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Abstract. Given a compact convex body L in a Euclidean vector space E with
a fixed base point O in the interior of L, an affine invariant σ(L) can be defined
that measures how distorted L is with respect to O. The two extreme values
of σ(L) are 1 corresponding to a simplex, and (dim E + 1)/2 corresponding
to a (centrally) symmetric L. In this paper we study the structure of L when
σ(L) < 1 + 1/(1 + dim E). We construct a polytope that contains L, study its
combinatorial structure, and prove that L is between two simplices scaled in
the ratio 1/(2 + dim E − (1 + dim E)σ(L)) ÷ 1. This, in turn, gives an upper
bound on the volume of L in terms of σ(L) and the inscribed simplex.
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1. Introduction

Let L be a compact convex body in a Euclidean vector space E and O ∈ intL, a
base point in the interior of L. Given C ∈ ∂L, the line passing through O and C
intersects ∂L in another point. We call this the opposite of C with respect to O
and denote it by Co. Clearly, (Co)o = C.

The distortion function Λ : ∂L → R is defined by

Λ(C) =
d(C,O)
d(Co,O)

, C ∈ ∂L ,

where d(X,X ′) = |X − X ′| is the Euclidean distance. Clearly, Λ(Co) = 1/Λ(C).

Let dim E = m. As an application of Helly’s theorem [1], we have
1
m

≤ Λ ≤ m, (1)

provided that the base point O is chosen appropriately. The extreme values are
attained by a simplex.
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A multiset {C0, . . . , Cm} is called a configuration of L (relative to O) if
{C0, . . . , Cm} ⊂ ∂L and O is contained in the convex hull [C0, . . . , Cm] of
C0, . . . , Cm. Let C(L) denote the set of all configurations of L. We define

σ(L) = inf
{C0,...,Cm}∈C(L)

m∑

i=0

1
1 + Λ(Ci)

.

A configuration {C0, . . . , Cm} is called minimal if

σ(L) =
m∑

i=0

1
1 + Λ(Ci)

.

Minimal configurations always exist since L is compact.

In [5] we showed that

1 ≤ σ(L) ≤ m + 1
2

. (2)

In addition, σ(L) = 1 iff L is an m-simplex. In this case a minimal configuration
{C0, . . . , Cm} ∈ C(L) is unique and is given by the set of vertices of L. Moreover,
minimality

m∑

i=0

1
1 + Λ(Ci)

= 1 , (3)

implies
m∑

i=0

1
1 + Λ(Ci)

Ci = O . (4)

Finally, for m ≥ 2, σ(L) = (m + 1)/2 iff Λ = 1 on ∂L, that is, iff L is symmetric
(with respect to O).

There are many results on the geometry and metric properties of L when it is
symmetric [8]. In particular, a deep result of Dvoretzky [2, 3] reveals how close
(slices of) symmetric compact convex bodies are to being spherical. He proved
that, for given ε > 0 and k ∈ N, there exists N = N(ε, k) ∈ N such that for any
compact convex body L in a Euclidean vector space E of dimension m ≥ N that
is symmetric with respect to O there exists a k-dimensional affine subspace F ,
O ∈ F , such that L∩F is between two Euclidean balls of F with center at O and
radii in the ratio 1 + ε ÷ 1.

In this paper we study the opposite case, that is, when L has large distortion.
This work is motivated by our study of moduli spaces for spherical immersions,
where the moduli are compact convex bodies and, at times, their slices by affine
subspaces exhibit close to simplicial behavior. (See [5–7] for details.)

Our main result is the following:

Theorem 1. Let L ⊂ E be a compact convex body in a Euclidean vector space E
of dimension m, and O ∈ intL a base point. Assume that the distortion function
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satisfies 1/m ≤ Λ ≤ m and

σ(L) < 1 +
1

m + 1
. (5)

Then L is between two simplices Δ and Δ∗:

Δ ⊂ L ⊂ Δ∗ .

Δ can be chosen as the convex hull of any minimal configuration of L. The outer
simplex Δ∗ is obtained from Δ by central magnification from a point C∗ ∈ Δ, and
the ratio of magnification is 1/(m + 2 − (m + 1)σ(L)). In particular, we have the
volume estimate

vol (Δ) ≤ vol (L) ≤ vol (Δ)
(m + 2 − (m + 1)σ(L))m

. (6)

Remark 1. If σ(L) > 1 (that is, if L is not a simplex) then the center of magnifi-
cation is

C∗ =
1

∑m
i=0

(
1

1+Λ(Ci)
− 1

1+Λ̄(Ci)

)
m∑

i=0

(
1

1 + Λ(Ci)
− 1

1 + Λ̄(Ci)

)
Ci ,

where Δ = [C0, . . . , Cm] and Λ̄(Ci) (≥ Λ(Ci)) is the distortion of Ci ∈ ∂Δ of the
simplex Δ with respect to O. (We will show that the convex hull of any minimizing
configuration is a simplex with O in its interior; see Proposition 4 in Section 4.)
If σ(L) = 1 then we can choose C∗ = O.

