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Abstract. We study the properties of certain affine invariant measures
of symmetry associated to a compact convex body L in a Euclidean vec-
tor space. As functions of the interior of L, these measures of symmetry
are proved or disproved to be concave in specific situations, notably for
the reduced moduli of spherical minimal immersions.
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1. Introduction and statement of results

Let E be a Euclidean vector space of dimension n. If K ⊂ E then [K] and 〈K〉
denote the convex hull and the affine span of K, respectively. Since [K] has a
nonempty relative interior in 〈K〉, it is a convex body in 〈K〉.
Let L be a compact convex body in E and O a point in the interior of L. As in
[9, 10], we define an affine invariant σ(L,O) as follows. Given C ∈ ∂L, the line
passing through O and C intersects ∂L in another point that we call the opposite
of C with respect to O and denote it by Co. Clearly, (Co)o = C.

We define the distortion function Λ : ∂L × intL → R as

ΛL(C,O) = Λ(C,O) =
d(C,O)

d(Co,O)
, C ∈ ∂L, O ∈ intL,
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where d(X,X ′) = |X −X ′| is the Euclidean distance between the points X and
X ′ in E , and Co is the opposite of C with respect to O. The distortion Λ is a
continuous function [3]. By definition, Λ(Co,O) = 1/Λ(C,O).

The minimum distortion λ(O) = infC∈∂L Λ(C,O), as a function of the interior of
L has an extensive literature. (We refer to the survey article of Grünbaum [5]
and the references therein.) In particular, the structure of the level sets and the
critical set of Minkowski’s measure of symmetry supO∈ intL λ(O) ≥ 1/n have been
studied by many authors. The derived measures λ(O0), where O0 is a specific
center of L also have an extensive literature. Choices of O0 include the centroid,
the centers of circumscribed and inscribed ellipsoids, the centroid of the surface
area of ∂L, and the curvature centroid.

A multi-set {C0, . . . , Cn} is called a configuration with respect to O if {C0, . . . , Cn}
⊂ ∂L and O ∈ [C0, . . . , Cn]. Let C(L,O) denote the set of all configurations of L.
We define

σ(L,O) = inf
{C0,...,Cn}∈C(L,O)

n∑
i=0

1

1 + Λ(Ci,O)
. (1)

A configuration {C0, . . . , Cn} for which the infimum is attained is called minimal.
Minimal configuration exists since L is compact.

σ(L,O) is a continuous function on the space of compact convex bodies with
specified interior point, and it is also invariant under affine transformations. In
addition, by [10], 1 ≤ σ(L,O) ≤ (n + 1)/2. The lower bound is attained by
simplices, and the upper bound is realized by symmetric L (with respect to O).
Because of these properties, σ(L,O) is a measure of symmetry in the sense of
Grünbaum [5].

σ(L,O) is related to the measures of symmetry

inf
{C0,...,Cn}∈C(L,O)

n∑
i=0

Λ(Ci,O) and inf
{C0,...,Cn}∈C(L,O)

n∏
i=0

Λ(Ci,O)

for which upper and lower bounds have been derived. (See again Grünbaum [5].)

According to [9] (Theorem D), σ(L, .) : intL → R is continuous and has the
property

lim
d(O,∂L)→0

σ(L,O) = 1.

In particular, it extends continuously to the boundary of L with value 1.

A point O ∈ intL is said to be regular if, for any minimizing configuration
{C0, . . . , Cn} ∈ C(L,O), the convex hull [C0, . . . , Cn] is a simplex which contains
O in its interior. The set R of regular points is called the regular set of L. This
is an open (possibly empty) subset of intL.
If O is a regular point then, at each point C in a minimal configuration, Λ(.,O)
assumes a local maximum. Therefore, there exists a pair of parallel supporting
hyperplanes passing through C and Co. (This follows from the description of ∂L
near C in Section 7 of [9].) Thus, the segment [C,Co] is an affine diameter of L.
We obtain that if O is a regular point then there are n+ 1 (affinely) independent
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affine diameters of L passing through O. Note that it is a difficult and unsolved
problem to characterize those points in the interior of L at which n + 1 affine
diameters pass through. (See Grünbaum [5] and Koziński [6, 7].)

In [9] (Proposition 2 and Theorem E), we proved the following:

Theorem A. The function σ(L, .) is concave on the regular set R. For n = 2, it
is concave on the entire L.

One of the main purposes of this paper is to see how far can this result be extended
to specific classes of compact convex bodies. The main technical result is to
calculate σ(L, .) for any convex cone L in terms of certain affine invariants on the
base of the cone. This will give the following:

Theorem B. For any 3-dimensional compact convex cone L, the function σ(L, .)
is concave on intL. There exists a 4-dimensional compact convex cone L such
that σ(L, .) is not concave on intL.

The key to prove Theorem B is to extend σ to a sequence of invariants {σm}m≥1,
with σn = σ, and study the monotonicity properties of this sequence.

Let m ∈ N. A multi-set {C0, . . . , Cm} is an m-configuration with respect to O if
{C0, . . . , Cm} ⊂ ∂L and O ∈ [C0, . . . , Cm]. For an m-configuration {C0, . . . , Cm}
the convex hull [C0, . . . , Cm] is a convex polytope in its affine span 〈C0, . . . , Cm〉.
This polytope has maximum dimension m iff it is a simplex. In this case, we call
{C0, . . . , Cm} simplicial.

We define

σm(L,O) = inf
{C0,...,Cm}∈Cm(L,O)

m∑
i=0

1

1 + Λ(Ci,O)
,

where Cm(L,O) denotes the set of all m-configurations of L. An m-configuration
for which the infimum is attained is minimal. Compactness implies that minimal
configurations exist. σm(L, .) : intL → R is continuous [9] (Theorem D), and
extends continuously to ∂L to 1 since

lim
d(O,∂L)→0

σm(L,O) = 1. (2)

Since a 1-configuration of L is an opposite pair of points {C,Co} ⊂ ∂L, we have
σ1(L,O) = 1.

In what follows, we suppress O when no confusion arises.

By [9] (Theorem B), for m ∈ N, we have

1 ≤ σm(L) ≤ m+ 1

2
. (3)

If σm(L) = 1 then m ≤ n and there exists an affine subspace F ⊂ E , O ∈ F , of
dimension m such that L∩F is an m-simplex. In this case a minimal configuration
{C0, . . . , Cm} ∈ Cm(L ∩ F) is simplicial. Moreover, we have

m∑
i=0

1

1 + Λ(Ci)
= 1 and

m∑
i=0

1

1 + Λ(Ci)
Ci = O. (4)
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Conversely, if L has a simplicial intersection with anm-dimensional affine subspace
F 3 O then σm(L) = 1.
For m ≥ 2, σm(L) = (m+ 1)/2 if and only if Λ = 1 on ∂L, that is, if and only if
L is symmetric.

As before, σm(L,O), m ≥ 1, are measures of symmetry.

In general, for m′ ≥ m, we obviously have

σm′(L) ≤ σm(L) +
m′ −m

1 + max∂L Λ
. (5)

For m ≥ n, n = dimL, equality holds in (5) [10]:

σm(L) = σn(L) +
m− n

1 + max∂L Λ
.

Equivalently, the sequence {σm(L)}m≥1 is arithmetic (with difference 1/(1 +
max∂L Λ)) from the n-th term onwards.

