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ASYMMETRY OF CONVEX SETS
WITH ISOLATED EXTREME POINTS

GABOR TOTH

(Communicated by Alexander N. Dranishnikov)

Abstract. When measuring asymmetry of convex sets L ⊂ Rn in terms of
inscribed simplices, the interior of L naturally splits into regular and singular
sets. Based on examples, it may be conjectured that the singular set is empty
iff L is a simplex. In this paper we prove this conjecture with the additional
assumption that L has at least n isolated extreme points on its boundary.

1. Introduction and statement of results

Throughout, we use standard notation and basic concepts in the theory of convex
sets and functions [1, 5]. Let E be a Euclidean vector space of dimension n. (We
usually take E = Rn.) If K ⊂ E , then 〈K〉 and [K] denote the affine span and convex
hull of K, respectively. For K = {B0, . . . , Bm} finite, [K] is a convex polytope. This
polytope is an m-simplex if B0, . . . , Bm are affinely independent, or equivalently, if
dim[K] = dim〈K〉 = m. A convex set L ⊂ E is a convex body if it has nonempty
interior. Every convex set is a convex body in its affine span.

Let L be a compact convex body in Rn and O a point in the interior of L. As
in [6, 7], we define a sequence of (affine) invariants {σm(L, O)}m≥1. Intuitively,
σm(L, O) measures how lopsided L is in dimension m viewed from O. Since L is
compact and convex, given C ∈ ∂L, we have 〈O, C〉 ∩ ∂L = {C, Co}, where Co

is called the opposite of C (with respect to O). We define the distortion function
ΛL = Λ : ∂L × intL → R by

Λ(C, O) =
d(C, O)
d(Co, O)

, C ∈ ∂L, O ∈ intL,

where d is the Euclidean distance in Rn. The distortion Λ is a continuous function
[6, 7]. By definition, Λ(Co, O) = 1/Λ(C, O).

The minimum distortion λ(O) = infC∈∂L Λ(C, O), as a function on the interior
of L, has been studied by many authors. (See Grünbaum [2] and the extensive
references therein.) In particular, there are many lower estimates on Minkowski’s
measure of symmetry supO∈intL λ(O) and the derived measures λ(O0), where O0 is
the centroid, the centers of circumscribed and inscribed ellipsoids, the centroid of
the surface area of ∂L, and the curvature centroid.

Let m ≥ 1. A finite multi-set {C0, . . . , Cm} is called an m-configuration with re-
spect to O if {C0, . . . , Cm} ⊂ ∂L and O ∈ [C0, . . . , Cm]. The set of m-configurations
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288 GABOR TOTH

is denoted by Cm(L, O). We define

σm(L, O) = inf
{C0,...,Cm}∈Cm(L,O)

m∑
i=0

1
1 + Λ(Ci, O)

.

Since a 1-configuration is an opposite pair of points, we have σ1(L, O) = 1.
An m-configuration {C0, . . . , Cm} for which the infimum is attained is called min-

imal. Compactness implies that minimal configurations exist. σm(L, .) : intL → R
is a continuous function ([7], Theorem D). In what follows, we suppress O when no
confusion arises. In addition, we also suppress the dimension n; in particular, we
write σ(L) for σn(L), etc.

In general, we obviously have

(1.1) σm+k(L) ≤ σm(L) +
k

1 + max∂L Λ
, m, k ≥ 1.

For m = n, a configuration in Cn+k(L, O), k ≥ 1, always contains a subconfiguration
in C(L, O) so that equality holds in (1.1). (See [8] for details.) In other words, the
sequence {σm(L)}m≥1 is arithmetic (with difference 1/(1+max∂L Λ)) from the n-th
term onwards.

By [7] (Theorem B), for m ≥ 1, we have

1 ≤ σm(L) ≤ m + 1
2

.

The lower bound σm(L) = 1 is realized iff there exists an affine subspace F ⊂ Rn,
O ∈ F , of dimension m such that L ∩ F is an m-simplex. For m ≥ 2, the upper
bound σm(L) = (m + 1)/2 is realized iff L is symmetric (with respect to O).

Thus, up to scaling, σm(L, O), m ≥ 1, are measures of symmetry in the sense of
Grünbaum [2] since σm is clearly continuous on the space of compact convex bodies
with specified interior points and is also invariant under similarity transformations.

