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ON THE SHAPE OF THE MODULI
OF SPHERICAL MINIMAL IMMERSIONS

GABOR TOTH

Abstract. The DoCarmo-Wallach moduli space parametrizing spherical min-
imal immersions of a Riemannian manifold M is a compact convex body in
a linear space of tracefree symmetric endomorphisms of an eigenspace of M .
In this paper we define and study a sequence of metric invariants σm, m ≥ 1,
associated to a compact convex body L with base point O in the interior of L.
The invariant σm measures how lopsided L is in dimension m with respect to
O. The results are then appplied to the DoCarmo-Wallach moduli space. We
also give an efficient algorithm to calculate σm for convex polytopes.

1. Introduction

Let L be a compact convex body in a Euclidean vector space E and O ∈ intL,
a base point in the interior of L. Given C ∈ ∂L, the line passing through O and
C intersects ∂L in another point. We call this the opposite of C with respect to O
and denote it by Co. Clearly, (Co)o = C.

The distortion function Λ : ∂L → R is defined by

Λ(C) =
d(C,O)
d(Co,O)

, C ∈ ∂L,(1)

where d(X, X ′) = |X − X ′| is the Euclidean distance.
The distortion measures how far L is from being (centrally) symmetric with

respect to O. Clearly, Λ(Co) = 1/Λ(C). The distortion function Λ is continuous,
since both the numerator and the denominator in (1) are continuous in C ∈ ∂L
[1, 2]. In addition, we have

1
dim E ≤ Λ ≤ dim E ,

provided that O ∈ L is chosen appropriately [1].
Let m ≥ 1. A finite set {C0, . . . , Cm} is called an m-configuration (relative

to O) if {C0, . . . , Cm} ⊂ ∂L and O is contained in the convex hull [C0, . . . , Cm].
(Note that [C0, . . . , Cm] is a convex polytope in its affine span and its dimension is
maximal (= m) iff it is an m-simplex.)

Let Cm(L) denote the set of all m-configurations of L. We define

σm(L) = inf
{C0,... ,Cm}∈Cm(L)

m∑
i=0

1
1 + Λ(Ci)

.(2)
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An m-configuration {C0, . . . , Cm} is called minimal if

σm(L) =
m∑

i=0

1
1 + Λ(Ci)

.

Minimal configurations always exist since L is compact.
Since a 1-configuration of L is an opposite pair of points {C, Co} ⊂ ∂L and

Λ(Co) = 1/Λ(C), we have
1

1 + Λ(C)
+

1
1 + Λ(Co)

= 1.

This gives σ1(L) = 1.
We have the obvious upper estimate

σm+k(L) ≤ σm(L) +
k

1 + max∂L Λ
, m ≥ 1, k ≥ 0.(3)

In particular, the difference σm+1(L) − σm(L) is at most 1/(1 + max∂L Λ).
The most important invariant is σ(L) = σn(L), where n = dimL = dim E . As

shown in [4], for k ≥ 1, we have

σn+k(L) = σ(L) +
k

1 + max∂L Λ
.

Equivalently, the sequence {σm(L)}m≥n is arithmetic with difference 1/(1+max∂L Λ).
Clearly, for m ≤ n, we have

σm(L) = inf
O∈F⊂E, dimF=m

σ(L ∩ F),(4)

where the infimum is over affine subspaces F ⊂ E . (In the infimum, σ(L ∩ F) =
σm(L ∩ F), since dim(L ∩ F) = dimF = m.)

In [4] the following result was proved.

Theorem A. Let L ⊂ E be a compact convex body in a Euclidean vector space E
of dimension n with base point O. Let m ≥ 1. Then

1 ≤ σm(L) ≤ m + 1
2

.(5)

If σm(L) = 1, then m ≤ n and there exists an affine subspace F ⊂ E, O ∈ F ,
of dimension m such that L ∩ F is an m-simplex. In fact, in this case a minimal
configuration {C0, . . . , Cm} ∈ C(L∩F) is unique and is given by the set of vertices
of L ∩ F . Moreover, minimality

m∑
i=0

1
1 + Λ(Ci)

= 1(6)

implies
m∑

i=0

1
1 + Λ(Ci)

Ci = 0.(7)

Conversely, if L has a simplicial intersection with an m-dimensional affine subspace
F � O, then σm(L) = 1.

For m ≥ 2, σm(L) = (m + 1)/2 iff Λ = 1 on ∂L, that is, iff L is symmetric.

In general, the sequence {σm(L)}n
m=1 is not arithmetic but superadditive in the

following sense.
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Theorem B. We have

σm+k(L) ≥ σm+1(L) + σk(L) − 1, m ≥ 0, k ≥ 1.(8)

We can write (8) in the more symmetric form

σm+k(L) − σm+1(L) ≥ σk(L) − σ1(L).(9)

Setting k = 2 and using σ2(L) ≥ 1 (Theorem A), we immediately obtain that the
sequence {σm(L)}∞m=1 is increasing. Since σ1(L) = 1, there is a largest integer
r(L) ≥ 1 such that σm(L) = 1 for 1 ≤ m ≤ r(L). By Theorem A, r(L) is the
maximum dimension of an affine subspace F(� O) of E that intersects L in a
simplex. The obvious lower estimate

k + 1
1 + max∂L Λ

≤ σk(L)

now gives
r(L) ≤ [max

∂L
Λ].

We now turn to applications to moduli spaces. Let H be a Euclidean vector
space, and let S2

0(H) denote the space of symmetric endomorphisms of H with
vanishing trace. The reduced moduli space

K0 = K0(H) = {C ∈ S2
0(H) |C + I ≥ 0}

is a compact convex body in S2
0(H) with centroid O at the origin.

All moduli spaces considered here are the intersections of K0 with linear sub-
spaces E ⊂ S2

0(H). More specifically, the fundamental problem in the study of the
DoCarmo-Wallach moduli spaces is to describe the shape of the compact convex
body that parametrizes spherical eigenmaps and minimal immersions f : M → SV

of a compact (homogeneous) Riemannian manifold M into the unit sphere SV of
a Euclidean vector space V , for various V . The components of such maps are in
an eigenspace H = Hλ corresponding to an eigenvalue λ of the Laplace-Beltrami
operator acting on functions of M . To indicate the dependence of these maps on λ,
we will call them λ-eigenmaps; for minimal immersions the induced metric on M
is λ/ dimM -times the original metric on M . The moduli spaces are Lλ = K0 ∩ Eλ

(for λ-eigenmaps) and Mλ = K0 ∩ Fλ (for spherical minimal immersions), where
Fλ ⊂ Eλ, and Eλ (and consequently, Fλ) are orthogonal to certain rank one endo-
morphisms of Hλ defined by the Dirac delta map δ : M → H∗

λ [5].
In view of Theorem A, the invariants σm(Lλ) and σm(Mλ), m ≥ 1, tell how

‘lopsided’ the moduli spaces are.
For the reduced moduli everything can be calculated explicitly. As shown in [5],

the distortion Λ : ∂K0 → R is the maximal eigenvalue, and hence
1

dimH− 1
≤ Λ ≤ dimH− 1.

It is easy to show that the reduced moduli K0 has a simplicial intersection in
dimension dimH−1 corresponding to the diagonal endomorphisms with respect to
an orthonormal basis in H. Thus

r(K0) = dimH− 1.