It is also clear that, for m < n, we have

σm(L) = inf
O∈F⊂E, dimF=m

σ(L ∩ F),

where the infimum is over affine subspaces F ⊂ E .

In [9] (Theorem B) the following superadditivity was proved:

σm+m′(L)− σm+1(L) ≥ σm′(L)− σ1(L), m ≥ 0, m′ ≥ 2.

In particular, setting m′ = 2 and using σ2(L) ≥ 1, we see that the sequence
{σm(L)}m≥1, is nondecreasing.

In Section 2 we will derive a stronger statement, namely, that, after a possible
string of 1’s, this sequence is strictly increasing.

The original motivation for the measures of symmetry {σm(L)}m≥1 is the bulging
phenomenon observed in moduli spaces of spherical minimal immersions [11, 13].
The general setting for the moduli is as follows [1, 2, 11]. Let H be a Euclidean
vector space and S2

0(H) the space of tracefree symmetric endomorphisms of H.
We define the reduced moduli space by

K0 = K0(H) = {C ∈ S2
0(H) |C + I ≥ 0},

where ≥ 0 means positive semi-definite. Then K0 is a compact convex body in
S2

0(H). The distortion Λ(C) (with respect to the origin) of an endomorphism
C ∈ ∂K0 is the maximal eigenvalue of C. Finally, the moduli space corresponding
to a linear subspace E ⊂ S2

0(H) is the intersection L = E ∩ K0.

It is a difficult and important problem to describe the geometry of L. More
specifically, let M be a compact (isotropy irreducible) Riemannian homogeneous
manifold, λ an eigenvalue of the Laplace-Beltrami operator acting on functions of
M , and H the eigenspace of functions corresponding to λ. Then the DoCarmo-
Wallach moduli space of spherical minimal immersions of M is the moduli space
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of K0 = K0(H) corresponding to a specific choice E of a linear subspace in S2
0(H).

For details, see [11].

Theorem C. We have σ1(K0, .) = · · · = σh−1(K0, .) = 1, h = dimH. For m ≥ h,
we have

σm(K0,O) = inf
{C0,...,Cm}∈Cm(K0)

m∑
i=0

1 + 〈O, Ci〉/h
1 + Λ(Ci)

,

where Cm(K0) is the set of m-configurations of K0 with respect to the origin. Con-
sequently, σm(K0, .) is concave on intK0 and attains its unique maximum (m+1)/h
at the origin.

The structure of a moduli space L = E ∩ K0 is much more subtle. Even the
first statement of Theorem C leads to an unsolved problem. Let r(L) be the
largest positive integer such that σm(L) = 1 for 1 ≤ m ≤ r(L). We have r(L) ≤
dimK − n(L), where n(L) = min { rank (C + I) |C ∈ ∂L}. In the setting of
spherical minimal immersions, n(L)− 1 is the minimal range dimension for such
immersions. To determine n(L) is an old and difficult problem [1], [2], [8], [11],
[12], [13].

Corollary. Let M be a compact isotropy irreducible Riemannian homogeneous
space, λ an eigenvalue of the Laplace-Beltrami operator on M , H the correspond-
ing eigenspace, and L the moduli space of spherical minimal immersions of M .
Assume that the sequence {σm(L)}m≥1 starts with a string of 1’s of length r.
Then there exists a spherical minimal immersion of M into a sphere of dimension
< dimH− r.

Acknowledgment. The author wishes to thank the referee for the careful reading
and suggestions which led to the improvement of the original manuscript.

2. The measures σ(L, O) and σn−k(L, O), 0 ≤ k < n

In view of (5) we define the regular set R ⊂ intL as

R =

{
O ∈ intL |σ(L,O) < σn−1(L,O) +

1

1 + max∂L Λ(.,O)

}
.

By continuity of the functions in the defining inequality of R, the set R is open
in intL and hence in E .

Again by (5), for 1 ≤ k < n, we define

Sk =

{
O ∈ intL |σ(L,O) = σn−k(L,O) +

k

1 + max∂L Λ(.,O)

}
.

We call S = S1 the singular set. S is the complement of R in intL and therefore
it is relatively closed in intL. Clearly, we have

Sk+1 ⊂ Sk, k = 1, . . . , n− 2.
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Let O ∈ S. We define the degree of singularity of O as the largest k such that
O ∈ Sk. By the above, the degree of singularity of O is n − m if and only if
the sequence {σm(L,O)}m≥1 is arithmetic (with difference 1/(1+max∂L Λ(.,O)))
exactly from the m-th term onwards.

Proposition 1. O ∈ R if and only if every minimal configuration is simplicial
and O is contained in the interior of the corresponding n-simplex. In this case,
Λ(.,O) attains its local maximum at each configuration point.

Let O ∈ S. Then O ∈ Sn−m if and only if there exists a minimal n-configuration
which contains an m-configuration. In this case, the m-configuration is also min-
imal, and at each n-configuration point complementary to the m-configuration
Λ(.,O) attains absolute maximum. If, in addition, the degree of singularity of O
is n − m (equivalently, O /∈ Sn−m+1), then the m-configuration is simplicial, O
is contained in the relative interior of the corresponding m-simplex, and Λ(.,O)
restricted to the affine span of the m-configuration attains local maxima at every
m-configuration point.

Proof. We first observe that any subconfiguration of a minimal configuration is
also minimal, and the distortion attains absolute maximum at the complementary
points in the respective affine span.

Now let 1 ≤ m ≤ n−1. We claim that O ∈ Sn−m if and only if there exists a min-
imal n-configuration {C0, . . . , Cn} ∈ Cn(L,O) which contains an m-configuration
{C0, . . . , Cm} ∈ Cm(L,O), where we relabeled the configuration points if neces-
sary. The entire proposition follows from this claim.

Indeed, setting m = n − 1, the claim implies that O ∈ R if and only if every
minimal n-configuration {C0, . . . , Cn} ∈ Cn(L,O) contains no subconfiguration,
or equivalently, the corresponding convex hull [C0, . . . , Cn] is an n-simplex andO is
not on its boundary. Thus the claim implies the first statement of the proposition.

The degree of singularity of O is n−m if and only if m is the least number in the
claim. Indeed, if the subconfiguration {C0, . . . , Cm} ∈ Cm(L,O) is not simplicial
or O is on the boundary of its convex hull then this contradicts the minimality of
m. Thus, the claim implies the remaining part of the proposition.

By the observation above, we need to prove the “only if” part of the claim. Let
O ∈ Sn−m. Choose a minimal m-configuration {C0, . . . , Cm} ∈ Cm(L,O) and
extend it to an n-configuration {C0, . . . , Cn} ∈ Cn(L,O) by adding Cm+1 = · · · =
Cn at which Λ(.,O) attains absolute maximum. With this, we have

n∑
i=0

1

1 + Λ(Ci)
=

m∑
i=0

1

1 + Λ(Ci)
+

n−m

1 + max∂L Λ

= σm(L,O) +
n−m

1 + max∂L Λ
= σ(L,O).

Thus, {C0, . . . , Cn} is minimal and the claim follows.
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Proposition 2. The sequence {σm(L,O)}m≥1, after a possible initial string of
1’s, is strictly increasing.

