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1. Introduction and Statement of Results

Let H be a Euclidean vector space. Let S2
0(H) denote the space of symmetric en-

domorphisms of H with vanishing trace; S2
0(H) is a Euclidean vector space with

respect to the natural scalar product 〈C,C ′ 〉 = trace(CC ′), C,C ′ ∈ S2
0(H). We

define the (reduced) moduli space [7] as

K0 = K0(H) = {C ∈ S2
0(H) | C + I ≥ 0},

where ≥ means positive semidefinite.
We observe that K0 is a convex body in S2

0(H). The interior of K0 consists of
those C ∈ K0 for which C + I > 0, and the boundary of K0 consists of those
C ∈K0 for which C + I has nontrivial kernel. The eigenvalues of the elements in
K0 are contained in [−1, dim H−1]. Hence K0 is compact. Finally, an easy argu-
ment using GL(H)-invariance of K0 shows that the centroid of K0 is the origin.

Let M be a compact Riemannian manifold and H = Hλ the eigenspace of
the Laplacian �M (acting on functions of M) corresponding to an eigenvalue λ.
The DoCarmo–Wallach moduli space that parameterizes spherical minimal im-
mersions f : M → SV of M into the unit sphere SV of a Euclidean vector space
V, for various V, is the intersection K0 ∩ Eλ, where Eλ is a linear subspace of
S2

0(Hλ). Here f is an isometric minimal immersion of dimM/λ times the original
metric ofM. (For further details, see [3; 6; 8].) Intersecting K0 further with suit-
able linear subspaces of Eλ, we obtain moduli that parameterize spherical minimal
immersions with additional geometric properties (such as higher-order isotropy,
equivariance with respect to an acting group of isometries ofM, etc.).

A result of Moore [4] states that a spherical minimal immersion f : Sm→ S n

with n ≤ 2m − 1 is totally geodesic; in particular, the image of f is a great
m-sphere in S n. An important example showing that the upper bound is sharp is
provided by the tetrahedral minimal immersion f : S3 → S 6 (see [2; 6]). Here
f is SU(2)-equivariant and non–totally geodesic. The name comes from the fact
that the invariance group of f is the binary tetrahedral group T∗ ⊂ S3 = SU(2),
so that f factors through the canonical projection S3 → S3/T∗ and gives a mini-
mal imbedding f̄ : S3/T∗ → S 6 of the tetrahedral manifold S3/T∗ into S 6.

Let M = S3 and let Hλp be the pth eigenspace of the Laplacian on S3 corre-
sponding to the eigenvalue λp = p(p + 2). According to a result in [5; 6] there
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exists a 2-dimensional linear subspace E ⊂ Eλ6 ⊂ S2
0(Hλ6) containing the pa-

rameter point C1 corresponding to the tetrahedral minimal immersion, such that
the intersection K0 ∩E is a triangle with one vertex at C1. The computations lead-
ing to this result are tedious. (It is relatively easy to obtain another vertex, say C2,
of the triangle, but the the main technical difficulty lies in finding the third vertex.)

Note that a similar analysis can be carried out for the octahedral minimal immer-
sion f : S3 → S 8 (with invariance group O∗ ⊂ S3, the binary octahedral group,
and factored map f̄ : S3/O∗ → S 8, a minimal imbedding of the octahedral man-
ifold S3/O∗ into S 8). Once again, there exists a 3-dimensional linear subspace
E ⊂ Eλ8 ⊂ S2

0(Hλ8) such that the intersection K0 ∩ E is a tetrahedron.
A fundamental problem in the theory of moduli is to study the structure of the

intersections K0 ∩ E for various linear subspaces E ⊂ S2
0(H). In view of the ex-

amples just given and since simplices are the simplest convex sets, it is natural to
ask: When is the intersection K0 ∩ E a simplex?

Theorem A. Let C1, . . . ,Cn ∈ ∂K0 be linearly independent with linear span E .
Then K0 ∩ E is an n-simplex (with vertices C1, . . . ,Cn and another vertex C0) if
and only if the following two conditions are satisfied:

n⋂
i=1

ker(Ci + I ) �= {0};(i)

I −
n∑
i=1

1

1+�(Ci) (Ci + I ) ≥ 0 but �> 0,(ii)

where �(C) is the largest eigenvalue of C ∈ ∂K0.

We will prove Theorem A in Section 4. At the end of that section we also check
that conditions (i) and (ii) are satisfied in the setting for the tetrahedral minimal
immersion.

As a technical tool for proving Theorem A, we introduce a sequence of invari-
ants σm(L), m ≥ 1, associated to a compact convex body L in a Euclidean vector
space. We define σm(L) in a general setting of convex geometry.

Let E be a Euclidean vector space. Given a subset S of E , we denote its con-
vex hull by [S ] and its affine hull by 〈S〉. Then we have [S ] ⊂ 〈S〉 ⊂ E . If
S is finite, S = {C0, . . . ,Cm}, then the convex hull and the affine hull are de-
noted by [C0, . . . ,Cm] and 〈C0, . . . ,Cm〉, respectively. Then [C0, . . . ,Cm] is a
convex polytope in 〈C0, . . . ,Cm〉 (see [1]). The dimension dim[C0, . . . ,Cm] =
dim〈C0, . . . ,Cm〉 is maximal (= m) iff [C0, . . . ,Cm] is an m-simplex.

