origin of Em corresponds to F⊗, and it is an interior point of
Mm .

Since
∑m

i, j=1(ei ⊗ e j )2 = I , by (2), the symmetric endomorphisms in Em are
orthogonal to the identity I . Therefore they are traceless, or equivalently, the sum of
their eigenvalues is zero. By (3), all the eigenvalues are≥ −1, hence they are bounded;
in particular, Mm is compact. (For more details, see Toth (1987).)

The compact convex body Mm is said to be the moduli space for orthogonal mul-
tiplications of R

m(×R
m).

By the generalized Sylvester’s criterion, C + I ≥ 0 (in (3)) if and only if all
principal minors of C + I are non-negative. (The original Sylvester’s criterion applies
for positive definite matrices and requires positivity of the upper left principal minors
only.)

By convexity, any ray in Em emanating from the origin has its (unique) intersection
with the boundary ofMm at exactly the point C for which det (C + I ) vanishes on the
ray the first time. It follows that the boundary ∂ Mm is a determinantal variety in the
sense that it is contained in the zero-set {X ∈ Em | det (X + I ) = 0}. In fact, intMm

is the largest connected (convex) subset in Em which contains the origin and whose
boundary is contained in this zero-set.

Returning to Sylvester’s criterion, it also follows that to determine whetherC ∈ Em

is a boundary point ofMm , we need only to show det (C+ I ) = 0 and det (tC+ I ) > 0
for t ∈ [0, 1).

Given an orthogonal multiplication F : R
m ×R

m → V with F = A ·F⊗, the linear
map A : R

m ⊗ R
m → V is onto (as F is assumed to be full). Identifying R

m ⊗ R
m

with its dual, we obtain
(〈F〉 + I )(Rm ⊗ R

m) = VF . (4)

In particular, rank (〈F〉 + I ) = dim VF = dim V = n.
Moreover, (4) gives another important fact: Within Mm , we have

〈F〉 = λ1〈F1〉 + · · · + λk〈Fk〉, λ1 + · · · + λk = 1, 0 < λi < 1, i = 1, . . . , k

⇒ VF = VF1 + · · · VFk . (5)
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(In Toth and Ziller (1999) this is called the ‘Connecting Lemma’.) This motivates to
introduce a natural stratification on Mm in which an open stratum consists of those
range-equivalence classes of orthogonal multiplications that share the same space of
components.By (5), the (open) strata are convex; in particular, the affine spanof anopen
stratum intersected with Mm gives the closure of that stratum. The interior of Mm is
an open stratumwith the largest space of componentsR

m ⊗R
m = span {xi · y j | i, j =

1, . . . ,m}. At the (relative) boundary points of an open stratum the dimension of the
space of components, or equivalently, the range dimension of the respective orthogonal
multiplications, decreases.

By (4), the range dimension of a full orthogonal multiplication corresponding to
C ∈ Mm is rank (C + I ). We also saw that, for C ∈ ∂ Mm , the ray t �→ tC + I
consists of positive definite endomorphisms for t ∈ [0, 1), and its determinant vanishes
(first time) at t = 1. Now, a simple consideration of the eigenvalues shows that the
multiplicity of t = 1 as a root of the polynomial t �→ det (tC + I ), t ∈ R, (of degree
m2) is equal to m2 − rank(C + I ), the corank of C + I . (Based on this, we also define
the corank of a full orthogonal multiplication F : R

m × R
m → R

n as m2 − n.) Since
this polynomial is usually explicitly computable, this provides a quick and efficient
way to find the range dimension of the orthogonal multiplication that corresponds to
C without determining the orthogonal multiplication itself.

A more precise algebraic description of Em can be given as follows. Given C ∈
S2(Rm ⊗ R

m), expanding, we have

〈C, (x ⊗ y)2〉 = 〈C(x ⊗ y), x ⊗ y〉 =
m∑

i, j,k,l=1

ci jkl xi y j xk yl , (6)

where x = ∑m
i=1 xi ei , y = ∑m

i=1 y j e j , and ci jkl = 〈C(ei ⊗ e j ), ek ⊗ el〉, 1 ≤
i, j, k, l ≤ m. Now, the sum in (6) is zero for all x, y ∈ R

m if and only if the
coefficients ci jkl are skew-symmetric with respect to i ↔ k and j ↔ l. We obtain

Em = �2(Rm) ⊗ �2(Rm) ∼= so(m) ⊗ so(m). (7)

Here the exterior product�2(Rm) of 2-vectors inR
m is identified with the Lie algebra

so(m) of skew-symmetric m ×m-matrices via the isomorphism that associates to the
2-vector ei ∧ e j , 1 ≤ i < j ≤ m, the skew-symmetric matrix with (i j)-entry +1,
( j i)-entry −1, and zeros elsewhere.

By (7), we have

dimMm = dimEm = m2(m − 1)2

4
.

Examples For the examples in Sect. 1.1, we have

〈FC· 〉 = −e1 ∧ e2 ⊗ e1 ∧ e2

〈FH· 〉 = (e1 ∧ e2 − e3 ∧ e4) ⊗ (e1 ∧ e2 − e3 ∧ e4)

+ (e1 ∧ e3 + e2 ∧ e4) ⊗ (e1 ∧ e3 + e2 ∧ e4)

+ (e1 ∧ e4 − e2 ∧ e3) ⊗ (e1 ∧ e4 − e2 ∧ e3),
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〈F∧〉 =
∑

1≤i< j≤4

(ei ∧ e j ) ⊗ (ei ∧ e j ) (m = 4).

Precomposition of orthogonal multiplications of R
m with (pairs of) orthogonal

transformations of R
m gives rise to an orthogonal O(m) × O(m)-action on Em . Via

the isomorphism in (7), this orthogonal O(m) × O(m)-module structure on Em is
the adjoint action Ad ⊗ Ad on so(m) ⊗ so(m) given by (pairs of) conjugations. By
definition, this action preserves the moduli Mm within Em .

The first moduliM1 is the singleton consisting of 〈FR· 〉. The second moduliM2 is
a line segment with endpoints 〈FC· 〉 and 〈F ′C· 〉, where F ′C· (z, w) = z · w, z, w ∈ C

(no conjugation). The midpoint of M2 is the origin 〈F⊗〉 (m = 2).

Remark Given an orthogonal multiplication F : R
m × R

m → V we can construct
another F̃ : R

m+1 × R
m+1 → V × R

2m+1 by

F̃(x, xm+1, y, ym+1)

= (F(x, y), xm+1 · y, ym+1 · x, xm+1ym+1), x, y ∈ R
m, xm+1, ym+1 ∈ R.

The correspondence 〈F〉 �→ 〈F̃〉 gives rise to a linear imbedding Mm → Mm+1
onto a linear slice ofMm+1, and it is equivariant with respect to the natural inclusion
O(m) × O(m) → O(m + 1) × O(m + 1).

The connection between orthogonal multiplications and quadratic eigenmaps exists
also on the level of the moduli as follows. Denote by Hk

m , m ≥ 2, the linear space
of spherical harmonics of order k on Sm . As noted above, a map f : Sm → SV
into the unit sphere SV of a Euclidean vector space V is a k-eigenmap if its space of
components V f = {α · f | α ∈ V ∗} is contained inHk

m . The set of range-equivalence
classes of full k-eigenmaps of Sm can be parametrized by the compact convex body
Lk
m = {C ∈ Ek

m |C + I ≥ 0}, where Ek
m is a certain linear subspace of the symmetric

square S20 (Hk
m) of tracefree symmetric endomorphisms ofHk

m . (For more details, see
Toth (2002).) Precomposition by isometries in O(m + 1) gives rise to an irreducible
O(m + 1)-module structure onHk

m . Then Ek
m is an O(m + 1)-submodule with respect

to the induced O(m + 1)-module structure on the symmetric square, and the moduli
Lk
m is O(m + 1)-invariant. We have

dimLk
m = dim Ek

m =
((m+k

m

) − (m+k−2
m

) + 1

2

)
−

(
m + 2k

m

)
.

Now, for k = 2, the Hopf-Whitehead construction F �→ fF in (1) on the respective
sets of range-equivalence classes gives rise to an imbedding Mm → L2

2m−1 which is
equivariant with respect to the inclusion O(m) × O(m) → O(2m). The image of the
moduli Mm is the intersection of its affine span with the boundary of L2

2m−1.
For example, for m = 3, the 9-dimensional moduli M3 is on the boundary of the

84-dimensional moduli L2
5, and, for m = 4, the 36-dimensional moduli M4 is on the

boundary of the 300-dimensional moduli L2
7.
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2 Statement of results

2.1 The moduli M3

Parker (1983) gave a full algebraic classification of orthogonal multiplications of type
(3, 3, n) but did not realize the elegant geometry ofM3. To get to this, we first define

�0 = {α ∈ [−1, 1]3 | Q(α) ≥ 0}.
where Q : R

3 → R is Cayley’s cubic polynomial given by

Q(α) = 1 − α2
1 − α2

2 − α2
3 + 2α1α2α3, α = (α1, α2, α3) ∈ R

3. (8)

Up to the scaling factor −2, Cayley’s nodal cubic surface (in R
3 ⊂ RP3) is defined

by Q(α) = 0; see Cayley (1869). This is an important example in classical surface
theory (Hunt 1996). We will call the convex body �0 Cayley’s tetrahedron.
Clearly �0 contains the regular tetrahedron 	0 ⊂ [−1, 1]3 with vertices the alternate
vertices of the cube [−1, 1]3 and one vertex at (1, 1, 1). The 1-skeleton comprised by
the six edges of 	0 is on the boundary of �0, and the (smooth open) faces of 	0 are
‘inflated’ to the ‘sides’ of �0.

Since the maximum inflation rate (from 	0 to �0) is 3/2, and it occurs at the
centroids of the faces of 	0, the Minkowski measure of symmetry of �0 (Grünbaum
1963) is equal to 3/(3/2) = 2.

Cayley’s tetrahedron�0 is ‘regular’ in the sense that it inherits the symmetry group
of 	0, the symmetric group S4 on four letters.