First, for 1 ≤ m ≤ n, we define Sm(L,O) ⊂ Cm(L,O) as the subset of all simplicial
m-configurations (with respect to O). By continuity, Cm(L,O) can be replaced
by Sm(L,O) in the definition of σm(L,O). We need the following:

Lemma 1. Let {C0, . . . , Cm} ∈ Sm(L,O) with O in the relative interior of the
m-simplex [C0, . . . , Cm]. Setting

O =
m∑

i=0

µiCi, 0 < µi < 1, i = 0, . . . ,m,

we have

µi ≤
1

1 + Λ(Ci,O)
, i = 0, . . . ,m.

For a specific index i, equality holds iff [C0, . . . , Ĉi, . . . , Cm] ⊂ ∂L.

Proof. The lemma follows easily by comparing the distortion functions of L and
that of the simplex [C0, . . . , Cm] and using (4).

Proof of Proposition 2. Assume that σm−1 = σm(L,O) for some m ≥ 3. Clearly,
O is a regular point. Let {C0, . . . , Cm} ∈ Cm(L,O) be minimizing. Thus,
[C0, . . . , Cm] is an m-simplex with O in its relative interior, and Lemma 1 ap-
plies. Let 0 ≤ i, j ≤ m be distinct, and Fij = 〈Ci, Cj,O〉. Then Fij is an affine
plane passing through O. As in Section 3 of [9], superadditivity implies that Fij

intersects L in a triangle with vertices Ci, Cj and another vertex, say, Cij. This
latter vertex appears in the decomposition of O in Lemma 1 by compressing all
points Ck, k 6= i, j into a single point

µiCi + µjCj + µijCij = O with µi + µj + µij = 1,

where

Cij =
1

µij

m∑
k=0; k 6=i,j

µkCk.

Applying Lemma 1 to the triangle [Ci, Cj, Cij], we obtain

µi =
1

1 + Λ(Ci,O)
and µj =

1

1 + Λ(Cj,O)
.

Since i, j are arbitrary, the proposition follows.

Finally we will need the following:

Proposition 3. Let C be a smooth point of ∂L and assume that Λ(.,O) has a
local maximum at C. Then Co is also a smooth point of ∂L and the tangent spaces
at C and at Co are parallel. If, in addition, C is a k-flat point (the tangent space
at C contains a maximal k-dimensional affine subspace AC and C is contained in
the relative interior of ∂L ∩ AC) then Co is `-flat, where ` ≥ k, and a translate
of AC is contained in ACo.

For the proof, see Section 7 of [9].
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3. The measures τ (L, O) and τn−k(L, O), 1 ≤ k < n

Let L be a compact convex body in a Euclidean vector space E of dimension n,
and O an interior point of L. We let S0

m(L,O) denote the set of all simplicial
m-configurations (with respect to O) with a distinguished element. We usually
index the elements of a simplicial m-configuration {B0, . . . , Bm} such that the
distinguished element is B0. Then B0 is a vertex of the m-simplex [B0, . . . , Bm]
with opposite face [B1, . . . , Bm].

We now introduce another sequence of invariants τm(L,O), 1 < m ≤ n, which
will be useful in calculating distortions of cones in the next section. We let

τm(L,O) = inf
{B0,...,Bm}∈S0

m(L,O)

[
1

1 + Λ[B0,...,Bm](B0,O)
+

m∑
i=1

1

1 + ΛL(Bi,O)

]
(6)

where Λ[B0,...,Bm](.,O) is the distortion function of the m-simplex [B0, . . . , Bm] if
O is in the relative interior of [B0, . . . , Bm], otherwise it is defined by the obvious
limit. In particular, if O ∈ [B1, . . . , Bm] then Λ[B0,...,Bn](B0,O) = ∞.
Alternatively, Λ[B0,...,Bm](B0,O) and ΛL(Bi,O), i = 1, . . . ,m, can be interpreted as
the distortions of the intersection L∩ 〈B0, . . . , Bm〉 truncated with 〈B1, . . . , Bm〉.
An easy application of Lemma 1 gives τm(L,O) ≥ 1. It is also clear from the
limiting behavior that

τm(L,O) ≤ σm−1(L,O). (7)

We have τ2(L,O) = 1. For uniformity, we define τ1(L,O) = 1. (It seems to be a
difficult problem to decide whether equality holds in (7).)

By (3) and (7), we have

1 ≤ τm(L,O) ≤ m

2
.

τm(L,O) = 1 if and only if σm−1(L,O) = 1. (Once again, see Lemma 1.) Also, if
τm(L,O) = m/2 for some m ≥ 3, then L is symmetric with respect to O.

As usual, we suppress the index m = n. With this, we have

τm(L,O) = inf
O∈F⊂E ; dimF=m

τ(L ∩ F ,O), (8)

where the infimum is over affine subspaces F ⊂ E .

Clearly, (5) holds for σ replaced by τ :

τm′(L,O) ≤ τm(L,O) +
m′ −m

1 + max∂L Λ(.,O)
, 1 ≤ m ≤ m′ ≤ n. (9)

It will be convenient to define the out-of-range invariant τn+1(L,O) = σ(L,O).

Given {B0, . . . , Bm} ∈ S0
m(L,O), we define the bulging

β[B0,...,Bm](Bi,O) =
1

1 + ΛL(Bi,O)
− 1

1 + Λ[B0,...,Bn](Bi,O)
. (10)
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We then have

τm(L,O) = inf
{B0,...,Bm}∈S0

m(L,O)

m∑
i=1

β[B0,...,Bm](Bi,O) + 1. (11)

Proposition 4. For 1 < m ≤ n, we have

mτm−1(L,O) ≤ (m− 1)τm(L,O) + 1. (12)

Proof. Let ε > 0 and consider a simplicial m-configuration {B0, . . . , Bm} with
respect to O such that

1

1 + Λ[B0,...,Bm](B0,O)
+

m∑
i=1

1

1 + ΛL(Bi,O)
< τm(L,O) + ε. (13)

We may assume that O is in the relative interior of the m-simplex [B0, . . . , Bm].
With this, we have

O =
m∑

i=0

λiBi,
m∑

i=0

λi = 1, 0 < λi < 1.

We write

O = (λ0 + λ1)B01 +
m∑

i=2

λiBi,

where

B01 =
λ0

λ0 + λ1

B0 +
λ1

λ0 + λ1

B1.

Let B̄01 = µB01 ∈ ∂L, where µ ≥ 1.

Clearly, [B̄01, B2, . . . , Bm] is an (m− 1)-simplex with O in its interior. Let B̄o
01 ∈

[B2, . . . , Bm] be the opposite of B̄01 with respect to this simplex.

[B0, B1, B̄
o
01] is a triangle with O in its interior. We now add the terms

1

1 + Λ[B̄01,B2,...,Bm](B̄01,O)
+

1

1 + Λ[B̄01,B2,...,Bm](B̄
o
01,O)

− 1

(amounting to zero) to the left-hand side of the inequality in (13), and split the
terms into two groups. The terms

1

1 + Λ[B̄01,B2,...,Bm](B̄01,O)
+

m∑
i=2

1

1 + ΛL(Bi,O)
− 1

can be estimated below by τm−1(L,O) − 1 since B̄01 can be taken as the distin-
guished element in the (m − 1)-configuration {B̄01, B2, . . . , Bm}. The remaining
terms in the second group are

1

1 + Λ[B0,...,Bm](B0,O)
+

1

1 + ΛL(B1,O)
+

1

1 + Λ[B̄01,B2,...,Bm](B̄
o
01,O)

. (14)
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The first term in (14) is equal to

1

1 + Λ[B̄o
01,B0,B1](B0,O)

.

