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Notes on Schneider’s stability estimates
for convex sets

Gabor Toth

Abstract. In 2009 Schneider obtained stability estimates in terms of the
Banach–Mazur distance for several geometric inequalities for convex bod-
ies in an n-dimensional normed space E

n. A unique feature of his approach
is to express fundamental geometric quantities in terms of a single func-
tion ρ : B × B → R defined on the family of all convex bodies B in E

n.
In this paper we show that (the logarithm of) the symmetrized ρ gives
rise to a pseudo-metric dD on B inducing, from our point of view, a finer
topology than Banach–Mazur’s dBM . Further, dD induces a metric on the
quotient B/Dil+ of B by the relation of positive dilatation (homothety).
Unlike its compact Banach–Mazur counterpart, dD is only “boundedly
compact,” in particular, complete and locally compact. The general lin-
ear group GL(En) acts on B/Dil+ by isometries with respect to dD, and
the orbit space is naturally identified with the Banach–Mazur compactum
B/Aff via the natural projection π : B/Dil+ → B/Aff, where Aff is the
affine group of E

n. The metric dD has the advantage that many geometric
quantities are explicitly computable. We show that dD provides a simpler
and more fitting environment for the study of stability; in particular, all
the estimates of Schneider turn out to be valid with dBM replaced by dD.
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1. A positive-dilatation invariant pseudo-metric

Let E
n be a normed space of dimension n, and denote by B the family of all

convex bodies in E
n. (We only consider convex bodies that have non-empty

interior in E
n, that is, all the members of B have dimension n.) Note that

initially we need only to assume that E
n is an affine space (of dimension n)

The author wishes to thank the referee for pointing out numerous improvements to the
original manuscript.



586 G. Toth J. Geom.

without any metric structure (e.g. Propositions 1, 2 below). Following Schnei-
der as our main reference [17], for simplicity, we will assume that E

n carries a
norm.

Let Aff = Aff (En) denote the affine group, the Lie group of affine transfor-
mations of E

n. (For brevity E
n will be suppressed from the notation.) It can

be written as the semi-direct product Aff = T � GL, where T ∼= E
n is the

(additive) group of translations of E
n and GL is the general linear group of

E
n. The affine group Aff acts naturally on B.

The (extended) Banach–Mazur distance function dBM : B×B → R is defined,
for C, C′ ∈ B, as

dBM (C, C′) = min{α ≥ 1 | C ⊂ φ(C′) ⊂ αC + Z for someφ ∈ Aff andZ ∈ E
n}.
(1)

It is an easy exercise to show that dBM satisfies the following properties:

(i) dBM (C, C′) = 1 for C, C′ ∈ B if and only if C′ = φ(C) for some φ ∈ Aff;
(ii) Symmetry: dBM (C, C′) = dBM (C′, C) for any C, C′ ∈ B;
(iii) Multiplicativity: dBM (C, C′′) ≤ dBM (C, C′)·dBM (C′, C′′) for any C, C′, C′′ ∈

B;
(iv) Affine-invariance: dBM (φ(C), φ′(C′)) = dBM (C, C′) for any C, C′ ∈ B and

φ, φ′ ∈ Aff.

It follows that ln(dBM ) is a metric on the quotient B/Aff.

Remark 1. The extended Banach–Mazur distance function is sometimes called
the Minkowski distance or affine distance. Originally, dBM was defined only
for symmetric convex bodies. For a survey on the Banach–Mazur distance, see
[19].

There are several deep results in connection with the Banach–Mazur metric
properties of B/Aff. In 1948 in a pioneering work Fritz John [9] proved that
every convex body C ∈ B possesses a unique ellipsoid E ∈ B of maximal
volume such that

E ⊂ C ⊂ n(E − c) + c, (2)

where c is the centroid (center) of E . In addition, for C symmetric, the scaling
factor n can be improved to

√
n.

