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Abstract Measuring how far a convex body K (of dimension n) with a base point O ∈ int K
is from an inscribed simplex � � O in “minimal” position, the interior point O can display
regular or singular behavior. If O is a regular point then the n + 1 chords emanating from
the vertices of � and meeting at O are affine diameters, chords ending in pairs of parallel
hyperplanes supporting K. At a singular point O the minimal simplex � degenerates. In
general, singular points tend to cluster near the boundary of K. As connection to a number
of difficult and unsolved problems about affine diameters shows, regular points are elusive,
often non-existent. The first result of this paper uses Klee’s fundamental inequality for the
critical ratio and the dimension of the critical set to obtain a general existence for regular
points in a convex body with large distortion (Theorem A). This, in various specific settings,
gives information about the structure of the set of regular and singular points (Theorem B).
At the other extreme when regular points are in abundance, a detailed study of examples
leads to the conjecture that the simplices are the only convex bodies with no singular points.
The second and main result of this paper is to prove this conjecture in two different set-
tings, when (1) K has a flat point on its boundary, or (2) K has n isolated extremal points
(Theorem C).
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1 Preliminaries and statement of results

Let E
n be an n-dimensional Euclidean vector space (n ≥ 2) with distance function d , and

K ⊂ E
n a convex body, a compact convex set in E

n with non-empty interior. (It is well
known that all convex bodies in E

n have dimension n [5,19].) Given a point O ∈ int K and
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a hyperplane H ⊂ E
n passing through O , there are exactly two hyperplanes H′ and H′′

parallel to H and both supporting K. Letting M(H, O) ≤ 1 denote the ratio that H divides
the distance between H′ and H′′, and taking the infimum over all H, we arrive at the function
μ : int K → R, μ(O) = infH�O M(H, O). The Minkowski measure of symmetry is then
defined as μ∗ = supO ∈ int K μ(O). (For the general theory of measures of symmetry, see
[4].) By definition, μ ≤ 1 so that μ∗ ≤ 1, and the upper bound μ∗ = 1 is attained (at an
interior point O∗ of K) if and only if K is symmetric (with respect to O∗).

In 1897 H. Minkowski proved that μ(g) ≥ 1/n, where g is the centroid of K. (See [13,15]
or [14], and [3].) Minkowski’s proof was in dimensions n = 2, 3, and was subsequently
extended by J. Radon in 1916 to any dimensions n ≥ 2 [17]. In particular, we have μ∗ ≥ 1/n.
(Note that a simple application of Helly’s theorem actually gives this latter inequality directly
[1, 11.7.6].) A straightforward exercise then shows that μ∗ = 1/n holds for simplices, and a
more delicate argument gives the converse: μ∗ = 1/n if and only if K is an n-simplex. (See
also the discussion below).

Instead of enclosing K between two parallel supporting hyperplanes, one can also consider
chords of K passing through O ∈ int K. For C ∈ ∂K, let �(C, O) denote the ratio into which
O divides the chord of K starting at C passing through O and ending up at the opposite
Co ∈ ∂K of C (with respect to O).

This defines the distortion function � : ∂K × int K → R:

�(C, O) = d(C, O)

d(Co, O)
, C ∈ ∂K, O ∈ int K.

Clearly, (Co)o = C and �(Co, O) = 1/�(C, O), C ∈ ∂K. We let

�(O) = sup
C∈∂K

�(C, O), O ∈ int K,

noting that the supremum is attained by continuity of the distortion function on the compact
boundary of K (Lemma 1 in [23]). Finally, we let

�∗ = inf
O∈ int K

�(O)

noting again that the infimum is attained since �(O) → ∞ as O tends to any boundary point
of K.

A simple geometric argument gives μ = 1/�, in particular, �∗ = 1/μ∗.
The functions � (and μ) are quasi-convex on int K; in fact, the level-sets are the members

of Hammer’s exhaustion of K into a monotonic family {Kt }�∗≤t≤1 (K1 = K) of convex
subsets [7]. For �∗ < t ≤ 1, Kt is a convex body, and the critical set K∗ = K�∗ = {O∗ ∈
int K | �(O∗) = �∗} is a compact convex set.

Remark Klee [10] used the ratio ρ(C, O) = d(C, O)/d(C, Co), related to our distor-
tion via 1/ρ = 1 + 1/�. The corresponding extremal value r∗ with 1/r∗ = 1 + 1/�∗
is called the critical ratio of K. Neumann [16] and some of the subsequent authors used
max(d(C, O), d(Co, O)) instead of d(C, O) in the definition of ρ. Since our main interest
is in the maxima on ∂K, the two definitions give the same results. The principal reason to use
the distortion function is that our formulas become simpler and more transparent. Note also
that, instead of � we will actually use the ratio 1/(1+�). Although the latter is just a rescaling
of Minkowski’s μ, it has a slight advantage being concave on int K (Corollary to Proposition
1 in [23]), and thereby automatically quasi-convex. (Note that concavity of 1/(1+�) implies
that � is convex. Finally, apart from being quasi-convex, μ is not convex/concave even for K
a metric ball.)
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By the above, we have

1 ≤ �∗ ≤ n, (1)

with the lower bound attained if and only if K is (centrally) symmetric (with respect to then
unique O∗ in K∗), and the upper bound is attained if and only if K is a simplex.

Remark Following the previous remark, the upper estimate was first proved by Neumann
[16] for n = 2, and by Süss [21] and Hammer [6] for general n ≥ 2. Characterization of the
simplex with �∗ = n was stated by Süss [21] and proved by Klee [10]. The statement that
�∗ = 1 characterizes the symmetric convex bodies is clear.

As noted above, the critical set K∗ is a closed convex set [7]. (For a simple and direct
proof of this, see [20, 5.2].) In the planar case (n = 2) K∗ reduces to a single point [16], and
the fact that for n ≥ 3 it may be non-degenerate has first been recognized by Hammer and
Sobczyk [8]. (A simple example is furnished by a vertical cylinder on an equilateral triangle
[8].)