By the same token, the second term in (14) is equal to

β[B0,...,Bm](B1,O) +
1

1 + Λ[B̄o
01,B0,B1](B1,O)

.

Finally, the third term in (14) can be estimated as

1

1 + Λ[B̄01,B2,...,Bm](B̄
o
01,O)

≥ 1

1 + Λ[B̄o
01,B0,B1](B̄

o
01,O)

since
Λ[B̄01,B2,...,Bm](B̄

o
01,O) ≤ Λ[B̄o

01,B0,B1](B̄
o
01,O).

Putting everything together, we obtain

τm−1(L,O) + β[B0,...,Bm](B1,O) ≤ τm(L,O) + ε

since the terms involving distortions at the vertices of the triangle [B̄o
01, B0, B1]

add up to 1. Replacing B1 by Bi, summing up with respect to i = 1, . . . ,m, and
letting ε→ 0, we obtain

mτm−1(L,O) +
m∑

i=1

β[B0,...,Bm](Bi,O) ≤ mτm(L,O).

Finally, using (11), we arrive at (12).

Since τm(L,O) ≥ 1, (12) implies that the sequence {τm(L,O)}n
m=1 is nondecreas-

ing. Moreover, again by (12), the only way τm−1(L,O) = τm(L,O) can happen
is that it is equal to 1. This means that the sequence {τm(L,O)}n

m=1, after an
initial string of 1’s, is strictly increasing.

Iterating (12), for 1 ≤ m′ < m ≤ n, we get

mτm−m′(L,O) ≤ (m−m′)τm(L,O) +m′.

Replacing m′ by m−m′ and adding, we obtain

τm−m′(L,O) + τm′(L,O) ≤ τm(L,O) + 1,

a subadditive property.



G. Toth: On the Structure of Convex Sets with Applications . . . 501

4. Convex cones

Let L0 ⊂ E0 be a compact convex body and O0 an interior point of L0. Let
E = E0 ×R and O1 ∈ E not contained in E0. We consider the cone L = [L0,O1].
We let 0 < λ < 1 and Oλ = (1 − λ)O0 + λO1. In this section we calculate
σ(L,Oλ) in terms of L0. We assume that L0 and therefore L are not simplicial
since otherwise there is nothing to calculate. It is technically convenient to assume
that O0 is the origin of E0. We also set n = dimL so that dimL0 = n− 1.

Theorem D. Let L be a cone with base L0 and vertex O1. Let Oλ = (1−λ)O0 +
λO1, 0 < λ < 1, be the base point of L, where O0 is the base point of L0. Then
we have the following:

I. If 0 < λ ≤ 1
2+max∂L0

Λ(.,O0)
then

σ(L,Oλ) = min
1≤m≤n

((n−m+ 1)λ+ (1− λ)τm(L0,O0)) ;

II. If 1
2+max∂L0

Λ(.,O0)
≤ λ < 1 then

σ(L,Oλ) = λ+ (1− λ) min
1≤m≤n

(
τm(L0,O0) +

n−m

1 + max∂L0 Λ(.,O0)

)
= λ+ (1− λ) min

(
σ(L0,O0), τ(L0,O0) +

1

1 + max∂L0 Λ(.,O0)

)
.

In these formulas, τn(L0,O0) = σn−1(L0,O0) = σ(L0,O0).

In particular, the function λ 7→ σ(L,Oλ), λ ∈ [0, 1], is piecewise linear and con-
cave (with limit equal to 1 at the endpoints).

The proof of Theorem D is technical. In what follows we will make a number of
observations and reduce Theorem D to a simpler one. To simplify the notation
we let γ denote the function λ 7→ σ(L,Oλ), λ ∈ [0, 1]. In addition, for 1 ≤ m ≤ n,
we consider the linear functions

αm(λ) = (n−m+ 1)λ+ (1− λ)τm,

βm(λ) = λ+ (1− λ)

(
τm +

n−m

1 +M0

)
,

where we suppressed L0, O0, and set M0 = max∂L0 Λ(.,O0). Recall here also that
τ1 = τ2 = 1, τn−1 = τ , and τn = σn−1 = σ. With these, I–II of Theorem D rewrites
as

I. If 0 < λ ≤ 1/(2 +M0) then γ(λ) = min1≤m≤n αm(λ).
II. If 1/(2 +M0) ≤ λ < 1 then γ(λ) = min1≤m≤n βm(λ).

Clearly, αn = βn. Moreover, for 1 ≤ m < n, we have

αm(0) = τm < τm +
n−m

1 +M0

= βm(0) and αm(1) = n−m+ 1 > 1 = βm(1),
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while αm and βm attain the same value at 1/(2 + M0). It follows that in both
cases I–II, we have

γ(λ) = min
1≤m≤n

(αm(λ), βm(λ)) , λ ∈ [0, 1].

Thus, γ is piecewise linear and concave. By (2), the one-sided limits of γ at
the endpoints of [0, 1] are both equal to 1. The second statement of Theorem D
follows.

By (9), for 1 ≤ m < m′ < n, we have βm ≥ βm′ . Thus,

min
1≤m≤n

βm(λ) = min(βn(λ), βn−1(λ)).

This is the second equality in case B of Theorem D.

We now give a more detailed analysis of the minimum in case I:

γ(λ) = min
1≤m≤n

αm(λ), λ ∈ [0, 1/(2 +M0)].

For 1 ≤ m < m′ ≤ n, the linear functions αm and αm′ have the same value at

`m,m′ = 1− 1

1 +
τm′−τm

m′−m

. (15)

For 1 ≤ m < m′ < n, using (9), we have

`m,m′ ≤ 1− 1

1 + 1
1+M0

=
1

2 +M0

.

We say that αm participates in γ if the zero set of (αm−γ)|[0,1/(2+M0)] has nonempty
interior. Since γ is concave, this zero set is a closed interval. We call this the
interval of participation of αm in γ. Since γ is piecewise linear, the interval
[0, 1/(2 + M0)] is subdivided into intervals of participation for the various αm,
1 ≤ m ≤ n. We have

1 = α1(0) = τ1 = α2(0) = τ2 ≤ · · · ≤ αn−1(0) = τ ≤ σn−2 ≤ σ = τn = αn(0),

and

α′1(0) = n− 1 > α′2(0) = n− 2 > · · · > α′n−1(0) = 2− τ ≥ α′n(0) = 1− σ.

Let 1 ≤ m < m′ ≤ n, and assume that both αm and αm′ participate in γ.
Comparing the intercepts and slopes above, we see that concavity of γ implies
that the interval of participation of αm precedes that of αm′ .
We let 1 < m1 < · · · < ms ≤ n denote those indices m for which αm participates
in γ. By the above, the intervals of participation of αmi

, i = 1, . . . , s, subdivide
[0, 1/(2 +M0)] in a successive manner.

Comparing the slopes and intercepts above we see that m1 is the largest index m
such that τm = 1. (Recall that the sequence {τm}n

m=1 starts with a string of 1’s.)



G. Toth: On the Structure of Convex Sets with Applications . . . 503

For 1 ≤ i < s, the interval of participation of αmi
in γ is [`mi−1,mi

, `mi,mi+1
]. (Here

we set m0 = 0 so that `m0,m1 = 0.)