Using the Banach–Mazur distance, we thus have dBM (C, E) ≤ n for arbitrary
C, and ≤ √

n for symmetric C. Since any two ellipsoids are affine equivalent,
properties (iii) and (iv) imply that dBM (C, C′) ≤ n2 for any C, C′ ∈ B, and,
in addition, dBM (C, C′) ≤ n provided that C, C′ ∈ B are both symmetric. By
Blaschke’s Selection Theorem, B/Aff is complete, and hence compact. (See
[16] and also Theorem 1 below.)

There has been extensive work in finding the best possible bounds in John’s
estimates. See the papers of Rudelson [15], Lassak [13], and Gluskin [6], and
also the unified approach by Guo–Kaijser [8].
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An affine transformation φ of E
n is called a dilatation (or homothety) if φ(C) =

αC + Z, C ∈ E
n, for some α ∈ R

∗ = R \ {0} and Z ∈ E
n. It is a positive

dilatation if α > 0. Using this, C, C′ ∈ B are related by a (positive) dilatation
(or homothety) if there exists a (positive) dilatation φ such that C′ = φ(C).

The group of dilatations in the affine group is denoted by Dil. Restricting to
positive dilatations, we obtain the subgroup Dil+ ⊂ Dil.

Using the semi-direct product Aff = T � GL, if L : Aff → GL denotes the
natural homomorphism with kernel T, then Dil (resp. Dil+) is the inverse image
of the center R

∗ · I ⊂ GL (resp. R
+ · I) under L. Clearly, Dil+ is the identity

component of Dil. With respect to the action of Aff on B, the subgroup Dil+

acts on B freely.

In analogy with the Banach–Mazur metric, for C, C′ ∈ B, we define

dD(C, C′) = min{α ≥ 1 | C ⊂ φ(C′) ⊂ αC + Z for someφ ∈ Dil+ andZ ∈ E
n}.

(3)

As for the Banach–Mazur metric, it follows that dD satisfies properties (i)–(iv)
with the affine group Aff replaced by Dil+. In particular, dD induces a metric
on the quotient B/Dil+.

By definition, we also have

dBM (C, C′) = inf{dD(C, φ(C′)) |φ ∈ Aff} ≤ dD(C, C′), C, C′ ∈ B. (4)

Indeed, comparing (1) and (3), α ≥ dBM (C, C′) implies α ≥ dD(C, φ(C′)), for
some φ ∈ Aff, so that dBM (C, C′) is greater than or equal to the infimum in
(4). The reverse inequality follows from the affine invariance of dBM .

Following Schneider [17], we now introduce the function ρ : B × B → R by

ρ(C, C′) = min{λ > 0 | C +X ⊂ λC′ for someX ∈ E
n}, C, C′ ∈ B.

Our first observation is the following:

Proposition 1. The function ρ is sub-multiplicative:

ρ(C, C′′) ≤ ρ(C, C′) · ρ(C′, C′′), C, C′, C′′ ∈ B.

Proof. Let λ ≥ ρ(C, C′) and λ′ ≥ ρ(C′, C′′) so that we have

C +X ⊂ λC′ and C′ +X ′ ⊂ λ′C′′, for some X,X ′ ∈ E
n. (5)

Combining these, we obtain

C +X + λX ′ ⊂ λC′ + λX ′ ⊂ λλ′C′′. (6)

Thus, we have λλ′ ≥ ρ(C, C′′). The proposition follows. �
Our second and crucial observation is that dD is the symmetrized Schneider
function ρ:

Proposition 2. We have

dD(C, C′) = ρ(C, C′) · ρ(C′, C), C, C′ ∈ B. (7)
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Proof. Let C, C′ ∈ B. Assume that λ ≥ ρ(C, C′) and λ′ ≥ ρ(C′C) so that(5)
holds with C′′ = C. Then (6) gives

C ⊂ λC′ −X ⊂ λλ′C −X − λX ′.

Setting α = λλ′, Z = −X − λX ′ and φ(C ′) = λC ′ −X, C ′ ∈ E
n, we have φ ∈

Dil+, and hence dD(C, C′) ≤ α = λλ′. We obtain dD(C, C′) ≤ ρ(C, C′) · ρ(C′, C).