Note that it can well happen that C∗ is not in the interior of Δ; for example, it
could be one of the vertices of Δ. (This is the case when equality holds for all but
one of the indices i = 0, . . . ,m in Λ̄(Ci) ≥ Λ(Ci).)

Remark 2. The inclusion Δ ⊂ L is obvious. The inclusion L ⊂ Δ∗ is technical;
in fact most part of this paper is devoted to the proof of this. The estimates in
Theorem 1 are sharp: equalities hold iff L is a simplex.

Remark 3. The critical value 1 + 1/(m + 1) for σ(L) is the best possible. In fact,
according to Example 1 in [5], the pentagon L in R2 with vertices

(1,−1), (1, 1), (0, 2), (−1, 1), (−1,−1)

has σ(L) = 4/3 but there are minimal configurations whose convex hulls are
reduced to line segments. Therefore, one cannot expect Theorem 1 to hold without
the restriction in (5).

Remark 4. The conditions (1) and (5) are independent. Indeed, if L = [C0, . . . , Cm]
is a simplex and O approaches to one of its vertices Ci within the interior of L
then Λ(Ci) approaches to zero, and, for j = 0, . . . , m, j �= i, Λ(Cj) approaches
to ∞. On the other hand, σ(L) = 1 independently of O.
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Figure 1

We will prove a stronger version of Theorem 1 where the minimal configuration
{C0, . . . , Cm} will be replaced by a configuration {C0, . . . , Cm} with convex hull Δ
that satisfies

m∑

i=0

1
1 + Λ(Ci)

< 1 +
1

m + 1
,

and in the estimates σ(L) is replaced by the sum on the left-hand side.

For simplicity, we will always assume that the base point O is the origin. The key
point in the proof is to write L as the union of the antipodal simplex [C0

0 , . . . , Co
m]

and (m + 1) ‘bulges’ Bi, i = 0, . . . ,m. The bulge Bi is the part of L contained in
the positive cone spanned by {Co

0 , . . . , Ĉo
i , . . . , Co

m} and truncated by the i-th face
[Co

0 , . . . , Ĉo
i , . . . , Co

m]. We imbed each bulge Bi into a polytope Pi (Theorem 2 in
Section 3). (See Figures 1–2 for m = 2, 3.)

If Vi denotes the outermost vertex of Pi then we will show that L is contained
in the m-simplex [V0, . . . , Vm] (Theorem 3 in Section 4). Finally, another estimate
will yield [V0, . . . , Vm] ⊂ [C∗

0 , . . . , C∗
m], where {C∗

0 , . . . , C∗
m} are the vertices of the

outer simplex Δ∗ magnified from Δ with center at C∗.

Pi has an interesting combinatorial structure; in particular, its vertices can be
parametrized by subsets of {0, . . . , î, . . . ,m} and the larger the cardinality of the
subset is the further the vertex is from the origin. (See Section 3 and Figure 4 for
m = 3.)
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Figure 2

2. Notation and preliminaries

Let E be a Euclidean vector space. Given a subset S ⊂ E , we denote by [S] the
convex hull, 〈S〉 the affine span and L(S) = 〈S, 0〉 the linear span of S. (For general
reference for convexity, see [1,4].) Then [S] is a convex body in 〈S〉. We will always
consider a convex body in its affine span, and concepts like relative boundary,
relative interior, etc. are understood within the affine span. For simplicity, we will
use the terms boundary, interior, etc. within their relative context. If S is finite
then [S] is a convex polytope in 〈S〉. Moreover, dim〈S〉 ≤ |S| − 1 with equality iff
[S] is a simplex.

If H ⊂ E is a hyperplane and S, T are subsets of E then we say that S and T are
on the same side of H if S ∪ T is contained in one of the closed half-spaces with
boundary H.

We begin with a finite set of points {Ci | i ∈ I} ⊂ ∂L indexed by a set I ⊂ Z.
(Unless stated otherwise, all sets will be assumed nonempty.)

For simplicity we write λi = Λ(Ci), i ∈ I, and assume that
∑

i∈I

1
1 + λi

< 1 . (7)

For a (nonempty) subset I ⊂ I, we define

σI =
∑

i∈I

1
1 + λi

(8)
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and
VI = − 1

1 − σI

∑

i∈I

1
1 + λi

Ci =
1

1 − σI

∑

i∈I

λi

1 + λi
Co

i . (9)

Note that, for i ∈ I, V{i} = Co
i .

If I = {i1, . . . , ik}, we also write σI = σ(Ci1 , . . . , Cik
) and VI = V (Ci1 , . . . , Cik

).