Moreover, for m ≥ dimH, we have

σm(K0) =
m + 1
dimH .
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Clearly, for any linear subspace E ⊂ S2
0(H), we also have

r(K0 ∩ E) ≤ dimH− 1.

Theorem C. If L = K0 ∩ E for a linear subspace E ⊂ S2
0(H), then the sequence

{σm(L)}m≥r(L) is strictly increasing. Moreover, we have

r(L) ≤ dimH− n(L),

where
n(L) = min{ rank (C + I) |C ∈ ∂L} (≥ 1).

If r(L) = dimH − 1, then E contains all endomorphisms of H that are diagonal
with respect to an orthonormal basis of H, and the elements of the orthonormal
basis form a minimal configuration for σdimH−1(L) = 1.

Theorem C applies to the moduli Lλ and Mλ (both assumed to be nontrivial).
Assuming that the first Betti number of M is zero, we have dim V ≥ 3. (The
topological condition guarantees that there is no nonconstant eigenmap of M to
the circle.) By the DoCarmo-Wallach parametrization, rank (C + I) corresponds
to the range dimension of the eigenmap that C parametrizes, and hence n(Lλ) ≥ 3.
Theorem C now implies that

r(Lλ) ≤ dimHλ − 3.

Note that it is a difficult problem to give better lower estimates of n(Lλ) in terms
of λ [6, 7].

For spherical minimal immersions f : M → SV of a (positive) constant curvature
domain M , a result of J.D. Moore [3] states that dimV ≥ 2 dimM (unless f is
totally geodesic, and therefore Mλ is trivial). Thus, Theorem C gives

r(Mλ) ≤ dimHλ − 2 dimM.

We now return to the general setting. The distortion Λ and (therefore) σm(L)
depend on the base point O ∈ intL. Including this dependence, we obtain the
distortion function Λ : ∂L × intL → R and the invariant σm(L, .) : intL → R.

We have the following:

Theorem D. (a) Λ : ∂L× intL → R is continuous; (b) σm(L, .) is continuous on
intL and extends continuously to ∂L by setting it as 1 on ∂L.

Remark. If L is a square in a plane E , then σm(L, .) is not differentiable in intL.

By Theorems A and D, σm(L, .) attains its maximum at a point O0 in the
interior of L. Although it may not be unique, it is natural to ask for a geometric
characterization of O0 in terms of L. (For example, if L is symmetric with respect to
O0, then O0 is the centroid of L, and σm(L, .) attains its maximum value (m+1)/2
there.) In general, this question seems difficult. As a first step it is reasonable to
expect that σm(L, .) is a concave function on L. That this is true for dimL = 2 is
the content of the following:

Theorem E. Let dimL = 2. Then σ(L, .) is concave on intL and extends contin-
uously to a concave function to L.

In general, calculating σm(L), m ≤ n (for any base point O), is difficult even for
plane polygons [4]. The key question is whether one can restrict the infimum in (2)
to configurations consisting of extremal points of L.
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Recall that C ∈ ∂L is called extremal if C is not contained in an open line
segment that lies entirely in L. We let L0 denote the set of extremal points of L.
We also let C0

m(L) denote the set of all m-configurations of L whose points are all
extremal in L. By definition, {C0, . . . , Cm} ∈ C0

m(L) if {C0, . . . , Cm} ⊂ L0 and
O ∈ [C0, . . . , Cm]. With this we define σ0

m(L) for m ≥ n by

σ0
m(L) = inf

{C0,... ,Cm}∈C0
m(L)

m∑
i=0

1
1 + Λ(Ci)

.(10)

As usual, we put σ0(L) = σ0
n(L) and C0(L) = C0

n(L), where n = dimL.
By the theorems of Carathéodory and Krein-Milman [1], C0(L) and hence C0

m(L),
m ≥ n, are nonempty. (Apply Carathéodory’s theorem to L0 and use Krein-
Milman’s theorem asserting that the convex hull of L0 is L.) We see that σ0

m(L)
exists for all m ≥ n. For m ≤ n we define

σ0
m(L) = inf

O∈F⊂E, dimF=m
σ0(L ∩ F),(11)

where the infimum is over affine subspaces F ⊂ E .
Note that a minimizing sequence for the infima in (10) and (11) may not sub-

converge, as L0 is not necessarily closed in L.
Comparing (2)-(10) and (4)-(11), we obtain

σm(L) ≤ σ0
m(L).(12)

Being defined on a much more restricted class of configurations, σ0
m(L), m ≥ 1, are

easier to determine than σm(L). For example, if L is a convex polytope, then L0

is the (finite) set of vertices, and σ0(L) can be determined by a finite enumeration.
It is easy to show that Theorem A holds when σm(L) is replaced by σ0

m(L). Our
next result states a connection between the two invariants as follows.

Theorem F. Let L be a compact convex body in an n-dimensional Euclidean vector
space E and O a base point in the interior of L. Let m ≤ n. Then either

σm(L) = σ0
m(L)

or

σm(L) = σm−1(L) +
1

1 + max∂L Λ
.(13)

An immediate consequence of the theorem is to reduce the computation of σ(L)
for L a plane polygon, to a finite enumeration.

Corollary. Let n = 2 and L ⊂ E as in the theorem above. Then

σ(L) = min
{

σo(L), 1 +
1

1 + max∂L Λ

}
.

Theorem F will be proved by an analysis of the local maxima of the distortion
function Λ : ∂L → R. As a byproduct, we will also obtain the following:

max
∂L

Λ = max
L0

Λ.(14)
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2. Superadditivity of σm(L)

In this section we prove Theorem B.
Consider a minimal (m + k)-configuration {C0, . . . , Cm+k} ∈ Cm+k(L). Since

O ∈ [C0, . . . , Cm+k], we have

O =
m+k∑
i=0

λiCi,

m+k∑
i=0

λi = 1, 0 ≤ λi ≤ 1.(15)

Consider the partial sum
∑k

j=1 λm+j ≥ 0. If this is zero, then O ∈ [C0, . . . , Cm]
and so {C0, . . . , Cm} ∈ Cm(L). By minimality, Λ(Cm+j) = max∂L Λ, j = 1, . . . , k.
Using (2) and (3) repeatedly, we estimate

σm+k(L) =
m∑

i=0

1
1 + Λ(Ci)

+
k

1 + max∂L Λ

= σm(L) +
k

1 + max∂L Λ

≥ σm+1(L) +
k − 1

1 + max∂L Λ
≥ σm+1(L) + σk(L) − 1,

where in the last inequality we used σ1(L) = 1. This is (8).
Thus, from now on we may assume that

∑k
j=1 λm+j > 0. Let

O′ =
k∑

j=1

λm+j

λm+1 + . . . + λm+k
Cm+j .

We may also assume that O′ �= O. Indeed, if O′ = O, then {Cm+1, . . . , Cm+k} ∈
Ck−1(L) and, by minimality, Λ(Ci) = max∂L Λ, i = 0, . . . , m. Using (2) and (3)
again, we estimate

σm+k(L) =
m + 1

1 + max∂L Λ
+

k∑
j=1

1
1 + Λ(Cm+j)

=
m + 1

1 + max∂L Λ
+ σk−1(L)

≥ σm+1(L) − 1 +
1

1 + max∂L Λ
+ σk−1(L)

≥ σm+1(L) + σk(L) − 1,

where we used σ1(L) = 1. This is (8) again.
Finally, we assume that O′ �= O. We let C ′ ∈ ∂L be the intersection of the ray

emanating from O and passing through O′ with ∂L.
By (15), we have

O =
m∑

i=0

λiCi + (λm+1 + . . . + λm+k)O′.