For the reverse inequality, assume that in the definition of dD in (3) we have

C ⊂ φ(C′) ⊂ αC + Z,

for some φ ∈ Dil+, α ≥ 1 and Z ∈ E
n. Since φ is a positive dilatation, we

have φ(C ′) = λC ′ +X, C ′ ∈ E
n, for some λ > 0 and X ∈ E

n. The inclusions
above then give ρ(C, C′) ≤ λ and ρ(C′, C) ≤ α/λ. Thus, dD(C, C′) ≤ α, and we
obtain dD(C, C′) ≥ ρ(C, C′) · ρ(C′, C). The proposition follows. �
One of the principal advantages of the function ρ is its computability in a
number of specific instances. In fact, as Schneider pointed out in [17], the four
basic metric invariants of a convex body C ∈ B: the circumradius RC , the
inradius rC , the diameter DC , and the minimal width dC can be expressed by
ρ as follows:

RC = ρ(C,B), (8)

rC =
1

ρ(B, C)
, (9)

DC = 2ρ(C∗,B), (10)

dC =
2

ρ(B, C∗)
, (11)

where B ⊂ E
n is the unit ball, and C∗ = (C −C)/2 is the Minkowski symmetral

of C.

As an immediate consequence of (7)–(11), for C ∈ B, we have

dD(C,B) = ρ(C,B)ρ(B, C) =
RC
rC

(12)

dD(C∗,B) = ρ(C∗,B)ρ(B, C∗) =
DC
dC

. (13)

In particular, taking ellipsoids, by (12) or (13), we see that dD is unbounded
on B/Dil+.

For the next step recall the Hausdorff distance

dH(C, C′) = inf{r ≥ 0 | C ⊂ C′ + rB̄, C′ ⊂ C + rB̄}, C, C′ ∈ B.

Proposition 3. Let C, C′ ∈ B with respective inradii rC , rC′ ≥ 1. Then we have

dD(C, C′) ≤ (1 + dH(C, C′))2, (14)

in particular

ln dD(C, C′) ≤ 2dH(C, C′).
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Proof. Given r ≥ dH(C, C′), we have

C ⊂ C′ + rB̄ and C′ ⊂ C + rB̄.
Let OC and OC′ be incenters of C and C′, respectively. By definition and the
assumption rC , rC′ ≥ 1, we have B̄ ⊂ C −OC and B̄ ⊂ C′ −OC′ . Combining all
these, we have

C + rOC′ ⊂ C′ + rB̄ + rOC′ ⊂ (1 + r)C′,
C′ + rOC ⊂ C + rB̄ + rOC ⊂ (1 + r)C.

Hence d(C, C′) = ρ(C, C′)ρ(C′, C) ≤ (1 + r)2, and (14) follows. �

Remark 2. A similar argument shows that, for C, C′ ∈ B, with respective
circumradii RC , RC′ ≤ 1, we have

1 + dTH(C, C′) ≤ dD(C, C′),

where

dTH(C, C′) = inf{dH(C, C′ + Z) |Z ∈ E
n}

is the translation invariant Hausdorff distance. Note that dTH is not dilatation
invariant.

Theorem 1. The metric ln(dD) is boundedly compact on the quotient B/Dil+.
In particular, it makes B/Dil+ a complete and locally compact metric space.

Proof. Let (Ck)k≥1 ⊂ B be a dD-bounded sequence, that is, there exists R ≥ 1
such that dD(Ck,B) ≤ R for k ≥ 1. Since dD is invariant under positive dilata-
tions, we may assume that, for k ≥ 1, the inradius rCk

= 1 and the circum-
center of Ck is at the origin. By Proposition 2 and (12), we have dD(Ck,B) =
RCk

/rCk
= RCk

≤ R. We obtain that the sequence (Ck)k≥1 is bounded. By
Blaschke’s Selection Theorem [16], a subsequence (Ckl

)l≥1 converges to a con-
vex body C ∈ B in the Hausdorff metric dH . Since rCkl

= 1, we have rC = 1
and Proposition 3 applies. We obtain dD(Ckl

, C) → 1 as l → ∞. The theorem
follows. �

Remark 3. A similar argument in the use of Proposition 3 and (4) shows that
B/Aff is complete (and hence compact) with respect to dBM .