Lemma 1. For i ∈ I ⊂ I, |I| ≥ 2, we have VI\{i} ∈ [Ci, VI ].

Proof. Splitting off i from I in the sum in (9), we obtain

VI\{i} =
1

1 − σI\{i}

1
1 + λi

Ci +
1 − σI

1 − σI\{i}
VI .

Since the coefficients are positive and by (8):

1 − σI +
1

1 + λi
= 1 − σI\{i} ,

the lemma follows. �
Lemma 2. Let I, J ⊂ I be nonempty subsets.

(i) If I ∩ J �= ∅ then there exist 0 < t ≤ s < 1 such that

(1 − t)VI + tVJ = (1 − s)VI∪J + sVI∩J .

(ii) If I and J are disjoint then then there exist r > 1 and 0 < t < 1 such that

r
(
(1 − t)VI + tVJ

)
= VI∪J .

Proof. We consider the convex combination

(1 − t)VI + tVJ =
1 − t

1 − σI

∑

i∈I

λi

1 + λi
Co

i +
t

1 − σJ

∑

j∈J

λj

1 + λj
Co

j .

Setting

t =
1 − σJ

2 − σI − σJ

the coefficients in front of the two sums above become equal. With this, we have

(1 − t)VI + tVJ =
1

2 − σI − σJ

(
∑

k∈I∪J

λk

1 + λk
Co

k +
∑

l∈I∩J

λl

1 + λl
Co

l

)
.

Since σI + σJ = σI∪J + σI∩J , we obtain

(1 − t)VI + tVJ = (1 − s)VI∪J + sVI∩J ,

where
s =

1 − σI∩J

2 − σI∪J − σI∩J
,

and the second term is absent if I ∩ J = ∅. The rest is clear. �
Remark. (i) and (ii) can be stated together if we set V∅ = 0. There is no advantage
in accepting this in the future.
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3. The covering polytope

We use the assumptions and the notations of the previous section, and, in addition,
we will consider only subsets I ⊂ I for which {Ci | i ∈ I} are linearly independent.
In particular, we have 0 /∈ 〈{Ci}i∈I〉.
We will be working in the linear span

LI = L
(
{Ci}i∈I

)
= L

(
{Co

i }i∈I

)
.

We define

TI =

{
∑

i∈I

μiC
o
i |

∑

i∈I

μi ≥ 1, μi ≥ 0, ∀i ∈ I

}
. (10)

Clearly, TI ⊂ LI is a truncated cone. In addition, by (9)–(10), for |I| ≥ 2, TI

contains VI in its interior since

1
1 − σI

∑

i∈I

λi

1 + λi
=

1
1 − σI

∑

i∈I

(
1 − 1

1 + λi

)
=

|I| − σI

1 − σI
> 1 . (11)

Moreover, for J ⊂ I, we have TJ = TI ∩ LJ , in particular, {VJ}J⊂I ⊂ TI .

We define PI ⊂ LI inductively (with respect to |I|) as follows. For I = {i}, we set
P{i} = {V{i}} = {Co

i }, and, for |I| ≥ 2, we define PI as the convex hull of VI and
∪i∈IPI\{i}.

It is clear that PI ⊂ TI . In addition, for J ⊂ I we have

PJ = PI ∩ LJ .

As usual, for I = {i1, . . . , ik}, we will also use the notations LI = L(Ci1 , . . . , Cik
),

TI = T (Ci1 , . . . , Cik
), and PI = P (Ci1 , . . . , Cik

).

Example 1. For I = {i, j}, we have

P (Ci, Cj) =
[
V (Ci, Cj), V (Ci), V (Cj)

]
,

where V (Ci) = Co
i , V (Cj) = Co

j , and

V (Ci, Cj) =
1

1 − 1
1+λi

− 1
1+λj

(
λi

1 + λi
Co

i +
λj

1 + λj
Co

j

)
.

Thus, P (Ci, Cj) is a triangle. (See Figure 3.)

Example 2. For I = {i, j, k}, P (Ci, Cj , Ck) is a polyhedron depicted in Figure 4.
The 7 vertices of P (Ci, Cj , Ck) are VI , and V{i,j}, V{j,k}, V{k,i}, and V{i}, V{j}, V{k}.
In Proposition 2 we will prove that there are 7 faces; the base F0 = [V{i}, V{j}, V{k}],
and

Fi = [V{j,k}, V{j}, V{k}] , Fj = [V{k,i}, V{k}, V{i}] , Fk = [V{i,j}, V{i}, V{j}] ,
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Figure 3

and

F i = [VI , V{i,j}, V{k,i}, V{i}] ,

F j = [VI , V{j,k}, V{i,j}, V{j}] ,

F k = [VI , V{j,k}, V{k,i}, V{k}] .

We also see that PI is not a simplex for |I| ≥ 3.