A significant improvement of the non-trivial upper estimate in (1) is Klee’s [10] funda-
mental inequality:

�∗ + dim K∗ ≤ n. (2)

In his paper Klee actually proved much more (also needed here later). Letting M(O) =
{C ∈ ∂K | �(C, O) = �(O)}, O ∈ int K, the sets M(O∗), with O∗ traversing the relative
interior of K∗, stay the same, say, M∗. Moreover, if �∗ + dim K∗ ≥ n − 1 then M∗ consists
of at least ��∗� + 1 elements (�x� is the ceiling of x ∈ R), and we have

int K∗ ⊂ int [K∗ ∪ M∗], (3)

where the square brackets mean convex hull.
In the study moduli spaces of spherical minimal immersions, in [22,23] the author intro-

duced a sequence of measures of symmetry {σm}m≥1 associated to a convex body K ⊂ E
n

(of dimension n) with a specified interior point O ∈ int K. The mth measure of symmetry
σm is defined as follows. First, an m-configuration of K with respect to O is a multi-set
{C0, . . . , Cm} ⊂ ∂K (with repetition allowed) such that the convex hull [C0, . . . , Cm] con-
tains O . Then

σm(K, O) = inf{C0,...,Cm }∈Cm (K,O)

m∑

i=0

1

1 + �(Ci , O)
, (4)

where Cm(K, O) denotes the set of all m-configurations of K (with respect to O).
Algebraically, σm is an ‘m-average’ of the rescaled distortion giving the Minkowski func-

tion μ above, and, as we will see below, geometrically σm(K, O) measures how far the
m-dimensional slices of K across O are from an m-simplex.

Compactness of K implies that the infimum in (4) is attained, but, as examples show, min-
imal m-configurations are by no means unique. Since a 1-configuration of K is an antipodal
pair of points, we have σ1(K, O) = 1.

The functions σm(K, .) are continuous on int K and extend continuously to ∂K (Theorem
D/(b) in [23]):

lim
d(O,∂K)→0

σm(K, O) = 1. (5)

For the range of σm , we have

1 ≤ σm(K, O) ≤ m + 1

2
. (6)
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The lower bound is attained if and only if K has an m-dimensional simplicial slice across O ,
that is, there exists an m-dimensional affine subspace E ⊂ E

n containing O such that K ∩ E
is an m-simplex. Assuming m ≥ 2, the upper bound is attained if and only if K is (centrally)
symmetric at O . (For the details here and below, see [22,23]).

The sequence {σm}m≥1 is sub-arithmetic, that is, for k, m ≥ 1, we (obviously) have

σm+k(K, O) ≤ σm(K, O) + k

1 + �(O)
. (7)

Equality holds for m = n and k ≥ 1, that is, the sequence {σm(K, O)}m≥1 is arithmetic from
the nth term onwards with difference 1/(1+�(O)). (This is a consequence of Carathéodory’s
theorem; see [19] or [1, 11.1.8.6]; for a recent proof and generalizations of the latter, see [2].)

The sequence {σm}m≥1 is super-additive

σm+k − σm ≥ σk − σ1, σ1 = 1, k, m ≥ 1.

In particular, {σm(K, O)}m≥1 starts with an initial string of 1’s, and afterwards it is increasing.
The length l of this string (the dimension of a maximal simplicial slice of K across O) is
≤ [�(O)] ([x] is the greatest integer of x ∈ R). (This is an easy consequence of (7) (for
m = l, k = n − l), and using the trivial lower bound (n + 1)/(1 + �) for σn).

An n-configuration {C0, . . . , Cn} ∈ C(K, O) is called simplicial if [C0, . . . , Cn] is an n-
simplex and O is contained in its interior. (In what follows, whenever convenient, the subscript
n will be suppressed.) The set of simplicial configurations is denoted by �(K, O) ⊂ C(K, O).
In the definition (4) of σ(K, O) (for m = n) the infimum can be restricted to �(K, O), but a
minimizing sequence of simplicial configurations may not subconverge in �(K, O). If every
minimizing sequence subconverges within �(K, O) then we call the point O regular. By (7)
(for m = n − 1 and k = 1), O is regular if and only if

σ(K, O) < σn−1(K, O) + 1

1 + �(O)
. (8)

By continuity of the measures of symmetry and �, the set R ⊂ int K of regular points, the
regular set, is open. An interior point O at which a minimizing sequence degenerates is called
singular, and the set of singular points is denoted by S. By the above, O is singular if and
only if equality holds in (8), and the singular set S is relatively closed in int K.

Let O ∈ R be a regular point. Since a minimal configuration {C0, . . . , Cn} is simplicial,
�(., O) attains local maximum at each Ci , 0 ≤ i ≤ n. In addition (Lemma 2.1 in [22]),
using suitable translations along line segments in the boundary of K, the configuration points
can be replaced by extremal points (in the sense of convex geometry [19]). (Recall that a
boundary point of K is extremal if it is not contained in the interior of a line segment on the
boundary of K.) Moreover, from the study of local extrema of �(., O) (Section 7 in [22], and
also (3.2) in [10]), it also follows that each chord [Ci , Co

i ], 0 ≤ i ≤ n, is an affine diameter
in the sense that there are parallel hyperplanes passing through Ci and Co

i both supporting K.
Summarizing, we see that at each regular point n + 1 (affinely independent) affine diameters
meet. Regularity aside, to characterize the set of these points in a convex body is a difficult
and unsolved problem; in particular, it is not known whether the centroid of a convex body
has this property or not [4,11,12]. (For a thorough overview of results on affine diameters,
see the survey article [20].)

As can be expected, regular points are elusive. Our first result is the following:

Theorem A Let K ⊂ E
n be a convex body. Assume that �∗ > n − 1. Then the critical set

K∗ consists of a single regular point O∗ ∈ R and
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σ(K, O∗) = n + 1

1 + �∗ . (9)

By (1), no assumption is needed for the planar case (n = 2):

Corollary Let K be a planar convex body. Then the critical set K∗ is a singleton O∗ and we
have

σ(K, O∗) = 3

1 + �∗ .

Remark Let G be a compact (not necessarily connected) Lie group acting on E
n linearly

with no nonzero fixed points, and assume that K is G-invariant. Then the critical set K∗ is
also G-invariant. The centroid of K∗ is left fixed by G, therefore, by assumption, it must
be the origin. It follows that 0 ∈ K∗ and (9) (obviously) holds with O∗ replaced by 0.
(A minimal configuration can be selected from the G-invariant set M∗ ⊂ ∂K).

The examples of a double regular tetrahedron or a vertical cylinder on an equilateral
triangle show that the lower bound in Theorem A is sharp in the sense that there are convex
bodies with �∗ = n − 1 and no regular points. A closer inspection of the proof of Theorem
A (in Section 2) shows that if, for a convex body K, we have �∗ = n − 1 and the critical set
K∗ consists of a single point then this critical point O∗ is singular if and only if K has an
(n − 1)-dimensional simplicial slice across O∗.