(�0 is a good example of a convex body whose extremal set is not closed; in fact,
the only non-extremal points of �0 comprise the six open edges.)

We have the following:

Theorem A ParametrizeE3 by the space of 3×3-matrices M(3, 3) through the linear
isomorphism C : M(3, 3) → E3 defined by

C(X ) =
3∑

i, j=1

xi j Ei ⊗ E j ∈ E3, X = [xi j ]3i, j=1 ∈ M(3, 3),

where the basis {Ei }3i=1 ⊂ �2(R3) ∼= �1(R3) = R
3 corresponds to the standard

basis in R
3 via the Hodge ∗ operator on the exterior algebra �∗(R3). Restricting C

to the linear subspace D(3, 3) = R
3 ⊂ M(3, 3) of diagonal matrices, we denote the

image of C, the linear subspace of ‘diagonal elements,’ by

D3 = {C(α) | α ∈ R
3} ⊂ E3,

where

C(α) = C(diag (α1, α2, α3)) =
3∑

i=1

αi Ei ⊗ Ei , α = (α1, α2, α3) ∈ R
3.
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Then the intersection

� = M3 ∩ D3

is a convex body which, under this parametrization, corresponds to Cayley’s tetrahe-
dron �0 ⊂ [−1, 1]3:

C(�0) = �.

With respect to the SO(3) × SO(3)-module structure of E3, we have

M3 = (SO(3) × SO(3))�.

Under this action, the vertices (the ordinary double points) of � are contained in
a single SO(3) × SO(3)-orbit which is a projective space RP3 equivariantly and
minimally imbedded into an 8-sphere S8 of E3. Up to isometries and scaling, RP3 is
the image of the standard minimal immersion of S3 into the (ambient sphere of the)
space of quadratic spherical harmonics H2

3 on S3.
Finally, the vertices of � correspond to orthogonal multiplications with range dimen-
sion 4, the (open) edges to range dimension 7, the (inflated open) sides to range
dimension 8, and the interior to range dimension 9.

Remark The crux in the proof of Theorem A is the formula

det (C(α) + I ) =
3∏

i=1

(1 − α2
i ) · Q(α), α ∈ R

3, (9)

where Q is Cayley’s cubic given in (8).

The last statement of theorem A implies that, modulo isometries on the source
and the range, there is a 9-dimensional set of orthogonal multiplications with range
dimension 9, a 2-dimensional set with range dimension 8, a 1-dimensional set with
range dimension 7, and a finite set with range dimension 4. Actually, it is easy to see
that the lowest range dimension 4 corresponds to quaternionicmultiplication restricted
to imaginary quaternions, and it is unique up to isometries on the source and the
range.

Given α ∈ �0, an orthogonal multiplication Fα : R
3 × R

3 → V representing
C(α) ∈ � ⊂ M3 can be explicitly constructed by the formula

Fα = (C(α) + I )1/2 · F⊗, F⊗ : R
3 × R

3 → R
3 ⊗ R

3.

Here Fα is not necessarily full as its range is R
3 ⊗ R

3. To obtain fullness, restriction
to the linear span V ⊂ R

3 ⊗ R
3 of the image of Fα is necessary.
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2.2 The moduli M4

I. The Splitting of E4

Let m = 4. The Hodge ∗ operator on the exterior algebra �∗(R4) restricts to a
symmetric endomorphism∗ : �2(R4) → �2(R4)with∗∗ = I . Hence the eigenvalues
of ∗ on �2(R4) are ±1, and the corresponding (3-dimensional) eigenspaces �2± of
self-dual and anti-self-dual 2-vectors give rise to the orthogonal splitting

�2(R4) = �2− ⊕ �2+. (10)

Via theO(4)-module structure on�2(R4) the diagonalmatrixγ = diag(1, 1, 1,−1) ∈
O(4), γ 2 = I , interchanges the eigenspaces: γ : �2± ↔ �2∓.

For the SO(4)-module structure of �2(R4), first note that, under the identification
C
2 = R

4 by (z, w) �→ (x, y, u, v), z = x + iy, w = u + iv, the special unitary group
SU (2) becomes a subgroup of SO(4). Moreover, the orthogonal matrix γ above
conjugates SU (2) to another subgroup SU (2)′ = γ SU (2)γ ⊂ SO(4), and we have
the almost product structure SO(4) = SU (2) · SU (2)′ with SU (2) and SU (2)′ both
normal in SO(4), and SU (2) ∩ SU (2)′ = {±I }.
Theorem B The ±1-eigenspaces of the Hodge ∗ operator (applied to each factor of
the tensor product) give rise to the splitting

E4 ∼= �2(R4) ⊗ �2(R4) = E−,−
4 ⊕ E−,+

4 ⊕ E+,−
4 ⊕ E+,+

4

where

E−,−
4 =�2− ⊗ �2−, E−,+

4 =�2− ⊗ �2+, E+,−
4 =�2+ ⊗ �2−, E+,+

4 =�2+ ⊗ �2+.

(11)

All components E±,±
4 are SO(4) × SO(4)-submodules of E4. More precisely, with

respect to the almost direct product SU (2) · SU (2)′ = SO(4) (applied to each factor),
they are fixed-point sets:

E−,−
4 = E

SU (2)′×SU (2)′
4 , E−,+

4 = E
SU (2)′×SU (2)
4 ,

E+,−
4 = E

SU (2)×SU (2)′
4 , E+,+

4 = E
SU (2)×SU (2)
4

with respective complementary (irreducible) module structures:

(SU (2) × SU (2)) · E−,−
4 = E−,−

4 , (SU (2) × SU (2)′) · E−,+
4 = E−,+

4 ,

(SU (2)′ × SU (2)) · E+,−
4 = E+,−

4 , (SU (2)′ × SU (2)′) · E+,+
4 = E+,+

4 .

The groupZ2×Z2 = {(I, I ), (I, γ ), (γ, I ), (γ, γ )} ⊂ O(4)×O(4) acts simply tran-
sitively and orthogonally among the components with γ interchanging the respective
signs:

(I, γ ) : E±,±
4 ↔ E±,∓

4 , (γ, I ) : E±,±
4 ↔ E∓,±

4 .
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II. The equivariant moduli M±,±
4

We define the (linear) slices

M−,−
4 = M4 ∩ E−,−

4 = M
SU (2)′×SU (2)′
4 , M−,+

4 = M4 ∩ E−,+
4 = M

SU (2)′×SU (2)
4 ,

M+,−
4 = M4 ∩ E+,−

4 = M
SU (2)×SU (2)′
4 , M+,+

4 = M4 ∩ E+,+
4 = M

SU (2)×SU (2)
4 .

In constructing the moduli M4 we factored out the isometries on the ranges so that
M±,±

4 parametrizes the orthogonalmultiplications F : R
4×R

4 → V that are equivari-
antwith respect to the group SU (2)/SU (2)′×SU (2)/SU (2)′ that fixesM±,±

4 (where
/ indicates the respective choices). For this reason we call these equivariant moduli.

By TheoremB, the equivariant moduli are mutually equivalent via linear isometries
provided by the elements of the group Z2 × Z2:

(I, γ ) : M±,±
4 ↔ M±,∓

4 , (γ, I ) : M±,±
4 ↔ M∓,±

4 . (12)

Finally, note that, by convexity, we have

[
M−,−

4 ,M−,+
4 ,M+,−

4 ,M+,+
4

]
⊂ M4,

where the square brackets indicate convex hull. As we will see below, the inclusion is
proper, a phenomenon that we call ‘bulging.’ (The importance of this has also been
observed by Ziller and the author in (Toth and Ziller 1999, p. 88) for the moduli of
quartic spherical minimal immersions of S3.)

The next result gives a complete geometric description of the equivariant slices
M±,±

4 of M4. By (12), we need only to discuss M−,−
4 . Note the apparent similarity

with Theorem A.

Theorem C Parametrize E−,−
4 by M(3, 3) through the linear isomorphism C−,− :

M(3, 3) → E−,−
4 defined by

C−,−(X ) =
3∑

i, j=1

xi j Ei ⊗ E j ∈ E−,−
4 , X = [xi j ]3i, j=1 ∈ M(3, 3),

where {Ei }3i=1 ⊂ �2− is the canonical basis:

E1 = e1 ∧ e2 − e3 ∧ e4, E2 = e1 ∧ e3 + e2 ∧ e4, E3 = e1 ∧ e4 − e2 ∧ e3. (13)

Restricting C−,− to the linear subspace D(3, 3) = R
3 ⊂ M(3, 3) of diagonal matri-

ces, we denote the image of C−,−, the linear subspace of ‘diagonal elements,’ by

D−,−
4 =

{
C−,−(α) | α ∈ R

3
}

⊂ E−,−
4 ,
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where

C−,−(α) = C−,−(diag(α1, α2, α3)) =
3∑

i=1

αi Ei ⊗ Ei , α = (α1, α2, α3) ∈ R
3.

Then the intersection

	−,− = M−,−
4 ∩ D−,−

4

is a tetrahedron which, under this parametrization, corresponds to the regular tetra-
hedron 	0 inscribed in the cube [−1, 1]3 ⊂ R

3 with vertices the alternative vertices
of the cube and with one vertex at (1, 1, 1):

C−,−(	0) = 	−,−.

With respect to the SU (2)× SU (2)-module structure onE−,−
4 , the equivariant moduli

M−,−
4 is the SU (2) × SU (2)-orbit of 	−,−:

M−,−
4 = (SU (2) × SU (2))	−,−.

Moreover, under this action the vertices of 	−,− are contained in a single SU (2) ×
SU (2)-orbit which is a projective space RP3 equivariantly and minimally imbedded
into an 8-sphere S8 of E−,−

4 . Up to isometries and scaling, RP3 is the image of the
standard minimal immersion of S3 into the (ambient sphere of the) space of quadratic
spherical harmonics on S3.