A convex set L in E is called a convex body if L has nonempty interior, int L �=
∅. Let L ⊂ E be a compact convex body with base point O ∈ int L. Given a
boundary point C ∈ ∂L, it is well known [1] that the line passing through C and
O intersects ∂L at another point Co. We call this the opposite of C (relative to
O). Clearly, (Co)o = C. Let d be the distance function on E . We call the ratio
�(C) = d(O,C)/d(O,Co) the distortion of L at C (relative to O). We have
�(Co) = 1/�(C).
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For E = S2
0(H) as before, the distortion �(C) of C ∈ ∂K0 is the largest eigen-

value of C (see [6]).
In most situations L will contain the origin in its interior and, unless stated

otherwise, we will take the origin as the base point.
Let m ≥ 1 be an integer. A finite (multi)set {C0, . . . ,Cm} is called an m-

configuration (relative to O) if {C0, . . . ,Cm} ⊂ ∂L and O ∈ [C0, . . . ,Cm]. Let
Cm(L) denote the set of all m-configurations of L. We define

σm(L) = inf
{C0, ...,Cm}∈Cm(L)

m∑
i=0

1

1+�(Ci) . (1)

An m-configuration {C0, . . . ,Cm} is called minimal if

σm(L) =
m∑
i=0

1

1+�(Ci) .

As shown in Section 2, minimal configurations exist.
Let dim E = dim L = n, n ≥ 2. We have σ1(L) = 1 and

σm(L) = inf
O∈F⊂E, dim F=m σm(L ∩ F ), m ≤ n, (2)

where the infimum is over affine subspaces F ⊂ E .
For m ≥ n, we have

σm(L) = σn(L)+ m− n
1+max∂L�

. (3)

Equivalently, we may say that the sequence {σm(L)}m≥n is arithmetic with differ-
ence 1/(1+ max∂L�). In view of (2) and (3), the primary invariant to study is
σn(L), where dim L = n. In what follows, we will suppress the index n and write
σ(L) = σn(L) and C(L) = Cn(L) if dim L = n. (For example, σm(L ∩ F ) =
σ(L ∩ F ) in (2) since dim(L ∩ F ) = m.) We will also omit explicit reference
to n for objects depending on n; for example, an element of C(L) will simply be
called a configuration.

According to our first result, σm(L) measures how distorted or symmetric L is
(with respect to O).
Theorem B. Let L ⊂ E be a compact convex body in a Euclidean vector space
E of dimension n with base point O ∈ int L. Let m ≥ 1. Then

1 ≤ σm(L) ≤ m+ 1

2
. (4)

If σm(L) = 1 then m ≤ n and there exists an affine subspace F ⊂ E , O ∈ F, of
dimensionm such that L∩F is anm-simplex. In fact, in this case a minimal con-
figuration {C0, . . . ,Cm} ∈ C(L∩F ) is unique and is given by the set of vertices of
L ∩ F. Moreover, minimality

m∑
i=0

1

1+�(Ci) = 1 (5)
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implies
m∑
i=0

1

1+�(Ci)Ci = 0. (6)

Conversely, if L has a simplicial intersection with an m-dimensional affine sub-
space F �O, then σm(L) = 1.

For m ≥ 2, σm(L) = (m+ 1)/2 iff � = 1 on ∂L, that is, iff L is symmetric.

Remark 1. A well-known result in convex geometry [1] asserts that the distor-
tion function � : ∂L → R satisfies

1

n
≤ � ≤ n,

provided that the base point is suitably chosen. (The bounds are attained for an
n-simplex.) For an m-configuration {C0, . . . ,Cm} ∈ Cm(L), this gives

m+ 1

n+ 1
≤

m∑
i=0

1

1+�(Ci) ≤
n

n+ 1
(m+ 1),

and we obtain the (generally weaker) estimate

m+ 1

n+ 1
≤ σm(L) ≤ n

n+ 1
(m+ 1).

Remark 2. In view of Theorem A, in the setting of the tetrahedral minimal im-
mersion we have σ2(K0(Hλ6)) = 1. Similarly, for the octahedral minimal immer-
sion we have σ3(K0(Hλ8)) = 1.

In the next result we indicate the dependence of σm(L) on O by writing σm(L, O).
It can be shown that σm(L, O) is continuous in the variable O ∈ int L. (In fact, con-
tinuity follows from equicontinuity of the family {�(C, ·) | C ∈ ∂K0} on int K0.)

Note also that Example 2 (in Section 3) shows that σm(L, O) is not smooth in O ∈
int L. For the boundary behavior, we have the following theorem.

Theorem C. We have
lim

d(O,∂L)→0
σm(L, O) = 1.

To make σm(L) depend only on the metric properties of L and not on O, we usu-
ally choose the base point to be the centroid of L.

Theorems B and C will be proved in Section 2.

Example. Let Pk denote a regular k-sided polygon. The maximum distortion
occurs at a vertex of Pk and the distortion is equal to−sec(2π [k/2]/k), where [·]
is the greatest integer function. We obtain

σm(Pk) = m+ 1

1− sec(2π [k/2]/k)
.

For k = 3, P3 is a triangle and the formula gives σm(P3) = (m+ 1)/3; in partic-
ular, for m = 2 we have σ(P3) = 1. At the other extreme,
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lim
k→∞ σm(Pk) =

m+ 1

2
.

For the rest of the results we will be concerned with σ(L) only.
Recall that a convex polytope L in a Euclidean space E is a compact convex

body enclosed by finitely many hyperplanes [1]. To avoid redundancy, we assume
that the number of participating hyperplanes is minimal. The part of the polytope
that lies in one of the bounding hyperplanes is called a cell. (For example, a cell
of a convex polygon is an edge, and a cell of a convex polyhedron is a face.) The
interior of a cell relative to ∂L is nonempty. The part of the boundary ∂L that re-
mains when we delete all relative interiors of cells is called the skeleton of L. (For
example, the skeleton of a polygon is the set of its vertices, and the skeleton of a
polyhedron is the set of its edges and vertices.) We call a configuration simplicial
if its elements are vertices of a simplex.