The last interval of participation is therefore [`ms−1,ms , 1/(2+M0)]. By continuity
of γ, at λ = 1/(2 +M0), the matching condition

αms(λ) = min(βn(λ), βn−1(λ))

must be satisfied. This works out to be

min

(
σ, τ +

1

1 +M0

)
= τms +

n−ms

1 +M0

.

If σ < τ + 1/(1 +M0) then ms = n.
If σ ≥ τ + 1/(1 + M0) then, for ms = n, we have σ = τ + 1/(1 + M0), and, for
ms < n, we have τ = τms + (n− 1−ms)/(1 +M0).

There are several consequences of this discussion.

Theorem E. Assume that τ3(L0, .), . . . , τn−1(L0, .) = τ(L0, .), σ(L0, .) are all con-
cave on intL0. Then σ(L, .) is also concave on intL.

Proof. Since the minimum of concave functions is concave, we need to show that
αm and βm, m = 1, . . . , n, are concave functions on intL. We do this in a slightly
more general setting. Assume that φ is a concave function on intL0, and c > 0 is
a fixed constant. Define the function ψ : intL → R by

ψ((1− λ)O0 + λO1) = cλ+ (1− λ)φ(O0), O0 ∈ intL0, 0 < λ < 1.

Since αm and βm are special cases of this (see also the corollary to Proposition 1
in [9]), it remains to show that ψ is concave.

We let O0
0,O1

0 ∈ intL0, 0 < µ, ν < 1, and

O0
µ = (1− µ)O0

0 + µO1 and O1
ν = (1− ν)O1

0 + νO1.

We need to show that

ψ((1− κ)O0
µ + κO1

ν) ≥ (1− κ)ψ(O0
µ) + κψ(O1

ν), 0 < κ < 1.

We write

(1− κ)O0
µ + κO1

ν = (1− λ)

(
(1− κ)(1− µ)

1− λ
O0

0 +
κ(1− ν)

1− λ
O1

0

)
+ λO1,

where λ = (1− κ)µ+ κν. With these, we have

ψ((1− λ)O0 + λO1) = cλ+ (1− λ)φ

(
(1− κ)(1− µ)

1− λ
O0

0 +
κ(1− ν)

1− λ
O1

0

)
≥ cλ+ (1− κ)(1− µ)φ(O0

0) + κ(1− ν)φ(O1
0)

= (1− κ)(cµ+ (1− µ)φ(O0
0)) + κ(cν + (1− ν)φ(O1

0))

= (1− κ)ψ(O0
µ) + κψ(O1

ν).
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Concavity and Theorem E follow.

Note that Theorem E (along with Theorem A) implies the first statement of
Theorem B. For the second statement we have the following:

Example. Let ∆ ⊂ R2 be an equilateral triangle inscribed in the unit circle of R2.
Let L0 be the intersection of the vertical cylinder in R3 with base ∆ and the unit
ball. Then σ2(L0, .) is not concave. Indeed, for O ∈ ∆, we have σ2(L0,O) = 1,
and, for any other point O in the interior of L0, we have σ2(L0,O) > 1 as there
is no triangular intersection of L0 away from ∆.

Now consider L0 as the base of a 4-dimensional cone L (with vertex O1). We
claim that σ(L, .) is not concave.

Let Ot = (0, 0, t), |t| < 1. We calculate σ(L, (1−λ)Ot +λO1) for small λ > 0. For
t = 0, O0 ∈ ∆. Since ∆ is a triangular intersection of L0, we have σ2(L0,O0) = 1.
Thus, we have

1 = τ1(L0,O0) = τ2(L0,O0) = τ(L0,O0) < τ4(L0,O0) = σ(L0,O0).

Hence, the last 1 in this sequence is at the index m1 = 3. Consequently, for small
λ > 0, we have

σ(L, (1− λ)O0 + λO1) = α3(λ) = 2λ+ (1− λ)τ(L0,O0) = 1 + λ.

Now let t 6= 0. Since Ot /∈ ∆, L0 has no triangular intersection passing through
Ot, we have σ2(L0,Ot) > 1. Thus

1 = τ1(L0,Ot) = τ2(L0,Ot) < τ(L0,Ot) ≤ τ4(L0,Ot) = σ(L0,Ot).

The last 1 in this sequence has index m1 = 2. Consequently, for small λ > 0, we
have

σ(L, (1− λ)Ot + λO1) = α2(λ) = 3λ+ (1− λ)τ2(L0,O0) = 1 + 2λ.

(Note that the length of the first interval of participation tends to zero as t→ 0.)

Let 0 < t < 1 be fixed and λ > 0 small enough so that the formulas above hold
for ±t. Then, at the endpoints of the line segment [O−t,Ot], the function σ(L, .)
is 1 + 2λ and at the midpoint O0 it is 1 + λ. Thus, σ(L, .) is not concave.

It remains to prove Theorem D. To do this, in view of the discussion above, we
need to show the following:

Theorem F. Let L, L0 and O0 be as in Theorem D. We have the following:

(i) If Oλ ∈ R is a regular point then

σ(L,Oλ) = λ+ (1− λ)σ(L0,O0). (16)
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(ii) If Oλ ∈ S is singular with degree of singularity n−m then

σ(L,Oλ) = λ+ (1− λ)τm(L0,O0) +
n−m

1 + max∂L Λ(.,Oλ)
, (17)

where

1

1 + max∂L Λ(.,Oλ)
=

{
λ, if 0 < λ ≤ 1

2+max∂L0
Λ(.,O0)

1−λ
1+max∂L0

Λ(.,O0)
, if 1

2+max∂L0
Λ(.,O0)

≤ λ < 1
.

(18)

In addition, the infimum in τm(L0,O0) is attained by a simplicial configuration.

The proof of Theorem F is given in the rest of this section. We begin with the
following:

Lemma 2. Let A0, A1 ∈ R2 be distinct points and Aλ = (1 − λ)A0 + λA1 with
0 < λ < 1. Let B0, Bλ, B1 be collinear points perspectively related to A0, Aλ, A1 by
a perspectivity with center at O. Let

Λ0 =
d(A0,O)

d(B0,O)
, Λ1 =

d(A1,O)

d(B1,O)
, and Λλ =

d(Aλ,O)

d(Bλ,O)
.

Then, we have
Λλ = (1− λ)Λ0 + λΛ1.

Proof. We may assume that O is the origin. Then, we have

B0 = ± 1

Λ0

A0, B1 = ± 1

Λ1

A1, and Bλ = ± 1

Λλ

Aλ.

We also have Bλ = (1 − µ)B0 + µB1 for some 0 < µ < 1. Playing this equation
back to the definition of Aλ and comparing, Lemma 2 follows.

Corollary. Let [B0, B1, C] ⊂ R2 be a triangle and choose points O0 and O1 in the
interior of the sides [B0, C] and [B1, C]. Let 0 < λ < 1 and Oλ = (1−λ)O0+λO1.
Consider the distortions

Λ0 =
d(C,O0)

d(B0,O0)
, Λ1 =

d(C,O1)

d(B1,O1)
, Λλ =

d(C,Oλ)

d(Bλ,Oλ)
,

where Bλ is the projection of Oλ to the side [B0, B1] from C. Then we have

1

1 + Λλ

=
1− λ

1 + Λ0

+
λ

1 + Λ1

.