The crux in the proof of Theorem C is the formula

det (C−,−(α) + I ) = R(α)4, α ∈ R
3, (14)

where R : R
3 → R is the ‘tetrahedral’ quartic polynomial given by

R(α) = (1 − α2
1 − α2

2 − α2
3)

2 + 8α1α2α3 − 4((α1α2)
2 + (α2α3)

2 + (α3α1)
2)

= (1 + α1 + α2 + α3)(1 + α1 − α2 − α3)(1 − α1 + α2 − α3)(1 − α1 − α2 + α3).

(15)

The first expression of R is for analogy with Cayley’s cubic in (8). The second expres-
sion shows that R is tetrahedral in the sense that it vanishes precisely on (the plane
extensions of) the faces of 	0.

The passage from M−,−
4 to the rest of the equivariant moduli M±,±

4 is effected
by the non-trivial elements of the group Z2 × Z2. For future purposes we let C±,± :
M(3, 3) → E±,±

4 be defined as

C−,+ = (I, γ )C−,−, C+,− = (γ, I )C−,−, C+,+ = (γ, γ )C−,−,

so that C±,± parametrizes E±,±
4 by M(3, 3).
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In addition, we let

D−,+
4 = (I, γ )D−,−

4 , D+,−
4 = (γ, I )D−,−

4 , D+,+
4 = (γ, γ )D−,−

4 ,

be the respective linear subspaces of ‘diagonal elements’ with tetrahedra

	±,± = C±,±(	0) = M±,±
4 ∩ D±,±

4 .

Given α ∈ 	0, an orthogonal multiplication Fα : R
4 × R

4 → V representing
C−,−(α) ∈ 	−,− can be explicity constructed as

Fα = (
C−,−(α) + I

)1/2 · F⊗, F⊗ : R
4 × R

4 → R
4 ⊗ R

4.

Here V ⊂ R
4 ⊗ R

4 is the linear span of the image of Fα .

Example By (13), the second example in Sect. 1.3 gives

〈FH· 〉 = 〈F (1,1,1)〉 = C−,−(1, 1, 1) =
3∑

i=1

Ei ⊗ Ei ∈ M−,−
4 .

Recall from Sect. 1.3 that the possible range dimensions of full orthogonal mul-
tiplications parametrized by 	−,− (and therefore, using Theorem C, by the entire
M−,−

4 ) can be obtained by calculating the possible multiplicities of the root t = 1 of
the degree 16 polynomial t �→ det(tC−,−(α) + I ), t ∈ R, where α ∈ 	0. On the
other hand, this determinant is given in (14) as t �→ R(tα)4, t ∈ R, where R is the
tetrahedral quartic. We immediately see that the possible coranks and hence also the
possible range dimensions are multiples of 4, that is, they are 4, 8, 12, 16.

Constructing explicit examples at the cardinal points [vertex (such as (1, 1, 1)
above), midpoint of an edge, centroid of a face] of 	0 we obtain that all these range
dimensions are realized:

Corollary The range dimensions of orthogonal multiplications parametrized by the
equivariant moduli M±,±

4 are 4, 8, 12, 16. The SU (2) × SU (2)-orbit of the vertices
of 	−,− corresponds to full orthogonal multiplications with range dimension 4, the
(open) edges to range dimension 8, the (open) faces to range dimension 12, and the
(relative) interior of 	−,− to range dimension 16.

III. The pairing of M−,−
4 and M+,+

4
For the next step, it is natural to pairE−,−

4 withE+,+
4 as their acting groups SU (2)×

SU (2) and SU (2)′×SU (2)′ overlap only in the subgroup {±I }×{±I } (acting trivially
onM4).

Theorem D We have

M4 ∩
(
E−,−
4 ⊕ E+,+

4

)
= (SO(4) × SO(4)) [	−,−,	+,+]
= [

(SU (2) × SU (2))	−,−, (SU (2)′ × SU (2)′)	+,+]
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=
[
M−,−

4 ,M+,+
4

]
, (16)

where the square brackets indicate convex hull.

Since (I, γ ) (and (γ, I )) restrict to linear isometriesE−,−
4 ⊕E+,+

4 ↔ E−,+
4 ⊕E+,−

4
and leave the moduli invariant, for the complementary configuration we also have

M4 ∩
(
E−,+
4 ⊕ E+,−

4

)
= (SO(4) × SO(4)) [	−,+,	+,−]
= [

(SU (2) × SU (2)′)	−,+, (SU (2)′ × SU (2))	+,−]

=
[
M−,+

4 ,M+,−
4

]
.

Under the restriction C−,− × C+,+ : R
3 × R

3 → D−,−
4 ⊕ D+,+

4 , D(3, 3) = R
3,

the 6-dimensional polytope � = [	−,−,	+,+] in (16) corresponds to the convex
hull �0 = [	0,	0] ⊂ R

3 × R
3 = R

6 of two regular tetrahedra 	0 contained in
the two copies of R

3. The key point in the proof of Theorem D is the splitting of the
determinant

det (C−,−(α) + C+,+(β) + I ) =
∏

σ1σ2σ3=τ1τ2τ3=1
σ1,σ2,σ3,τ1,τ2,τ3∈{±1}

(
1 +

3∑
i=1

(σiαi + τiβi )

)

(17)

into 16 linear factors, each vanishing on a hyperplane in R
6 that cuts out a pair of

(2-)faces from the two copies of 	0.
The same description holds for the affine (actually linear) copy �; it is the

convex hull of 16 half-spaces of D−,−
4 ⊕ D+,+

4 whose boundary hyperplanes cut
out a pair of faces from 	±,±. (For future comparison, we note that the diagonal
R
3
	 = {(α, α) | α ∈ R

3} ⊂ R
3 × R

3 cuts out from �0 the regular tetrahedron 	0
scaled by 1/2. The anti-diagonal R

3
	′ = {(α,−α) | α ∈ R

3} ⊂ R
3 × R

3 cuts out
from �0 a rhombic dodecahedron, a zonohedron with 12 rhombic faces, and vertices
(±1/2,±1/2,±1/2), (±1, 0, 0), (0,±1, 0), (0, 0,±1).)
The number Ni of the i-faces, i = 0, . . . , 5, of �0 (and also �) are tabulated as
follows:

N0 N1 N2 N3 N4 N5
8 28 56 68 48 16

The symmetry group of � = [	−,−,	+,+] is generated by S4 × S4 (with S4, the
symmetric group on 4 letters) and Z2 = {(I, I ), (γ, γ )}.
As before, examples of orthogonal multiplications parametrized by points in� can be
constructed explicitly. Modulo this symmetry group, the following table summarizes
those that correspond to the cardinal points of�, their parameters, and the correspond-
ing ranks/range dimensions:
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Point (α1, α2, α3;β1, β2, β3) Rank

V (1, 1, 1; 0, 0, 0) 4
E/I (1, 0, 0; 0, 0, 0) 8
E/II (1/2, 1/2, 1/2; 1/2, 1/2, 1/2) 7
F/I (−1/3, −1/3,−1/3; 0, 0, 0) 12
F/II (1/3, 1/3, 1/3; 2/3, 0, 0) 10
C3/I (1/4, 1/4, 1/4;−1/4,−1/4,−1/4) 13
C3/II (1/2, 0, 0; 1/2, 0, 0, 0) 12
C4 (2/5, 0, 0; −1/5,−1/5,−1/5) 14
C5 (−1/6, −1/6,−1/6;−1/6,−1/6, −1/6) 15

The following notations are used: V= vertex of any of the two 	±,±; E/I =
midpoint of an edge of any of the two 	±,±; E/II = midpoint of an edge of �

connecting two vertices in separate 	±,±; F/I = centroid of a face of any of the two
	±,±; F/II = centroid of a face of �, the convex hull of a vertex and an edge on
separate 	±,±; C3/I = centroid of a 3-face of �, the convex hull of a vertex and
a face on separate 	±,±; C3/II = centroid of a 3-face of �, the convex hull of two
edges on separate 	±,±; C4 = centroid of a 4-face of �, the convex hull of an edge
and a face on separate 	±,±; C5 = centroid of a 5-face of �, the convex hull of two
faces on separate 	±,±.

Remark Under E/I I one recognizes the Wu-Xiong-Zhao example (from Sect. 1.3):

〈F∧〉 ∈ [M−,−
4 ,M+,+

4 ]

which corresponds to the midpoint of two vertices of 	−,− and 	+,+ parametrized
by (1/2)(1, 1, 1, 0, 0, 0) + (1/2)(0, 0, 0, 1, 1, 1).

The table above gives the following:

Corollary The range dimensions of orthogonal multiplications parametrized by the

intersection M4 ∩
(
E−,−
4 ⊕ E+,+

4

)
are 4, 7 − 8, 10, 12 − 16.

IV. Diagonalizable elements in M4
The entire space E4 is parametrized by the 4-fold product M(3, 3)4 through the

linear isomorphism C−,− × C+,+ × C−,+ × C+,− : M(3, 3)4 → E4. Restriction in
each component M(3, 3) to R

3 = D(3, 3) ⊂ M(3, 3) gives the parametrization of the
linear subspace of ‘diagonal elements’

D4 = D−,−
4 ⊕ D+,+

4 ⊕ D−,+
4 ⊕ D+,−

4 ⊂ E4

by R
12 = (R3)4.

To shed some light on the complexity of the entire moduli M4 we introduce the
following definition. An endomorphism C ∈ E4 is called diagonalizable if there exist
U, V ∈ O(4) such that (U, V )C ∈ D4. Since D4 is 12-dimensional, it follows that
the space (O(4) × O(4))D4 of diagonalizable elements is 24 dimensional within
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the 36-dimensional E4. This situation prevails in the moduli M4; the space (O(4) ×
O(4))(M4 ∩ D4) of diagonalizable elements is also 24 dimensional.