Theorem D. Let L be a convex polytope in an n-dimensional Euclidean space E
with base point O ∈ int L. Assume that {C0, . . . ,Cn} is a minimal simplicial config-
uration. Then there exists another minimal simplicial configuration {C ′0, . . . ,C ′n}
such that, for i = 0, . . . , n, C ′i or its opposite belongs to the skeleton of L.
Theorem D will be proved in Section 3. As a particular case, note that, for a convex
polygon L, Theorem D reduces the determination of σ(L) to a finite enumeration.

2. The Invariants σm(LLL), m ≥ 1

Let L ⊂ E be a compact convex body with base point O ∈ int L and with dim E =
dim L = n. Let m ≥ 1. We first show that a sequence of m-configurations
{Ck0 , . . . ,Ckm} ∈ Cm(L), k ≥ 1, which is minimizing in the sense that

lim
k→∞

m∑
i=0

1

1+�(Cki )
= σm(L),

subconverges to a minimal m-configuration. Indeed, since ∂L is compact, by ex-
tracting suitable subsequences we may assume that limk→∞ Cki = Ci ∈ ∂L for
each i = 0, . . . ,m. We now use the well-known fact that the distance function
from O is continuous on ∂L (since L is convex). In particular, � is a continuous
function and we have

m∑
i=0

1

1+�(Ci) = σm(L).

Since O ∈ [Ck0 , . . . ,Ckm] for each k ≥ 1, we also have O ∈ [C0, . . . ,Cm]. Thus,
{C0, . . . ,Cm} is a minimal m-configuration.

As noted in Section 1, we have σ1(L) = 1. Indeed, let {C0,C1} ∈ C1(L) be any
1-configuration. Then O ∈ [C0,C1] and C0,C1 ∈ ∂L imply that C0 and C1 are
opposites. Thus, �(C1) = 1/�(C0) and so we have

1

1+�(C0)
+ 1

1+�(C1)
= 1.
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We now prove (2) and (3). First of all, (2) holds because any m-configuration
{C0, . . . ,Cm} is contained in an m-dimensional affine subspace F of E . Thus, the
infimum on the left-hand side of the equality in (2) can be split into the double
infimum on the right-hand side.

In order to derive (3) we first claim that

σm+k(L) ≤ σm(L)+ k

1+max∂L�
, m ≥ 1, k ≥ 0. (7)

This inequality is obvious because a minimal m-configuration can always be ex-
tended to an (m+ k)-configuration by adding k copies of a point C ∈ ∂L at which
� attains a maximum value on ∂L.

Note that, for m < n, the inequality in (7) is sharp in general. For example, if
n = 2 and L is an equilateral triangle with O at the centroid, then m = k = 1
gives σ2(L) = σ(L) = 1 (by Theorem B or inspection), σ1(L) = 1 (by the fore-
going), and max∂L� = 2. (On the other hand, equality holds for the examples at
the end of Section 3.)

Finally, to obtain (3) we need to show that equality holds in (7) for m = n:

σn+k(L) = σ(L)+ k

1+max∂L�
, k ≥ 0.

Let {C0, . . . ,Cn+k} ∈ Cn+k(L) be a minimal (n+k)-configuration. The convex hull
[C0, . . . ,Cn+k]�O is a convex polytope of dimension≤ n (since it is contained in
the n-dimensional linear space E ). Hence we can select a subset of {C0, . . . ,Cn+k}
that forms an n-configuration. Renumbering the points, we may assume that this
subset is {C0, . . . ,Cn} ∈ C(L). Then we have

σn+k(L) =
n+k∑
i=0

1

1+�(Ci)

=
n∑
i=0

1

1+�(Ci) +
n+k∑
i=n+1

1

1+�(Ci)

≥ σ(L)+ k

1+max∂L�
,

and (3) follows.
Letm = n and let S(L) denote the set of all simplicial configurations of L (rel-

ative to O). In other words, {C0, . . . ,Cn} ∈ C(L) belongs to S(L) iff [C0, . . . ,Cn]
is an n-simplex. We now claim that the infimum in (1) for σ(L) = σn(L) can be
taken over the subset S(L) ⊂ C(L):

σ(L) = inf
{C0, ...,Cn}∈S(L)

n∑
i=0

1

1+�(Ci) . (8)

Toward this end, we denote the right-hand side of (8) by σ ∗(L) and then show that
σ(L) = σ ∗(L). Clearly, we have σ(L) ≤ σ ∗(L). For the opposite inequality we
have the following lemma.
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Lemma1. Let ε > 0. Then, for any {C0, . . . ,Cn}∈C(L), there exist {C ′0, . . . ,C ′n}∈
S(L) such that ∣∣∣∣

n∑
i=0

1

1+�(C ′i )
−

n∑
i=0

1

1+�(Ci)
∣∣∣∣ < ε. (9)

Proof. Let dim〈C0, . . . ,Cn〉 = n0, n0 ≤ n. Decomposing the convex polytope
[C0, . . . ,Cn] in 〈C0, . . . ,Cn〉 into a union of simplices, we can find an n0-simplex
that contains the base point O. Renumbering, we may assume that this n0-simplex
has vertices C0, . . . ,Cn0 . For i = 0, . . . , n0, let C ′i = Ci. For i > n0, choose
C ′i ∈ E such that C ′i − Ci are linearly independent and have common length, say
δ > 0. Since the codimension of [C0, . . . ,Cn] in E is n− n0, this is possible. Be-
cause the distortion function � is continuous, δ can be chosen so small that (9)
holds. The lemma follows.

Finally, note that Lemma 1 implies σ ∗(L) ≤ ε+ σ(L). Letting ε→ 0, we obtain
σ ∗(L) ≤ σ(L). We thus have σ ∗(L) = σ(L) as claimed.

Remark. For σ(L) > 1, the limit of a convergent minimizing sequence of sim-
plices may degenerate into a nonsimplicial configuration. In Example 1 (at the end
of Section 3) we will show that this degeneracy can occur.