Expressing O′ in terms of C ′, we obtain

{C0, . . . , Cm, C ′} ∈ Cm+1(L).(16)
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On the other hand, since O ∈ [O′, C ′o] (and O′ ∈ [Cm+1, . . . , Cm+k]), we have

{Cm+1, . . . , Cm+k, C ′o} ∈ Ck(L).(17)

Using (16)-(17), we finally compute

σm+k(L) =
m∑

i=0

1
1 + Λ(Ci)

+
k∑

j=1

1
1 + Λ(Cm+j)

=
m∑

i=0

1
1 + Λ(Ci)

+
1

1 + Λ(C ′)

+
k∑

j=1

1
1 + Λ(Cm+j)

+
1

1 + Λ(C ′o)
− 1

≥ σm+1(L) + σk(L) − 1.

Theorem B follows.

3. Moduli

In this section we prove Theorem C. First, we make a few observations on the
reduced moduli. For brevity, let h = dimH. For v ∈ H, ‖v‖ = h, we consider
Cv = v 
 v − I ∈ ∂K0, where 
 is the symmetric tensor product. The image of
Cv + I is R · v ⊂ H. If C ∈ ∂K0 with C + I having minimal image, then C = Cv

for some v ∈ H, ‖v‖ = h. It follows that the extremal points of K0 as a convex set
are precisely the points Cv, for v ∈ H, ‖v‖ = h. (If C is in the interior of a line
segment [C0, C1] ⊂ ∂K0, then im (C + I) = im (C0 + I) + im (C1 + I).)

The distortion Λ(C) of C ∈ ∂K0 is the largest eigenvalue of C [5]. For C = Cv

we have Λ(Cv) = h − 1 with multiplicity 1, and the other eigenvalue is −1 with
multiplicity h − 1. Hence maximal distortion of K0 is attained precisely at the
points Cv, v ∈ H, ‖v‖ = h.

Let {ei}h
i=1 ⊂ H be an orthonormal basis. By the above, a minimal (h − 1)-

configuration is {C√
he1

, . . . , C√
heh

} ⊂ Ch−1(K0). We have

σh−1(K0) =
h∑

i=1

1
1 + Λ(C√

hei
)

=
h∑

i=1

1
h

= 1.

We obtain that K0 has a simplicial intersection in dimension h − 1. Note that
the simplicial intersection consists of the endomorphisms in K0 ⊂ S2

0(H) that are
diagonal with respect to the basis {ei}h

i=1.
For the beginning of the proof of the first statement of Theorem C on mono-

tonicity, we keep L a general compact convex body L ⊂ E .
Assume that σk(L) = σk−1(L) for some k ≥ 2. Since σ1(L) = 1, we may assume

that k ≥ 3. Let {C0, . . . , Ck} ∈ Ck(L) be a minimizing k-configuration. We first
show that [C0, . . . , Ck] is a k-simplex and it is the intersection of L with the affine
span of {C0, . . . , Ck}. Theorem A then gives σk(L) = 1, that is, k ≤ r(L), and the
first statement of the Corollary follows.

We first claim that [C0, . . . , Ck] is a k-simplex with O in its relative interior.
If the dimension of the convex polytope [C0, . . . , Ck] is less than k, or if [C0, . . . ,

Ck] is a k-simplex but O is not in its relative interior, then O is in the convex hull
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of a proper subset of {C0, . . . , Ck}. We may assume that O ∈ [C0, . . . , Ck0 ] for
some k0 < k. By minimality, Λ(Ck0+j) = max∂L Λ, for j = 1, . . . , k − k0. We have

σk(L) =
k0∑

j=0

1
1 + Λ(Cj)

+
k − k0

1 + max∂L Λ

= σk−1(L) +
1

1 + max∂L Λ
> σk−1(L).

This is a contradiction, and the claim follows.
Next, we claim that for i, j = 0, . . . , k, i �= j, the affine plane Fij spanned by

Ci, Cj , and O intersects L in a triangle with vertices Ci, Cj and another vertex.
It is enough to show this for i = 0 and j = 1. We apply the construction in the
proof of Theorem B (for m = 1 and k replaced by k − 1). We arrive at the two
configurations

{C0, C1, C
′} ∈ C2(L)

and
{C2, . . . , Ck, C ′o} ∈ Ck−1(L),

where C ′ ∈ ∂L is on the ray emanating from O and passing through the point

O′ =
k∑

j=2

λj

λ2 + . . . + λk
Cj .

We estimate

σk(L) =
1

1 + Λ(C0)
+

1
1 + Λ(C1)

+
k∑

j=2

1
1 + Λ(Cj)

=
1

1 + Λ(C0)
+

1
1 + Λ(C1)

+
1

1 + Λ(C ′)

+
k∑

j=2

1
1 + Λ(Cj)

+
1

1 + Λ(C ′o)
− 1

≥ σ2(L) + σk−1(L) − 1.

Since σk(L) = σk−1(L) and σ2(L) ≥ 1, equality holds. We obtain

σ2(L) =
1

1 + Λ(C0)
+

1
1 + Λ(C1)

+
1

1 + Λ(C ′)
= 1.

By Theorem A, L ∩ F01 = [C0, C1, C
′] is a triangle, and the claim follows.

The final step is to show that the affine span F of {C0, . . . , Ck} intersects L in
the k-simplex [C0, . . . , Ck]. Clearly, [C0, . . . , Ck] ⊂ L ∩ F , and L can be replaced
by L ∩ F .

We now assume that L = K0(H)∩ E , where E ⊂ S2
0(H) is a linear subspace and

H is a Euclidean vector space. We apply (ii) of Theorem D in [4] for any pair Ci

and Cj . Then the fact that L∩Fij is a triangle is equivalent to the two conditions

ker (Ci + I) ∩ ker (Cj + I) �= {0}
and

I − 1
1 + Λ(Ci)

(Ci + I) − 1
1 + Λ(Cj)

(Cj + I) ≥ 0.
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Let vi be an eigenvector corresponding to the maximal eigenvalue of Ci. Evaluating
the last inequality on vi, we obtain

〈(Cj + I)vi, vi〉 ≤ 0.

Since Cj + I ≥ 0, vi is in the kernel of Cj + I. Since this is true for all j �= i, we
obtain that the intersection of the kernels of Cj + I for all j �= i is nontrivial. This,
however, means that [C0, . . . , Ĉi, . . . , Ck] ⊂ ∂L. Since this is true for all i, we have
∂[C0, . . . , Ck] ⊂ ∂L, so that L∩F = [C0, . . . , Ck]. The first statement of Theorem
C follows.

Let L = K0∩E for some linear subspace E ⊂ S2
0(H) and assume that σh−n(L) = 1

for some h > 2 and 1 ≤ n < h − 1. Let [C0, . . . , Ch−n] be a simplicial intersection
of K0 ∩ E , where {C0, . . . , Cn−h} ∈ Cn−h(L) is an (h − n)-minimal configuration.
By (6)-(7), we have

n−h∑
i=0

1
1 + Λ(Ci)

(Ci + I) = I.