As a simple application of Theorem D, it follows that any endomorphism in E4 is
the sum of two diagonalizable elements. (As a quick proof, project the endomorphism
to E−,−

4 ⊕ E+,+
4 and to E−,+

4 ⊕ E+,−
4 . Apply Theorem D to the projections (after

scaling), and conclude that the projections are diagonalizable.)
In the rest of this paper we give a detailed algebraic description of the space of

diagonalizable elements. This amounts to study the intersection

� = M4 ∩ D4

defined by

C−,−(α) + C+,+(β) + C−,+(μ) + C+,−(ν) + I ≥ 0, α, β, μ, ν ∈ R
3. (18)

By Theorems B-C, we have the linear slices

� ∩ E−,−
4 = �SU (2)′×SU (2)′ = 	−,−, � ∩ E−,+

4 = �SU (2)′×SU (2) = 	−,+,

� ∩ E+,−
4 = �SU (2)×SU (2)′ = 	+,−, � ∩ E+,+

4 = �SU (2)×SU (2) = 	+,+.

In addition, by Theorem D, we have

� ∩ (E−,−
4 ⊕ E+,+

4 ) = [	−,−,	+,+] and � ∩ (E−,+
4 ⊕ E+,−

4 ) = [	−,+,	+,−].

An additional complexity of M4 is ‘bulging,’ that is proper inclusion in

[	−,−,	+,+,	−,+,	+,−] � �.

Finally, a technical problem concerning the boundary of � is that it is a determinantal
variety described by a degree 16 polynomial in 12 variables. Although it splits into 4
degree 4 factors, each factor contains over 200 monomials.

To give a technically manageable description of this variety we introduce some
notations. Let

� =
{
σ = (σ1, σ2, σ3) ∈ {±1}3 | σ1σ2σ3 = 1

}
.

Geometrically, � is the set of vertices of the regular simplex 	0, and it is also the
group whose elements are the diagonals of the three half-turns about the coordinate
axes (plus the identity). � acts linearly on R

3 as σ · α = (σ1α1, σ2α2, σ3α3), α =
(α1, α2, α3) ∈ R

3.
With these, (15) can be written in the compact form

R(α) =
∏
σ∈�

(1 + S(σ · α)), α ∈ R
3,
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where S(α) = α1 + α2 + α3, α ∈ R
3 (the first elementary symmetric polynomial).

Clearly, R is �-invariant.
As another example, (17) reduces to

det (C−,−(α) + C+,+(β) + I ) = R�(α, β) =
∏
σ∈�

R(α + σ · β), (19)

where R� is a convenient notation.
The passage R4(α) �→ R�(α, β) from (14) to (19) is revealing. It suggests that to
obtain a compact form for the determinant of the positive semi-definite matrix in
(18) one should mimic this process. We first need to calculate the determinant of the
‘hybrid’ C−,−(α) + C−,+(β) + I , α, β ∈ R

3.
To do this, we let T : R

6 → R be the biquadratic form given by

T (α, β) =
3∑

i, j=1

α2
i β2

j − 2
3∑

i=1

α2
i β2

i , α, β ∈ R
3.

In the variables α2
i , β

2
i , i = 1, 2, 3, T is a quadratic form with matrix entries +1

for 1 ≤ i �= j ≤ 3, and −1 for 1 ≤ i = j ≤ 3. In particular, T is automatically
�-invariant in each variable separately. Moreover, T is symmetric, that is, we have
T (α, β) = T (β, α), α, β ∈ R

3.
Now a somewhat tedious calculation shows

det(C−,−(α) + C−,+(β) + I ) = G(α, β)4, α, β ∈ R
3,

where
G(α, β) = R(α) + R(β) + 2T (α, β) − 1, α, β ∈ R

3. (20)

(Clearly, G(α, 0) = G(0, α) = R(α), α ∈ R
3.)

In complete analogy with (14) and (19), we now have

det (C−,−(α) + C+,+(β) + C−,+(μ) + C+,−(ν) + I )

= G�(α, β, μ, ν) =
∏
σ∈�

Gσ (α, β, μ, ν), α, β, μ, ν ∈ R
3, (21)

where the 4 factors Gσ , σ ∈ �, in the determinant G� are given by

Gσ (α, β, μ, ν) = G(α + σ · β,μ + σ · ν)

= R(α + σ · β) + R(μ + σ · ν) + 2T (α + σ · β,μ + σ · ν) − 1.

(22)

Remark 1 The validity of the formulas in (20)–(22) can be checked using a computer
algebra system. (As noted above, this amounts to match 800+ monomials of degree
16 in 12 variables.) Note also the special cases in (19) with μ = ν = 0, and in (14)
with β = μ = ν = 0.
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Remark 2 Cayley’s cubic Q, the tetrahedral quartic R, and the biquadratic form T are
not independent. We have the identity

Q(2α) = 2R(α) + 2T (α;α) − 1, α ∈ R
3. (23)

(Note that Q is also �-invariant.) This (used twice) gives an equivalent form of G in
which the principal (degree 4) part is clearly recognizable:

G(α, β) = Q(2α)/2 + Q(2β)/2 − T (α, α) − T (β, β) + 2T (α, β), α, β ∈ R
3.

In particular, we have

G(α/2, α/2) = Q(α) and G(α/2,−α/2) = 1 − |α|2,

where |α|2 = α2
1 − α2

2 − α2
3, α ∈ R

3.
G� in (22) is�-invariant in eachvariable separately (since R andT are). In addition,

G� is symmetric with respect to the subgroup Z2 × Z2 whose non-trivial elements
act as double transpositions on the 4 variables. Finally, G� is invariant with respect to
single transpositions in the first two and the last two variables. (These 2 transpositions
and Z2 × Z2 generate the symmetry group of G� , an order 8 permutation subgroup
of S4.)

For 0 �= (α, β) ∈ R
6, we denote by τ(α, β) > 0 the first (positive) root of the

quartic polynomial t �→ G(tα, tβ), t ∈ R. (A simple compactness argument shows
that τ(α, β) exists.) We will show that τ(α, β) is the unique number τ > 0 satisfying

G(τα, τβ) = 0 and Q(τα) + Q(τβ) ≥ 1.

In particular, τ(α, β)α and τ(α, β)β both belong to Cayley’s tetrahedron �0.

Theorem E Under the parametrization C−,− ×C+,+ ×C−,+ ×C+,− : R
12 → D4,

R
3 = D(3, 3), the intersection � = M4 ∩ D4 corresponds to the convex body

�0 =
{
(α, β, μ, ν) ∈ �0 | min

σ∈�
τ(α + σ · β,μ + σ · ν) ≥ 1

}
, (24)

where �0 ⊂ R
12 is the 12-cube, the common intersection of 24 half-spaces, given by

the inequalities

− 1 ≤ (αi + σiβi ) ± (μi + σiνi ) ≤ 1, α, β, μ, ν ∈ R
3, σi ∈ {±1}, i = 1, 2, 3.

(25)

For (α, β, μ, ν) ∈ �0, the corank 16 − n of a full orthogonal multiplication F :
R
4 × R

4 → R
n, 4 ≤ n ≤ 16, corresponding to C = C−,−(α) + C+,+(β) +

C−,+(μ) + C+,−(ν) ∈ � is given by 16 − n = ∑
σ∈� cσ , where cσ ∈ {0, 1, 2, 3},

σ ∈ �, is the multiplicity of the first positive root t = 1 of the quartic polynomial
t �→ G(t (α + σ · β), t (μ + σ · ν)), t ∈ R. (The multiplicity cσ is zero if there is no
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root on [0, 1].) If cσ ≥ 1 then Q(α + σ · β) + Q(μ + σ · ν) ≥ 1, and α + σ · β

and μ + σ · ν both belong to Cayley’s tetrahedron �0. We have cσ = 1 if and only if
G(α +σ ·β,μ+σ · ν) = 0 and Q(α +σ ·β)+ Q(μ+σ · ν) > 1. Moreover, cσ = 2
if and only if G(α + σ · β,μ + σ · ν) = 0, Q(α + σ · β) + Q(μ + σ · ν) = 1 and
|α+σ ·β|2+|μ+σ ·ν|2 < 3. Finally, cσ = 3 if and only if G(α+σ ·β,μ+σ ·ν) = 0,
Q(α + σ · β) + Q(μ + σ · ν) = 1, and |α + σ · β|2 + |μ + σ · ν|2 = 3. In this case
α + σ · ∈ � (vertex of �0) and μ + σ · ν = 0, or μ + σ · ν ∈ � (vertex of �0) and
α + σ · β = 0.

Although a geometric description of the full boundary is not feasible, it is possible
to obtain a variety of explicitly constructible examples of orthogonal multiplications
corresponding to specific boundary points. In the following table we chose the mid-
points of the line segments connecting the cardinal points of � = [	−,−,	+,+]
and those of [	−+,	+,−] (listed in the previous table). The results, along with the
corresponding ranks (range dimensions), are tabulated as follows:

V E/I E/II F/I F/II C3/I C3/II C4 C5

V 8 12 11 12[n1] 14 10[2] 14 12[5/3] 13[3/2]
E/I 12 14 12[n2] 12 14[n3] 14 14[n4] 15[n2]
E/II 11 15[n1] 14 13[

√
2] 14 13[5/3] 13[3/2]

F/I 12[3/2] 14[3/2] 15[2] 14[n2] 14[15/8] 15[2]
F/II 14 13[2] 14 14[5/3] 15[3/2]
C3/I 13[

√
2] 15[

√
2] 14[10/7] 13[3/5]

C3/II 14 14[5/3] 15[n2]
C4 14[n5] 13[15/8]
C5 15[3/2]

The lower triangular block is not filled for transparency. Bulging with bulging ratio
is indicated with square brackets after the range dimension, where n1 = (1+√

13)/4,
n2 = (−1+√

13)/4, n3 = (
√
5−1)/2, n4 = (−3+√

29)/2, n5 = (−15+5
√
17)/4.

It is important to note that the only additional rank (or range dimension) not listed
previously is 11. In addition, since the range dimension 9 is missing throughout it is
natural to have the following:

Conjecture There is no full orthogonal multiplication F : R
4 × R

4 → R
9.