Lemma 2. Let [C0, . . . ,Cm] be an m-simplex in Rm. For i = 0, . . . ,m, let Ei =
〈C0, . . . , Ĉi, . . . ,Cm〉 be the affine hull of the ith face [C0, . . . , Ĉi, . . . ,Cm]. If Ci �=
0, define �i as the line passing through the origin and Ci. If, in addition, �i inter-
sects Ei in a single point, denote this point by C ′i . Define λi ∈R∪{∞} as follows.
For 0 ∈ Ei, let λi = ∞. For Ci = 0 or �i ‖ Ei, let λi = 0. Otherwise, let λi be
defined by the equality Ci = −λiC ′i . With these, we have

m∑
i=0

1

1+ λi = 1 (10)

and
m∑
i=0

1

1+ λi Ci = 0, (11)

where (as usual ) we set 1/∞ = 0.

Proof. First note that λi �= −1, since [C0, . . . ,Cm] is an m-simplex and therefore
cannot be contained in Ei .

We may assume that 0 /∈ Ei (for all i = 0, . . . ,m), since otherwise we can omit
Ci from (10)–(11), consider the (m−1)-simplex [C0, . . . , Ĉi, . . . ,Cm], and use in-
duction with respect to m. We may also assume that Ci �= 0 for all i = 0, . . . ,m.
Indeed, if Ci = 0 for some i = 0, . . . ,m then, for all j �= i, we have

0∈ [C0, . . . , Ĉj , . . . ,Cm] ⊂ Ej ,
and this goes back to the previous case. (Incidentally, since λj =∞ for all j �= i,
(10)–(11) are obviously satisfied.)
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Finally, we may assume that �i is not parallel to Ei, since otherwise we can ap-
ply a limiting argument.

With these assumptions, Ci and C ′i are distinct nonzero vectors. Letting δi =
1/λi, the defining equation for λi can be written as

C ′i = −δiCi. (12)

By definition, C ′i ∈ 〈C0, . . . , Ĉi, . . . ,Cm〉 so that we have the expansion

C ′i =
m∑

j=0; j �=i
λijCj , (13)

where the coefficients λij satisfy

m∑
j=0; j �=i

λij = 1. (14)

Combining (12) and (13), we obtain the system
m∑

j=0; j �=i
λijCj + δiCi = 0, i = 0, . . . ,m. (15)

Since [C0, . . . ,Cm] is anm-simplex, the vectorsC0, . . . , Ĉi, . . . ,Cm are linearly in-
dependent. This implies that the coefficient matrix of the system (15) has rank 1
(since all the 2 × 2 subdeterminants vanish). We generalize this in the following
lemma.

Lemma 3. Assume that the matrix


δ0 λ0
1 . . . λ0

m

λ1
0 δ1 . . . λ1

m

...
...

. . .
...

λm0 λm1 . . . δm


, δ0, . . . , δm �= −1,

has rank 1, and assume that (14) holds. Then we have

λij =
δj

1+ δj (1+ δi). (16)

In particular,
m∑
j=0

δj

1+ δj = 1. (17)

Proof of Lemma 3. Let i �= j and consider all 2 × 2 subdeterminants in the ith
and j th rows that contain the ith column. We have

λikλ
j

i = δiλjk , k = 0, . . . , ı̂, . . . , ̂ , . . . ,m,

and
λijλ

j

i = δiδj .
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Adding these and using (14), we obtain

λ
j

i = δi(λj0 + · · · + λ̂ji + · · · + λjj−1+ δj + λjj+1+ · · · + λjm).
Again by (14), the sum in the parentheses is δj +1− λji , and (16) follows. Finally,
substituting (16) into (13) yields (17). Lemma 3 follows.

Lemma 2 is an immediate consequence of Lemma 3. Indeed, substituting δi =
1/λi into (17), we have (10). Finally, using (16) in (15) yields (11).

Proof of Theorem B. We may assume that the base point is the origin. We first
show that the lower bound in (4) holds. Let {C0, . . . ,Cm} ∈ Cm(L) be a minimal
configuration:

σm(L) =
m∑
i=0

1

1+�(Ci) .

The convex hull [C0, . . . ,Cm] is a convex polytope in the affine hull F =
〈C0, . . . ,Cm〉. Since the origin is contained in [C0, . . . ,Cm], F ⊂ E is a lin-
ear subspace. Observe that L ∩ F is a compact convex body in F that contains
the origin in its interior. Let m0 = dim F. We have m0 ≤ m. Decomposing
[C0, . . . ,Cm] into a union of simplices, we can find an m0-simplex that also con-
tains the origin. Renumbering the points, we may assume that this m0-simplex
has vertices C0, . . . ,Cm0 . Clearly, F = 〈C0, . . . ,Cm0〉 and, by definition, we have
{C0, . . . ,Cm0} ∈ S(L ∩ F ). We now use Lemma 2 with m replaced by m0. Since
the origin is in the interior of L ∩ F, we have Ci �= 0 for all i = 0, . . . ,m0.

Moreover, since 0 ∈ [C0, . . . ,Cm0 ], we also have �i � ‖ Ei for all i = 0, . . . ,m0.

Thus we obtain that λi > 0 or λi = ∞. In the first case, C ′i = −1/λiCi, so λi =
|Ci |/|C ′i | is the distortion of the simplex [C0, . . . ,Cm0 ] at the vertexCi. In the sec-
ond case, the origin is contained in the ith face of [C0, . . . ,Cm0 ] and C ′i = 0.