Let Vi ⊂ H denote the eigenspace corresponding to the (largest) eigenvalue Λ(Ci)
of Ci. By the equality (and the reasoning) above, Vi is contained in the kernel of
Cj + I for any j �= i. In particular, the eigenspaces Vi are mutually orthogonal. We
now estimate

h − n ≤
h−n∑

i=0, i �=j

dim Vi ≤ dim ker(Cj + I) ≤ h − n(L).

Thus n ≥ n(L), and the second statement of Theorem C follows.
For the proof of the last statement, assume that n = 1. For reasons of dimension,

we have
∑h−1

i=0 Vi = H, Vi is one dimensional, and Ci has exactly two eigenvalues:
Λ(Ci) with multiplicity 1 and −1 with multiplicity h − 1. Since trace (Ci) = 0, we
also have Λ(Ci) = h − 1. Choosing a unit vector ei ∈ Vi for each i = 1, . . . , h, we
get Ci = C√

ei
= hei 
 ei − I. The last statement of Theorem C follows.

4. Continuity of σm(L, .)

The following lemma asserts part (a) of Theorem D.

Lemma 1. (a) For fixed O ∈ intL, the function Λ = Λ(.,O) : ∂L → R is
continuous; (b) The family of functions {Λ(C, .)}C∈∂L is equicontinuous; (c) Λ :
∂L × intL → R is continuous.

Proof. (a) This follows as in [1] but, for future purposes, we give here an indepen-
dent proof. Let C ′ → C in ∂L. We need to show that Λ(C ′,O) → Λ(C,O). Let
α = ∠COC ′. The triangle 
COC ′ gives

d(C ′, C)2 = (d(C ′,O) − d(C,O))2 + 4d(C ′,O)d(C,O) sin2(α/2).

Let δO = infX∈∂L d(X,O). Since L is compact, δO > 0. By the equation above,
we have d(C ′,O) → d(C,O) and

d(C ′,O)d(C,O) sin2(α/2) ≥ δ2
O sin2(α/2) → 0.

We thus obtain α → 0.
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Let Co and C ′o be the opposites of C and C ′ (with respect to O), respectively.
We have α = ∠CoOC ′o. Let πO : ∂L → SO be the radial projection of ∂L to the
unit sphere SO centered at O. We have

d (πO(C ′o), πO(Co)) = 2 sin(α/2) → 0.

πO is a homeomorphism [1], so that C ′o → Co follows.
Hence d(C ′o,O) → d(Co,O) and we obtain

Λ(C ′,O) =
d(C ′,O)
d(C ′o,O)

→ d(C,O)
d(Co,O)

= Λ(C,O).

This is (a).
(b) Let O′ → O in intL, C a variable point on ∂L, Co and C ′o the opposites

of C with respect to O and O′, respectively. Let α = ∠OCO′, β = ∠OC ′oO′ and
γ = ∠CoOC ′o. All these angles depend on C, O and O′. Since γ is an exterior
angle to the triangle 
OCC ′o, we have γ = α + β. Let δO = infX∈∂L d(X,O) and
∆O = supX∈∂L d(X,O). Then ∆O ≥ δO > 0.

The triangle 
OO′C gives

d(O′,O)2 = (d(C,O′) − d(C,O))2 + 4d(C,O′)d(C,O) sin2(α/2),

in particular,
d(O′,O′)2 ≥ 4d(C,O′)d(C,O) sin2(α/2).

Let 0 < δ < δO/2 and assume that d(O′,O) < δ. Then d(C,O′) ≥ δO − δ > δO/2
and the inequality above reduces to

d(O′,O) ≥
√

2δO sin(α/2).

We obtain that α(C,O,O′) → 0 as O′ → O, uniformly in C ∈ ∂L.
The triangle 
COC ′o gives

sin β =
d(C,O)

d(C ′o,O)
sin α ≤ ∆O

δO
sin α.

Hence β(C,O,O′) → 0 as O′ → O, uniformly in C ∈ ∂L.
Since γ = α + β, γ(C,O,O′) → 0 as O′ → O, uniformly in C ∈ ∂L.
As in the first part of the proof

d (πO(C ′o), πO(Co)) = 2 sin(γ/2),

and we obtain that
πO(C ′o) → πO(Co)

as O′ → O, uniformly in C ∈ ∂L.
Once again, πO is a homeomorphism (of compact sets), so that C ′o → Co as

O′ → O uniformly in C ∈ ∂L.
Finally

|d(C,O′) − d(C,O)| ≤ d(O′,O)
and

|d(C ′o,O′) − d(Co,O)| ≤ |d(C ′o,O′) − d(C ′o,O)| + |d(C ′o,O) − d(Co,O)|
≤ d(O′,O) + d(C ′o, Co),

and both of these converge to zero uniformly in C ∈ ∂L as O′ → O.
Combining these, we obtain that |Λ(C,O)−Λ(C,O′)| converges to zero uniformly

in C ∈ ∂L as O′ → O. (b) follows.
Finally, (c) follows from (a) and (b).
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Let O,O′ ∈ intL and C ∈ ∂L. We define φO(O′, C) ∈ ∂L as the unique point
such that C −O = µ(φO(O′, C)−O′) for some (unique) µ > 0. We obtain the map
φO : intL × ∂L → ∂L. Clearly, φO(O, C) = C. In addition, for O,O′,O′′ ∈ intL,
we have

φO′(O′′, φO(O′, C)) = φO(O′′, C),(18)

and consequently
φO′(O, φO(O′, C)) = C.

Lemma 2. For fixed C ∈ ∂L, φO(., C) : intL → ∂L is continuous.

Proof. By (18), it is enough to show continuity at O. Let O′ ∈ intL and α =
∠COφO(O′, C). Then, α = ∠OφO(O′, C)O′. Part (b) of the proof of Lemma 1
applied to the triangle 
OO′φO(O′, C) gives

d(O,O′) ≥
√

2δO sin(α/2), δO = inf
X∈∂L

d(X,O),

provided that d(O′,O) < δ < δO/2. Thus, α → 0 as O′ → O. On the other
hand, part (a) of the proof of Lemma 1 applied to the triangle 
COφO(O′, C)
gives φO(O′, C) → C. The lemma follows.

Lemma 3. Let C0, . . . , Cm ∈ ∂L. Then

O ∈ [C0, . . . , Cm] =⇒ O′ ∈ [φO(O′, C0), . . . , φO(O′, Cm)].

Proof. Let O =
∑m

i=0 λiCi, where
∑m

i=0 λi = 1, 0 ≤ λi ≤ 1. Let µi > 0 be such
that Ci −O = µi(φO(O′, Ci) −O′). Multiplying this by λi and summing up with
respect to i, we obtain(

m∑
i=0

λiµi

)
O′ =

m∑
i=0

λiµiφO(O′, Ci).

The lemma follows.