For estimates on the related symmetries of measure

inf
{C0,...,Cm}∈Cm(L,O)

m∑
i=0

Λ(Ci, O) and inf
{C0,...,Cm}∈Cm(L,O)

m∏
i=0

Λ(Ci, O)

(at least for m = n) see also Grünbaum [2].
We define the regular set R ⊂ intL as

R =
{

O ∈ intL |σ(L, O) < σn−1(L, O) +
1

1 + max∂L Λ(., O)

}
.

An element of R is called a regular point. An interior point is called singular if
it is not regular. By continuity of the functions in the defining inequality of R,
the set R is open in intL (and hence in Rn). The structure of a compact convex
body viewed from a regular point is technically much easier to deal with than when
viewed from a singular point. For example, as shown below (Lemma 2.1), if O
is regular, then there exists a minimal n-configuration consisting of extreme points
only. (Recall that a point on the boundary of L is called an extreme point if it is not
contained in the interior of a boundary line segment.) This, for L a convex polytope,
reduces the determination of σ(L, O) to a finite enumeration on the vertices of L.
Moreover, according to a result in [7], the distortion function Λ(L, .) is concave
on R. Irrespective of regularity, concavity of the distortion function holds in 2-
dimensions [7]. By contrast, there exists a 4-dimensional cone in which, due to the
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existence of singular points near the base, the distortion function is not concave [6].
It is therefore important to analyze when and where singularity does occur.

It is easy to show that O ∈ R iff the convex hull of every minimal configuration
is an n-simplex with O in its interior. (See [8] for details.) In addition, Λ(., O)
attains its local maximum at each configuration point.

Because of this, we will need the behavior of the boundary of L at a local
maximum C of Λ(., O) as described in [7] (Section 7). For the moment we only
use the fact that if C is a smooth point of ∂L at which Λ(., O) assumes a local
maximum, then Co is also smooth and the tangent spaces at C and Co to ∂L
are parallel. If C is not a smooth point, it is still true that there exist parallel
supporting hyperplanes at C and Co. In particular, [C, Co] is an affine diameter in
the sense of Grünbaum [2]. Thus, if O is a regular point O belongs to at least n+1
(affinely independent) affine diameters. To determine points with this property is
an unsolved problem; in particular, it is not known whether or not the centroid has
this property. For further results, see Grünbaum [2] and Kosiński [3, 4].

We denote by L0 the set of extreme points of L. By a theorem of Minkowski,
we have L = [L0]. (See Theorem D in [5], p. 84.) We call an extreme point
C ∈ L0 isolated if C is not a limit point of L0. The following simple example is the
motivation for our study:

Example. Let L have an isolated extreme point C, and assume that, away from
C, ∂L is smooth. We claim that there are singular points in the interior of L.

First, since C is an isolated extreme point, the set of supporting hyperplanes H
at C such that L∩H = {C} is a nonempty open set (in the respective Grassmann
manifold). This follows from the conical structure of L near C. (In fact, L is the
convex hull of [L0 \ {C}] and the single point C; see Lemma 2.2 below.) For each
H in this set, we consider the set of points B ∈ ∂L, B 	= C, such that the tangent
space of ∂L at B is parallel to H. Since L is convex and, away from C, its boundary
is smooth, the union B of these sets is open in ∂L. (In fact, ∂L \ B is closed, as
follows again from the conical structure of L near C.) The convex hull [B] intersects
the interior of L. Any point O in this interior must be singular. Indeed, if O were
regular, then at least one point in a minimal configuration {C0, . . . , Cn} ∈ C(L, O)
would be contained in B. This is a contradiction, since the tangent space at that
point has no parallel translate tangent to ∂L at another smooth point.

The situation in the nonsmooth case is much more complicated. Our first result
asserts that regularity of the interior of L along with the existence of isolated
extreme points impose severe restrictions to the structure of L.

Theorem 1.1. Let L ⊂ Rn be a compact convex body with all interior points
regular. Assume that L has (at least) two isolated extreme points C0 and C1. Then,
for any plane τ that contains C0 and C1, the intersection L ∩ τ is either [C0, C1]
or a triangle with [C0, C1] as a side.

An illustrative example to Theorem 1.1 to be discussed below is the following:

Example. Let S ⊂ R3 be the unit circle of the coordinate plane spanned by the
first and second coordinate axes, and let C± = (1, 0,±1). Let L be the convex hull
[S, C+, C−]. Then L0 = (S \ {(1, 0, 0)}) ∪ {C±}. Clearly, L0 is not closed. Due to
triangular intersections, we have σ2(L, .) = 1. Hence [7], σ(L, .) is concave on the
whole interior of L.
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290 GABOR TOTH

Theorem 1.2. Let L ⊂ Rn be as in Theorem 1.1. Assume that L has at least n
isolated extreme points. Then L is a simplex.