V. The fixed points of Z2 × Z2 on C4
As an application of TheoremE, we can determine the fixed point sets of the various

non-trivial elements in the group Z2 × Z2 acting on �.
Consider the idempotent pair (1/2)((I, I ) ± (γ, γ )) in the group ring Q[Z2 ×

Z2] acting on E4, and, by convexity, on M4 . Their images are the (18-dimensional
orthogonal)±1-eigenspaces of (γ, γ ) on E4. The+1-eigenspace is the fixed-point set
E

(γ,γ )
4 .
Similarly, the images of the idempotent pairs (1/2)((I, I )±(I, γ )) and (1/2)((I, I )±

(γ, I ) are the (18-dimensional orthogonal) ±1-eigenspaces of (I, γ ) and (γ, I ).
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These fixed point sets

E
(I,γ )
4 , E

(γ,I )
4 , E

(γ,γ )
4 ⊂ E4

form a ‘bouquet,’ that is they span E4 and any two intersect in the common 9-
dimensional linear subspace EZ2×Z2

4 .

Restricting to the linear subspaceD4 of diagonal elements we obtain a bouquet of
6 dimensional linear subspaces

D
(I,γ )
4 , D

(γ,I )
4 , D

(γ,γ )
4 ⊂ D4

with 3-dimensional common intersectionDZ2×Z2
4 .

For brevity, we consider only the fixed point set �(γ,γ ) = M4 ∩D
(γ,γ )
4 along with

�Z2×Z2 = M4 ∩ D
Z2×Z2
4 .

Among C±,± in (18), (γ, γ ) acts as a double transposition α ↔ β and μ ↔ ν.
Therefore �(γ,γ ) is given by

C−,−(α/2) + C+,+(α/2) + C−,+(μ/2) + C+,−(μ/2) + I ≥ 0, α, μ ∈ R
3, (26)

where the 1/2 factors are inserted to preserve convexity (and for technical conve-
nience).

Within this and with yet another 1/2 scaling, �Z2×Z2 is given by

C−,−(α/4) + C+,+(α/4) + C−,+(α/4) + C+,−(α/4) + I ≥ 0, α, β ∈ R
3.

Under the parametrization in (26), �(γ,γ ) corresponds to the convex body �
(γ,γ )
0 ⊂

R
6. We now use (20)–(22) and the subsequent Remark 2 to specify Gσ , σ ∈ �, in

our setting. If σ �= (1, 1, 1) fixes the i th coordinate (as a half-turn) then we have
Gσ (α/2, α/2, μ/2, μ/2) = (1 − (αi + μi )

2)(1 − (αi − μi )
2). If σ = (1, 1, 1) then

we have G(1,1,1)(α/2, α/2, μ/2, μ/2) = G(α, μ). Thus, by expanding G, we obtain
that �(γ,γ )

0 is given by

−1 ≤ αi ± μi ≤ 1, i = 1, 2, 3, (27)

(1 − α2
1 − α2

2 − α2
3 − μ2

1 − μ2
2 − μ2

3)
2 + 8(α1α2α3 + μ1μ2μ3)

−4((α1α2)
2 + (α2α3)

2 + (α3α1)
2 + (μ1μ2)

2 + (μ2μ3)
2 + (μ3μ1)

2)

−4((α1μ1)
2 + (α2μ2)

2 + (α3μ3)
2) ≥ 0. (28)

The 12 inequalities in (27) define a 6-dimensional cube. Second, unlike its simpler
cousin in (14)–(15), the left-hand side of (28) does not split into simpler factors. Setting
α = 0 or μ = 0, however, it does, so that each of the two coordinate spaces R

3 in
R
6 = R

3×R
3 cuts out the regular tetrahedron	0 from �

(γ,γ )
0 . Moreover, by (23) and

the subsequent formulas in Remark 2, the diagonalR3
	 ⊂ R

3×R
3 cuts out from�

(γ,γ )
0

Cayley’s tetrahedron (1/2)�0 scaled by 1/2, and the anti-diagonal R
3
	′ ⊂ R

3 × R
3

cuts out from�
(γ,γ )
0 the unit ballB0 scaled by 1/2. Intuitively,�

(γ,γ )
0 can be considered

as a ‘hybrid’ between the regular tetrahedron 	0 and Cayley’s tetrahedron �0.
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Remark 1 The reappearance of �0, the key component in the geometry ofM3, is not
surprising. In fact, the fixed point set (R4 × R

4)(γ,γ ) is R
3 × R

3, where R
3 ⊂ R

4

is the linear subspace orthogonal to (0, 0, 0, 1) ∈ R
4. Thus, acting on orthogonal

multiplications F : R
4 × R

4 → V , the fixed point set of (γ, γ ) corresponds to
restriction to R

3 × R
3.

Remark 2 By (21)–(22) (with β = ν = 0), we see that, up to the scaling factor 1/2,
(27)–(28) also determine the hybrid intersectionM4 ∩ (E−,−

4 ⊕ E−,+
4 ).

Corollary Under the parametrization above, the intersection

�(γ,γ ) = M4 ∩ D
(γ,γ )
4

corresponds to the hybrid convex body �
(γ,γ )
0 ⊂ R

6. The tetrahedral intersections 	0

of �
(γ,γ )
0 with the two coordinate spaces R

3 in R
6 = R

3 × R
3 correspond in �(γ,γ )

to the arithmetic means of the tetrahedra

(1/2)((I, I ) + (γ, γ ))	−,− and (1/2)((I, γ ) + (γ, I ))	−,−.

The range dimensions of the full orthogonal multiplications parametrized by the car-
dinal points of these tetrahedra are listed in the first table under E/I I (vertex), C3/I I
(midpoint of an edge), C5 (centroid of a face).

The intersection of �
(γ,γ )
0 with the diagonal R

3
	, the scaled Cayley’s tetrahedron

(1/2)�0, corresponds to �Z2×Z2 . The range dimensions of the full orthogonal mul-
tiplications that correspond to the cardinal points of (1/2)�0 are 11 (vertex), 14
(midpoint of an edge), and 15 (centroid of an inflated face).

The intersection of�(γ,γ )
0 with the anti-diagonalR3

	′ corresponds to the scaled unit
ball (1/2)B0. The range dimension of the full orthogonal multiplications parametrized
by the spherical boundary of (1/2)B0 is constant 15.

3 Proofs

We will follow a somewhat unusual order B, C , A, D, E , since the proof of Theorem
A is conceptually similar (and simpler) than the proof of Theorem C.

3.1 Adjoint representation of O(4): Proof of Theorem B

Theorem B follows from elementary facts on the adjoint representation of the orthog-
onal group O(4) on its Lie algebra so(4). Recall from Sect. 1.3 the identification
so(4) ∼= �2(R4).

First, we parametrize SU (2) by

A(z, w) =
[
z −w̄

w z̄

]
, |z|2 + |w|2 = 1, z, w ∈ C. (29)
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Note that SU (2) is identified with the group S3 ⊂ H of unit quaternions by (z, w) �→
z + jw, z, w ∈ C. Under this identification, multiplication by A(z, w) corresponds to
quaternionic multiplication by z + jw.
As in Sect. 2.2, under the identificationC

2 = R
4 by (z, w) �→ (x, y, u, v), z = x+ iy,

w = u + iv, x, y, u, v ∈ R, the special unitary group SU (2) becomes a subgroup of
SO(4). Moreover, we have the almost product structure SO(4) = SU (2) · SU (2)′
with SU (2) and SU (2)′ = γ SU (2)γ , γ = diag (1, 1, 1,−1) ∈ O(4), both normal in
SO(4), and SU (2) ∩ SU (2)′ = {±I }.

Now a simple computation shows that the eigenspace �2− coincides with
�2(R4)SU (2)′ , the fixed point set of SU (2)′ on �2(R4). In addition, it is invariant
under the action of SU (2), and, in fact, it is a (real) irreducible SU (2)-module (by
restriction). Similarly, �2+ = �2(R4)SU (2) is an irreducible SU (2)′-module.

With these, we obtain

�2(R4) = �2− ⊕ �2+ = �2(R4)SU (2)′ ⊕ �2(R4)SU (2), (30)

as an orthogonal direct sum of irreducible SU (2)- and SU (2)′-modules. Finally, as
stated in Sect. 2.2, γ ∈ O(4) interchanges the eigenspaces: γ : �2± ↔ �2∓.

Applying (30) to each component of E4 = �2(R4)⊗�2(R4), Theorem B follows.
Since γ generates O(4) over SO(4), as a byproduct, we also see that �2(R4) is
irreducible as an O(4)-module.

Wewill need an explicit formula for the action of SU (2) on�2−.We claim that, with
respect to the canonical basis {Ei }3i=1 ⊂ �2− in (13), the adjoint action Ad(A(z, w)),
A(z, w) ∈ SU (2), on �2− = R

3 is by (left) multiplication by the matrix U (z, w) ∈
SO(3) given as

Ad(A(z, w)) ∼ U (z, w) =
⎡
⎣

|z|2 − |w|2 2�(zw̄) 2�(zw̄)

2�(zw) �(z2 + w2) −�(z2 − w2)

−2�(zw) �(z2 + w2) �(z2 − w2)

⎤
⎦ . (31)

To derive this is a straightforward computation noting that, under the identifications
�2(R4) = so(4) and R

4 = C
2, we have E1 = A(−i, 0), E2 = A(0,−1), E3 =

A(0,−i). Note also that this action of SU (2) is not effective, since Ad(A(−z,−w)) =
Ad(A(z, w)); this explains why we have SO(3) ∼= SU (2)/{±I }.

Remark Not unexpectedly (Schur’s orthogonality relations applied to the complex
SU (2)-module W2) the nine matrix entries in (31) form an L2-orthonormal basis of
the space of quadratic spherical harmonicsH2

3 over S
3. One also finds that the entries

of the first row comprise the components of the Hopf map fFC· : S3 → S2.