Proof of Theorem D. We need to prove only part (b). Let O ∈ intL be fixed.
We first prove continuity of σm(L, .) at O. Let {C0, . . . , Cm} ∈ Cm(L,O) be any
m-configuration. By (c) of Lemma 1, the function

1
1 + Λ

: ∂L × intL → R

is continuous. Let ε > 0. Choose δ > 0 (δ < δO/2, δO = infX∈∂L d(X,O)) such
that d(O′,O) < δ and d(C ′, C) < δ imply∣∣∣∣ 1

1 + Λ(C ′,O′)
− 1

1 + Λ(C,O)

∣∣∣∣ <
ε

m + 1
.(19)

Let C ′
i = φO(O′, Ci). By Lemma 3, we have {C ′

0, . . . , C ′
m} ∈ Cm(L,O′). Since

φO(., Ci) is continuous at O for every i, there exists 0 < δ′ ≤ δ such that d(O′,O) <
δ′ implies d(C ′

i, Ci) < δ for all i. By (19), for d(O′,O) < δ′, we also have∣∣∣∣∣
m∑

i=0

1
1 + Λ(C ′

i,O′)
−

m∑
i=0

1
1 + Λ(Ci,O)

∣∣∣∣∣ < ε.(20)

First, choose {C0, . . . , Cm} ∈ Cm(L,O) to be m-minimal (with respect to O):

σm(L,O) =
m∑

i=0

1
1 + Λ(Ci,O)

.
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Substituting this into (20), we obtain∣∣∣∣∣
m∑

i=0

1
1 + Λ(C ′

i,O′)
− σm(L,O)

∣∣∣∣∣ < ε.

Taking the infimum in the first sum over Cm(L,O′), we obtain

σm(L,O′) − σm(L,O) < ε.

Second, choose {C ′
0, . . . , C ′

m} ∈ Cm(L,O′) to be m-minimal (with respect to O′).
This is possible by first choosing C ′

i and then defining Ci = φO′(O, C ′
i), since then

φO(O′, Ci) = C ′
i. Again by (20) we have

m∑
i=0

1
1 + Λ(Ci,O)

− σm(L,O′) < ε.

Taking the infimum in the first sum over Cm(L,O) , we obtain

σm(L,O) − σm(L,O′) < ε.

Combining these, for d(O′,O) < δ′ we have

|σm(L,O′) − σm(L,O)| < ε.

Continuity of σm(L, .) in intL follows.
To finish the proof of the theorem we now derive the following relations:

lim
d(O,∂L)→0

max
X∈∂L

Λ(X,O) = ∞(21)

and

lim
d(O,∂L)→0

σm(L,O) = 1.(22)

Changing the notation, we let O ∈ intL be fixed and ε > 0. To prove (21)-(22),
we will show that, for any O′ ∈ intL, d(O′, ∂L) < ε (with ε small enough so that
O′ �= O) implies

1
ε

δ2
O

∆O
≤ max

∂L
Λ(.,O′)(23)

and

(1 ≤)σm(L,O′) ≤ 1 + ε
(m − 1)∆O

2δ2
O

,(24)

where as usual δO and ∆O are the minimum and maximum distances of a boundary
point of L from O.

Let X ∈ ∂L be the unique point on the extension of the half-line emanating from
O and passing through O′. Let C ′ ∈ ∂L be such that d(C ′,O′) < ε and let C =
φO′(O, C ′). We may assume that C ′ /∈ [X,O]. Finally, let O′′ = [X,O] ∩ [C ′,O′].

We have
d(X,O′)
d(X,O)

=
d(O′′,O′)
d(C,O)

≤ d(C ′,O′)
d(C,O)

so that

d(X,O′) ≤ d(C ′,O′)
d(X,O)
d(C,O)

≤ d(C ′,O′)
∆O
δO

≤ ε
∆O
δO

.(25)
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Hence

Λ(X,O′) =
d(X,O′)
d(Xo,O′)

≤ d(X,O′)
d(Xo,O)

≤ ε
∆O
δ2
O

,

where the antipodal Xo is with respect to O′. With this we have

Λ(Xo,O′) =
1

Λ(X,O′)
≥ 1

ε

δ2
O

∆O
,

and (23) follows.
To prove (24), we first note that any antipodal pair of points on ∂L (with respect

to O′) plus Xo listed (m − 1)-times constitutes an m-configuration for σ(L,O′).
Since an antipodal pair of points contributes 1 to the sum in (2), we have

(1 ≤)σm(L,O′) ≤ 1 +
m − 1

1 + Λ(Xo,O′)

= 1 + (m − 1)
d(X,O′)
d(Xo, X)

≤ 1 + ε
(m − 1)∆O

2δO
,

where we used (25) and the fact that d(Xo, X) ≥ 2δO as O ∈ [X, Xo]. (24) follows.
The proof of Theorem D is complete.

5. Concavity of σm(L, .)

We begin with the following:

Proposition 1. For fixed C ∈ ∂L, the function 1/(1+Λ(C, .)) is concave on intL.

Proof. Let O0,O1 ∈ intL and 0 ≤ λ ≤ 1. Let Oλ = (1 − λ)O0 + λO1. The line
passing through C and Oλ intersects the segment [Co

0 , Co
1 ] at a point which we

denote by Co
λ. We then have

Co
λ = (1 − µ)Co

0 + µCo
1(26)

for some 0 ≤ µ ≤ 1. Finally, we let

Λλ =
d(C,Oλ)
d(Co

λ,Oλ)
,

with Λ0 and Λ1 also defined when λ = 0 and λ = 1, respectively. For the distortions,
we have

Λ0 = Λ(C,O0) and Λ1 = Λ(C,O1)(27)

and

Λ(C,Oλ) ≤ Λλ(28)

with equality iff Co
λ is a boundary point of L.

To simplify the computations, it is convenient to introduce the notation

Nλ = 1 +
1

Λλ
.

With this, we have

N0(O0 − C) = Co
0 − C,

N1(O1 − C) = Co
1 − C,

Nλ(Oλ − C) = Co
λ − C.
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In the third equation we use the expression of Co
λ in (26), split C as (1−λ)C + λC

and (1 − µ)C + µC, and use the first two equations to obtain

Nλ((1 − λ)(O0 − C) + λ(O1 − C)) = N0(1 − µ)(O0 − C) + N1µ(O1 − C).

We may assume that O0 −C and O1 −C are linearly independent. We then obtain

Nλ(1 − λ) = N0(1 − µ),
Nλλ = N1µ.

Eliminating µ we get

Nλ =
N0N1

N1(1 − λ) + N0λ
.

Finally, expressing Nλ in terms of Λλ, we have
1

1 + Λλ
=

1 − λ

1 + Λ0
+

λ

1 + Λ1
.

Using (27)-(28) we finally arrive at
1

1 + Λ(C,Oλ)
≥ 1 − λ

1 + Λ(C,O0)
+

λ

1 + Λ(C,O1)
.

The proposition follows.

Corollary. The function
1

1 + maxC∈∂L Λ(C, .)
(29)

is continuous and concave in intL, and it extends to L as a continuous concave
function by setting it as zero on ∂L.

Proof. Consider the family of functions{
1

1 + Λ(C, .)

}
C∈∂L

.

The (pointwise) minimum of this family is (29). By part (b) of Lemma 1 in Section
2, this family is equicontinuous. Continuity of the minimum follows easily. Since the
pointwise minimum of concave functions is concave, concavity of (29) also follows.
Finally the second statement follows from (21).

We now prove a partial concavity of σm(L, .) restricted to m-minimizing config-
urations.