For L a convex polytope, the extreme points are the vertices and they are all
isolated. Theorem 1.2 gives the following:

Theorem 1.3. Let L ⊂ Rn be a convex polytope which is not a simplex. Then
there are singular points in the interior of L.

The proof will actually show that, if nonempty, the set of singular points has
nonempty interior and its closure contains part of the boundary of L.

2. Proofs

Let L ⊂ Rn be a compact convex body. We first recall the notion of k-flat points
on ∂L [7]. Let C ∈ ∂L. We call an affine subspace A ⊂ Rn a supporting flat at
C if C ∈ A and A is contained in a supporting hyperplane of L at C. Consider
the set of supporting flats A at C such that ∂L ∩ A is a compact convex body
in A and C is contained in its relative interior. Since L is convex, this set has a
unique maximal element denoted by AC . We call C a k-(dimensional) flat point if
dimAC = k. Clearly, C is an extreme point iff k = 0.

Lemma 2.1. Let L ⊂ Rn be a compact convex body. If O is a regular point of
L, then there exists a minimal configuration {C0, . . . , Cn} ∈ C(L, O) consisting of
extreme points.

Proof. Let {C0, . . . , Cn} ∈ Cn(L, O) be minimal. Since O is a regular point,
[C0, . . . , Cn] is an n-simplex containing O in its interior and Λ(., O) attains a rela-
tive maximum at each Ci, i = 0, . . . , n. Suppressing the index for simplicity, assume
that a configuration point C is not extremal. Then C is a k-flat point for some
k > 0, k = dimAC . Since Λ(., O) attains a relative maximum at C, according to a
result of [7] (the proposition in Section 7), the antipodal point Co is l-flat, l ≥ k,
and AC is parallel to ACo in the sense that a translate of AC is contained in ACo .

Choose a point C ′ on the boundary of the compact convex body ∂L ∩ AC in
A. Clearly, C ′ is a lower dimensional flat point than C. Since AC is parallel to
ACo , Λ(., O) is constant on [C, C ′]. Moving C toward C ′ and replacing C with the
moved point, the configuration condition O ∈ [C0, . . . , Cn] stays intact since O is a
regular point. Thus, replacing C by C ′ in the configuration, we arrive at a minimal
configuration with C ′ being a lower dimensional flat point than C. Proceeding
inductively, we can replace each nonextremal point of the configuration with and
extremal point without altering minimality. Lemma 2.1 follows. �

Corollary. Let L ⊂ Rn be a convex polytope and denote by V the set of vertices.
Assume that O is a regular point of L. Then, we have

σ(L, O) = min
{V0,...,Vn}∈V

n∑
i=0

1
1 + Λ(Vi, O)

.

Returning to the general setting, as in Section 1, we let L0 ⊂ ∂L denote the set
of extreme points. We have L = [L0]. Recall that an extreme point C is isolated if
C has an open neighborhood disjoint from L0 \ {C}. Our first task is to describe
L near an isolated extreme point.
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Lemma 2.2. Let L ⊂ Rn be a compact convex body and L0 the set of extreme
points. Let C ∈ L0 be an isolated extremal point. Then

(2.1) UC = L \ [L0 \ {C}]
is a relatively open set in L that contains C. For any C ′ ∈ UC ∩ ∂L, C ′ 	= C,
the line segment [C, C ′] is on the boundary of L, and it extends to a boundary line
segment [C, C ′′] with C ′′ ∈ [L0 \ {C}].

Proof. Let C be an isolated extreme point. For the first statement we need to show
that

(2.2) C /∈ [L0 \ {C}].
Assuming the contrary, we can select a sequence {Ck}k≥1 ⊂ [L0 \ {C}] converging
to C. For each k ≥ 1, we can write Ck as a convex linear combination

∑n
i=0 λikCik,

where Cik ∈ L0, Cik 	= C. By compactness, we may assume that, for each 0 ≤ i ≤ n,
Cik → Ci and λik → λi as k → ∞. Taking the limit, we obtain C =

∑n
i=0 λiCi.