Proposition 1. PI is a convex polytope in LI with vertices VJ , J ⊂ I.

Proof. An easy induction shows that PI is the convex hull of the points VJ , J ⊂ I.
(Here and in the inductions that follow, the first step of the induction is by a simple
inspection of Examples 1–2. Therefore we will only discuss the general induction
steps.) Thus, PI is a convex polytope in LI . We now show that each VJ , J ⊂ I, is
an extremal point of PI . We begin with VI .

Consider the hyperplane

HI =
|I| − σI

1 − σI

〈
{Co

i }i∈I

〉
.
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Figure 4

By (9) and (11), we have VI ∈ HI . We now claim that VJ , J ⊂ I, J �= I, are
contained in the same open half-space with boundary HI . Comparing

VJ =
1

1 − σJ

∑

j∈J

λj

1 + λj
Co

j (12)

with (9) and (11), we need to show that

|J | − σJ

1 − σJ
<

|I| − σI

1 − σI
.

This, however, is clear since |I| > |J | and σI > σJ . The claim follows.

Since PI is the convex hull of VJ , J ⊂ I, we obtain that HI is a supporting
hyperplane of PI at VI , and

PI ∩ HI = {VI} .

Thus, VI is a vertex of PI .

We now assume that |I| ≥ 3 and show by induction with respect to |I| that VJ ,
J ⊂ I, are vertices of PI . Let i ∈ I. By the induction hypothesis, {VJ}J⊂I\{i} are
vertices of PI\{i}. The polytope PI\{i} is a face of PI with supporting hyperplane
extension LI\{i}. Hence {VJ}J⊂I\{i} are also vertices of PI . (If P is a convex
polytope and H is a supporting hyperplane then any vertex of P ∩ H is also a
vertex of P . This follows since the vertices are extremal points.) Thus, for each
proper subset J ⊂ I, VJ is a vertex of PI . Since VI is also a vertex, we are done.
Finally, VJ , J ⊂ I, are all the vertices of PI since their convex hull is PI . The
proposition follows. �
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Proposition 2. Let |I| ≥ 3. Then PI has 2|I| + 1 faces as follows: F0 = [{Co
i }i∈I ],

and
Fi = PI\{i} = [{VJ | i /∈ J}] , i ∈ I ,

and
F i = [{VJ | i ∈ J}] , i ∈ I .

Proof. PI is contained in the truncated cone TI whose faces are F0 and TI\{i},
i ∈ I. Clearly, F0 is also a face of PI . Since Fi = PI\{i} = PI ∩ TI\{i}, it is clear
that Fi, i ∈ I, are also faces of PI .

We now show that F i, i ∈ I, is a face of PI . By definition, V{i} ∈ F i, and
V{i,j} ∈ F i, j ∈ I \ {i}. It is easy to see that V{i,j} − V{i}, j ∈ I \ {i}, are linearly
independent. We claim that, for any J ⊂ I with i ∈ J , we have

VJ ∈
〈
V{i}, {V{i,j}}j∈J\{i}

〉
.

We need to show that

VJ = αiV{i} +
∑

j∈J\{i}
αjV{i,j} (13)

and
αi +

∑

j∈J\{i}
αj = 1 . (14)

Expanding the right-hand side in (13), and using that V{i} = Co
i , we obtain

VJ =

⎛

⎝αi +
∑

j∈J\{i}

αj

1 − σ{i,j}

λi

1 + λi

⎞

⎠ Co
i +

∑

j∈J\{i}

αj

1 − σ{i,j}

λj

1 + λj
Co

j . (15)

Equating the coefficients with those of VJ in (12), we obtain

αi =
2 − |J |
1 − σJ

λi

1 + λi
and αj =

1 − σ{i,j}
1 − σJ

, j ∈ J \ {i} .

Moreover, we have (14) since

(2 − |J |) λi

1 + λi
+

∑

j∈J\{i}
(1 − σ{i,j}) = 1 − σJ ,

where
∑

j∈J\{i}
σ{i,j} =

∑

j∈J\{i}

(
1

1 + λi
+

1
1 + λj

)
=

|J | − 2
1 + λi

+ σJ .

The claim follows. We obtain that

dim
〈
V{i}, {V{i,j}}j∈I\{i}

〉
= dim〈F i〉 = |I| − 1 .

Finally, to conclude that F i is a face of PI , it remains to show that PI is on one
side of the hyperplane 〈F i〉. Let VK be a vertex of PI not listed in F i, that is,
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i /∈ K. Let J = K ∪{i}. Applying Lemma 2 (ii) to the disjoint subsets K and {i},
we obtain that

r
(
(1 − t)VK + tV{i}

)
= VJ ,

for some r > 1 and 0 < t < 1. Since V{i}, VJ ∈ F i, this means that VK and the
origin 0 are on the same side of 〈F i〉. Thus, F i is a face of PI .