Since Dil+ ⊂ Aff is a normal subgroup, the quotient Aff/Dil+ acts on B/Dil+

naturally. (As Lie groups, we have Aff/Dil+ ∼= GL/(R+ · I), a double cover of
the projective general linear group PGL = GL/(R∗ · I).) By (4), the natural
projection π : B/Dil+ → B/Aff is continuous and open with respect to the
metrics ln(dD) and ln(dBM ). (The projection of a dD-metric ball in B/Dil+ is
a dBM -metric ball of the same radius in B/Aff.) Thus, the quotient topology
by π is the Banach–Mazur topology.

The general linear group GL acts naturally on B/Dil+. Indeed, assume that
C, C′ ∈ B are related by a positive dilatation: C′ = αC + Z, α > 0, Z ∈ E

n.
Applying any ψ ∈ GL to both sides, we obtain ψ(C′) = ψ(αC +Z) = αψ(C) +
ψ(Z) and the claim follows.
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Moreover, this action of GL on B/Dil+ is by isometries with respect to the
metric dD. Indeed, let C, C′ ∈ B, and consider the defining relation C ⊂ φ(C′) ⊂
αC + Z, φ ∈ Dil+, α ≥ 1, Z ∈ E

n, in the definition (3) of dD(C, C′). Applying
any ψ ∈ GL, we obtain

ψ(C) ⊂ ψ(φ(C′)) = φψ(ψ(C′)) ⊂ ψ(αC + Z) = αψ(C) + ψ(Z),

where φψ = ψφψ−1 ∈ Dil+ (since Dil+ is normal in Aff). We obtain that

dD(ψ(C), ψ(C′)) = dD(C, C′), C, C′ ∈ B, ψ ∈ GL,

and the claim follows.

Finally, note that the GL-orbits on B/Dil+ are precisely the fibres of the
projection π : B/Dil+ → B/Aff. (This is because the afffine group is generated
by GL and Dil+.)

To obtain a finer structure on B/Dil+, we introduce an equivalence relation ∼
on B as follows: C ∼ C′, C, C′ ∈ B, if, up to a positive dilatation, C and C′ have
the same John ellipsoid. Clearly, ∼ depends only on the positive dilatation
classes of C and C′ so that it induces an equivalence relation ∼ on the quotient
B/Dil+. Each equivalence class is represented by an ellipsoid E shared (up
to positive dilatation) by every member of the class as its John ellipsoid. We
make E unique by setting its center at the origin and its inradius one.

By the definition of the John ellipsoid, the equivalence classes are dD-closed.
In addition, if E is the John ellipsoid of C ∈ B then, by (2), dD(C, E) ≤ n. We
obtain that the diameters of the equivalence classes are uniformly dD-bounded
by 2 ln(n). By Theorem 1 above, it follows that the equivalence classes are
compact.

Since all ellipsoids are affine equivalent, π maps every equivalence class onto
B/Aff.

Now let C ⊂ B/Dil+ be an equivalence class with a common John ellipsoid E .
Let AffE ⊂ Aff be the stabilizer of E ∈ B (with respect to the action of Aff
on B). By definition, for ψ ∈ AffE , we have ψ(E) = E ; in particular, ψ (acting
on E

n) fixes the origin, the centroid of E . We obtain that AffE ⊂ GL. By the
discussion above AffE acts on C by isometries (with respect to dD.)

In addition, AffE (acting on E
n) is transitive on E . Thus, its action on C has

the unique fixed point E ∈ B. Every other AffE -orbit in C is at a constant
dD-distance from E .