Let Coi be the opposite of Ci ∈ ∂L relative to L. The vectors Ci, C ′i , and Coi are
collinear. Since [Ci, . . . ,Cm0 ] ⊂ L∩F, we have |Coi | ≥ |C ′i |. Hence, for λi > 0,

λi = |Ci |
|C ′i |

≥ |Ci |
|Coi |

= �(Ci). (18)

For λi = ∞, we automatically have λi > �(Ci). Because the function x �→
1/(1+ x), x > 0, is strictly decreasing, (10) (for m = m0) implies

m0∑
i=0

1

1+�(Ci) ≥ 1. (19)

Comparing this with our foregoing condition of minimality of {C0, . . . ,Cm} shows
that σm(L) ≥ 1.

If σm(L) = 1 then, by (3), m ≤ n; the comparison argument used previously
givesm0 = m, so that [C0, . . . ,Cm] is anm-simplex and λi = �(Ci), i = 0, . . . ,m.
In particular, we obtain (5).

It remains to show that L∩F is anm-simplex. Since λi = �(Ci), we also have
C ′i = Coi ∈ ∂L for all i = 0, . . . ,m. On the other hand, C ′i (being in the interior of
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the ith face) is a boundary point of L∩F iff the entire ith face [C0, . . . , Ĉi, . . . ,Cm]
is contained in ∂L ∩ F. We conclude that L ∩ F = [C0, . . . ,Cm] and that L ∩ F
is an m-simplex. The rest of the statements in Theorem B concerning the case
σm(L) = 1 follow from Lemma 2.

In order to derive the upper bound in (4) for σm(L), we use (7) for m = 1 and
k = m− 1. We obtain

σm(L) ≤ σ1(L)+ m− 1

1+max∂L�
≤ 1+ m− 1

2
= m+ 1

2
. (20)

The last inequality follows because max∂L� ≥ 1 (since �(Co) = 1/�(C), C ∈
∂L).

If σm(L) = (m+ 1)/2, m ≥ 2, then (20) gives max∂L� = 1. This implies not
only � = 1 on ∂L but also the symmetry of L.

Remark. We give here another proof of the upper bound in (4) as follows. As-
sume that the base point is the origin, and let {C0, . . . ,Cm} ∈ Cm(L). By (1), we
have

m∑
i=0

1

1+�(Ci) ≥ σm(L). (21)

Consider the opposite points Co0 , . . . ,Com ∈ ∂L. We claim that {Co0 , . . . ,Com} ∈
Cm(L). In order to prove this we need to show that 0 ∈ [C0, . . . ,Cm] implies 0 ∈
[Co0 , . . . ,Com]. Indeed, let

∑m
i=0 λiCi = 0 for some 0 ≤ λi ≤ 1 with

∑m
i=0 λi =

1. Since Ci = −�(Ci)Coi , by substituting we obtain
∑m

i=0 λi�(Ci)C
o
i , where∑m

i=0 λi�(Ci) > 0. Normalizing, the claim follows.
Once again by the definition of σm(L), we have

m∑
i=0

1

1+�(Coi )
≥ σm(L). (22)

Since

1

1+�(Coi )
= 1

1+ 1/�(Ci)
= �(Ci)

1+�(Ci) = 1− 1

1+�(Ci) , (23)

(22) and (23) together give
m∑
i=0

1

1+�(Coi )
= m+ 1−

m∑
i=0

1

1+�(Ci) ≥ σm(L).

This, combined with (21), yields m + 1 ≥ 2σm(L). The upper bound for σm(L)
follows.

In this argument we used an involution o : Cm(L) → Cm(L), {C0, . . . ,Cm}o =
{Co0 , . . . ,Com}. As a further application, we define

 m(L) = sup
{C0, ...,Cm}∈Cm(L)

m∑
i=0

1

1+�(Ci) .

We then have
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 m(L) = m+ 1− σm(L).
Indeed, using (23) we compute

 m(L) = sup
{C0, ...,Cm}o∈Cm(L)

m∑
i=0

1

1+�(Ci)

= sup
{C0, ...,Cm}∈Cm(L)

m∑
i=0

1

1+�(Coi )

= m+ 1− inf
{C0, ...,Cm}∈Cm(L)

m∑
i=0

1

1+�(Ci)
= m+ 1− σm(L).

Proof of Theorem C. Let B ∈ int L be a fixed base point. Let ε > 0, and let O ∈
int L be such that

d(O, ∂L) = min
X∈∂L d(O,X) < ε.

By choosing ε small enough, we may assume that O is different from B. Let O∗ ∈
∂L be such that d(O, O∗) < ε. Finally, let C ∈ ∂L be on the line passing through
B and O on the same side as O relative to B. Since �(Co) ≤ max∂L�, by (20)
we have

σm(L, O) ≤ 1+ m− 1

1+�(Co) = 1+ (m− 1)
�(C)

1+�(C) .
Using the definition of �, we arrive at the estimate

σm(L, O) ≤ 1+ (m− 1)
d(O,C)

d(C,Co)
.

In the remaining part of the proof, we give an upper bound for the ratio d(O,C)/
d(C,Co) in terms of ε. Toward this end, we let

δ = min
X∈∂L d(B,X) and # = max

X∈∂L d(B,X).

Since ∂L is compact, we have 0 < δ ≤ # < ∞. By construction, B, C, and Co

are collinear. Thus

d(C,Co) = d(B,C)+ d(B,Co) ≥ 2δ.

It remains to give an upper estimate for d(O,C). If C = O∗, then d(O,C) =
d(O, O∗) < ε. We then obtain

σ(L, O) < 1+ (m− 1)
ε

2δ
.

From now on we may assume that C �= O∗. Let$ denote the affine span of B,
C, and O∗. By assumption,$ is a 2-dimensional plane and O ∈$. From now on
we will work in$. The line passing through B and parallel to the line OO∗ inter-
sects ∂L in two points, B∗ and its opposite. We can choose B∗ on the same side as
O∗ relative to the line OB. It is easy to see that the line segment [C,B∗ ] intersects
the line segment [O, O∗ ]. Denote this intersection point by O ′. We thus have
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d(C, O)
d(C,B)

= d(O, O ′)
d(B,B∗)

≤ d(O, O∗)
d(B,B∗)

.