Since C is an extreme point, the only way this is possible is that this sum reduces to
a single term. We obtain that Ci = C for a specific 0 ≤ i ≤ n, and so Cik → Ci = C
as k → ∞. Hence C is not isolated. (2.2) follows.

For the second statement, let C ′ /∈ [L0 \ {C}] be a boundary point of L. Since
[L0] = L, we can certainly write C ′ as a convex linear combination of C and (finitely
many) points in L0 \ {C}. The point C must participate in this linear combination
with positive coefficient. Hence C ′ is in the interior of a segment [C, C ′′], where
C ′′ ∈ [L0 \ {C}]. Finally, since C and C ′ are both boundary points of L, the entire
line segment [C, C ′′] is on the boundary of L. Lemma 2.2 follows. �

Remark. Consider the second example above. Removing C− from L0, we see that
[L0 \ {C−}] is the positive cone [S, C+] with the half-open segment [(1, 0, 0), C+)
deleted. Its closure is [L0 \ {C−}] = [S, C+], and hence UC− = [S, C−] \ [S]. Notice
that, for any C ′ in the interior of [C−, (1, 0, 0)], the line segment [C−, C ′] extends
beyond UC− to [C−, C+].

Lemma 2.3. Let C be an isolated extreme point of L with associated open set UC .
Then, for every O ∈ UC , there is a minimal configuration which contains C. In
particular, if O is regular, then Λ(., O) takes a local maximum at C.

Proof. Let O ∈ UC and, as in Lemma 2.1, choose a minimal configuration consisting
of extreme points. If C does not participate in the configuration, then O must be
contained in [L0 \{C}]. This contradicts the assumption. Thus, C is a point in the
configuration. The last statement is clear. �

For the next step we introduce some notation and recall some results in [7]
(Section 7). Let C be an isolated extreme point of L. Let τ ⊂ Rn be a plane
passing through C and an interior point O ∈ UC of L. We consider the planar
convex body L ∩ τ with isolated extreme point C. As Lemma 2.3 asserts, L ∩ τ
contains an angular domain with vertex at C. We let [C, P ], [C, Q] ⊂ ∂L∩ τ denote
the maximal side segments of this domain. We orient τ from O such that the
positive orientation corresponds to the sequence P, C, Q. As in Section 7 of [7],
α = ατ (C) is the angle ∠O C Q. In a similar vein, we let αo = ατ (Co), where αo is
the angle with vertex at Co between the line segment [Co, O] and the right tangent
at Co to the boundary of L ∩ τ .
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292 GABOR TOTH

From now on we assume that UC consists of regular points only. By Lemma 2.3,
Λ(., O) attains a local maximum at C, and so, by Corollary 1 of Section 7 in [7],

(2.3) α ≤ αo.

For a boundary point B of L ∩ τ , let 0 ≤ φ(C) ≤ π denote the angle between
the left and right tangent lines at B to ∂L ∩ τ . Then we have φ(C) = ∠PCQ.
For O close to a fixed interior point of [C, P ], the right tangent to L ∩ τ at Co

intersects the extension of the line segment [C, P ] beyond P . We let R denote this
intersection point. From the triangle �CCoR, we obtain

φ(C) − α + αo + β = π,

where β = ∠CoRC. Combining this with (2.3), we get

φ(C) + β ≤ π.

We now let O approach a fixed interior point of [C, P ]. We claim that β ap-
proaches φ(P ). In fact, as O approaches a fixed interior point of [C, P ], the antipo-
dal Co approaches P along the boundary of L∩ τ , and the right tangent line at Co

approaches the left tangent line at P . (See formula (6) in [5], p. 7.) We obtain the
following:

Lemma 2.4. Let L ⊂ Rn be a compact convex body, C an isolated extreme point,
and assume that UC consists of regular points. Then, for any plane passing through
C and an interior point of L, we have

(2.4) φ(C) + φ(P ) ≤ π,

where φ(C) and φ(P ) are the tangential angles of L ∩ τ at C and P , and [C, P ] is
a maximal line segment on the boundary of L ∩ τ .

In the lemma above, we call P an adjacent point to the isolated extreme point
C. P is adjacent to C if [C, P ] is a maximal line segment on the boundary of L.