We finally claim that the orbits of the action of AffE on C are precisely the
fibres of the restriction π |C. Indeed, if the Dil+-orbits of two convex bodies C′

and C′′ with common John ellipsoid E are mapped to to the same affine orbit
by π, then there is an affine transformation φ ∈ Aff such that φ(C′) = C′′. By
unicity of the John ellipsoid, we have φ(E) = E so that φ ∈ AffE . The converse
is clear.
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We summarize the structure of B/Dil+ in the following:

Theorem 2. (i) The general linear group GL acts naturally on B/Dil+ by
isometries with respect to the metric dD, and the orbits are the fibres of the
continuous and open projection π of B/Dil+ to the Banach–Mazur compactum
B/Aff.

(ii) B/Dil+ is partitioned into compact equivalence classes induced by the re-
lation on the convex bodies having the same John ellipsoid (up to positive
dilatation). Given an equivalence class C ⊂ B/Dil+ with John ellipsoid E
(centered at the origin and having inradius one), the stabilizer AffE ⊂ GL acts
on C with the unique fixed point E ∈ B and all other orbits are contained in
concentric dD-spheres with center at E. The orbit space of this action is the
Banach–Mazur compactum B/Aff, and the orbit map is the restriction of the
natural projection π : B/Dil+ → B/Aff to C.

2. The Minkowski measure and Schneider’s ρ function

Minkowski’s measure of (a)symmetry is defined by

μ(C) = min{λ > 0 | C +X ⊂ −λC for someX ∈ E
n}, C ∈ B.

(See Grünbaum’s survey article [10] and also [16,17].) By the definition of ρ,
we immediately have

μ(C) = ρ(C,−C), C ∈ B.

We will make use of the classical Minkowski–Radon inequality

1 ≤ μ ≤ n. (15)

The lower bound is attained, μ(C) = 1, if and only if C is symmetric. The upper
bound is attained, μ(C) = n, if and only if C is a simplex. (The statement on
the lower bound is clear. For a list of references of classical proofs for the upper
estimate, see again [10].)

In addition, following Schneider in [17] again, forming differences of C ∈ B in
the defining inequality of ρ in two ways (to obtain the Minkowski symmetral
C∗) gives

ρ(C, C∗) =
2μ(C)
μ(C) + 1

(16)

ρ(C∗, C) =
μ(C) + 1

2
. (17)

Proposition 4. For C ∈ B, we have

RC
DC

≤ n

n+ 1
and

dC
rC

≤ n+ 1. (18)
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Proof. Using (8)–(11) and (16)–(17) along with sub-multiplicativity of ρ (Prop-
osition 1), we have

RC
DC

=
ρ(C,B)

2ρ(C∗,B)
≤ ρ(C, C∗)

2
=

μ(C)
μ(C) + 1

≤ n

n+ 1
(19)

dC
rC

=
2ρ(B, C)
ρ(B, C∗)

≤ 2ρ(C∗, C) = μ(C) + 1 ≤ n+ 1. (20)

In the last inequalities we used monotonicity and the Minkowski–Radon in-
equality (15). �

Remark 4. The first inequality in (18) is due to Bohnenblust [1] in 1938. Both
estimates in (18) have been proved by Leichtweiss [14] in 1955, and a few years
later independent proofs have been given by Eggleston [5]. In Euclidean space
there are sharper estimates due to Jung [11] and Steinhagen [18], respectively.
In normed space the upper bounds in (18) are sharp and attained on any
simplex Δ whose difference body Δ−Δ = B ⊂ E

n is the unit ball. Conversely,
if equality holds for a convex body C ∈ B in either of the inequalities in
(18) then C is still a simplex with some specific properties as described by
Leichtweiss (Satz 2 and Satz 3) in [14].