It remains to prove that F0, and Fj , F
j , j ∈ I, are all the faces of PI . To do this,

we consider the hyperplane extensions of these faces:

H0 = 〈F0〉 =
〈
{Co

j }j∈I

〉
,

Hj = 〈Fj〉 = LI\{j} = L
(
{Co

i }i∈I\{j}
)
,

Hj = 〈F j〉 = 〈{VJ | j ∈ J}〉 .

Each of these hyperplanes is the boundary of a half-space that contains PI . Let
P̄I denote the intersection of these half-spaces. Clearly, PI ⊂ P̄I ⊂ TI . It remains
to show that PI = P̄I , or equivalently, that the vertices of P̄I are the same as the
vertices of PI (given in Proposition 1). To do this, we consider the vertices of P̄I

as (nonredundant) intersections of the hyperplanes above. To obtain a vertex, we
need to take at least |I| hyperplanes as dimLI = |I|. We split the discussion into
two cases according to whether H0 is participating in the intersection or not.

Case (i): Assume that H0 is participating in the intersection. We first show that,
for each i ∈ I, H0 ∩ Hi intersects F0 at the single point Co

i so that the remaining
part of the intersection is redundant (that is, disjoint from P̄I). Let X ∈ Hi. As
above, we have

X = αiV{i} +
∑

j∈I\{i}
αjV{i,j} (16)

and
αi +

∑

j∈I\{i}
αj = 1 . (17)

Expanding the right-hand side of (16) as in (15) we obtain

X =

⎛

⎝αi +
∑

j∈I\{i}

αj

1 − σ{i,j}

λi

1 + λi

⎞

⎠ Co
i +

∑

j∈I\{i}

αj

1 − σ{i,j}

λj

1 + λj
Co

j . (18)

Now, X ∈ F0 iff αj ≥ 0, j ∈ I \ {i}, and

αi +
∑

j∈I\{i}

αj

1 − σ{i,j}

λi

1 + λi
≥ 0

and

αi +
∑

j∈I\{i}

αj

1 − σ{i,j}

λi

1 + λi
+

∑

j∈I\{i}

αj

1 − σ{i,j}

λj

1 + λj
= 1 .
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This last equality reduces to

αi +
∑

j∈I\{i}
αj

2 − σ{i,j}
1 − σ{i,j}

= 1 .

Combining this with (17), we obtain
∑

j∈I\{i}
αj

1
1 − σ{i,j}

= 0 .

Since the coefficients are nonnegative, this is possible only if αj = 0, j ∈ I \ {i}.
By (17), αi = 1 and X = V{i} = Co

i follows.

Thus, besides H0, the only participating hyperplanes we need to consider are Hj ,
j ∈ I. There must be at least |I| − 1 of these. On the other hand, there cannot
be |I| of these as their intersection is the redundant origin 0 /∈ TI . Hence, there
exists i ∈ I, such that the participating hyperplanes are H0 and Hj , j ∈ I \ {i}.
The intersection of these is clearly Co

i . Case (i) follows.

Remark. Although in our proof some of the conclusions will be used below, the
referee pointed out the following elegant and direct proof of Case (i). The vertices
of P̄I contained in H0 are exactly the vertices of the polytope P̄I ∩H0, since P̄I is
on one side of H0. By PI ⊂ P̄I ⊂ TI and PI ∩ H0 = TI ∩ H0 = F0, P̄I ∩ H0 = F0.
So the vertices of P̄I in H0 are the vertices of F0, which are Co

i , i ∈ I.

Case (ii): We first show that for the same i ∈ I, the hyperplanes Hi and Hi cannot
participate together in the intersection, in particular, that there are exactly |I|
participating hyperplanes, one for each index in I. Let X ∈ Hi ∩ Hi. Write X as
in (16) with (17). Expanding as in (18), X ∈ Hi forces the coefficient of Co

i to
vanish:

αi +
∑

j∈I\{i}

αj

1 − σ{i,j}

λi

1 + λi
= 0 .

This, combined with (17) gives
∑

j∈I\{i}

(
1 − 1

1 − σ{i,j}

λi

1 + λi

)
αj = 1 .

The coefficient of αj is negative since (1−σ{i})/(1−σ{i,j}) > 1. For nonredundancy,
X must be in TI , in particular, αj ≥ 0, j ∈ I \ {i}. This is a contradiction.