Proof of Theorem 1.1. We may assume that L ∩ τ is more than [C0, C1], in which
case L ∩ τ is a compact convex body with isolated extreme points C0 and C1. Let
P0, Q0 ∈ ∂L∩τ and P1, Q1 ∈ ∂L∩τ be adjacent to C0 and C1, respectively. Orient
τ and choose the labels such that (with respect to an(y) interior point of L ∩ τ )
P0, C0, Q0 and P1, C1, Q1 are positively oriented. Assume first that the adjacent
points are all distinct, the right tangent at Q0 and the left tangent at P1 intersect
at a point X, and the left tangent at P0 and the right tangent at Q1 intersect at
a point Y . For the angle sum of the (convex) octagon [P0, C0, Q0, X, P1, C1, Q1, Y ]
we have

(2.5) φ(P0) + φ(C0) + φ(Q0) + β + φ(P1) + φ(C1) + φ(Q1) + γ = 6π,

where β and γ are the angles at X and Y , respectively. On the other hand, by
(2.4), we have

φ(C0) + φ(P0), φ(C0) + φ(Q0), φ(C1) + φ(P1), φ(C1) + φ(Q1) ≤ π.

Adding these, we obtain

2φ(C0) + 2φ(C1) + φ(P0) + φ(P1) + φ(Q0) + φ(Q1) ≤ 4π.

Comparing this with (2.5), we get

φ(C0) + φ(C1) + 2π − β − γ ≤ 0.
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This is a contradiction. Notice that we get a contradiction even when β = π
or γ = π (the cases when the corresponding tangents coincide), and even when
P0 = Q1 but P1 	= Q0, or when P1 = Q0 but P0 	= Q1.

If X or Y do not exist, we can add additional supporting lines to boundary
points of L ∩ τ and get a contradiction again.

Summarizing, we obtain P0 = Q1 and P1 = Q0. As a byproduct, we also
obtain that L∩ τ = [P0, C0, P1, C1]. If P0, C0, P1, C1 are all distinct, then, by (2.4),
[P0, C0, P1, C1] is a parallelogram with [C0, C1] as a diagonal. Finally, if these points
are not distinct, then L∩ τ is a triangle with [C0, C1] as a side (and P0 or P1 is the
other vertex).

It remains to show that the parallelogram intersection is impossible. As in Lem-
mas 2.1-2.3, we let O ∈ UC0 and consider a minimal configuration {C0, C1, . . . , Cn}
∈ C(L, O) consisting of extreme points only. By the last statement of Lemma 2.2,
O is contained in the interior of the triangle [P0, C0, P1]. Thus, the opposite P o

0 is
contained in [C0, P1]. Any point in the segment [C0, P

o
0 ] has the same distortion as

C0 since L ∩ τ is a parallelogram. Since O and [L0 \ C0] are disjoint, there must
be a point C ′

0 ∈ [C0, P1] for which O is on the boundary of [(L0 \ {C0}) ∪ {C ′
0}].

Thus, O is on the boundary of [C ′
0, C1, . . . , Cn]. Hence {C ′

0, . . . , Cn} ∈ C(L, O). It
must be minimal with C ′

0 ∈ [C0, P
o
0 ] since the distortion along [P o

0 , P1] increases.
This, however, contradicts the regularity of O. Theorem 1.1 follows. �

Proof of Theorem 1.2. Let L ⊂ Rn be as in Theorem 1.1. For 1 ≤ m < n, let Pm be
the following statement: If C0, . . . , Cm ∈ L are (distinct) isolated extreme points,
then they are affinely independent, and, for any (m+1)-dimensional affine subspace
τ ⊂ Rn that contains C0, . . . , Cm, the intersection L ∩ τ is either [C0, . . . , Cm] or
an (m + 1)-simplex with [C0, . . . , Cm] as a side.

Notice that P1 is Theorem 1.1, and the second statement of Pn−1 is Theorem 1.2.
Therefore, Theorem 1.2 will follow by proving Pm by induction with respect to
m = 1, . . . , n − 1. Before the general induction step, it is convenient to have an
intermediate step:

Lemma 2.5. Let L be as in Theorem 1.1. Assume that, for a fixed 2 ≤ m < n, Pi,
1 ≤ i < m, hold. Let C0, . . . , Cm be isolated extreme points of L. Then, C0, . . . , Cm

are affinely independent and

(2.6) L ∩ 〈C0, . . . , Cm〉 = [C0, . . . , Cm].