Proof. O0,Oλ,O1 and B0, Bλ, B1 are perspectively related with perspectivity
centered at C. The corollary now follows from Lemma 2.
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Proposition 5. Let C0 ∈ ∂L0, 0 ≤ t ≤ 1, and define C = (1− t)C0 + tO1. Then
we have

1

1 + Λ(C,Oλ)
=

{ 1−λ
1−t

1
1+Λ(C0,O0)

, if 0 ≤ t ≤ t∗

λ
t
, if t∗ ≤ t ≤ 1

where

t∗ = 1− 1− λ

1 + λΛ(C0,O0)
(19)

is defined by the condition that, for t = t∗, the opposite of C with respect to Oλ in
on ∂L0.

Let C be as in the proposition. We call C a type I point if 0 < t < t∗, a type
II point if t∗ < t < 1 and a type III point if t = t∗. In addition, we call a point
C ∈ ∂L0 type 0. This corresponds to the parameter value t = 0.

Proof of Proposition 5. Let Co be the opposite of C with respect to Oλ in L, and
Co

0 the opposite of C0 with respect to O0 in L0. The critical value t∗ is defined by
Co = Co

0 .

We first let 0 ≤ t ≤ t∗. Since Co ∈ [Co
0 ,O1], we have Co = (1 − s)Co

0 + sO1, for
some 0 ≤ s ≤ 1. Since C,Co,Oλ are collinear, we have

Oλ = (1− µ)C + µCo,

where 0 < µ < 1. Expanding, using Co
0 = −C0/Λ(C0,O0), and comparing coeffi-

cients, we have

(1− µ)t+ µs = λ

(1− µ)(1− t)− µ
1− s

Λ(C0,O0)
= 0.

Eliminating s we obtain

µ =
(1− t)Λ(C0,O0) + λ− t

(1− t)(1 + Λ(C0,O0))
.

With this, we have

Λ(C,Oλ) =
µ

1− µ
=

1− t

1− λ
(Λ(C0,O0) + 1)− 1.

The proposition follows in this case. The formula for the critical value t∗ also
follows since this corresponds to s = 0.

Now let t∗ ≤ t ≤ 1 and C∗ = (1−t∗)C0+t
∗O1 the corresponding point. The pencil

of points C∗, C,O1 and Co
0 , C

o,O0 are perspectively related by the perspectivity
with center at Oλ. By Lemma 2, we have

Λ(C,Oλ) = (1− ν)Λ(C∗,Oλ) + νΛ(O1,Oλ),

where
C = (1− ν)C∗ + νO1.
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Comparing this last equation with C = (1−t)C0+tO1 and C∗ = (1−t∗)C0+t∗O1,
and using the value of t∗, we obtain

ν = 1− 1− t

1− λ
(1 + Λ(C0,O0)).

Substituting this into the formula of Λ(C,Oλ) above, the proposition follows.

We now return to the cone L with base L0. Let C ∈ ∂L0. Let C0 and Cλ be the
opposites of C with respect to O0 and Oλ in L0 and L. In Corollary to Lemma 2
we set B0 = C0, Bλ = Cλ and B1 = O1 so that Λ1 = ∞. We thus obtain

1

1 + ΛL(C,Oλ)
=

1− λ

1 + ΛL0(C,O0)
, C ∈ ∂L0. (20)

Note that this proves (18). Indeed, by Proposition 3, the local maxima of Λ(.,Oλ)
are located at O1 or along ∂L0. Thus, (18) follows from (20) and from the obvious
fact that λ = 1/(1 + Λ(O1,Oλ)).

We now split the proof proof according to whether Oλ is regular or singular.

Proposition 6. Let L be a cone with base L0 as above. Assume that Oλ ∈ R.
Then O0 ∈ R0, where R0 is the regular set of L0, and

σ(L,Oλ) = λ+ (1− λ)σ(L0,O0). (21)

Proof. Let {C0, . . . , Cn} ∈ C(L,Oλ) be minimal. By Proposition 1, [C0, . . . , Cn]
is an n-simplex with Oλ in its interior and, at each Ci, Λ(.,Oλ) attains its local
maximum. By Proposition 3, the possible local maxima are located at the vertex
O1 of the cone L0 or along the boundary of the base L0. Thus, one of the points
in the configuration must be O1.Without loss of generality, we may assume that
C0 = O1. It also follows that C1, . . . , Cn ∈ ∂L0. Since Oλ is in the interior of
the n-simplex [C0, . . . , Cn], the point O0 is in the interior of the (n − 1)-simplex
[C1, . . . , Cn]. We claim that the configuration {C1, . . . , Cn} ∈ C(L0,O0) is mini-
mal. Otherwise, let {C ′

1, . . . , C
′
n} ∈ C(L0,O0) be a minimal configuration so that

n∑
i=1

1

1 + Λ(C ′
i,O0)

<

n∑
i=1

1

1 + Λ(Ci,O0)
.

By (20), we also have

n∑
i=1

1

1 + Λ(C ′
i,Oλ)

<

n∑
i=1

1

1 + Λ(Ci,Oλ)
.

Adding 1
1+Λ(C0,Oλ)

to both sides, we obtain a contradiction to the minimality of

{C0, . . . , Cn}. The claim follows.
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Using (20), we have

σ(L,Oλ) =
n∑

i=0

1

1 + Λ(Ci,Oλ)

=
1

1 + Λ(C0,Oλ)
+

n∑
i=1

1

1 + Λ(Ci,Oλ)

= λ+ (1− λ)σ(L0,O0).

Finally, working backwards, it is clear that every minimal configuration {C1, . . . ,
Cn} ∈ C(L0,O0) is an (n − 1)-simplex with O0 in its interior as its extension by
adjoining C0 = O1 is minimal. Thus, we have O0 ∈ R0. The proposition follows.

In the remainder of this section we study the case when Oλ ∈ S is a singular
point in L. Assume that the degree of singularity of Oλ is n − m, m < n. By
Proposition 1, there is a minimal n-configuration {C0, . . . , Cn} ∈ C(L,Oλ) which
contains a simplicial minimal m-configuration {C0, . . . , Cm} ∈ Cm(L,Oλ), m is the
least number with this property, the point Oλ is in the relative interior of the m-
simplex [C0, . . . , Cm], and Λ(.,Oλ) attains its absolute maximum at Cm+1, . . . , Cn

in ∂L. We can exclude the trivial case m = 1 since then the configuration contains
n points at which Λ(.,Oλ) attains its maximum and an additional antipodal point.
Thus, from now on we assume that m ≥ 2.

We have

σ(L,Oλ) = σm(L,Oλ) +
n−m

1 + max∂L Λ(.,Oλ)
, (22)

where

σm(L,Oλ) =
m∑

i=0

1

1 + Λ(Ci,Oλ)
.

Let F = 〈C0, . . . , Cm〉; it is an affine subspace of dimension m. F is contained
in the affine subspace 〈F ,O1〉, properly (with codimension 1) iff O1 /∈ F . The
intersection L ∩ 〈F ,O1〉 is a cone with base L0 ∩ 〈F ,O1〉 3 O0 and vertex O1. It
is clear that {C0, . . . , Cm} is not only minimal in L but also in L ∩ 〈F ,O1〉, in
particular

σm(L ∩ 〈F ,O1〉,Oλ) = σm(L,Oλ).

Case I. O1 ∈ F . We claim that Oλ is a regular point in L ∩ 〈F ,O1〉. Assume,
on the contrary, that there is a minimal m-configuration {C ′

0, . . . , C
′
m} ∈ Cm(L ∩

〈F ,O1〉,Oλ) which contains a k-configuration with k < m. Since

m∑
i=0

1

1 + Λ(C ′
i,Oλ)

= σm(L ∩ 〈F ,O1〉,Oλ) = σm(L,Oλ)

the extended configuration {C ′
0, . . . , C

′
m, Cm+1, . . . , Cn} ∈ Cn(L,Oλ) is minimal.