Let J ⊂ I parametrize the participating hyperplanes Hj , j ∈ J , and let its com-
plement, K = I \ J , parametrize the participating hyperplanes Hk, k ∈ K. As
above we may assume that J is nonempty. By definition, VJ is contained in all
these hyperplanes. It remains to show that

⋂

j∈J

Hj ∩
⋂

k∈K

Hk = {VJ} .
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Let X be in the intersection. First, since X ∈
⋂

k∈K Hk, it can be written as

X =
∑

j∈J

μjC
o
j , (19)

where (for nonredundancy) we may assume that
∑

j∈J μj ≥ 1 and μj ≥ 0, j ∈ J .
Now, fix i ∈ J , so that X ∈ Hi. We thus have (16)–(18). Comparing these with
(19), we see that αk = 0 for k ∈ K, so that in (16)–(18) I can be replaced by J .
Moreover, comparing coefficients, we obtain

μi = αi +
λi

1 + λi

∑

j∈J\{i}

αj

1 − σ{i,j}

and
μj =

αj

1 − σ{i,j}

λj

1 + λj
, j ∈ J \ {i} . (20)

Solving for αi, we also get

αi = μi −
λi

1 + λi

∑

j∈J\{i}

1 + λj

λj
μj . (21)

Expressing the α’s in terms of the μ’s using (20)–(21), after a simple computation,
(17) reduces to

μi −
∑

j∈J\{i}

μj

λj
= 1 .

We now vary i ∈ J and consider this as a system of equations for μj , j ∈ J . We
see that

μi

(
1 +

1
λi

)
= c ,

where c is a constant, independent of i. The value of the constant can be determined
by substitution:

c =
1

1 − σJ
.

We obtain that
μi =

1
1 − σJ

λi

1 + λi

and X = VJ . Case (ii) follows.

The proof of the proposition is complete. �
Remark. Let j ∈ I. Then, for i ∈ I \ {j}, VI\{i} ∈ Hj . Since VI ∈ Hj , by
Lemma 1, we also have Ci ∈ Hj . We obtain that Hj = 〈VI , {Ci}i∈I\{j}〉. Thus,
apart from the base 〈{Ci}i∈I〉, Hj , j ∈ I, are the bounding hyperplanes of the
simplex [VI , {Ci}i∈I ] in LI . The following simple picture emerges: PI is the inter-
section of this simplex with the truncated cone TI .

For I ⊂ I, we define BI = TI ∩ L. For I = {i1, . . . , ik}, we also write BI =
B(Ci1 , . . . , Cik

). The main result of this section is the following:
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Theorem 2. BI ⊂ PI .

Remark. BI is the ‘bulge’ for the linear slice L ∩ LI over [{Co
i }i∈I ] discussed in

Section 1.

Proof. We will proceed by induction with respect to |I|. The theorem holds for
|I| = 2 by inspection of Example 1.

We will show that BI is on the same side of the hyperplane extension of each face
of the covering polytope PI . Let H be a hyperplane extension of a face F of PI .
By Proposition 2, H = H0 or H = Hi = LI\{i}, or H = Hi for some i ∈ I. Since
BI ⊂ TI , and the hyperplane extensions of the faces of TI are H0 and Hi, i ∈ I,
we may assume that H = Hj for some j ∈ I.

It is enough to show that the interior of BI is on the same side of H as the origin 0.
Let X ∈ int BI . Let i ∈ I \ {j}. Then j ∈ I \ {i} so that VI\{i} ∈ F ⊂ H. By
Lemma 1, we also have Ci ∈ H.

Ci /∈ TI since Ci = −λiC
o
i . Since TI is convex, the line segment [X,Ci] intersects

the boundary of TI at a unique point Xi ∈ ∂TI .

Ci and Co
i are at opposite sides of the hyperplane LI\{i}. Thus Ci and X are also

on opposite sides of LI\{i}. Hence the line segment [X,Ci] intersects LI\{i} at a
unique point Yi ∈ LI\{i}. Note that, by convexity, Xi, Yi ∈ L.

Case (i): Xi = Yi. Since Xi ∈ ∂TI ∩ LI\{i}, we also have Xi ∈ BI\{i}. By the
induction hypothesis, BI\{i} ⊂ PI\{i}, so that Xi ∈ PI\{i}. Consider H ∩ LI\{i}.
This is a hyperplane extension of a face of PI\{i} in LI\{i} and it contains VI\{i}.
We see that Xi and 0 are on the same side of H ∩LI\{i} in LI\{i}. Thus Xi and 0
are on the same side of H. Since Xi ∈ [Ci,X] and Ci ∈ H, we obtain that X and 0
are on the same side of H.

Case (ii): Xi �= Yi. We first claim that Xi ∈ F0. Indeed, since Xi ∈ ∂TI , the only
other possibility in this case would be Xi ∈ LI\{k} for some k ∈ I \ {i}. Write
X =

∑
l∈I μlC

o
l with

∑
l∈I μl > 0 and μl > 0, l ∈ I. (Recall that X is in the

interior of BI .) Then, by the definition of Xi, for some 0 < t < 1, we have

Xi = (1 − t)X + tCi = (1 − t)
∑

l∈I

μlC
o
l − tλiC

o
i .