This motivates the following definition. Let K ⊂ E
n be a convex body and 1 ≤ k ≤ n. We

say that K is simplicial in codimension k if K possesses an (n − k)-dimensional simplicial
slice across any O ∈ int K. By the above, K is simplicial in codimension k if and only
if σn−k = 1 identically on int K. Clearly, a convex body K is automatically simplicial in
codimension n − 1, and K is simplicial of codimension 0 if and only if it is a simplex. (As
a simple example, the n-dimensional cube Cn is not simplicial in codimension 1, although
σn−1 = 1 away from the inscribed cross-polytope.)

Let K be simplicial in codimension k. Since σn−k = 1, by (7), we have

n + 1

1 + �∗ ≤ σ(K, O∗) ≤ 1 + k

1 + �∗ , O∗ ∈ K∗. (10)

In particular, �∗ ≥ n − k and, by Klee’s inequality (2), dim K∗ ≤ k.

Theorem B Let K ⊂ E
n be a codimension 1 simplicial convex body. Then �∗ ≥ n − 1

and equality holds if and only if K∗ ⊂ S. The measure of symmetry σ(K, .) as a function
on the interior of K is concave. Given O ∈ int K, for any C ∈ M(O), the line segment
[O, Co) intersects R and S in intervals (one of which may be empty). In particular, S ∪ ∂K
is path-connected and R is (topologically) (n − 1)-connected.

Remark The examples below and Example 2 in Section 4 illustrate Theorem B. Note also
that for the n-dimensional cube Cn, n ≥ 3, σ (Cn, .) is not concave [25].

For n = 2 the situation is much simpler. We summarize our findings as follows.

Corollary Let K be a planar convex body (n = 2). Then 1 ≤ �∗ ≤ 2. If �∗ = 1 then K is
symmetric with all interior points singular. If 1 < �∗ < 2 then the regular set R is non-empty
and simply connected, and S ∪ ∂K is connected. If �∗ = 2 then K is a triangle with all
interior points regular.
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Example 1 The unit half-disk K = {(x, y) ∈ R
2 | x2 + y2 ≤ 1, y ≥ 0} is a simple but

important example. As noted by Hammer [6], �∗ = √
2 with the (unique) critical point at

O∗ = (0,
√

2 − 1), and with the centroid of K at (0, 4/3π), different from O∗. By the
corollary above, O∗ is a regular point. Moreover, letting C± = (±1, 0) and C0 = (0, 1),
in Example 1 of Section 4 we will show that the regular set R is the interior of the triangle
� = [C−, C0, C+]. Using this we will determine σ(K, .) explicitly. In particular, we will
see that the maximum of σ(K, .) on int K is attained at yet another point, (0, 1/2).

Example 2 An illustrative example for the case 1 < �∗ < 2 is a (2m + 1)-sided regular
polygon P2m+1 ⊂ R

2, m ≥ 2. (For definiteness, we may assume that P2m+1 is inscribed
in the unit circle of R

2.) Clearly, the critical set P∗
2m+1 consists of a single point O∗, the

centroid of K, and consequently �∗ = sec( π
2m+1 ). (The respective dihedral group G leaves

only the origin fixed; see the remark after Theorem A.) As shown in [26], the regular set is
the interior of the star-polygon

{ 2m+1
m

}
of P2m+1. Note that the distance of O∗ to the singular

set is
(
1 − 2 cos

( 2mπ
2m+1

))−1 which decreases to 1/3 as m → ∞. It follows that the open disk
with center O∗ and radius 1/3 is contained in the regular set for all m ≥ 2. (Note that the
limit of P2m+1 as m → ∞ is the disk all of whose interior points are singular.)

Based on this, one may expect a positive lower bound for d(O∗, S) for certain classes
of convex bodies with O∗ ∈ R. In Example 2 of Section 4, we show however that, for
3-dimensional cones Km, m ≥ 1, with base P2m+1 and sharing the same vertex V , the
critical set K∗

m consists of a single regular point O∗ and limm→∞ d(O∗, Sm) = 0, where Sm

is the singular set of Km .

Simplices do not have singular points, in fact, for any interior point of a simplex, the unique
minimal configuration is comprised of the vertices of the simplex. In [24] we conjectured that
the converse was also true, that is, a convex body all of whose interior points are regular is a
simplex. Our second and main result resolves this conjecture under two different assumptions:

Theorem C Let K ⊂ E
n be a convex body with all its interior points regular. Assume that

one of the following conditions hold:

(I) There is a flat point on ∂K, that is a point C ∈ ∂K with a hyperplane H ⊂ E
n supporting

K such that C is contained in the (non-empty) interior of ∂K ∩ H in H.
(II) Assume that K has (at least) n isolated extremal points on its boundary. Then K is an

n-simplex.

Theorem C can be paraphrased as an existence result for singular points for non-simplicial
convex bodies. In particular, we have the following:

Corollary Let K ⊂ E
n be a convex polytope of dimension n which is not a simplex. Then

the singular set of K is non-empty.

The proof of Theorem C is long and technical and will be given in Sect. 3. The assumptions
(I) and (II) are very different and so are the respective proofs. Accordingly, we will split the
proof of Theorem C into two parts. Note that Part II has been announced and discussed in
[25] with an inductive proof outlined. We will give here a complete, simplified, and different
proof of the general induction step.

Remark In the other extreme, the interior of any symmetric convex body consists of singular
points only (Theorem A in [26]). It is natural to ask about the converse, that is, whether a
convex body all of whose interior points are singular is symmetric. The examples noted above
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(a double regular tetrahedron or a vertical cylinder on an equilateral triangle) immediately
show that this is false for n ≥ 3. Surprisingly, as a byproduct of Corollary to Theorem B
above shows, this is true for n = 2: A planar convex body is symmetric if and only if all of
its interior points are singular.

We close this section with the following illustration of Part II of Theorem C:

Example 3 Let � = [C1, . . . , Cn−1] ⊂ R
n−2, n ≥ 3, be an (n − 2)-simplex with vertices

C1, . . . , Cn−1, and assume that the origin 0 is an interior point of �. Let 	 ⊂ R
2 be the circle

with center (0, 1) and radius 1. We consider � and 	 imbedded in R
n via R

n−2 × R
2 = R

n .
The convex hull K = [�,	] ⊂ R

n is a codimension 1 simplicial convex body in R
n . In

fact, for any C ∈ 	 \ {0}, the hyperplane containing R
n−2 and C intersects K in the (n − 1)-

simplex [�, C]. The set of extremal points K0 splits into ‘discrete’ and ‘continuous’ parts:
the isolated extremal points C1, . . . , Cn−1 and the subset 	 \ {0}. (In particular, K0 is not
closed.) By Theorem C/(II), the singular set S of K is non-empty. Finally, note that in the
proof of Theorem C/(II) of Sect. 3, K satisfies condition Pn−1 (but not Pn as there are not
enough isolated extremal points).