3.2 Proof of Theorem C

Recall that, using the canonical basis in (13), we parametrize the ambient 9-
dimensional linear space E−,−

4 = �2− ⊗ �2− by 3 × 3-matrices X = [xi j ]3i, j=1 ∈
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M(3, 3) as

C−,−(X ) =
3∑

i, j=1

xi j Ei ⊗ E j . (32)

This is the tensor (Kronecker) product of 4 × 4 skew-symmetric matrices, a 16 × 16
symmetric matrix. By definition of the moduli, C−,−(X ) ∈ M−,−

4 if and only if
C−,−(X ) + I ≥ 0. We have the following:

Proposition Given X ∈ M(3, 3), with row vectors Xi ∈ R
3, i = 1, 2, 3, we have

C−,−(X ) ∈ M−,−
4 if and only if the following inequalities hold:

(I) 1 − |Xi |2 ≥ 0, i = 1, 2, 3;
(II) 1 − ‖X‖2 + 2 det(X ) ≥ 0;
(III) (1 − ‖X‖2)2 + 8 det(X ) − 4‖adj (X )‖2 ≥ 0,

where ‖ · ‖ is the ‘entrywise’ L2-norm of matrices and adj is the adjoint matrix.

Proof The (relative) interior of the equivariant moduli M−,−
4 is given by

intM−.−
4 = {C ∈ E−,−

4 |C + I > 0}.

To prove the proposition it is enough to show that this interior is characterized by
(I)-(III) with strict inequalities.

According to Sylvester’s criterion, positive definiteness ofC(X )+ I ,X ∈ M(3, 3),
is equivalent to all principal upper left minors to be positive. Now a technical calcu-
lation (which may be facilitated by the use of a computer algebra system) shows that
these 16 principal minors are as follows:

1, 1, 1, 1, P, P2, P3, P4, P3Q, P2Q2, PQ3, Q4, Q3R, Q2R2, QR3, R4, (33)

where P = 1−|X1|2, and Q and R are the left-hand sides of (II) and (III), respectively.
(The notation is justified by restriction to R

3 = D(3, 3) ⊂ M(3, 3) whereas Q and R
become Cayley’s cubic and the tetrahedral quartic, respectively.)

To complete the proofwewill show that 1−|X1|2 > 0 and Q > 0 imply 1−|X2|2 >

0 and 1 − |X3|2 > 0. To do this, we replace Q > 0 by the weaker inequality

|X1|2 + |X2|2 + |X3|2 < 1 + 2|X1||X2||X3|.

Factoring this, we obtain

(|X2| − |X3|)2 < (1 − |X1|)(1 + |X1| − 2|X2||X3|).

Since |X1| < 1, we must have 2|X2||X3| < 1+|X1| < 2. Thus |X2| < 1 or |X3| < 1.
Assuming the first (say), we factor again

(|X1| − |X2|)2 < (1 − |X3|)(1 + |X3| − 2|X1||X2|).
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Now, if |X3| > 1 were to hold then we would get 1 + |X3| < 2|X1||X2| < 2, a
contradiction. The proposition follows.

As an initial geometric insight to the inequalities (I)-(III), assume that the rows Xi ,
i = 1, 2, 3, of X ∈ M(3, 3) are of maximal (unit) length. Then ‖X‖2 = 3 and (II)
implies thatX ∈ SO(3). (The signed volume of the parallelepiped spanned by the unit
vectors Xi , i = 1, 2, 3, must be 1.) Changing the signs of two of the three rows of X
in all possible ways, we obtain three additional matrices which, along withX form the
vertices of a regular tetrahedron in E−.−

4 = R
9 with center at the origin and inscribed

in a cube of edge length 2. Now a simple computation shows that equality holds in
(III) on the faces of the tetrahedron. We obtain that the solid regular tetrahedron with
the ascribed vertices satisfies (I)–(III). We will see below that the entire solution set
of (I)–(III) will be an SU (2) × SU (2)-orbit of such tetrahedra. ��
Remark 1 The last part of the proof of the proposition can be simplified by using the
well-known refinement of Sylvester’s criterion: A matrix is positive semi-definite if
and only if all its principal minors are non-negative.
Remark 2 The regularity of the sequence in (33) suggests that there may be a shorter
and more insightful calculation of the principal minors rather than the ‘brute force’
method used here.
Remark 3 From the discussion on the general properties of the moduli M4 it follows
that C−,−(X ) ∈ M−,−

4 if and only if (III) holds for t · X , t ∈ [0, 1], (in place of
X ) with strict inequality for t ∈ [0, 1). In particular, we will see shortly that (II) is
redundant in the sense that (I) and (III) imply (II).

We now derive an explicit formula for the action of SU (2) × SU (2) on E−,−
4 . As

in (32), let C−,−(X ) ∈ E−,−
4 , X ∈ M(3, 3), and A(z, w), A(z′, w′) ∈ SU (2). Using

(31), we have

Ad(A(z, w)) ⊗ Ad(A(z′, w′)) ·C−,−(X ) = C−,−(U (z, w)� ·X ·U (z′, w′)). (34)

Indeed, we calculate

Ad(A(z, w)) ⊗ Ad(A(z′, w′)) · C−,−(X )

=
3∑

i, j=1

xi j Ad(A(z, w)) · Ei ⊗ Ad(A(z′, w′)) · E j

=
3∑

i, j=1

xi j

3∑
k=1

U (z, w)ik Ek ⊗
3∑

l=1

U (z′, w′) jl El

=
3∑

k,l=1

3∑
i, j=1

U (z, w)�ki xi j U (z′, w′) jl Ek ⊗ El

=
3∑

k,l=1

(U (z, w)� · X ·U (z′, w′))kl Ek ⊗ El

= C−,−(U (z, w)� · X ·U (z′, w′)).
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Now, given X ∈ M(3, 3), recall from the singular value decomposition theorem
that there exist U,U ′ ∈ O(3) such that X = U · diag (α1, α2, α3) · U ′�, where the
diagonal entries, the so-called singular values, satisfy α1 ≥ α2 ≥ α3 ≥ 0. Since
the ambient space is odd dimensional, inserting negative signs if needed, we can
attain that U,U ′ ∈ SO(3) at the expense of getting negative diagonal entries in the
diagonal matrix. Changing the notations accordingly, we then have U� · X · U ′ =
diag (α1, α2, α3) with U,U ′ ∈ SO(3) and α1, α2, α3 ∈ R.

Summarizing, and using the notations of Theorem C, we obtain that every SU (2)×
SU (2)-orbit in E−,−

4 intersects the linear subspace D−,−
4 of ‘diagonal elements.’

We now bring in the moduli M−,−
4 . The conditions (I)–(III) that guarantee

C−,−(α) ∈ M−,−
4 , α ∈ R

3, reduce to the following:
(I )0 Pi (α) ≤ 0, i = 1, 2, 3;
(I I )0 Q(α) ≥ 0;
(I I I )0 R(α) ≥ 0,
where Pi (α) = 1 − α2

i , α ∈ R
3, i = 1, 2, 3, Q is Cayley’s cubic given in (8), and R

is the tetrahedral quartic given in (15). (Note that (I )0 constrains α ∈ R
3 to the cube

[−1, 1]3.)
By (14)–(15) (as a special case of (20)–(22)), for α ∈ R

3, we have

det (C−,−(α) + I ) = R(α)4 =
∏
σ∈�

(1 + σ1α1 + σ2α2 + σ3α3)
4 ≥ 0. (35)

By a general property of the moduli discussed in Sect. 1.3, within D−,−
4 this deter-

minant vanishes on rays emanating from the origin the first time on the boundary of
M−,−

4 ∩ D−,−
4 . By convexity, we see that C−,−(α) ∈ M−,−

4 , α ∈ R
3, if and only if

1 + σ1α1 + σ2α2 + σ3α3 ≥ 0, σ1σ2σ3 = 1, σ1, σ2, σ3 ∈ {±1}. (36)

The 4 inequalities in (36) define the half-spaces containing the origin, whose boundary
planes extend the 4 faces of the regular tetrahedon	0 ⊂ [−1, 1]3 (inscribed in the cube
[−1, 1]3 with vertices (1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)). We conclude
that C−,−(α) ∈ M−,−

4 if and only if α ∈ 	0.
Remark In our present case (m = 4) the inequality in (I I )0 is redundant. As noted
above, restricted to the cube [−1, 1]3, it describes Cayley’s tetrahedron�0 containing
	0:

	0 ⊂ �0 ⊂ [−1, 1]3.

Using the notations in Theorem C, we obtain that 	−,− = M−,−
4 ∩ D−,−

4 is a
regular tetrahedron (in its affine span) inD−,−

4 , and we have C−,−(	0) = 	−,−.
Finally, since the action of SU (2) × SU (2) preserves M−,−

4 ⊂ E−,−
4 and every

SU (2) × SU (2)-orbit contains a diagonal element, we see that the entire equivariant
moduli M−,−

4 is the SU (2) × SU (2)-orbit of 	−,−. The first statement of Theorem
C follows.

As a byproduct, we also see that (I ), (III) ⇒ (II).
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The action of the group Z2 × Z2 carries the same structure to the other equivariant
moduli:

M−,+
4 = (SU (2) × SU (2)′)	−,+,

M+,−
4 = (SU (2)′ × SU (2))	+,−,

M+,+
4 = (SU (2)′ × SU (2)′)	+,+.

Indeed, for example, using (12) and Theorem C, we have

M+,+
4 = (γ, γ )M−,−

4 = (γ, γ )(SU (2) × SU (2))	−,−

= ((γ SU (2)γ ) × (γ SU (2)γ )) (γ, γ )	−,−

= (SU (2)′ × SU (2)′)	+,+.