If Xi ∈ LI\{k} then (1−t)μk = 0, a contradiction. The claim follows, and Xi ∈ F0.

Since Co
i and 0 are on the same side of H so is Xi. As before, X and 0 are on the

same side of H. The theorem follows. �

Theorem 2 can be interpreted in terms of the bulging function β : F0 → R defined,
for X ∈ F0, as the largest number such that β(X)X ∈ ∂L.

Proposition 3. 1/β is a convex function.
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Proof. Let X0,X1 ∈ F0, X0 �= X1, and write Xt = (1− t)X0 + tX1, 0 ≤ t ≤ 1. Let
Y0 = β(X0)X0 and Y1 = β(X1)X1. Then, Y0, Y1 ∈ ∂L. Let r ≥ 1 and 0 ≤ s ≤ 1
be such that rXt = (1 − s)Y0 + sY1. A simple computation then shows that

r = (1 − s)β(X0) + sβ(X1)

and

s =
tβ(X0)

(1 − t)β(X1) + tβ(X0)
.

Substituting, we obtain

r =
β(X0)β(X1)

(1 − t)β(X1) + tβ(X0)
.

Finally, convexity of L says that r ≤ β(Xt) with equality iff [Y0, Y1] ⊂ ∂L. Putting
everything together, we arrive at

(1 − t)
1

β(X0)
+ t

1
β(X1)

≥ 1
β((1 − t)X0 + tX1)

.

The proposition follows. �

We can also define the bulging function βI : F0 → R for the covering polytope PI

analogously for X ∈ F0, as the largest number with βI(X)X ∈ ∂PI . Theorem 2
then says that 1 ≤ β ≤ βI . The proof of Proposition 3 also shows that 1/βI is
convex and piecewise linear. For a vertex VJ ∈ PI , J ⊂ I, we have

βI

(
1 − σJ

|J | − σJ
VJ

)
=

|J | − σJ

1 − σJ
.

The smallest value of 1/βI is thus

min
F0

1
βI

= min
J⊂I

1 − σJ

|J | − σJ
=

1 − σI

|I| − σI
.

We obtain the following:

Corollary. The maximum bulging of the slice L ∩ LI over F0 is

max
F0

β ≤ max
F0

βI = β

(
1 − σI

|I| − σI
VI

)
=

|I| − σI

1 − σI
.

4. The outer simplex

Let L ⊂ E be a compact convex body in a Euclidean vector space E of dimension
m ≥ 2, such that O = 0 ∈ intL is a base point. Assume that L satisfies (1)
and (5). We now assume that the set of points {C0, . . . , Cm} ⊂ ∂L of Section 2
is a configuration of L (O ∈ [C0, . . . , Cm]) with corresponding index-set I =
{0, . . . , m}. Letting

σ =
m∑

i=0

1
1 + λi

,
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we assume that

σ < 1 +
1

m + 1
. (22)

Proposition 4. [C0, . . . , Cm] is an m-simplex with O in its interior.

Proof. If [C0, . . . , Cm] were not a simplex or O were not in the interior of the sim-
plex [C0, . . . , Cm] then there would exist 0 ≤ i ≤ m such that {C0, . . . , Ĉi, . . . , Cm}
would be a subconfiguration in the sense that O ∈ [C0, . . . , Ĉi, . . . , Cm]. By a result
of [5] analogous to (2), we have

m∑

j=0; j 	=i

1
1 + λj

≥ 1 .

Thus, by (1), we have

σ ≥ 1 +
1

1 + λi
≥ 1 +

1
m + 1

.

This contradicts to (22). The proposition follows. �

For 0 ≤ i ≤ m, we let

σi =
m∑

j=0; j 	=i

1
1 + λj

.

By (1) and (22), we have

σi +
1

1 + m
≤ σi +

1
1 + λi

= σ < 1 +
1

1 + m

so that σi < 1. In addition, since [C0, . . . , Cm] is an m-simplex with 0 in its inte-
rior, {C0, . . . , Ĉi, . . . , Cm} is linearly independent. The construction of Section 3
applies with I = I \ {i}. (Note that (7) is satisfied.). We obtain the polytope
Pi = P (C0, . . . , Ĉi, . . . , Cm) containing the bulge Bi = B(C0, . . . , Ĉi, . . . , Cm)
(Theorem 2) and the vertex Vi = V (C0, . . . , Ĉi, . . . , Cm). By Theorem 2 in Sec-
tion 3, we have

L = [Co
0 , . . . , Co

m] ∪
m⋃

i=0

Bi ⊂ [Co
0 , . . . , Co

m] ∪
m⋃

i=0

Pi . (23)

The main result of this section is the following:

Theorem 3. We have
L ⊂ [V0, . . . , Vm] . (24)