Lemma 1. Let {C0, . . . , Cm} ∈ Cm(L,O) be an m-minimal configuration for
σm(L,O). Then, for any O0,O1 ∈ [C0, . . . , Cm] and 0 ≤ λ ≤ 1 such that O =
(1 − λ)O0 + λO1, we have

σm(L,O) ≥ (1 − λ)σm(L,O0) + λσm(L,O1).

Proof. This is a consequence of Proposition 1. In fact, we have

σm(L,O) =
m∑

i=0

1
1 + Λ(Ci,O)

≥
m∑

i=0

(1 − λ)
1 + Λ(Ci,O0)

+
m∑

i=0

λ

1 + Λ(Ci,O1)
,

since each term in the sum of the left-hand side is concave. Now, by assumption,
{C0, . . . , Cm} ∈ Cm(L,O0) and {C0, . . . , Cm} ∈ Cm(L,O0) so that the infimums
on the right-hand side sums can be taken over Cm(L,O0) and Cm(L,O1), respec-
tively. The lemma follows.
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The principal difficulty in proving concavity of σm(L, .) lies in the fact that
[O0,O1] may not be contained in any m-minimizing configuration. To circumvent
this difficulty one is tempted to consider the recursive inequality

σm(L,O) ≤ σm−1(L,O) +
1

1 + maxC∈∂L Λ(C,O)
and split the interior of L into two subsets according to whether equality or in-
equality holds. This approach works for dimL = m = 2, and we assume this for
the rest of this section (and suppress m).

We define two sets

R =
{
O ∈ intL |σ(L,O) < 1 +

1
1 + maxC∈∂L Λ(C,O)

}
and

S =
{
O ∈ intL |σ(L,O) = 1 +

1
1 + maxC∈∂L Λ(C,O)

}
.

By continuity of the functions involved, R is open and S is relatively closed in
intL.

Lemma 2. Let O ∈ S . Then the sets

MO = {C ∈ ∂L |Λ(C,O) = max
X∈∂L

Λ(X,O)}

and
NO = {C ∈ ∂L |Λ(C,O) = min

X∈∂L
Λ(X,O)}

are connected (and closed) and centrally symmetric with respect to O. If Λ is
nonconstant, then Λ decreases from MO to NO. {C0, C1, C2} ∈ C (L,O) is minimal
iff either one element is in MO and the other two are antipodal, or two elements
are in MO and one is in NO.

Proof. Since O ∈ S , for any configuration {C0, C1, C2} ∈ C (L,O), we have

1 +
1

1 + maxC∈∂L Λ(C,O)
≤ 1

1 + Λ(C0,O)
+

1
1 + Λ(C1,O)

+
1

1 + Λ(C2,O)
.

(30)

Let C0 ∈ MO and C2 = Co
1 and move C1 to C ′

1 along ∂L keeping O ∈ [C0, C1, C2].
Then (30) implies Λ(C ′

1) ≤ Λ(C1). Since this is true for any C1 (between C0 and
Co

0 ), the description of Λ applies. The rest is clear.

Corollary. If O ∈ R and {C0, C1, C2} ∈ C (L,O) is minimal, then [C0, C1, C2] is
a (nonsingular) triangle with O in its interior.

For each O ∈ R , choose a minimal triangle {C0, C1, C2} ∈ C (L,O), and let

ρO = inf
X∈∂[C0,C1,C2]

d(X,O) > 0.

Lemma 3. Let K ⊂ R be compact. Then infO∈K ρO > 0.

Proof. Assume, on the contrary, that there exist On ∈ K such that ρOn
→ 0 as

n → ∞. Passing to a subsequence, we may assume that On → O ∈ K. Since ∂L
is also compact, we may also assume that each vertex of the minimizing triangle
associated to On converges as n → ∞. This way, we obtain a limiting configuration
{C0, C1, C2} ∈ C (L,O). Since σ(L, .) is continuous (part (b) of Theorem D),
σ(L,On) → σ(L,O) as On → O. Since Λ is continuous (part (a) of Theorem D),
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{C0, C1, C2} is minimal with respect to O. On the other hand, ρO = 0. This is a
contradiction since O ∈ R .

Proposition 2. σ(L, .) is concave on R , that is, for [O0,O1] ⊂ R and 0 ≤ λ ≤ 1,
we have

σ(L, (1 − λ)O0 + λO1) ≥ (1 − λ)σ(L,O0) + λσ(L,O1).

Proof. Let � be the line passing through O0 and O1. Restricting σ(L, .) to the
connected component of R ∩ � that contains [Oo,O1] and using Lemma 1 and
Lemma 3, the proposition is the consequence of the following.

Lemma 4. Let f : (a0, b0) → R be a continuous function that satisfies the following
property:

For each c ∈ (a0, b0) there exists εc > 0 such that (c − εc, c + εc) ⊂ (a0, b0) and
for any [c0, c1] ⊂ (c − εc, c + εc) with c ∈ [c0, c1], we have

f(c) ≥ (1 − λ)f(c0) + λf(c1),(31)

where c = (1 − λ)c0 + λc1. Moreover, given [a, b] ⊂ (a0, b0), there is a universal
choice of ε for all c ∈ [a, b].

Then f is concave on (a0, b0).

Proof. Let [a, b] ⊂ (a0, b0) and ε the universal choice for [a, b]. Let 0 < λ < 1. We
need to show that

f((1 − λ)a + λb) ≥ (1 − λ)f(a) + λf(b).(32)

Let c = (1 − λ)a + λb. Let N be a natural number and subdivide [a, c] and [c, b]
into N + 1 equal parts. Let the subdivision points be

a = a0 < a1 < . . . < aN < aN+1 = c = bN+1 < bN < . . . < b1 < b0 = b.

Note that c = (1 − λ)ai + λbi, i = 0, . . . , N . Choose N large enough so that
the ε-neighborhood of any subdivision point inside (a, b) contains at least three
subdivision points. We now write down (31) for each of the three subdivision
points:

f(ai) ≥ 1
2
f(ai−1) +

1
2
f(ai+1), i = 1, . . . , N,

f(c) ≥ (1 − λ)f(aN ) + λf(bN ),

f(bi) ≥ 1
2
f(bi+1) +

1
2
f(bi−1), i = 1, . . . , N.

We refer to the i-th inequality in the first set of N inequalities as (A)i, and the i-th
inequality in the last set of N inequalities as (B)i, and the inequality for f(c) as
the middle inequality. (Note the apparent symmetry between (A)i and (B)i.) We
now claim that

f(c) ≥ (1 − λ)f(aN−i) + λf(bN−i), i = 0, . . . , N.(33)

For i = N , this is (32). To prove (33) inductively, we first note that, for i = 0, this
is the middle equation. For the general induction step i ⇒ i + 1, we consider (with
obvious notations) the inequality

(1 − λ)((A)N−i + . . . + (A)N ) + λ((B)N−i + . . . + (B)N )
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which, after cancellations, becomes

(1 − λ)(f(aN−i) + f(aN )) + λ(f(bN−i) + f(bN ))

≥ (1 − λ)f(aN−i−1) + λf(bN−i−1) + f(c).

The left-hand side can be estimated from above by 2f(c) by (33) and the middle
inequality. (33) for i + 1 follows, and the induction is complete.