Rearranging, we find

d(O,C) ≤ d(O, O∗)
d(B,C)

d(B,B∗)
< ε

#

δ
.

We finally obtain

σ(L, O) < 1+ (m− 1)
ε#

2δ2
.

In both cases, if ε→ 0 then σ(L, O)→ 1. Theorem C follows.

3. Computation of σ(LLL)

Before giving the proof of Theorem D, we derive several lemmas. We state
Lemma 1 and Lemma 3 in a slightly more general setting than necessary.

Let L be a compact convex body in a Euclidean vector space E . Recall that a
boundary point C of L is called extremal if C is not contained in the interior of a
line segment in L. (For example, the extremal points of a polytope are its vertices.)
By the Krein–Milman theorem, L is the convex hull of its extremal points [1].

Lemma 1. Let dim E = 2 and let L ⊂ E be a compact convex body with base
point O ∈ int L. Assume that the distortion function � : ∂L → R has a critical
point at a nonextremal point C. If the opposite Co is also nonextremal then � is
constant in a neighborhood of C in ∂L.
Proof. We may assume that O is the origin. Let I ⊂ ∂L and I o ⊂ ∂L be open
line segments with C ∈ I and Co ∈ I o. We parameterize I by t �→ C + tV (for
small t), where V is parallel to I. By assumption, (C+ tV )o ∈ I o (again for small
t) and so we can write (C + tV )o = Co + sV o, where V o is parallel to I o and
s is a smooth function of t. (I and I o define a projectivity so that s is a linear
fractional transformation of t, but we do not need this fact.)

By the definition of distortion,

(C + tV )o = − 1

�(C + tV ) (C + tV ) = C
o + sV o. (24)

Since � is critical at C, we have (d/dt)�(C + tV )|t=0 = 0. Differentiating (24)
at t = 0 then yields

− 1

�(C)
V = s ′(0)V o;

in particular, V and V o and hence I and I o are parallel.
Using this in (24) to eliminate V o, after rearranging we obtain(

1

�(C + tV ) −
1

�(C)

)
C +

(
t

�(C + tV ) −
1

�(C)

s

s ′(0)

)
V = 0.

Since the origin is in the interior of L, we know that C and V are linearly inde-
pendent. We obtain �(C + tV ) = �(C), and the lemma follows. (Vanishing of
the second coefficient also gives s(t) = s ′(0)t.)
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Remark. As a by-product, we also see that the line segment neighborhoods I
and I o of C and Co are parallel.

The next lemma follows from Lemma 1 and the previous remark by taking plane
sections of the polytope.

Lemma 2. Let L ⊂ E be a convex polytope with base point O ∈ int L, and as-
sume that� : ∂L → R has a critical point C in the interior I of a cell of L. If Co

is also contained in the interior I o of a cell then � is constant on I, and I and
I o are parallel.

Theorem D will be proved by induction with respect to dim E = n. The next
lemma provides the basic step of the induction. In addition, for a plane polygon,
the lemma reduces the computation of σ(L) to a finite enumeration.

Lemma 3. Let dim E = 2, and let L ⊂ E be a compact convex body with base
point O ∈ int L. Let {C0,C1,C2} be a minimal triangular configuration of L.
Then there exists another minimal triangular configuration {C ′0,C ′1,C ′2} of L such
that, for each i = 0,1, 2, C ′i or its opposite is extremal.

Proof. By minimality,

σ(L) =
2∑
i=0

1

1+�(Ci) .

We first assume that O ∈ ∂[C0,C1,C2 ], say O ∈ [C1,C2 ]. This means that C1 and
C2 are opposites. Therefore, their contribution to the sum just displayed is 1. We
can move C1 and C2 simultaneously along ∂L, keeping them opposites and away
from C0, until either the moved C1 (say, C ′1) or its opposite (C ′2) hits an extremal
point. (The Krein–Milman theorem guarantees that this is possible.) If C0 or its
opposite happens to be extremal, we set C ′0 = C0 and the lemma follows. Other-
wise, as in the proof of Lemma 1, let I and I o be maximal neighborhoods of C0

and Co0 . By minimality of {C0,C ′1,C ′2}, C0 must be a critical point of�. Then C0

can be moved to one of the endpoints of I, say C ′0 (which is not C ′1 or C ′2), where
it becomes extremal. By Lemma 1, �(C ′0) = �(C0). We arrive at {C ′0,C ′1,C ′2}
and the lemma follows.

Next we assume that O is in the interior of [C0,C1,C2 ]. If C0 and its oppo-
site are not extremal then, by minimality of {C0,C1,C2}, C0 must be critical. By
Lemma 1, C0 can be moved along ∂L (keeping it away from C1 and C2) without
changing � until it hits an extremal point C ′0, unless one of the edges emanating
from the movedC0 (and terminating inC1 orC2) hits O. If the latter happens then
we go back to the first case, already discussed.

The same procedure works for modifying C1 and C2, and the lemma follows.

Remark. An inspection of the preceding proof reveals that, for the resulting min-
imal configuration {C ′0,C ′1,C ′2}, either all the points are extremal or two of them
are extremal and the third is an opposite.
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Proof of Theorem D. As noted previously, the proof proceeds by induction with
respect to dim E = n. By Lemma 3, we need only perform the general induction
step n− 1⇒ n, where n ≥ 3. The proof that follows is patterned after the proof
of Lemma 3.