Before the proof we introduce a technique that compares the geometry of
[V0, . . . , Vm] with the geometry of the inscribed simplex [C0, . . . , Cm]. Through-
out, we let 0 ≤ i ≤ m.
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Let λ̄i denote the distortion of Ci of the simplex [C0, . . . , Cm] (relative to O).
Clearly,

λi ≤ λ̄i . (25)

By (3)–(4) we also have
m∑

i=0

1
1 + λ̄i

= 1 , and
m∑

i=0

1
1 + λ̄i

Ci = 0 . (26)

We substitute these into the defining formula for Vi:

Vi = − 1
1 − σi

m∑

j=0; j 	=i

1
1 + λj

Cj ,

and obtain

Vi =
1

1
1+λi

− ε

⎛

⎝ 1
1 + λi

Ci −
m∑

j=0

εjCj

⎞

⎠ , (27)

where

εj =
1

1 + λj
− 1

1 + λ̄j
≥ 0

(cf. (25)), and

ε =
m∑

j=0

εj = σ − 1 .

Note that ε = 0 iff λ̄i = λi for all 0 ≤ i ≤ m iff L is the simplex [C0, . . . , Cm] =
[V0, . . . , Vm]. From now on we assume that this is not the case, so that ε > 0. We
define

C∗ =
1
ε

m∑

j=0

εjCj ∈ [C0, . . . , Cm] .

With this (27) can be written as

Vi − C∗ =
1

1 − σi

1
1 + λi

(Ci − C∗) . (28)

From this it is immediately clear that [V0, . . . , Vm] is an m-simplex.

Lemma 3. We have Ci ∈ [V0, . . . , Vm].

Proof. Eliminating the denominators in (28), multiplying by εi and summing up
with respect to i = 0, . . . , m, the definition of C∗ gives

m∑

i=0

εi(1 − σi)(1 + λi)(Vi − C∗) =
m∑

i=0

εi(Ci − C∗) = 0 .
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The coefficients are nonnegative and their sum is positive. This means that C∗ ∈
[V0, . . . , Vm]. Finally, (28) can be written as

(
1

1 + λi
− ε

)
Vi + εC∗ =

1
1 + λi

Ci .

This means that Ci ∈ [Vi, C
∗] ⊂ [V0, . . . , Vm]. The lemma follows. �

Proof of Theorem 3. Recall that Vi = V (C0, . . . , Ĉi, . . . , Cm). Applying Lemma 1
inductively (first to I = {0, . . . , î, . . . ,m}) and using Lemma 3, we see that, for
J ⊂ I, we have VJ ∈ [V0, . . . , Vm]. In the last step of the induction we obtain
Co

j = V{j} ∈ [V0, . . . , Vm], and so

[Co
0 , . . . , Co

m] ⊂ [V0, . . . , Vm] .

Proposition 1 also gives

Pi ⊂ [V0, . . . , Vm] , i = 0, . . . ,m .

Comparing these with (23) the theorem follows. �

Proof of Theorem 1. The coefficient in (28) can be estimated as

1
1 − σi

1
1 + λi

= 1+
σ − 1

1
1+λi

+ 1 − σ
≤ 1+

σ − 1
1

1+m + 1 − σ
=

1
m + 2 − (m + 1)σ

. (29)

We now define

C∗
i =

1
m + 2 − (m + 1)σ

(Ci − C∗) + C∗ , i = 0, . . . , m , (30)

and
Δ∗ = [C∗

0 , . . . , C∗
m] .

By (28)–(30), we have
[V0, . . . , Vm] ⊂ Δ∗ .

This, combined with Theorem 3, gives the first statement of Theorem 1. The
second statement is clear from (30). Theorem 1 follows. �

The discussion at the end of Section 3 carries over to the setting above to obtain
the maximum bulging of L over the inscribed opposite simplex [Co

0 , . . . , Co
m] ⊂ L.

We denote by βi : [Co
0 , . . . , Ĉo

i , . . . , Co
m] → R the bulging function of the i-th face.

By the corollary of Section 3, we have

max
0≤i≤m

max
[Co

0 ,...,Ĉo
i ,...,Co

m]
βi ≤ max

0≤i≤m

m − σi

1 − σi
= 1 +

m − 1
1 − σ + min0≤i≤m

1
1+λi

≤ 1 +
m2 − 1

m + 2 − (m + 1)σ
.



192 G. Toth J. Geom.

Acknowledgements

The author wishes to thank the referee for the careful reading and suggestions
which led to the improvement of the original manuscript.

References

[1] M. Berger, Geometry I–II, Springer, New York, 1994.

[2] A. Dvoretzky, Some results on convex bodies and Banach spaces, in: Proc. Internat.
Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem;
Pergamon, Oxford (1961) 123–160.

[3] A. Dvoretzky, A theorem on convex bodies and applications to Banach spaces, Proc.
Nat. Acad. Sci. U.S.A. 45 (1959) 223–226.
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