By assumption, it contains a k-configuration. Thus, Oλ ∈ Sn−k so that k ≥ m.
This is a contradiction.
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We now apply Proposition 6 to the regular point Oλ of L ∩ 〈F ,O1〉. We obtain

σm(L,Oλ) = λ+ (1− λ)σm−1(L0,O0), (23)

where σ(L0 ∩ 〈F ,O1〉,O0) = σm−1(L0,O0). Combining (22) and (23), we obtain

σ(L,Oλ) = λ+ (1− λ)σm−1(L0,O0) +
n−m

1 + max∂L Λ(.,Oλ)
.

By (7) this does not compete in the infimum in (17) unless equality holds in (7).

Case II. O1 /∈ F . We now study what type of points are possible in the simplicial
minimal configuration {C0, . . . , Cm}.
Let Ci and Cj be two distinct configuration points and assume that

Ci = (1− ti)Ci,0 + tiO1 and Cj = (1− tj)Cj,0 + tjO1,

where Ci,0, Cj,0 ∈ ∂L0 and 0 < ti, tj < 1. By definition, Ci, Cj can be type I, type
II, or type III points.

We define a variation in which Ci and Cj move simultaneously along the line
segments [Ci,0,O1] and [Cj,0,O1] while keeping the condition Oλ ∈ [C0, . . . , Cm]
intact. We first write

m∑
k=0

µkCk = Oλ,

where
∑m

k=0 µk = 1 with 0 < µk < 1, k = 0, . . . ,m. For s small, we define

Ci(s) =
1

1 + s
Ci +

s

1 + s
O1

Cj(s) =
µj

µj − µis
Cj −

µis

µj − µis
O1.

Setting
µi(s) = µi(1 + s) and µj(s) = µj − µis,

we have

µi(s)Ci(s) + µj(s)Cj(s) +
m∑

k=0, k 6=i,j

µkCk = Oλ.

Thus, substituting Ci(s) and Cj(s) for Ci and Cj, the condition Oλ ∈ [C0, . . . , Cm]
remains in effect. The parameter values change as

ti(s) =
ti + s

1 + s
and tj(s) =

µjtj − µis

µj − µis
.

Finally, we need to see how

1

1 + Λ(Ci,Oλ)
+

1

1 + Λ(Cj,Oλ)

changes under this substitution.
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First, let Ci be type I and Cj type II or type III. We set s < 0 so that Ci stays
type I and Cj becomes or stays type III. We have

1

1 + Λ(Ci(s),Oλ)
+

1

1 + Λ(Cj(s),Oλ)

1− λ

1− ti(s)

1

1 + Λ(Ci(s),Oλ)
+

λ

tj(s)

=
1

1 + Λ(Ci,Oλ)
+

1

1 + Λ(Cj,Oλ)

+ s
1− λ

1− ti

1

1 + Λ(Ci,0,O0)

+
λ

1− µj
1−tj

µj−µis

− λ

tj
.

For s < 0 the last three terms are negative. This contradicts minimality. We
conclude that if there is a type II or III point then there cannot be a type I point.
Assume now that there are no type II and type III points. It is clear that there
is at least one type I point since otherwise the condition Oλ ∈ [C0, . . . , Cm] could
not be satisfied. We claim that actually there are at least two type I points.
Suppose that there is only one type I point Ci. Then the line 〈Ci,Oλ〉 intersects
the i-th face of the simplex [C0, . . . , Cm] opposite to Ci, and this face is entirely
contained in L0. Based on the geometric meaning of type II and type III points
in Proposition 5, Ci cannot be type I.

Now let Ci and Cj be both type I. Performing the variation as above, a brief
computation shows that

1

1 + Λ(Ci(s),Oλ)
+

1

1 + Λ(Cj(s),Oλ)

=
1

1 + Λ(Ci,Oλ)
+

1

1 + Λ(Cj,Oλ)

+s

(
1− λ

1− ti

1

1 + Λ(Ci,0,O0)
− µi

µj

1− λ

1− tj

1

1 + Λ(Cj,0,O0)

)
.

The condition of minimality implies that the last term in the parentheses must
be zero. This means that the sum

1

1 + Λ(Ci(s),Oλ)
+

1

1 + Λ(Cj(s),Oλ)

stays constant for all admissible s. Assume, for definiteness, that s > 0 increases.
This means that Ci(s) moves away from Ci,0 while Cj(s) approaches Cj,0. The
point Ci(s) cannot hit the type III territory before Cj,0 hits ∂L0 since otherwise
we would apply the previous variation and get a contradiction. Thus, at a critical
value of s, Cj(s) ∈ ∂L0. Applying this to every type I point we will be left with
only one type I point which again gives a contradiction.
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Summarizing, we obtained that there cannot be any type I points among {C0, . . . ,
Cm}. It also follows that there must be at least one type II or type III point.

We now claim that there are no configuration points in the relative interior of
L0 ∩F . Suppose that Ci is in the relative interior of L0 ∩F . Then, by definition,
Ci is an (m− 1)-flat point in L ∩ 〈F ,O1〉. By Proposition 3, the antipodal must
be (at least an) m-flat (since it is on the boundary of a cone away from the base
and the vertex), and the (m − 1)-flat translates into the m-flat. We can thus
move Ci within this flat to any point without changing the distortion. Note also
that during the move the condition Oλ ∈ [C0, . . . , Cm] stays intact due to the
minimality of m. On the other hand, the antipodal of a type II or type III point
is in this flat. Thus, we can move Ci to this antipodal and obtain an antipodal
pair of points in the configuration. This means that m = 1, and this trivial case
was excluded.

We now claim that there is no type II point and that there is a unique type III
point.

Let C = Ci be any type II or type III point with C = (1− t)C0 + tO1, C0 ∈ ∂L0

and 0 < t < 1. (Here we suppress the index i and briefly revert to the notation
of Proposition 5; in particular, C0 is the point corresponding to C in ∂L0 not the
first point in the configuration.) We assume that Λ(.,Oλ) restricted to F attains
a local maximum at C.

In what follows, we will work within the subspace 〈F ,O1〉 in which F is a codi-
mension one affine subspace. Let N be the unit normal vector to the hyperplane
F pointing to the half-space that contains O1.

We first claim that the function on ∂L0 defined by C ′ 7→ 〈C ′, N〉 attains a local
minimum at C0.
Central projection from O1 gives a one-to-one correspondence between a neighbor-
hood of C in ∂L∩F and a neighborhood of C0 in ∂L0∩〈F ,O1〉. Let C ′ ∈ ∂L∩F
near C with corresponding projection C ′

0. Setting C ′ = (1 − t′)C ′
0 + t′O1 the

condition C ′ ∈ F reduces to 〈C ′−Oλ, N〉 = 0. Working this out in terms of t′ we
obtain

t′ = 1 +
1− λ

〈C′
0,N〉

〈O1,N〉 − 1
. (24)

(Note that 〈C ′
0, N〉 6= 0 as O1 /∈ F .) This formula holds for any type I, II, or III

point C ′.

First assume that C is of type II. Since C ′ is close to C, it is also a type II point.
Thus

1

1 + Λ(C ′,Oλ)
=
λ

t′
.