Assume first that O ∈ ∂[C0, . . . ,Cn], say O ∈ [C1, . . . ,Cn]. Consider the com-
pact convex body L∩〈C1, . . . ,Cn〉 in 〈C1, . . . ,Cn〉. By assumption, O is contained
in the interior of L ∩ 〈C1, . . . ,Cn〉; in addition, {C1, . . . ,Cn} is a simplicial con-
figuration of L ∩ 〈C1, . . . ,Cn〉. Since {C0, . . . ,Cn} is minimal in L, it follows that
{C1, . . . ,Cn} is also minimal in L ∩ 〈C1, . . . ,Cn〉. Since dim(L ∩ 〈C1, . . . ,Cn〉) =
n−1, the induction hypothesis applies. Thus, there exists a minimal simplicial con-
figuration {C ′1, . . . ,C ′n} ∈ S(L ∩ 〈C1, . . . ,Cn〉) such that, for each i = 1, . . . , n, C ′i
or its opposite is in the skeleton of the convex polytope L∩ 〈C1, . . . ,Cn〉. Because
O is in the interior of this polytope, any relative interior of a cell in L intersects
〈C1, . . . ,Cn〉 transversally. Therefore, the skeleton of L∩〈C1, . . . ,Cn〉 is contained
in the skeleton of L. We obtain that, for each i = 1, . . . , n, C ′i or its opposite is in
the skeleton of L.

Consider now C0. If C0 or its opposite is in the skeleton of L then we are done.
Otherwise, C0 and Co0 are in the interior I and I o of cells of L. By minimality,
C0 must be a critical point of �. By Lemma 2, � must be constant on I. Hence
C0 can be moved to a boundary point C ′0 of I that is part of the skeleton of L.
In addition, we may also require that C ′0 /∈ 〈C ′1, . . . ,C ′n〉. Since �(C ′0) = �(C0),
{C ′0, . . . ,C ′n} remains a minimal simplicial configuration.

Next we assume that O is in the interior of [C0, . . . ,Cn]. We may also assume
that C0 and Co0 are not contained in the skeleton of L (since otherwise we set
C ′0 = C0). As before, let I and I o denote the corresponding interiors of cells that
contain C0 and Co0. Again by minimality, � is constant on I. Moving C0 to the
boundary of I, either we hit the skeleton of L or the boundary of [C0, . . . ,Cn] hits
O. In the latter case, the previous discussion applies; in the former, we can make
sure that the moved C0 is away from 〈C1, . . . ,Cn〉. The same procedure works for
C1, . . . ,Cn, and Theorem D follows.

Example 1. Let P be the pentagon in R2 with vertices (1,−1), (1,1), (0, 2),
(−1,1) and (−1,−1). For the opposite points, we have

(1, a)o = (−1,−a) and (a,−1)o =
(

2a

a + 1
,

2

a + 1

)
, −1≤ a ≤ 1.

The distortions are:

�(a,−1) = |a| + 1

2
, −1≤ a ≤ 1;

�(±1, a) = 1, −1≤ a ≤ 1;

�

(
± 2a

a + 1
,

2

a + 1

)
= 2

a + 1
, 0 ≤ a ≤ 1.

A case-by-case analysis in the use of Lemma 3 shows that σ(P) = 4/3 and
that the minimal configurations are of two types. The first type is triangular, with
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one vertex the topmost vertex (0, 2) of P and with the other two vertices on the
vertical sides of P. The second type is triangular or degenerate, with one vertex
the topmost vertex of P , another vertex C on the horizontal side of P , and a third
vertex Co. If C = (0,−1) then the triangle degenerates to a vertical line segment.
We see that all possible scenarios in the proof of Lemma 3 arise.

A minimizing sequence for σ(P) may consist of triangles with vertices (0,−1)
and (±2/(n + 1), 2n/(n + 1)), and these triangles shrink to the minimal verti-
cal line segment. Since max∂P � = 2, we also see that σm(P) = (m + 2)/3 for
m ≥ 1.

Example 2. Let 0 < ε ≤ 1 and let Lε be the square (of side length 2) with ver-
tices (1, 2−ε), (−1, 2−ε), (−1,−ε), and (1,−ε). The distortions of the horizontal
top and base sides are as follows:

�(a, 2− ε) = 2− ε
ε

, −1≤ a ≤ 1;

�(a,−ε) =
{ ε

2−ε , |a| ≤ ε
2−ε ,

|a|, ε
2−ε < |a| ≤ 1.

The other distortions can be obtained by taking opposite points and using�(Co) =
1/�(C). A case-by-case analysis in the use of Lemma 3 shows that

σ(Lε) = 1+ ε
2

,

with many triangles realizing the infimum in σ(Lε). In particular, in agreement
with Theorem C we have

lim
ε→0

σ(Lε) = 1.

Since max∂Lε � = (2 − ε)/ε, we also see that σm(Lε) = 1+ (m − 1)ε/2 for
m ≥ 1.

4. Proof of Theorem A

Let H be a Euclidean vector space and K0 = K0(H) the associated reduced mod-
uli space. As noted in Section 1, the distortion at a boundary point C ∈ ∂K0 is
the largest eigenvalue of C, also denoted by �(C) (see [6]). The opposite of C is
therefore given by

Co = − 1

�(C)
C.

Remark. According to a result in [6], the distortion function � : ∂K0 → R
satisfies

1

h− 1
≤ � ≤ h− 1,

where dim H = h. Thus we have

n+ 1

h
≤ σ(K0 ∩ E ) ≤ (n+ 1)

(
1− 1

h

)
.
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Comparing this with (4), we see that the lower estimate here is stronger while the
upper estimate is weaker. Combining the stronger estimates, we obtain

n+ 1

h
≤ σ(K0 ∩ E ) ≤ n+ 1

2
. (25)

Note that the estimates are sharp for h = 2. In fact, identifying S2
0(R

2) with
R2 by associating to the matrix

[
a b
b −a

]
the point (a, b) ∈ R2, we see that K0 is

identified with the unit disk in R2. For h = 2 we have E = S2
0(H) and so ob-

tain σ(K0) = 3/2; for h = 1, we have σ(K0 ∩ E ) = 1 because K0 ∩ E is a line
segment. Finally, if E = S2

0(H) then (25) reduces to

h+ 1

2
≤ σ(K0) ≤ h(h+ 1)

4
.