Proof. We first show affine independence. Since Pm−1 holds, C0, . . . , Cm−1 are
certainly affinely independent. Thus, the affine span τ = 〈C0, . . . , Cm−1〉 ⊂ Rn is
(m − 1) dimensional. Applying Pm−2 to τ , we obtain that L ∩ τ is an (m − 1)-
simplex with [C0, . . . , Cm−2] as a side. Since Cm−1 /∈ 〈C0, . . . , Cm−2〉 is an extreme
point of L, it is also an extreme point of L ∩ τ . Thus, we have

L ∩ τ = [C0, . . . , Cm−1].

Now, Cm cannot be in this set since it is an extreme point of L and thereby also
an extreme point of L ∩ τ . Thus, C0, . . . , Cm are affinely independent. We now
add Cm to τ and set τ = 〈C0, . . . , Cm〉 ⊂ Rn, an m dimensional affine subspace.
Applying Pm−1, once again, L∩ τ must be an m-simplex with [C0, . . . , Cm−1] as a
side. Cm is an extreme point in L and also in L ∩ τ . Equation (2.6) follows. �
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We now return to the proof of the general induction step. Assume that, for a fixed
2 ≤ m < n, Pi, 1 ≤ i < m, hold. The first statement in Pm is contained in Lemma
2.5. To prove the second statement, let τ ⊂ Rn be an (m + 1) dimensional affine
subspace that contains C0, . . . , Cm. We may assume that L ∩ τ 	= [C0, . . . , Cm],
since otherwise we are done. Equation (2.6) and [L0] = L show that L contains
an extreme point C away from 〈C0, . . . , Cm〉. In other words, C0, . . . , Cm, C are
affinely independent, and the (m+1)-simplex [C0, . . . , Cm, C] is contained in L∩ τ .
It remains to show that

(2.7) L ∩ τ = [C0, . . . , Cm, C].

To do this, we will show that

(2.8) [C0, . . . , Ĉi, . . . , Cm, C] ⊂ ∂L, 0 ≤ i ≤ m.

First note that (2.8) implies (2.7). Indeed, (2.8) says that all the faces of [C0, . . . ,
Cm, C] opposite to C0, . . . , Cm are on the boundary of L. If the face [C0, . . . , Cm]
were not on the boundary of L, then there would be another extreme point of L,
say C ′ ∈ ∂L ∩ τ , on the side of 〈C0, . . . , Cm〉 ⊂ τ opposite to C. By (2.8) with
C replaced by C ′, we would obtain that L ∩ τ = [C0, . . . , Cm, C, C ′] is a double
simplex with common base [C0, . . . , Cm]. This clearly contradicts P1.

It remains to show (2.8). To do this, for 0 ≤ i ≤ m, we let τi = 〈C0, . . . , Ĉi, . . . ,
Cm, C〉 ⊂ τ and apply Pm−1. Then (2.6) in Lemma 2.5 gives

L ∩ τi = [C0, . . . , Ĉi, . . . , Cm, C], 0 ≤ i ≤ m.

In particular, for 0 ≤ i < j ≤ m, the (m − 1)-simplex

[C0, . . . , Ĉi, . . . , Ĉj , . . . , Cm, C]

is on the boundary of L. Let C ′ ∈ ∂L be a point in the interior of this (m − 1)-
simplex and consider the plane σ = 〈Ci, Cj , C

′〉. By P1, L ∩ σ = [Ci, Cj , C
′′] for

some C ′′ ∈ ∂L∩σ with C ′ ∈ [Ci, Cj , C
′′]. We claim that C ′′ = C ′. This will clearly

imply (2.8).
First, C ′ cannot be in the interior of [Ci, Cj , C

′′] since otherwise C ′, C ′′ and the
unique intersection point C ′′′ = 〈C ′, C ′′〉 ∩ [Ci, Cj ] would be three collinear points
on ∂L, so that, by convexity, [C ′′, C ′′′] would be on the boundary of L.

Thus, C ′ is on the boundary of [Ci, Cj , C
′′], say C ′ ∈ [Ci, C

′′]. On the other
hand, C ′ ∈ [C0, . . . , Ĉi, . . . , Ĉj , . . . , Cm, C] and C ′′ ∈ [C0, . . . , Ĉj , . . . , Cm, C] since
Ci, C

′, C ′′ are collinear. As [C0, . . . , Ĉi, . . . , Ĉj , . . . , Cm, C] is the side of the m-
simplex [C0, . . . , Ĉj , . . . , Cm, C] opposite to Ci, C ′ = C ′′ follows. The second state-
ment of Pm and hence Theorem 1.2 follow. �
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