Finally, we note the universal estimate of Schneider in [17] on pairs of convex
bodies:

ρ(C, C′)
ρ(C∗, C′∗)

≤ n, C, C′ ∈ B (21)

This is also a consequence of sub-multiplicativity of ρ (applied twice) as

ρ(C, C′)
ρ(C∗, C′∗)

≤ ρ(C, C∗)ρ(C′∗, C′) ≤ 2μ(C)
μ(C) + 1

μ(C′) + 1
2

≤ n

n+ 1
(n+ 1) ≤ n.

(22)

If the upper bound is attained then we immediately see that μ(C) = μ(C′) = n
so that C and C′ are both simplices. In addition, as shown in [17], C′ must be
homothetic to −C , in fact, this characterizes the upper bound n.

3. Stability

Generally speaking, given a universal geometric inequality for convex bodies
with extremal values attained by a geometrically well-characterized class of
extremal convex bodies, a stability estimate for this inequality quantifies the
deviation of a near-extremal convex body from the extremal ones.

The deviation depends on the metric used for the convex bodies. One of the
primary aims of these notes is to show that, for many geometric estimates,
the metric dD on B/Dil+ is a better fit than the traditional Banach–Mazur
metric.
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The simplest (and unfortunately non-illustrative) example is furnished by the
lower bound μ = 1 in the Minkowski–Radon inequality (15). This lower bound
is attained by symmetric convex bodies. By (16)–(17), we have

dD(C, C∗) = ρ(C, C∗)ρ(C∗, C) = μ(C).

Since the Minowski symmetral is symmetric, the stability estimate here is a
tautology: If the Minkowski measure of C ∈ B is close to 1 then so is the
dD-distance of C from its Minkowski symmetral C∗. (Recall that ln(dD) is the
metric on B/Dil+.) If dD is replaced by Banach–Mazur’s dBM then, by (4) and
the above, we have dBM (C, C∗) ≤ μ(C), C ∈ B. Once again, a trivial stability
estimate follows.

For a genuine and illustrative example, consider the upper estimate in (15).
The upper bound μ = n is attained by simplices. Now the analysis of Schneider
in [17] (Theorem 2.1) applied to our distance dD (verbatim) gives the following:

Given 0 ≤ ε < 1/n, we have

C ∈ B : n− ε < μ(C) ⇒ dD(C,Δ) < 1 +
(n+ 1)ε
1 − nε

, (23)

with a suitable simplex Δ ∈ B (constructed using Yaglom–Boltyanskǐi’s ap-
proach to Helly’s Theorem [23]). (For previous estimates, see [3,4,7].) Then,
Schneider’s original estimate in dBM follows by (4).

Stability estimates for the classical inequalities in (18) follow directly from (23)
using monotonicity of the upper bounds in (19)–(20) in the variable μ(C):

If a convex body C ∈ B satisfies one of the conditions

RC
DC

>
n− ε

n− ε+ 1
or

dC
rC

> n− ε+ 1,

then, for the same simplex Δ ∈ B as in (23), we have

dD(C,Δ) < 1 +
n+ 1
1 − nε

ε.

For a stability estimate of the inequality in (21), assume

n− n

n+ 1
ε ≤ ρ(C, C′)

ρ(C∗, C′∗)
.

Then (22) along with μ(C), μ(C′) ≤ n imply μ(C) ≥ n− nε and μ(C′) ≥ n− ε.
Using (23) again, we obtain simplices Δ,Δ′ ∈ B such that

dD(C,Δ) ≤ 1 +
(n+ 1)n
1 − n2ε

ε and dD(C′,Δ′) ≤ 1 +
n+ 1
1 − nε

ε.

A delicate analysis of Schneider in [17] gives much more: For 0 ≤ ε < 1/n(5n2+
1), there exists a simplex Δ0 with centroid at the origin such that

dD(Δ0,−C) ≤ 1
1 − n(5n2 + 1)ε

and dD(Δ0, C′) ≤ 1
1 − 2nε

.
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Indeed, his proof gives homothetic copies C̃ and C̃′ of C and C′, respectively,
such that

(1 − n(5n2 + 1)ε)Δ0 ⊂ −C̃ ⊂ Δ0 and (1 − 2nε)Δ0 ⊂ −C̃′ ⊂ Δ0.