2 Theorems A–B: existence of regular points

To prove Theorem A we let �∗ > n − 1. By (2), we have dim K∗ = 0. Since K∗ is convex, it
must consist of a single point, say, O∗. The inclusion in (3) then reduces to O∗ ∈ [M∗], where
M∗ = M(O∗). Hence there exists {C0, . . . , Cn} ⊂ M∗ such that O∗ ∈ [C0, . . . , Cn].
(Since M∗ consists of at least ��∗� + 1 > n points, C0, . . . , Cn can be chosen mutually
distinct. The fact that no more than n + 1 of them are needed follows from Carathéodory’s
theorem [19].) With this, we arrive at an n-configuration {C0, . . . , Cn} ∈ C(K, O∗). By
definition, we then have

σ(K, O∗) ≤ n + 1

1 + �∗ .

On the other hand, since �∗ = max∂K �(., O∗), the opposite inequality obviously holds.
Finally, to show that O∗ is regular, we estimate

σ(K, O∗) = n

1 + �∗ + 1

1 + �∗ < 1 + 1

1 + �∗ ≤ σn−1(K, O∗) + 1

1 + �∗ ,

where we used (6). Theorem A follows.
If �∗ = n − 1 and K∗ = {O∗}, the argument above goes through (in the use of a minimal

configuration {C0, . . . , Cn} ⊂ M∗) and we obtain

σ(K, O∗) = n + 1

1 + �∗ ≤ σn−1(K, O∗) + 1

1 + �∗ .

Equality holds (O∗ ∈ S) if and only if σn−1(K, O∗) = 1, that is, if and only if K has a
codimension 1 simplicial configuration across O∗.

To prove Theorem B we assume now that K is a codimension 1 simplicial convex body.
The first statement of Theorem B follows directly from (10) with k = 1. For the second
statement, concavity of σ(K, .), first note that σ(K, .) is always concave on the regular set
R (Proposition 2 in [23]). Second, due to our assumption, on the singular set S, σ (K, .) is
equal to 1+1/(1+�) which, as a function on int K, is also concave (Corollary to Proposition
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1 in [23] already cited). Now concavity of σ(K, .) follows by an elementary argument. (See
Lemma 5 in [26].)

To prove the third statement of Theorem B, we first recall a consequence of the Comparison
Lemma (Corollary 1 in [27]): Given O ∈ int K, if C ∈ M(O) then, for any O ′ ∈ [O, Co),
we also have C ∈ M(O ′).

Let C ∈ M(O) as above, and parametrize the line segment [O, Co) as λ �→ Oλ =
(1 − λ)O + λCo, 0 ≤ λ < 1. Since C ∈ M(Oλ), we have

�(Oλ) = �(C, Oλ) = 1

1 − λ
�(C, O) + λ

1 − λ
= 1

1 − λ
�(O) + λ

1 − λ
.

We now observe that in the inequality

σ(K, Oλ) ≤ 1 + 1

1 + �(Oλ)
= 1 + 1 − λ

1 + �(O)
, (11)

the left-hand side is a concave function in 0 ≤ λ < 1, and the right-hand side is linear. By
definition, equality holds for λ ∈ [0, 1) if and only if Oλ is a singular point. Finally, by (5),
for λ → 1 both sides converge to 1. It follows that if equality holds in (11) for a particular
λ0 ∈ [0, 1) then equality holds for all λ ∈ [λ0, 1). The third statement of Theorem B now
follows. Finally, the last statement is an immediate topological consequence of the third.

3 Theorem C: a characterization of the simplex

In this section we prove Theorem C. We let K ⊂ E
n be a convex body.

Part I. We assume that K has a flat point on its boundary: O0 ∈ ∂K. To prove Theorem
C we first study the existence of regular points near O0.

Lemma 1 Let K be a convex body in E
n with a flat point O0 on its boundary, and let

{Ok}k≥1 ⊂ R such that limk→∞ Ok = O0. Denote by H0 the unique hyperplane supporting
K at O0. Then K0 = H0 ∩ ∂K is an (n − 1)-simplex. In addition, if K0 = [C1, . . . , Cn]
then, for each 1 ≤ i ≤ n, there exist parallel hyperplanes Hi and H′

i supporting K such that
[C1, . . . , Ĉi , . . . , Cn] ⊂ Hi and Ci ∈ H′

i .

Remark According to Example 2 of Sect. 1, the regular polygon P2m+1, m ≥ 2, has no
sequence of regular points converging to a flat boundary point and, clearly, there are no
parallel supporting lines at the endpoints of any side.

As another example, the diagonals of a proper trapezoid K ⊂ R
2 split the trapezoid into

four triangles and the regular set is the interior of the triangle with one side being the longer
parallel side. Hence, a flat point on this longer side can be approximated by regular points,
while the flat points on the other sides cannot be. This is also confirmed by Lemma 1 above
as parallel supporting hyperplanes exist at the endpoints of the longer parallel side but not at
the endpoints of the shorter side.

Proof of Lemma 1 By assumption, each point Ok, k ≥ 1, is regular so that there exists a
minimal simplicial configuration {C0,k, . . . , Cn,k} ∈ C(K, Ok). As noted in Section 1, we
may assume that the configuration points Ci,k, 0 ≤ i ≤ n, k ≥ 1, are all extremal points
of K. In addition, since ∂K is compact, selecting a subsequence (if necessary) we may also
assume that, for each 0 ≤ i ≤ n, we have Ci,k → Ci ∈ ∂K as k → ∞. We now look for
the possible location of each limit point Ci ∈ ∂K, 0 ≤ i ≤ n. Clearly, Ci cannot be in the
relative interior of K0 since all configuration points are extremal points.
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Consider first the case when Ci /∈ K0. Since O0 is in the interior of K0, for k large, the
opposite Cok

i,k of Ci,k with respect to Ok must be in the relative interior of K0. For any of
these, H0 is the unique supporting hyperplane of K at Cok

i,k . Since Ok is a regular point, the
chord [Ci,k, Cok

i,k] must be an affine diameter. Then, by definition, there exists a hyperplane
H′

0 supporting K at Ci,k and parallel to H0. Clearly, H′
0 depends only on H0 and K.