Summarizing, we arrive at the following scenario:
On the open set R , σ(L, .) is concave and less than 1 + 1/(1 + max∂L Λ), and

on S , σ(L, .) is equal to 1 + 1/(1 + max∂L Λ), and this latter function is concave
on the entire L.

To show that σ(L, .) is concave, we consider [O0,O1] ⊂ intL and its extension
to the line �. We let f and g denote the restrictions of 1 + 1/(1 + max∂L Λ) and
σ(L, .) to �∩L. g differs from f on U = R ∩� which is a countable union of disjoint
open intervals. Concavity of σ(L, .) is now implied by the following.

Lemma 5. Let f : [a, b] → R be a continuous and concave function with f(a) =
f(b) = 1. Let U ⊂ (a, b) be an open set. Write U as a countable union of disjoint
open intervals (ai, bi), i = 1, 2, . . . . For each i, let gi : [ai, bi] → R be concave,
gi < f on (ai, bi), gi(ai) = f(ai) and gi(bi) = f(bi). Define g : [a, b] → R as gi on
[ai, bi] for all i and g = f otherwise. Then g is concave.

Proof. We let f0 = f . We define f1 as f0 replaced by g1 on [a1, b1]. Proceeding
inductively, we define fi as fi−1 replaced by gi on [ai, bi]. Since the subintervals
in question are disjoint, the (decreasing) sequence fi, i = 1, 2, . . . , is pointwise
convergent and converges to g. It remains to show that fi is concave for each
i. Proceeding inductively again, we need to show that concavity of fi−1 implies
concavity of fi. Let [c0, c1] ⊂ [a, b]. We need to show that

fi((1 − λ)c0 + λc1) ≥ (1 − λ)f(c0) + λfi(c1), 0 ≤ λ ≤ 1.

This is an easy case-by-case verification depending on the mutual position of [c0, c1]
and the interval [ai, bi] on which fi−1 is modified to fi. The lemma follows.

6. The invariants σ0
m(L)

In this section we prove an analogue of the theorem on σm(L) for the invariants
σ0

m(L) as follows.

Proposition. Let L be a compact convex body in an n-dimensional Euclidean vector
space E and O a base point in the interior of L. Let m ≥ 1. Then

1 ≤ σ0
m(L) ≤ m + 1

2
.

If σ0
m(L) = 1, then m ≤ n, and there exists an affine subspace F ⊂ E, O ∈ F , of

dimension m such that L∩F is an m-simplex. In this case a minimal configuration
{C0, . . . , Cm} ∈ C0(L ∩ F) is unique and is given by the set of vertices of L ∩ F .
Moreover, minimality

m∑
i=0

1
1 + Λ(Ci)

= 1

implies
m∑

i=0

1
1 + Λ(Ci)

Ci = 0.
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Conversely, if L has a simplicial intersection with an m-dimensional affine subspace
F � O, then σ0

m(L) = 1.
For m ≥ 2, σ0

m(L) = (m + 1)/2 iff Λ = 1 on ∂L, that is, iff L is symmetric.

Proof. Combining (5) and (12) we have 1 ≤ σm(L) ≤ σ0
m(L). If σ0

m(L) = 1, then
σm(L) = 1, and Theorem A implies that L has a simplicial intersection with an
m-dimensional affine subspace F � O. In addition, minimal configuration exists
and is unique and satisfies (6)-(7).

Conversely, if L has a simplicial intersection with an m-dimensional affine sub-
space F � O, then the vertices of the m-simplex L ∩F are extremal points. Thus,
σ0(L ∩ F) = 1 and so σ0

m(L) = 1.
It remains to prove the statements on the upper bound for σ0(L).
We first show the following:

σ0
m+k(L) ≤ σ0

m(L) +
k

1 + maxL0 Λ
, k ≥ 0.(34)

We may assume that k > 1. By (14) we can choose C ∈ L0 such that

Λ(C) = max
∂L

Λ = max
L0

Λ.

First let m ≥ n. Let ε > 0 and choose {C0, . . . , Cm} ∈ C0
m(L) such that

m∑
i=0

1
1 + Λ(Ci)

< σ0
m(L) + ε.

Adding k copies of C to the original configuration we obtain the (m+k)-configura-
tion {C0, . . . , Cm, C, . . . , C} ∈ C0

m+k(L). By definition, we have

σ0
m+k(L) ≤

m∑
i=0

1
1 + Λ(Ci)

+
k

1 + Λ(C)
< σ0

m(L) + ε +
k

1 + Λ(C)
.

Letting ε → 0, (34) follows.
Now let m ≤ n. Let F ⊂ E be an m-dimensional affine subspace with O ∈ F

such that
σ0(L ∩ F) < σ0

m(L) + ε.

Let {C0, . . . , Cm} ∈ C0(L ∩ F) be such that
m∑

i=0

1
1 + Λ(Ci)

< σ0(L ∩ F) + ε.

Combining these, we obtain
m∑

i=0

1
1 + Λ(Ci)

< σ0
m(L) + 2ε.

If k ≥ n−m, then, adding k copies of C again, we obtain {C0, . . . , Cm, C, . . . , C} ∈
C0

m+k(L), and we have

σ0
m+k(L) ≤

m∑
i=0

1
1 + Λ(Ci)

+
k

1 + Λ(C)
< σ0

m(L) + 2ε +
k

1 + Λ(C)
.

Letting ε → 0, (34) follows.
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Finally, if k < n−m, then let F ′ ⊃ F be an (m+k)-dimensional affine subspace
such that C ∈ F ′. Then adding k copies of C again, we obtain

{C0, . . . , Cm, C, . . . , C} ∈ C0
m+k(L ∩ F ′).

By definition, we have

σ0
m+k(L) ≤ σ0(L ∩ F ′)

≤
m∑

i=0

1
1 + Λ(Ci)

+
k

1 + Λ(C)

< σ0
m(L) + 2ε +

k

1 + Λ(C)
.

Letting ε → 0, (34) follows.

For m = n = dimL, we claim that equality holds in (34), so that the se-
quence {σ0

m(L)}m≥n is arithmetic with difference 1/(1 + maxL0 Λ). Indeed, let
{C0, . . . , Cn+k} ∈ C0

n+k(L) be such that

n+k∑
i=0

1
1 + Λ(Ci)

< σ0
n+k(L) + ε.

The convex hull [C0, . . . , Cn+k] � O is a convex polytope of dimension ≤ n since
it is contained in E . We can select n + 1 points from {C0, . . . , Cn+k} whose convex
hull still contains O. Renumbering if necessary, we may assume that these are
C0, . . . , Cn so that O ∈ [C0, . . . , Cn]. Thus, we have {C0, . . . , Cn} ∈ C0(L). With
this, we obtain

σ0
n+k(L) + ε >

n+k∑
i=0

1
1 + Λ(Ci)

≥ σ0(L) +
k

1 + maxL0 Λ
.

Letting ε → 0, the claim folows.
Returning to the main line, let m = 1 and k = m − 1 in (34). We obtain

σ0
m(L) ≤ σ0

1(L) +
m − 1

1 + maxL0 Λ
≤ 1 +

m − 1
2

=
m + 1

2
.

The upper bound for σ0
m(L) follows. If σ0

m(L) = (m + 1)/2, then maxL0 Λ =
max∂L Λ = 1. Thus, Λ = 1 and L is symmetric. The proposition follows.