Comparing these formulas and recalling the assumption on Λ(.,Oλ) restricted to
F we see that, keeping N constant, C ′

0 7→ 〈C ′
0, N〉 attains a local maximum at

C0. The claim follows in this case.
Now let C be a type III point. Since t∗ = t, comparing (19) and (24) (for t′ = t),
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we find

Λ(C0,O0) = −1

λ

〈C0, N〉
〈O1, N〉

.

Let C ′ ∈ ∂L ∩ F be near C. By assumption

1

1 + Λ(C,Oλ)
≤ 1

1 + Λ(C ′,Oλ)
. (25)

Since we have no information about the type of C ′ we split the study into two
cases.
First assume that C ′ is a type I point. We rewrite (25) using Proposition 5 and
(24) (twice) as(

1− 〈C0, N〉
〈O1, N〉

)
1

1 + Λ(C0,O0)
≤

(
1− 〈C ′

0, N〉
〈O1, N〉

)
1

1 + Λ(C ′
0,O0)

. (26)

In addition, since C ′ is a type I point, with obvious notation, we also have t′∗ > t′.
By (19) and (24), this gives

1

1 + Λ(C ′
0,O0)

<
1

1− 1
λ

〈C′
0,N〉

〈O1,N〉

.

Putting everything together in (26), we obtain(
1− 〈C0, N〉

〈O1, N〉

)
1

1− 1
λ
〈C0,N〉
〈O1,N〉

<

(
1− 〈C ′

0, N〉
〈O1, N〉

)
1

1− 1
λ

〈C′
0,N〉

〈O1,N〉

.

This gives
〈C0, N〉 < 〈C ′

0, N〉 (27)

as stated.

Assume now that C ′ is a type II point. By Proposition 5, we have t ≥ t′ so
that using (24), we again obtain (27). The claim follows. Note finally that since
L0 ∩ 〈F ,O0〉 is convex, the local minimum at C is actually global.

The above applies to all type II and type III configuration points. Let Ci be
a type II or type III point. Let H0 ⊂ E0 ∩ 〈F ,O1〉 be the hyperplane that
contains Ci,0 and orthogonal to N . (The projection of N to E0 ∩ 〈F ,O1〉 is
nonzero since otherwise F were parallel to E0 ∩ 〈F ,O1〉 and it would contain
only type I configuration points.) Since C ′ 7→ 〈C ′, N〉 has a minimum at Ci,0, H0

is a supporting hyperplane to L0 ∩ 〈F ,O1〉. It follows that the projections (from
O1 to L0) of all the type II and type III configuration points are on H0, and so is
their convex hull. Thus the convex hull C of the type II and type III configuration
points themselves is contained in ∂L. Taking opposites, we see that the opposite
convex hull is contained in L0 ∩ 〈F ,O1〉. The distortion function Λ then must be
linear on C. Since Λ has a local maximum at every vertex, it must be constant
on C. We obtain that all type II and type III points can be compressed into a
single point listed with multiplicity. This contradicts the minimality of m. Thus
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there is only one type II or type III configuration point. Finally, this cannot be a
type II point since then its opposite must comprise the rest of the configuration
points, and this is possible only for m = 1.

Summarizing, we see that in the configuration {C0, . . . , Cm} there is a unique type
III point and the rest of the points are contained in ∂L0. We let C0 denote the
type III point so that {C1, . . . , Cm} ⊂ ∂L0.

We now set

C0 = (1− t0)C0,0 + t0O1, 0 < t0 < 1, C0,0 ∈ ∂L0, (28)

and consider the m-configuration {B0, . . . , Bm} ∈ S0
m(L0,O0), where B0 = C0,0 is

the distinguished element and Bi = Ci, i = 1, . . . ,m. We claim that

m∑
i=0

1

1 + Λ(Ci,Oλ)
= λ+ (1− λ)

[
1

1 + Λ[B0,...,Bm](B0,O0)
+

m∑
i=1

1

1 + ΛL0(Bi,O0)

]
.

(29)
With this, it will follow that

σm(L,Oλ) ≥ λ+ (1− λ)τm(L0,O0), (30)

and the infimum in τm(L0,O0) is attained by a simplicial configuration. We first
note that, by (20), for i = 1, . . . ,m, we have

1

1 + Λ(Ci,Oλ)
=

1− λ

1 + ΛL0(Bi,Oλ)
. (31)

Thus, to prove (29), using Proposition 5 and reverting to the C’s, we need to show
that

1

1 + ΛL(C0,Oλ)
= λ+

1− λ

1 + Λ[C0,0,...,Cm](C0,0,O0)
. (32)

We need to calculate the distortion at C0,0 with respect to the simplex [C0,0, . . . ,
Cm]. To do this, we first determine the intersection of the line through C0,0 and
O0 and the (m− 1)-simplex [C1, . . . , Cm].

We have
m∑

i=0

µiCi = Oλ and
m∑

i=0

µi = 1, 0 < µi < 1.

Expanding, we obtain

µ0(1− t0)C0,0 +
m∑

i=1

µiCi = 0 and µ0t0 = λ,

where we used that O0 is the origin. Since
∑m

i=1 µi = 1− µ0 = 1− λ/t0, we have

−λ(1− t0)

t0 − λ
C0,0 =

m∑
i=1

µi

1− λ/t0
Ci ∈ [C1, . . . , Cm].
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Thus, we have

Λ[C0,0,...,Cm](C0,0,O0) =
t0 − λ

λ(1− t0)
.

With this, we obtain

λ+
1− λ

1 + Λ[C0,0,...,Cm](C0,0,O0)
=
λ

t0
.

Now Proposition 6 gives (32).

We now show that equality holds in (30). Let {B0, . . . , Bm} ∈ S0
m(L0,O0) be

simplicial. We ‘lift’ this configuration to an m-configuration {C0, . . . , Cm} ∈
Cm(L,Oλ) such that (29) holds with C0,0 = B0 and Ci = Bi, i = 1, . . . ,m.
To do this, we write

∑m
i=0 νiBi = O0 with

∑m
i=0 νi = 1 and 0 < νi < 1. We define

λ < t0 < 1 such that 1/t0−1 = ν0(1/λ−1), and then µ0 = λ/t0 and µi = (1−λ)νi,
i = 1, . . . ,m. We finally let C0 = (1 − t0)B0 + t0O1 and Ci = Bi, i = 1, . . . ,m.
With these we have

m∑
i=0

µiCi =
λ

t0
C0 + (1− λ)

m∑
i=1

νiCi

= λ

(
1

t0
− 1

)
+ λO1 + (1− λ)(O0 − ν0B0) = Oλ.

In addition, we also have

m∑
i=0

µi =
λ

t0
+ (1− λ)

m∑
i=1

νi

=
λ

t0
+ (1− λ)(1− ν0) = 1.

These show that {C0, . . . , Cm} ∈ Cm(L,Oλ). On the other hand, reversing the
steps in the computation for (29) above, we obtain (29) again. With this, we have

λ+ (1− λ)

[
1

1 + Λ[B0,...,Bm](B0,O0)
+

m∑
i=1

1

1 + ΛL0(Bi,O0)
≥ σm(L0,O0)

]
.

Taking the infimum, we arrive at

λ+ (1− λ)τm(L0,O0) ≥ σm(L0,O0).

Thus, equality holds in (30). Theorem F follows.
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