Next, we prove that there cannot be any additional point C j /∈ K0, 0 ≤ j �= i ≤ n.
Indeed, if Ci , C j /∈ K0 then, by what was said above, for k large, the points Ci,k and C j,k

are both in H′
0. We then slide C j,k to Ci,k along the line segment connecting them and get

a contradiction to the regularity of Ok . More precisely, we consider the 1-parameter family
of multi-sets t �→ {C0,k, . . . , Ci,k, . . . , Ĉ j,k, (1 − t)C j,k + tCi,k, . . . , Cn,k}, 0 ≤ t ≤ 1.
Since H0 and H′

0 are parallel, �(., Ok) evaluated on this family does not depend on t .
The configuration condition that Ok is in the respective convex hull is valid at t = 0. Let
0 < t0 ≤ 1 be the last parameter for which the configuration condition holds. If t0 < 1
then the configuration at t0 is (minimal but) not simplicial (as this is an open condition), a
contradiction to the regularity of Ok . If t0 = 1 then the (once again minimal) configuration
has the point Ci,k listed twice, also a contradiction to regularity.

Thus, we obtain that there may be at most one Ci , 0 ≤ i ≤ n, with Ci /∈ K0. If there is one,
renumbering if necessary, we may assume this to be C0, and let I = {1, . . . , n}; otherwise,
we let I = {0, . . . , n}.

We then have Ci ∈ ∂K0, i ∈ I , and, using continuity of the distortion function, we
have �K(Ci,k, Ok) → �K0(Ci , O0) as k → ∞, where we indicated the dependence on the
respective convex body by subscripts. (In the exceptional case of C0, we have �(C0,k, Ok) →
∞, as k → ∞.)

By the choice of the minimizing configurations, we obtain

σ(K, Ok) =
n∑

i=0

1

1 + �K(Ci,k, Ok)
→

∑

i∈I

1

1 + �K0(Ci , O0)
= 1, as k → ∞, (12)

where the last equality is because of (5). From the study of the possible exceptional point it
is clear that {Ci }i∈I is a configuration for O0 in K0. Since K0 is (n − 1)-dimensional, the
only way the last equality in (12) can hold is that I = {1, . . . , n} and σn−1(K0, O0) = 1, so
that K0 is an (n −1)-simplex whose vertices are C1, . . . , Cn . The first statement of Lemma 1
follows.

We now define V as the set of those boundary points C ∈ ∂K \ K0 at which there is a
supporting hyperplane parallel to H0. By the proof of the first part of Lemma 1, is clear that
C0 ∈ V and the supporting hyperplane for any point in V must be H′

0. Therefore we have

V = K ∩ H′
0 = ∂K ∩ H′

0.

For the second part of the proof of Lemma 1 as well as for the future we need the following:

Lemma 2 Given O ∈ int K, assume that �(., O) attains a local maximum at C ∈ ∂K. Then

Co ∈ K0 ⇒ C ∈ V. (13)

Proof If Co ∈ K0 then C /∈ K0. Let H′ be the hyperplane passing through C and parallel to
H0. Since H0 supports K at Co and �(., O) attains a local maximum at C , it follows that H′
supports K. (See also the proposition in Section 7 of [23].) Thus H′ = H′

0 and C ∈ V .
We now return to the proof of Lemma 1. Since Co

0,k is in the (relative) interior of K0, for
k large, we have C0,k ∈ V . Since Ok is regular, C0,k can be any point in V , in particular, we
can choose C0,k = C0 constant.
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Recall from the first part of the proof that, for 0 ≤ i ≤ n, Ci,k → Ci ∈ K0, as k → ∞,
and K0 = [C1, . . . , Cn]. Clearly, for k large, Ci,k /∈ V . Hence, by Lemma 2, Cok

i,k /∈ K0. Since
[Ci,k, Cok

i,k] is an affine diameter there exist parallel hyperplanes Hi,k � Co
i,k and H′

i,k � Ci,k

supporting K.
Denote by δi,k the dihedral angle of the angular sector given by the hyperplanes H0

and Hi,k containing K. Define δ′
i,k similarly (with H′

i,k in place of Hi,k). Clearly, 0 <

δi,k, δ′
i,k < π . In addition, since Hi,k and H′

i,k are parallel, we also have δi,k + δ′
i,k = π .

Selecting subsequences, we may assume that δi,k → δi and δ′
i,k → δ′

i as k → ∞. Taking
the respective limits, we obtain δi +δ′

i = π . By convexity, we also have 0 < δi , δ
′
i < π . Let

Hi be the hyperplane containing [C1, . . . , Ĉi , . . . , Cn] and having dihedral angle δi with H0.
By construction, Hi is the limit of the supporting hyperplanes Hi,k , and so it must also support
K. Denote by H′

i the hyperplane containing Ci and parallel to Hi . Again by construction, H′
i

supports K at Ci . The second statement of Lemma 1 follows. ��
Remark Since K is between the parallel supporting hyperplanes Hi and H′

i , a simple com-
parison of distortions shows that, for k large, �(Ci , Ok) ≥ �(Ci,k, Ok). Hence, for large
k, {C0, . . . , Cn} ∈ C(K, Ok) (with C0 ∈ V arbitrary) is a minimizing configuration.

From now on, we will assume that each Hi , 1 ≤ i ≤ n, is closest to K in the sense that
there is no supporting hyperplane between Hi and ∂K \ K0.

Lemma 3 Any affine diameter of K disjoint from K0 has endpoints on a pair Hi and H′
i , for

some i = 1, . . . , n, or on a pair Hi and H j , for some distinct 1 ≤ i, j ≤ n.

Proof Let [B, B ′] ⊂ K be an affine diameter disjoint from K0. Let H and H′ be parallel
hyperplanes supporting K with B ∈ H and B ′ ∈ H′.

Assume that B /∈ Hi for 1 ≤ i ≤ n.
We fix 1 ≤ i ≤ n. The hyperplane Fi = 〈B, C1, . . . , Ci−1, Ĉi , Ci+1, . . . , Cn〉 intersects

Hi in A = 〈C1, . . . , Ci−1, Ĉi , Ci+1, . . . , Cn〉. (Here and in what follows, the angular brackets
mean affine span.) This hyperplane Fi is transversal to H. (Otherwise, having B as a common
point, they would be equal, Fi = H, and, due to the minimal choice of Hi above, we would
also have H = Hi , contradicting to B /∈ Hi .) We now rotate Fi about A to Hi staying on one
side of K0. We consider whether during this rotation the rotated hyperplanes stay transversal
to H. Assume not. Then, at one stage of the rotation, a rotated hyperplane is parallel to H.
Since this rotated hyperplane along with H, H0, Hi and H′

i all contain a (translated) copy of
A, the entire configuration can be understood via its intersection with the 2-dimensional A⊥.
Projecting Ci and B to A⊥ (along A) we see that we must have H = H′

i and so B ∈ H′
i . In

this case, we also have H′ = Hi (since they are parallel and both supporting) and so B ′ ∈ Hi .
We arrive at one of the stated scenarios: the affine diameter [B ′, B] connects Hi and H′

i .
In the second case, during the rotation, the rotated hyperplanes stay transversal to H, in

particular, Hi ∩ H intersect transversally.
It remains to consider this second case for all 1 ≤ i ≤ n. The intersections Hi ∩H, 1 ≤ i ≤

n, bound an (n−1)-simplex � in H and the rotation argument along with B /∈ Hi , 1 ≤ i ≤ n,
imply that B is in the interior of �.