Recall from Sect. 2.2 that, for α ∈ 	0, a representative (full) orthogonal multipli-
cation Fα : R

4 × R
4 → V of C−,−(α) ∈ M−,−

4 is given by

Fα = (C−,−(α) + I )1/2 · F⊗,

where V is the linear span of the image of Fα .
As a specific example, we now determine the SU (2) × SU (2)-orbit of 〈FH· 〉 =

〈F (1,1,1)〉 = C−,−(I ). By (34) (with X = I ), the group SU (2) × SU (2) acts as
SO(3)× SO(3) with isotropy subgroup SO(3)	 ⊂ SO(3)× SO(3), the diagonal. It
follows that the SU (2)×SU (2)-orbit is (SO(3)×SO(3))/SO(3)	 = SO(3) = RP3,
the real projective space. Moreover, the components of the corresponding orbit-map
are the matrix elements in (31). As noted in the remark at the end of Sect. 3.1, they
form an L2-orthonormal basis in H2

3. By definition, this means that this orbit is the
image of the degree 2 standard minimal immersion of S3 into S8.

The second statement and hence Theorem C follows.
The interior points of the tetrahedron 	−,− correspond to orthogonal multiplica-

tions with maximal range dimension 16. We just saw that the range dimension for the
vertex (1, 1, 1) of	−,− is 4 since it is the parameter of the quaternionic multiplication
FH· . Thus, for all the vertices of 	−,−, the range dimension is 4.

We now turn to the proof of the corollary and claim that the range dimension for
points on the open faces is 12, and those of the open edges is 8. This can be done in
two ways. First, due to the stratification of the moduli, this can be shown by exhibiting
specific examples of orthogonal multiplications that correspond to (specific) points on
an open face and an open edge of 	−,−.

Now, as simple computation shows, the opposite of the vertex 〈F (1,1,1)〉 = 〈FH· 〉,
the centroid 〈F (−1/3,−1/3,−1/3)〉 of the opposite face, has the following representation

F (−1/3,−1/3,−1/3)

=
√
3

2

⎡
⎢⎢⎣

1 1/3 −1/3 1/3
1/3 1 1/3 −1/3

−1/3 1/3 1 1/3
1/3 −1/3 1/3 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

x1y1 x1y2 x1y3 x1y4
−x2y2 x2y1 x3y1 x4y1
x3y3 x3y4 x4y2 x2y3

−x4y4 x4y3 x2y4 x3y2

⎤
⎥⎥⎦ .
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The components of F (−1/3,−1/3,−1/3) are the entries of the product matrix. Since
the rows of the coefficient matrix are linearly dependent, the range dimension of
F (−1/3,−1/3,−1/3) is 12.

Moreover, F (1,0,0) corresponds to the midpoint of an edge of 	−,−. This is range-
equivalent to (γ, γ ) · FC⊗ , where FC⊗ : C × C → C

4 is the complex tensor product
given by FC⊗ (z1, z2, w1, w2) = (z1w1, z1w2, z2w1, z2w2). The range dimension is 8.

As noted above, the natural stratification of M4 implies that the range dimensions
above prevail inM−,−

4 . The corollary to Theorem C follows.
As a second proof, following Sect. 1.3, for α ∈ ∂	0, we determine the multiplicity

of the root t = 1 of the polynomial t �→ R(tα), t ∈ R. Although this can be seen
directly from the factorization under (15) (or (35)), for the more complex cases that
follow, it is instructive to give a few details.

First, since C(α) ∈ ∂	−,−, we have R(α) = 0, and the multiplicity is at least one.
Using this, we have

R(tα) = (1 − t2(α2
1 + α2

2 + α2
3))

2 + 8t3α1α2α3

−4t4((α1α2)
2 + (α2α3)

2 + (α3α1)
2)

= 1 − t4 − 2t2(1 − t2)(α2
1 + α2

2 + α2
3) + 8t3(1 − t)α1α2α3.

Factoring out with 1 − t (and substituting t = 1), we obtain that t = 1 is a root of
multiplicity ≥ 2 if and only if (in addition to R(α) = 0) we have Q(α) = 0, where Q
is Cayley’s qubic. On the other hand, by geometry, the regular tetrahedron	0 (defined
by R(α) = 0) and Cayley’s tetrahedron �0 (defined by Q(α) = 0) intersect exactly
at the 1-skeleton of 	0 comprised by the 6 edges. Going back to algebra, using this,
another simple computation shows that the multiplicity is ≥ 3 if and only if |α|2 = 3
(vertex). Since R is of degree 4, and there must be a negative root (by compactness of
	−,−), we see that the open edges correspond to corank 4 × 2 = 8, and the vertices
to corank 4 × 3 = 12. The corollary follows again.

3.3 Proof of Theorem A

We postponed the proof of Theorem A up to this point as it is an easy modification of
the proof of Theorem C.

Let m = 3. We realize the SO(3)× SO(3)-module structure on E3 (by restriction)
as follows. TheHodge * operator on the exterior algebra�∗(R3) restricts to an SO(3)-
isomorphism �2(R3) → �1(R3) = R

3. Under this isomorphism, the 2-vectors of
the standard basis, E1 = e2 ∧ e3, E2 = e3 ∧ e1, E3 = e1 ∧ e2, correspond to the
respective basis elements e1, e2, e3 in R

3. We realize the standard action of SO(3) on
R
3 as the lift to SU (2) = S3 ⊂ H on the linear space of purely imaginary quaternions

H0 ⊂ H by quaternionic adjoint Ad (q), q ∈ S3. With the identifications R
4 = C

2

and C
2 � (z, w) �→ z + jw ∈ H, z, w ∈ C, made previously, we also have R

3 ∼= H0
given by (a, b, c) �→ ia + jb − kc ∈ H0, a, b, c ∈ R. With these the (adjoint) action
of a typical element A(z, w) ∈ SU (2), z, w ∈ C, on R

3 is by left-multiplication by
the matrix U (z, w) ∈ SO(3) given explicitly in (31).
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Parametrizing the linear space E3 by M(3, 3) through the linear isomorphism C :
M(3, 3) → E3 the proof of (34) goes through with appropriate modifications. We
obtain that (U,U ′) ∈ SO(3) × SO(3) acts on M(3, 3) as X �→ U� · X · U ′, X ∈
M(3, 3). Applying the singular value decomposition, we conclude, as before, that
every SO(3)× SO(3)-orbit contains a diagonal elementC(α) ∈ D3, α ∈ R

3. Finally,
a simple but somewhat tedious computation gives (9).

In perfect analogy with the case of M−,−
4 , using the fact that the determinant in

(9) vanishes on rays emanating from the origin the first time on the boundary of the
moduli, non-negativity of the right-hand side in (9) breaks up into factors. The first
product gives M3 ⊂ [−1, 1]3, and Cayley’s cubic factor Q gives (I I )0. All except
the last statement of Theorem A now follow by the same argument as the proof of
Theorem C above.

Finally, it remains to determine rank(C(α) + I ) for α ∈ ∂�0, or equivalently (for
the corank), the possible multiplicities (depending on α) of t = 1 as a root of the
(degree 9) polynomial det(tC(α) + I ), t ∈ R. In view of (9), we need to determine
the multiplicity of t = 1 as a root for the cubic Q(tα), t ∈ R.

First, since C(α) ∈ ∂�, the multiplicity is at least one, and we have Q(α) = 0.
Using this, we have

Q(tα) = 1 − t2(α2
1 + α2

2 + α2
3) + 2t3α1α2α3

= (t − 1)(t2(α2
1 + α2

2 + α2
3 − 1) + t + 1).

Canceling t − 1 (and substituting t = 1), we obtain that the multiplicity is ≥ 2 if and
only if α2

1 + α2
2 + α2

3 = 3 (vertex) and α1α2α3 = 1. Since the maximum multiplicity
is 2, returning to (9) and accounting for more multiplicities from the product there if
αi = ±1 (edges), i = 1, 2, 3, an easy case-by-case check gives the last statement of
Theorem A.

3.4 Proof of Theorem D

We now return to M4. As usual, we parametrize D−,−
4 ⊕ D+,+

4 by the restriction of
the linear isomorphism C−,− × C+,+ : M(3, 3) × M(3, 3) → E−,−

4 ⊕ E+,+
4 to the

linear subspace R
6 = R

3 × R
3 = D(3, 3) × D(3, 3). The intersection

M4 ∩
(
D−,−

4 ⊕ D+,+
4

)

is then defined by

C−,−(α) + C+,+(β) + I ≥ 0, α, β ∈ R
3.

Specializing (20)–(22) to μ = ν = 0, as stated in (17), we obtain
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det (C−,−(α) + C+,+(β) + I ) =
∏
σ∈�

R(α + σ · β)

=
∏

σ,τ∈�

(
1 +

3∑
i=1

(σiαi + τiβi )

)
≥ 0.

We now use (once again) the fact that, withinD−,−
4 ⊕D+,+

4 , this determinant vanishes
on rays emanating from the origin the first time on the boundary of M4 ∩ (D−,−

4 ⊕
D+,+

4 ). Using convexity, we obtain thatC−,−(α)+C+,+(β) ∈ M4∩(D−,−
4 ⊕D+,+

4 ),
α, β ∈ R

3, if and only if

1 +
3∑

i=1

(σiαi + τiβi ) ≥ 0, (37)

with four choices in each group of signs satisfying

σ1σ2σ3 = 1, σ1, σ2, σ3 ∈ {±1} and τ1τ2τ3 = 1, τ1, τ2, τ3 ∈ {±1}.

In R
3 ×R

3 = R
6, α, β ∈ R

3, for fixed σ, τ ∈ �, (37) defines a half-space (containing
the origin) with boundary hyperplane whose intersection with E−,−

4 is a supporting
hyperplane of 	−,− containing one of its faces, and similarly, its intersection with
E+,+
4 is supporting and containing a face of 	+,+. Since there are exactly 4× 4 = 16

hyperplanes with this property, we conclude

M4 ∩
(
D−,−

4 ⊕ D+,+
4

)
= [	−,−,	+,+]. (38)

Finally, given C ∈ M4 ∩
(
E−,−
4 ⊕ E+,+

4

)
, we have C = C−,−(X ) + C+,+(Y)

with X ,Y ∈ M(3, 3). By Theorem C, X can be diagonalized with the action of
SU (2) × SU (2) to a diagonal element C−,−(α), α ∈ R

3, and similarly, Y can be
diagonalized with the action of SU (2)′ × SU (2)′ to a diagonal element C+,+(β), β ∈
R
3. It follows thatC is in the SO(4)× SO(4)-orbit of the sumC−,−(α)+C+,+(β) ∈

M4 ∩
(
D−,−

4 ⊕ D+,+
4

)
. By (38), we obtain C−,−(α) + C+,+(β) ∈ [	−,−,	+,+].