Finally, we discuss stability estimates for a sequence of mean Minkowski mea-
sures {σC,m}m≥1, C ∈ B, introduced in [20,21].

Let C ∈ B and O ∈ int C. For C ∈ ∂C, denote Λ(C,O) the ratio into which O
divides the chord in C passing through C and O with other end-point Co ∈ ∂C:

Λ(C,O) =
d(C,O)
d(Co, O)

,

where d is the distance on E
n. This defines the distortion function Λ = ΛC :

∂C × int C → R. (The depencence on C will be indicated by subscript if nec-
essary.) Clearly, (Co)o = C and Λ(Co, O) = 1/Λ(C,O), C ∈ ∂C. It follows by
an elementary argument that Λ : ∂C × int C → R is continuous [21].

It is well-known that the Minkowski measure of (a)symmetry μ can be ex-
pressed via the distortion by

μ(C) = inf
O∈int C

max
C∈∂C

ΛC(C,O), C ∈ B. (24)

(See, for example [10].)

Now, given m ≥ 1, a multi-set {C0, . . . , Cm} ⊂ ∂C (repetition allowed) is
called an m-configuration of C (with respect to O) if O is contained in the
convex hull conv (C0, . . . , Cm). The set of m-configurations of C is denoted by
Cm(O) = CC,m(O).

We define the function σm = σC,m : int C → R, as follows

σm(O) = inf
{C0,...,Cm}∈Cm(O)

m∑

i=0

1
Λ(Ci, O) + 1

, O ∈ int C. (25)

Since Λ is continuous and ∂C is compact, the infimum is attained. An m-
configuration at which σm(O) attains its minimum is called minimal.

We define

σ∗
m = sup

O∈ int C
σm(O), m ≥ 1.

An elementary argument shows that the supremum is attained [21]. (Clearly,
σ1 = σ∗

1 = 1 identically on int C.)

Any m-configuration (with respect to an interior point O) can be extended
to an (m + k)-configuration, k ≥ 1, by adding k copies of a boundary point
of C at which Λ(., O) attains its maximum. Thus we have the following sub-
arithmeticity:

σm+k(O) ≤ σm(O) +
k

max∂C Λ(·, O) + 1
, O ∈ int C, m, k ≥ 1. (26)
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As a direct consequence of Carathéodory’s theorem, equality holds for m =
n and k ≥ 1, that is, the sequence {σm}m≥1 is arithmetic with difference
1/(max∂C Λ + 1) from the n-th term onwards [20]. In particular, by (24), we
have

lim
m→∞

σ∗
m

m+ 1
=

1
μ+ 1

.

Finally, we recall the fundamental estimate for the sequence {σm}m≥1:

1 ≤ σm ≤ m+ 1
2

, m ≥ 1. (27)

Assuming m ≥ 2, σm(O) = (m + 1)/2 for some O ∈ int C if and only if C is
symmetric with respect to O. If, for some m ≥ 1, σm(O) = 1 at O ∈ int C,
then m ≤ n and C has an m-dimensional simplicial intersection across O, that
is, there exists an m-dimensional affine subspace E ⊂ E

n, O ∈ E , such that
C ∩E is an m-simplex. Conversely, if C has a simplicial intersection with an m-
dimensional affine subspace E then σ = 1 identically on int C ∩ E . (For details,
see [21].)

We first derive a stability estimate for the upper bound in (27) as it is much
simpler.

Theorem 3. Let 2 ≤ m ≤ n and

0 ≤ ε ≤ n− 1
n+ 1

m− 1
2

.

If C ∈ B satisfies

m+ 1
2

− ε ≤ σ∗
C,m (28)

then we have

dD(C, C∗) ≤ 1 + 2
n+ 1
m− 1

ε. (29)

Proof. Sub-arithmeticity in (26) (with m = 1 and k = m− 1) along with (24)
gives

σ∗
C,m ≤ 1 +

m− 1
μ(C) + 1

.