7. Local maxima of the distortion

We first study the distance function ∆ : ∂L → R, defined by

∆(C) = d(C,O), C ∈ ∂L.

Let C ∈ ∂L. We define the derivative Dτ∆(C) with respect to an oriented 2-
dimensional affine subspace τ ⊂ E that contains O and C. We parametrize the
boundary curve ∂L ∩ τ by the angular variable measured from C in the positive
direction so that for C(t) ∈ ∂L ∩ τ , we have t = ∠C OC(t). It follows from
convexity that t �→ C(t) has one-sided derivatives. We introduce the angle

α = ατ (C) = ∠OC C ′, C ′ = lim
t→0+

C(t) − C

t
.
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For any function f : ∂L → R differentiable on ∂L ⊂ E , we define

Dτf(C) = lim
t→0+

f(C(t)) − f(C)
t

.

We now calculate Dτ∆. (Note that ∆ is differentiable, as O is away from ∂L.)

Lemma. We have

Dτ∆(C) = −∆(C) cotα.(35)

Proof. Choose a coordinate system on τ such that O is the origin and C is on
the positive first axis. With respect to this coordinate system, we have C(t) =
(∆(C(t)) cos t, ∆(C(t)) sin t). Differentating, (35) follows from the formula

lim
t→0+

C(t) − C

t
=

(
∆(C), lim

t→0+

∆(C(t)) − ∆(C)
t

)
= (∆(C), Dτ∆(C)).

By (35), we have

Dτ log Λ(C) = cotαo − cotα,(36)

where α = ατ (C) and αo = ατ (Co).

Corollary 1. Let C ∈ ∂L. We have

Dτ log Λ(C) ≤ 0 iff α ≤ αo.

Let τ ′ be τ oppositely oriented and α′ = ατ ′(C). By convexity, α + α′ ≤ π and
equality holds iff C is a smooth point of ∂L ∩ τ [1]. C is a smooth point of ∂L iff
α + α′ = π for all τ ⊃ [O, C]. (For example, if L is a polytope, then α + α′ = π if
C is on a side of the polygon ∂L ∩ τ , and α + α′ < π if C is a vertex of ∂L ∩ τ .)

Corollary 2. Assume Dτ log Λ(C) ≤ 0 for all τ ⊃ [O, C]. If C is a smooth point
of ∂L ∩ τ , then so is Co. In addition, the tangent lines to ∂L ∩ τ at C and at Co

are parallel.

Proof. By Corollary 1, we have α ≤ αo and α′ ≤ α′o, where αo = ατ (Co) and
α′o = ατ ′(Co). Adding, we have

α + α′ ≤ αo + α′0 ≤ π.

Since C is a smooth point, α + α′ = π. Thus α = αo and α′ = α′o. The corollary
follows.

Let C ∈ ∂L. Consider the set of all affine subspaces A ⊂ E such that C is in
the interior of ∂L ∩ A (relative to A). This set has a maximal element AC . (By
convexity, if A and A′ are elements of this set, then so is their affine span.)

We call C a k-flat point, where k = dimAC . By definition, 0-flat points are the
extremal points of L. If C is k-flat, k > 0, then the boundary of ∂L∩AC (relative
to AC) consists of l-flat points with l < k. (If C ′ ∈ ∂L ∩ AC , then AC′ ⊂ AC .)

Let A ⊂ E be an affine subspace. We denote by A0 ⊂ E the linear subspace
obtained from A by translation. Given affine subspaces A and A′, we say that
A is parallel to A′ if A0 ⊂ A′

0. Note that this relation is not symmetric unless
dimA = dimA′.

Proposition. Let C ∈ ∂L be a k-flat point, k > 0, and assume that Λ has a local
maximum at C. Then Co is l-flat with l ≥ k and AC is parallel to ACo .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



MODULI OF SPHERICAL MINIMAL IMMERSIONS 2445

Proof. Let τ ⊃ [O, C] be an affine plane such that τ ∩ AC is nontrivial. Then
α+α′ = π, and C is a smooth point of ∂L∩ τ . By Corollary 2, Co is also a smooth
point, and the tangent lines to ∂L ∩ τ at C and at Co are parallel. We claim that
τ intersects ACo nontrivially. Let C ′ ∈ ∂L ∩ τ ∩ AC . Let C ′′ be the intersection
of the line passing through C and O with the tangent line to ∂L ∩ τ at Co. By
convexity, we have C ′o ∈ [O, C ′′]. Hence

Λ(C ′) =
∆(C ′)
∆(C ′o)

≥ ∆(C ′)
∆(C ′′)

= Λ(C),

where the last equality is because the tangent lines are parallel. Since Λ has a local
maximum at C, equality holds provided C ′ is close to C. This means that C ′′ = C ′o.
Varying C ′ (close to C) we obtain that ∂L ∩ τ contains an open neighborhood of
Co in the tangent line at Co. This means that τ ∩ACo is nontrivial, or equivalently,
that the tangent line to ∂L ∩ τ at Co is contained in AC . The proposition follows.

Corollary. We have
max
∂L

Λ = max
L0

Λ.

Proof. If Λ attains its maximum at a nonextremal point C ∈ ∂L, then C is k-flat
for some k > 0. By the Krein-Milman theorem, ∂L ∩ AC contains an extremal
point C ′. Since AC is parallel to ACo , we have Λ(C ′) = Λ(C).

Example. Let SO(4) = SU(2) · SU(2)′ be the natural product structure, and let
L = (L2

3)SU(2)′ be the moduli of quadratic eigenmaps f : S3 → SN that are SU(2)-
equivariant [4]. Then the Hopf map f : S3 → S2 corresponds to an extremal point
C of L with maximal distortion (= 3

√
2). Its antipodal, the complex Veronese map

fo : S3 → S5, corresponds to a 2-flat point Co. This shows that in the Proposition
above l > k does occur.

8. Proof of Theorem F

Assume that there exists a minimal m-configuration {C0, . . . , Cm} such that
O is in the relative boundary of the polytope [C0, . . . , Cm] in the affine span of
{C0, . . . , Cm}. Then, renumbering the points if necessary, O ∈ [C0, . . . , Cm0 ] for
some m0 < m. Clearly, {C0, . . . , Cm0} is minimal for σm0(L), that is,

σm0(L) =
m0∑
i=0

1
1 + Λ(Ci)

.(37)

Moreover, for m0 < i ≤ m, Λ must attain its maximum at Ci, since Ci is a point
in a minimal configuration and it has no role in the condition O ∈ [C0, . . . , Cm].
We obtain

Λ(Cm0+1) = . . . = Λ(Cm) = max
∂L

Λ.

Using this and (37), we have

σm(L) =
m∑

i=0

1
1 + Λ(Ci)

= σm0(L) +
m − m0

1 + max∂L Λ
.

In particular, we obtain (13).
From now on we can assume that for any minimal m-configuration {C0, . . . , Cm},

[C0, . . . , Cm] is an m-simplex with O in its interior. The latter condition implies
that Λ has a local maximum at each Ci.
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Assume that Ci is not an extremal point. By the proposition in the previous
section, the nontrivial ACi

is parallel to ACo
i
. We can move Ci to an extremal

point in the boundary of ∂L∩ACi
without altering Λ(Ci) and also maintaining the

condition O ∈ [C0, . . . , Cm]. Theorem F follows.
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