Theorem D follows.

Remark Due to the complete factorization in (17) into linear factors, the polyhedral
structure of � = [	−,−,	+,+], and the table following Theorem D, the calcu-
lation of possible coranks via multiplicities of the root t = 1 of the polynomial
t �→ det(tC−,−(α) + tC+,+(β) + I ), (α, β) ∈ ∂�, t ∈ R, can be dispensed with.

3.5 Proof of Theorem E

Recall the intersection � = M4 ∩ D4 given by (18), and the respective determinant
in (20)–(22). Define �0 ⊂ R

12 as the convex body corresponding to �:

(α, β, μ, ν) ∈ �0 ⇔ C−,−(α) + C+,+(β) + C−,+(μ) + C+,−(ν) ∈ �,
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⇔ C−,−(α) + C+,+(β) + C−,+(μ) + C+,−(ν) + I ≥ 0. (39)

By the generalized Sylvester criterion, all principalminors of the positive semi-definite
matrix in (39) are non-negative. Evaluating all 2 × 2 principal minors, we obtain

(1 + (αi + σiβi ) + τi (μi + σiνi ))(1 − (αi + σiβi ) − τi (μi + σiνi ))

≥ 0, σi , τi ∈ {±1}, i = 1, 2, 3.

These give (25). Note that the 24 half-spaces in (25) that define �0 is a 12-cube since
the unit normal vectors of the bounding hyperplanes form pairs of 12 orthonormal
vectors in R

12. We obtain �0 ⊂ �0.
In view of (21)–(22) and (39), we have (α, β, μ, ν) ∈ ∂�0 if and only if t = 1 is

the first positive root of the polynomial t �→ ∏
σ∈� G(t (α + σ · β), t (μ + σ · ν)),

t ∈ R. By the definition before Theorem E, the first positive root of this polynomial is
equal to minσ∈� τ(α + σ · β,μ + σ · ν). Convexity of �0 and 0 ∈ int �0 now imply
(24).

It remains to prove the last statement of Theorem E about the corank of diagonal
elements in �. Using the parametrization in (39), as in Sect. 1.3, we let (α, β, μ, ν) ∈
∂�0, and determine the possible multiplicities of the root t = 1 of the (degree 16)
polynomial t �→ G�(tα, tβ, tμ, tν), t ∈ R. By (21), we have G� = ∏

σ∈� Gσ , so
that the corank of C = C−,−(α) + C+,+(β) + C−,+(μ) + C+,−(ν) ∈ ∂� is equal
to

∑
σ∈� cσ , where cσ ∈ {1, 2, 3, 4}, σ ∈ �, is the multiplicity of the (possible) first

root t = 1 of the quartic polynomial t �→ Gσ (tα, tβ, tμ, tν), t ∈ R. (As usual the
multiplicity is zero if this quartic is positive on [0, 1]. We will also see shortly that
cσ ≤ 3, σ ∈ �.) Since Gσ (tα, tβ, tμ, tν) = G(t (α+σ ·β), t (μ+σ ·ν)), and since a
linear change of variables does not change the multiplicity, it remains to determine the
possiblemultiplicities of the quartic t �→ G(tα, tβ), t ∈ R. By (25) just proved, for the
new variables we have −1 ≤ αi ± βi ≤ 1, i = 1, 2, 3, in particular, α, β ∈ [−1, 1]3,
and hence |α|2 + |β|2 ≤ 3.

Using (8) and (20) and homogeneity of the biquadratic form T , an easy calculation
gives

G(tα, tβ) = t4G(α, β) + 4t3(1 − t)
(
Q(α) + Q(β) − 1

)

+2t2(1 − t)2
(
3 − |α|2 − |β|2) + (1 + 3t)(1 − t)3, t ∈ R. (40)

Without loss of generality we may assume that the multiplicity of t = 1 is at least 1,
that is we have G(α, β) = 0. Using this, (40) reduces to the following

G(tα, tβ) = (1 − t)

×
[
4t3

(
Q(α) + Q(β) − 1

) + 2t2(1 − t)
(
3 − |α|2 − |β|2) + (1 + 3t)(1 − t)2

]
.

Now, t = 1 is the first root of the quartic t �→ G(tα, tβ), t ∈ R, if and only if the
cubic factor in the square brackets above is positive on [0, 1). Since |α|2 + β|2 ≤ 3
and (1 + 3t)(1 − t)2 > 0 for 0 ≤ t < 1, a simple analysis shows that this positivity
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holds if and only if
Q(α) + Q(β) ≥ 1. (41)

Recall now that we have α, β ∈ [−1, 1]3. Elementary calculus gives

max
α∈[−1,1]3

Q(α) = 1 (42)

with the maximum attained at the origin. Now (41)–(42) imply Q(α), Q(β) ≥ 0 so
that α and β both belong to Cayley’s tetrahedron �0.

Note that, as a byproduct, the characterization of τ before Theorem E in Sect. 2.2
follows.

Returning to the main line, it is clear from (40) that t = 1 is a root of multiplicity
at least 2 if and only if

Q(α) + Q(β) = 1. (43)

Assuming this we have

G(tα, tβ) = (1 − t)2
(
2t2(3 − |α|2 − |β|2) + (3t + 1)(1 − t)

)
.

We obtain that t = 1 is a root of multiplicity at least 3 if and only if

|α|2 + |β|2 = 3. (44)

Note finally that in this case the multiplicity must be equal to 3 as the last root is−1/3.
For the last statement of Theorem E, assume that the multiplicity is equal to 3.

Substituting (44) to (43) via (8), we obtain α1α2α3 +β1β2β3 = 1. Using this and (44)
again to evaluate R(2α) and R(2β) in (23), we obtain

G(α, β) = 3 − T (α, α) − T (β, β) + 2T (α, β) = 0.

Now, a simple computation gives

3−T (α, α)−T (β, β)+2T (α, β) = 3+ x21 + x22 + x23 −2(x1x2 + x2x3 + x3x1) = 0,
(45)

where
xi = α2

i − β2
i ∈ [−1, 1], i = 1, 2, 3. (46)

The crux is that the only points (x1, x2, x3) ∈ [−1, 1]3 satisfying (45) and (46) are
±(1, 1, 1). (Minimize the distance of (x1, x2, x3) from the origin subject to (45).)

Thus, we have α2
1 − β2

1 = α2
2 − β2

2 = α2
3 − β2

3 = ±1, i = 1, 2, 3. Summing up
we obtain |α|2 − |β|2 = ±3. This combined with (44) gives |α|2 = 3 (vertex of �0)
and β = 0, or |β|2 = 3 (vertex of �0) and α = 0. The last statement of Theorem E
follows.
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3.6 Fixed points of Z2 × Z2 on D4

Recall from Sect. 2.2 the linear subspace of all diagonal elements

D4 = D−,−
4 ⊕ D+,+

4 ⊕ D−,+
4 ⊕ D+,−

4 ⊂ E4.

Each non-trivial element of the group Z2 × Z2 = {(I, I ), (I, γ ), (γ, I ), (γ, γ )} ⊂
O(4) × O(4) acts on the set of components D±,±

4 as a double transposition. As in
Sect. 2.2, we have the bouquet of 6-dimensional linear subspaces

D
(I,γ )
4 , D

(γ,I )
4 , D

(γ,γ )
4

with common intersection D
Z2×Z2
4 .

The parametrization ofD(γ,γ )
4 by R

3 × R
3 = R

6 in (26) is given by

D
(γ,γ )
4 =

{
C−,−(α/2) + C+,+(α/2) + C−,+(μ/2) + C+,−(μ/2) | α,μ ∈ R

3
}

.

Using (20)–(22), we obtain

det (C−,−(α/2) + C+,+(α/2) + C−,+(μ/2) + C+,−(μ/2) + I )

= (R(α) + R(μ) + 2T (α;μ) − 1)
3∏

i=1

(
1 − (αi + μi )

2) (
1 − (αi − μi )

2
)

≥ 0.

Expanding the first factor, this gives (27)–(28).
For μ = 0, C−,−(α/2) + C+,+(α/2), α ∈ 	0, parametrize the arithmetic mean

(1/2)((I, I ) + (γ, γ ))	−,−. In a similar vein, for α = 0, C−,+(μ/2) + C+,−(μ/2),
μ ∈ 	0, parametrize (1/2)((I, γ ) + (γ, I ))	−,−.

The common intersectionDZ2×Z2
4 ⊂ D

(γ,γ )
4 is obtained by setting α = μ. With an

additional scaling factor 1/2, we have

det (C−,−(α/4) + C+,+(α/4) + C−,+(α/4) + C+,−(α/4) + I )

= Q(α)

3∏
i=1

(1 − α2
i ) ≥ 0.

We obtain that (up to the 1/2 scaling) M4 ∩ D
Z2×Z2
4 is Cayley’s tetrahedron �0 ⊂

[−1, 1]3.
In a similar vein, setting α = −μ, with an additional scaling factor 1/2 we have

det (C−,−(α/4) + C+,+(α/4) + C−,+(−α/4) + C+,−(−α/4) + I )

= (1 − α2
1 − α2

2 − α2
3)

3∏
i=1

(1 − α2
i ) ≥ 0.
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We obtain that the anti-diagonal R
3
	′ ⊂ R

3 × R
3 = R

6 defined by α = −μ cuts out
from �0 the unit ball B0 scaled by 1/2:

�0 ∩ R
3
	′ = (1/2)B0.

Summarizing, we obtain

(1/2)[B0,�0] � �0

with proper inclusion. Finally, a simple evaluation of the ranks of the respective positive
semi-definitematrices on the boundary of (1/2)B0 gives the constant 15. The corollary
follows.
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