Combining this with the imposed lower bound (28), we obtain

μ(C) ≤ 2
1 − δ

− 1 = 1 + 2
δ

1 − δ
, (30)

where δ = 2ε/(m− 1). The imposed restriction on ε translates into

0 ≤ δ ≤ n− 1
n+ 1

.

Thus, in (30), we have 2δ/(1− δ) ≤ 2(n+1)ε/(m− 1). Finally, as noted above
dD(C, C∗) = μ(C). Putting these back in (30) we obtain (29). �
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Turning to a stability estimate for the lower bound in (27), recall that
σC,m(O) = 1 if and only if C has an m-dimensional simplicial slice across
O. Hence a stability estimate can only be expected for σC = σC,n.

As a first attempt, let 0 ≤ ε < 1/n(n+ 1) and C ∈ B. We claim that if

σ∗
C ≤ 1 + ε. (31)

then there exists a simplex Δ ⊂ C such that

dD(C,Δ) < 1 +
(n+ 1)2ε

1 − n(n+ 1)ε
. (32)

To show this, let O∗ ∈ int C be a point at which the infimum in (24) is attained:
μ(C) = max∂C Λ(·, O∗). (The minimal level-set of max∂C Λ comprised of these
points is the critical set of C, a compact convex set of codimension ≥ 2; see
[12].) Using the trivial lower bound in (25) for σ, we obtain

n+ 1
μ(C) + 1

=
n+ 1

max∂C Λ(·, O∗) + 1
≤ σC(O∗) ≤ σ∗

C ≤ 1 + ε.

Rearranging and estimating, we find

n− (n+ 1)ε ≤ n− ε

1 + ε
≤ μ(C).

Now (23) applies (with ε replaced by (n+ 1)ε) and (32) follows.

To obtain a stronger stability estimate one needs to relax the inequality in
(31).

Theorem 4. Let C ∈ B and O ∈ int C satisfying

max
∂C

ΛC(·, O) ≤ n. (33)

Assume that, for 0 ≤ ε < 1/(n+ 1), we have

1 ≤ σC(O) ≤ 1 + ε.

Then for the convex hull Δ of any minimal configuration we have

dD(C,Δ) ≤ 1
1 − (n+ 1)ε

. (34)

Proof. We first note that we can lower the value of ε (to σC(O)−1) and impose

1 < σC(O) < 1 +
1

n+ 1
. (35)

(For simplicity, we excluded the trivial case σC(O) = 1.) Assuming now (33)
and (35), using a complex construction in [22] (Theorem 1) we showed that,
for the convex hull Δ of any minimal configuration, we have

Δ ⊂ C ⊂ Δ̃ = r̃(Δ − C̃) + C̃,

where

C̃ =
1

σC(O) − 1

n∑

i=0

(
1

ΛC(Ci, O) + 1
− 1

ΛΔ(Ci, O) + 1

)
Ci ∈ Δ
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and

r̃ =
1

1 − (n+ 1)(σC(O) − 1)
.

Thus, dD(C,Δ) ≤ r̃, and we obtain (34) (for ε = σC(O) − 1). The theorem
follows. �

Remark 5. According to a classical result of Minkowski, Λ(C, g(C)) ≤ n, C ∈
∂C, where g(C) is the centroid of C [2]. Hence (34) holds if 1 < σ(g(C)) <
1 + 1/(n+ 1).

2. As the example of the semi-disk shows, the center of similarity C̃ can be on
the boundary of C.

References

[1] Bohnenblust, F.: Convex regions and projections in Minkowski spaces. Ann.
Math. 39, 301–308 (1938)

[2] Bonnesen, T., Fenchel, W.: Theorie der konvexen Körper. Ergebn. Math., Bd.,
vol. 3. Springer, Berlin (1934); English translation: Theory of Convex Bodies.
BCS, Moscow, ID (1987)
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