Switching the roles of B and B ′, if B ′ /∈ H j for all 1 ≤ j ≤ n, then, repeating the
argument above and discarding the stated scenarios, we obtain that H j ∩ H′, 1 ≤ j ≤ n,
bound a simplex �′ in H′ with B ′ in its interior.

Since all the participating hyperplanes are supporting K, it follows that the convex hull
[�,�′] contains K. This convex hull is a polytope which, in addition to its parallel simplicial
cells � and �′, has n other side cells supported by Hi , 1 ≤ i ≤ n. On the other hand,
the configuration of the side cells intersected with the hyperplane H0 cuts out the simplex
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K0 (Lemma 1). By assumption, K0 is disjoint from [B, B ′]. Since H0 is supporting K, this
implies that H0 = H or H0 = H′. It follows that B or B ′ is in K0, a contradiction. The
lemma follows. ��

To finish the proof of Part I of Theorem C, from now on we assume that all interior points
of K are regular (and O0 ∈ ∂K is a flat point).

Lemma 4 Let B ∈ ∂K \K0. Assume that B ∈ Hi for some 1 ≤ i ≤ n. Then the intersection
Ki = Hi ∩ K is an (n − 1)-simplex [C, C1, . . . , Ĉi , . . . , Cn] with C ∈ V .

Proof Due to its minimal choice made above, Hi is a supporting hyperplane of K at B.
The n-simplex [B, C1, . . . , Ĉi , . . . , Cn] ⊂ Hi must then be contained in the boundary of
K. Since any point in the relative interior of this simplex is a flat point and, by assumption,
all interior points are regular, we can now apply Lemma 1. We obtain that Ki = Hi ∩ K is
an (n − 1)-simplex. The intersection Ki ∩ K0 is the (n − 2)-simplex [C1, . . . , Ĉi , . . . , Cn].
We denote by C the missing vertex of Ki . Applying the last statement of Lemma 1 to this
situation (with Ki in place of K0), we see that K has a supporting hyperplane at C , parallel
to H0. By convexity, this can only be H′

0, so that C ∈ V . The lemma follows. ��
Lemma 5 We have K = [K0, V]. For any O ∈ int K, the vertices C1, . . . , Cn along with a
point C0 ∈ V form a minimal configuration with respect to O.

Proof Given O ∈ int K, by regularity, we may choose a minimizing configuration
{B0, . . . , Bn} ∈ C(K, O) consisting of extremal points. Fix 0 ≤ i ≤ n. If Bi ∈ K0 then, since
Bi is extremal, it must be one of the vertices {C1, . . . , Cn} of K0. If Bi /∈ K0 but Bo

i ∈ K0

then, by Lemma 2, Bi ∈ V . (Since O is regular, �(., O) attains local maximum at Bi .) In the
remaining case [Bi , Bo

i ] (with Bo
i with respect to O) is an affine diameter away from K0. We

are in the position to apply Lemma 3. If Bi ∈ H j for some j = 1, . . . , n, then, by Lemma 4,
Bi must be in the (n−1)-simplex [C, C1, . . . , Ĉ j , . . . , Cn] with C ∈ V . Since Bi is extremal,
it must be one of the vertices of this simplex. Once again, we obtain that Bi = Ck , for some
k = 1, . . . , n, k �= j , or Bi ∈ V . Finally, if Bi ∈ H′

j and Bo
i ∈ H j then Bi can be moved

to C j along the line segment [Bi , C j ] ⊂ H′
j . This line segment is part of the boundary of K

since H′
j is supporting K. During this move the distortion �(., O) does not decrease since

H j is parallel to H′
j and supports K. In addition, the configuration condition stays intact

since O is a regular point. We obtain that Bi can be moved to C j retaining minimality.
Since a minimizing configuration for a regular point cannot contain multiple points, renum-

bering and making some moves if needed, we conclude that our minimizing configuration may
be assumed to have the form {B0, . . . , Bk, Ci1 , . . . , Cil }, 1 ≤ i1 < . . . < ik ≤ n, k + l = n,
where B0, . . . , Bk ∈ V . It remains to show that k = 0. Since O ∈ [B0, . . . , Bk, Ci1 , . . . , Cil ],
we have the convex linear combination

O =
k∑

i=0

λi Bi +
l∑

j=1

λi j Ci j ,

k∑

i=0

λi +
l∑

j=1

λi j = 1, 0 ≤ λi , λi j ≤ 1.

We now compress the first sum in the usual way letting μ0 = ∑k
i=0 λi > 0 and C0 =

1
μ0

∑k
i=1 λi Bi ∈ V . We obtain

O = μ0C0 +
l∑

j=1

λi j Ci j . (14)
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This implies that the opposite of C0 is in K0, in particular, �(C0, O) ≥ �(Bi , O), 0 ≤ i ≤ k.
Thus, we have

σ(K, O)=
k∑

i=0

1

1 + �(Bi , O)
+

l∑

j=1

1

1 + �(Ci j , O)
≥ k + 1

1 + �(C0, O)
+

l∑

j=1

1

1 + �(Ci j , O)
.

Again by (14), {C0, . . . , C0, Ci1 , . . . , Cil } (with C0 repeated k times) is a configuration with
respect to O , so that the opposite inequality also holds. Since O is regular, k = 0 must hold.
The lemma follows. ��

We are now ready for the final step as follows:

Lemma 6 V consists of a single point.

Proof Let C0 ∈ V . If V consists of more than one point then the simplex [C0, . . . , Cn] cannot
be the whole K. In particular, there is a point O ∈ int K on the boundary of [C0, . . . , Cn].
Applying Lemma 5, there is C ′

0 ∈ V such that {C ′
0, C1, . . . , Cn} is a minimal simplicial

configuration with respect to O . Since the antipodal of C0 with respect to O is on K0, we
have �(C0, O) ≥ �(C ′

0, O). By minimality, equality must hold. Thus, {C0, C1, . . . , Cn} is
minimizing with respect to O . This is a contradiction to the regularity of O since it is on the
boundary of the simplex [C0, C1, . . . , Cn]. ��

Combining Lemmas 5–6, we obtain that K = [C0, C1, . . . , Cn]. Part I of Theorem C
follows.

Part II. We now change the setting and start the proof of Theorem C under the assumption
in (II). Let K0 ⊂ ∂K denote the set of extremal points of K. We call an extremal point C ∈ K0

isolated if C has an open neighborhood disjoint from K0 \ {C}. We begin with the following:

Proposition Let K ⊂ E
n be a convex body with all its interior points regular. Assume that

K has (at least) two isolated extremal points C1, C2 ∈ K0. Then, for any plane E ⊂ E
n

containing [C1, C2] and an interior point of K, the intersection K0 = K ∩ E is a triangle
with [C1, C2] as one side.

This proposition is essentially Theorem 1.1 in [25] except we added here the assumption
that the plane E contains an interior point of K (and consequently obtain a (non-degenerate)
triangular intersection K0 = K ∩ E). The proof here is identical with that of Theorem 1.1.

We now turn to the main induction step of the proof. We assume that K ⊂ E
n is a convex

body with all its interior points regular. We let C1, . . . , Cn be a fixed sequence of isolated
extremal points. For 2 ≤ m ≤ n, we let Pm denote the following statement:

For any 1 ≤ i1, . . . , im ≤ n distinct and any O0 ∈ int K \ 〈Ci1 , . . . , Cim 〉, the set
{Ci1 , . . . , Cim } is affinely independent, and the intersection K ∩ 〈Ci1 , . . . , Cim , O0〉 is an
m-simplex with [Ci1 , . . . , Cim ] as a side.

Note that P2 is our proposition above. Moreover, for reasons of dimension, Pn says that
K is an n-simplex; Part II of Theorem C. Therefore we can use induction with respect to
m ≥ 2, with the initial step already accomplished.

For the general induction step m − 1 ⇒ m, 3 ≤ m ≤ n, we assume that Pm−1 holds.
Rearranging if necessary, we consider C1, . . . , Cm , and let E = 〈C1, . . . , Cm, O0〉 for some
O0 = int K\〈C1, . . . , Cm〉. For Pm we need to show that {C1, . . . , Cm} is affinely independent
and K0 = K ∩ E is an m-simplex.

First, by the induction hypothesis, {C1, . . . , Cm−1} is affinely independent and K ∩
〈C1, . . . , Cm−1, O0〉 is an (m − 1)-simplex with [C1, . . . , Cm−1] as a side. In particular,
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we have K ∩ 〈C1, . . . , Cm−1〉 = [C1, . . . , Cm−1] ⊂ ∂K. If {C1, . . . , Cm} were affinely
dependent then we would have Cm ∈ 〈C1, . . . , Cm−1〉 so that Cm ∈ [C1, . . . , Cm−1] ⊂ ∂K.
Since C1, . . . , Cm are distinct, this would contradict to the assumption that Cm is an extremal
point. We obtain that {C1, . . . , Cm} is an affinely independent set. It follows that dim E = m,
the set � = [C1, . . . , Cm] ⊂ K0 is an m-simplex, and H = 〈�〉 = 〈C1, . . . , Cm〉 a hyper-
plane in E . (For the most part of the proof below we will work within E so that all the concepts
are understood in this affine subspace.)

We denote by G ⊂ E the closed half-space with ∂G = H and O0 ∈ int G. For 1 ≤ i ≤ m,
we let �i = [C1, . . . , Ĉi , . . . , Cm]; the i th face of � opposite to the vertex Ci . For 1 ≤ i �=
j ≤ m, we let �i j = �i ∩ � j .

We will repeatedly use the induction hypothesis in the following setting:
For O ∈ int K0 ∩ int G, we have K0 ∩ 〈�i , O〉 = [�i , Bi ] for some Bi ∈ ∂K0 ∩ int G.

Taking the respective boundaries, we have �i ⊂ ∂K0, 1 ≤ i ≤ m. In particular, we have
K0 ∩ H = � and [�i j , Bi ] ⊂ ∂K0, 1 ≤ i �= j ≤ m.

We now turn to the proof of the second statement of Pm above: K0 is an m-simplex.
Let H′ ⊂ int G be a hyperplane parallel to H and supporting K0 at some point C0 ∈ ∂K0.
Choose a sequence {Ok}k≥1 ⊂ int K0 ∩ int G such that limk→∞ Ok = C0. By the induction
hypothesis, for each 1 ≤ i ≤ m, we have

K0 ∩ 〈�i , Ok〉 = [�i , Bi,k], (15)

for some Bi,k ∈ ∂K0 ∩ int G, k ≥ 1. Since H′ supports K0 at C0, for each 1 ≤ i ≤ m,
we clearly have limk→∞ Bi,k = C0, 1 ≤ i ≤ m. (Otherwise, by compactness, {Bi,k}k≥1

would subconverge to a point C ′
0 ∈ ∂K ∩H′, C ′

0 �= C0, contradicting to Ok ∈ [�i , Bi,k] and
limk→∞ Ok = C0.) Letting k → ∞ in (15), we obtain

K0 ∩ 〈�i , C0〉 = [�i , C0], 1 ≤ i ≤ m. (16)

Since
∂[�i , C0] = �i ∪

⋃

1≤ j �=i≤m

[�i j , C0], (17)

as a byproduct, we have

[�i j , C0] ⊂ ∂K0, 1 ≤ i �= j ≤ m. (18)

We now claim that

[�i , C0] ⊂ ∂K0, 1 ≤ i ≤ m. (19)

Assume on the contrary that [�i , C0] �⊂ ∂K0 for a specific 1 ≤ i ≤ m. This means that
the closed half-space Gi ⊂ E with boundary hyperplane Hi = 〈�i , C0〉 ⊂ E and Ci /∈ Gi

intersects the interior of K0.
Let H′

i ⊂ int Gi be a hyperplane parallel to Hi and supporting K0 at some point Vi ∈ ∂K0∩
int Gi . Repeating the previous argument (in the use of a sequence {Ok}k≥1 ⊂ int K0 ∩ int Gi

converging to Vi ) we obtain K0 ∩ 〈� j , Vi 〉 = [� j , Vi ], 1 ≤ j ≤ m, and [� jk, Vi ] ⊂
∂K0, 1 ≤ j �= k ≤ m.

Now, Ci and Vi are on different sides of Hi , therefore [Ci , Vi ] and Hi intersect in a
point X ∈ K0. By (16), K0 ∩ Hi = [�i , C0] so that X ∈ [�i , C0]. In addition, since
m ≥ 3, Ci ∈ � jk for some (actually any) 1 ≤ j �= k ≤ m distinct from i , we are in the
position to apply (18) to get [Ci , Vi ] ⊂ ∂K0. In particular, X ∈ ∂K0. Combining the last two
inclusions for X , we have X ∈ ∂[�i , C0]. Thus, by (17), we finally have X ∈ [�i j , C0], for
some 1 ≤ j �= i ≤ m.
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Summarizing, we obtain that [�i j , C0] and [Ci , Vi ] are both contained in the boundary
of K0 and intersect (transversally) at X . By convexity, the convex hull [� j , C0, Vi ],� j =
[�i j , Ci ], is also contained in the boundary of K0, and, for reasons of dimension, 〈� j , C0, Vi 〉
is a supporting hyperplane of K0.

Once again, let {Ok}k≥1 ⊂ int K0 ∩ int G be a sequence converging to X . By the induction
hypothesis, K0 ∩ 〈� j , Ok〉 is an (m − 1)-simplex with � j as a side. Taking the limit as
k → ∞ we obtain that the limiting intersection is an (m − 1)-simplex with � j as a side
and an extra vertex W . On the other hand, the limit of the hyperplanes 〈� j , Ok〉 as k → ∞
is the hyperplane [� j , C0, Vi ] supporting K0. Thus, the limiting simplex [� j , W ] must
contain C0, and Vi . Due to the extremal choices of the latter two points, we must have
W = C0 and W = Vi simultaneously. This is a contradiction, so that we finally arrive
at (19).

Since (19) holds for all 1 ≤ i ≤ m, we see that K0 ∩ G is the m-simplex [�, C0]. Let G′
be the closed half-space complementary to int G in E . If G′ is disjoint from the interior of K0

then K0 is the m-simplex [�, C0], and Pm follows. Otherwise, applying the argument above
to G′ instead of G, we obtain that K0 ∩ G′ is another m-simplex [�, C ′

0]. In this case K0 is
then a double m-simplex with base � (that is, two m-simplices with disjoint interiors joined
at their common side �.) It remains to show that this cannot occur.

First assume that m < n. Then Cm+1 ∈ ∂K exists. Let O0 ∈ int � and apply the
construction above to �′ = [�1, Cm+1] = [C2, . . . , Cm, Cm+1] and E ′ = 〈�′, O0〉. We
obtain that K′

0 = K ∩ E ′ is an m-simplex or a double m-simplex with base �′. On the other
hand, we have K ∩ 〈�1, O0〉 = [�1, C1] = � with O0 an interior point of K′

0 away from
�′. This contradicts to the extremality of C1.

Finally, let m = n. In this case K0 = K = [�, C0, C ′
0] is a double n-cone in E

n . This
clearly cannot happen as double cones cannot have all their interior points regular. (If [C0, C ′

0]
intersects the interior of � then this intersection point must be singular as it does not have
a simplicial minimal configuration consisting of extremal points only. If [C0, C ′

0] meets the
boundary of � then all interior points of � are singular for the same reason.) Part II of
Theorem C follows.

4 Examples

We first return to Example 1 of Sect. 1; the unit half-disk K = {(x, y) ∈ R
2 | x2 + y2 ≤

1, y ≥ 0}. As noted there, we claim that the regular set R is the interior of the triangle
� = [C−, C0, C+].

Indeed, given (a, b) ∈ int K, there are exactly three affine diameters passing through
(a, b); those that also pass through C−, C0 or C+. It immediately follows that any point
away from the interior of � must be singular. On the other hand, if (a, b) is in the interior of
�, a simple computation shows that {C−, C0, C+} is a minimizing configuration. This gives
σ(K, (a, b)) < 1 + 1

1+�(a,b)
, that is, (a, b) ∈ R. (By symmetry, it is enough to consider the

case (a, b) ∈ �+ = [C0, 0, C+]. The curve {(a, b) | �(C−, (a, b)) = �(C0, (a, b))} ∩ �+
is a portion of an ellipse connecting O∗ and C+. It splits �+ into two domains, and one
needs to consider the respective two cases.) Having identified the regular and singular sets,
we obtain

σ(K, (a, b)) =
⎧
⎨

⎩

1−a2−b2

1−a2 + b, if(a, b) ∈ R = int �;
1 + 1−a2−b2

1+|a| , otherwise.
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As a second example, let K = [K0, V ] be a cone with base K0 = P2m+1 ⊂ R
2, m ≥ 2,

the regular (2m + 1)-sided polygon (in Example 2 of Sect. 1), and V ∈ R
3 \ R

2 its vertex.
We write �∗

0 = �∗
K0

, �∗ = �∗
K, O∗

0 = O∗
K0

etc., where we indicated the respective convex
body by subscript. In [10] (Sect. 4) Klee calculated the critical ratio and the critical set of
a convex cone in terms of those of the base. According to this, we have �∗

K = 1 + �∗
K0

=
1 + sec

(
π

2m+1

)
> 2 ((4.5) in [10]). In addition, parametrizing the line segment [O∗

0 , V ] by
λ �→ Oλ = (1 − λ)O∗

0 + λV, 0 ≤ λ ≤ 1, the critical set K∗ also consists of a single point,

O∗ = Oλ∗ , where λ∗ = (
2 + sec

(
π

2m+1

))−1. The specific parameter value λ∗ is given by the
condition that the distortion values of V and any of the vertices of K0 with respect to Oλ∗
are the same.
According to Theorem B, O∗ is a regular point. In [24] (Proposition 6), we proved in general
that the projection of any regular point of K to K0 along the ray from V is also regular:
R ⊂ ⋃

O0∈R0
(O0, V ). In our present case the inclusion is proper. In fact, for 0 < λ ≤

(2 − sec( π
2m+1 ))/3, Oλ ∈ (O∗, V ) is a singular point [27, Example 4]. Note that (2 −

sec( π
2m+1 ))/3 < λ∗ = (2 + sec( π

2m+1 ))−1 with both sides converging to 1/3 as m → ∞.
This is in striking contrast to the 2-dimensional case; the distance of the regular critical point
O∗ = Oλ∗ from the singular set decreases to 0 as m → ∞. (In the limit as m → ∞, K
converges to a circular cone all of whose interior points are singular.)
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