Returning to our problem of simplicial intersections of K0, let E ⊂ S2
0(H) be

a linear subspace (of dimension n) and assume that K0 ∩ E is an n-simplex,
σ(K0 ∩ E ) = 1, with K0 ∩ E = [C0, . . . ,Cn]. By (10) and (11) we have λi =
�(Ci), so

n∑
i=0

1

1+�(Ci) (Ci + I ) = I ; (26)

we rewrite this as
n∑
i=1

1

1+�(Ci) (Ci + I ) = −
1

1+�(C0)
(C0 −�(C0)I ). (27)

Since Ci + I ≥ 0 for all i = 0, . . . , n, we obtain

ker(C0 −�(C0)I ) =
n⋂
i=1

ker(Ci + I ). (28)

Before proceeding with the proof of Theorem A, we show the following lemma.

Lemma. Let C1, . . . ,Cn ∈ ∂K0 be linearly independent. Then [C1, . . . ,Cn] ⊂
∂K0 iff (i) of Theorem A holds.

Proof. Let C ∈ [C1, . . . ,Cn] be such that C = ∑n
i=1 λiCi with

∑n
i=1 λi = 1, 0 ≤

λi ≤ 1. Then

C + I =
n∑
i=1

λi(Ci + I ).

Since C + I ≥ 0 and Ci + I ≥ 0 for all i = 1, . . . , n, we obtain

ker(C + I ) ⊃
n⋂
i=1

ker(Ci + I )

(with equality if λi > 0 for all i = 0, . . . , n) iff C is in the interior of [C1, . . . ,Cn].
The lemma follows.

Proof of Theorem A. Assume first that K0 ∩ E is an n-simplex [C0, . . . ,Cn] with
extra vertex C0. The zeroth face [C1, . . . ,Cn] is on the boundary of K0. By the
lemma just proved, (i) follows. Rearranging the terms in (27), we obtain
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1

1+�(C0)
(C0 + I ) = I −

n∑
i=1

1

1+�(Ci) (Ci + I ).

Since C0 ∈ ∂K0, we know that C0 + I is positive semidefinite but not positive
definite; (ii) follows.

Conversely, assume that (i) and (ii) hold. Taking traces of both sides of (ii)
(and dividing by n) then yields

1−
n∑
i=1

1

1+�(Ci) ≥ 0, (29)

where we have used the fact that all Ci have zero trace. We first claim that strict
inequality holds in (29). Indeed, if the left-hand side of (29) were zero then in (ii)
we would have a positive semidefinite endomorphism with zero trace. We would
then have

I −
n∑
i=1

1

1+�(Ci) (Ci + I ) = 0

or, equivalently,
(

1−
n∑
i=1

1

1+�(Ci)
)
I =

n∑
i=1

1

1+�(Ci)Ci.

By assumption, the left-hand side vanishes, and this contradicts to the linear inde-
pendence of C1, . . . ,Cn. The claim follows and we obtain

n∑
i=1

1

1+�(Ci) < 1. (30)

We now define

C̃ = −
n∑
i=1

1

1+�(Ci)Ci ∈ E .

We calculate the maximal eigenvalue �(C̃):

�(C̃) = max|x|=1
〈C̃x, x〉 = −min|x|=1

( n∑
i=1

1

1+�(Ci) 〈Ci x, x〉
)
.

Since Ci + I ≥ 0, by (i) the minimum is attained at a simultaneous eigenvector
x = x0 of Ci with eigenvalue −1. We obtain

�(C̃) =
n∑
i=1

1

1+�(Ci) .

By (30) we have �(C̃) < 1, so there exists a � > 0 satisfying

�(C̃) = �

1+�.
Next we define

C0 = (1+�)C̃ ∈ E .
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The maximal eigenvalue of C0 is

�(C0) = (1+�)�(C̃) = �.
With this, we have

�(C̃) = �(C0)

1+�(C0)
=

n∑
i=1

1

1+�(Ci) .

The last equality gives (5). Thus Theorem B applies, completing the proof, once
we show that C0 ∈ ∂K0. Equivalently, we need to show that C0 + I is positive
semidefinite but not positive definite. To do this, we first note that

C̃ = −
n∑
i=1

1

1+�(Ci)Ci =
1

1+�(C0)
C0,

where the last equality gives (6). Moreover, we have

1

1+�(C0)
(C0 + I ) = 1

1+�(C0)
I − 1

1+�(C0)
C0

=
(

1−
n∑
i=1

1

1+�(Ci)
)
I −

n∑
i=1

1

1+�(Ci)Ci

= I −
n∑
i=1

1

1+�(Ci) (Ci + I ).

By (ii) this is positive semidefinite but not positive definite. Theorem A follows.

As an application, consider now the tetrahedral minimal immersion. Relative to
an orthonormal basis, we write Hλ6 = R7 ⊗ R7 = R49 (see [6]). We view an en-
domorphism of Hλ6 as a matrix with 7×7 blocks, each block being a 7×7 matrix.
Using the computations in [6] yields

C1+ I = diag[0, 0, 7, 0, 0, 0, 0].

This is a diagonal 7 × 7 block matrix, and each number c represents a diagonal
7× 7 matrix with diagonal entry c. The distortion at C1 is �(C1) = 6.

In a similar vein, we have

C2 + I =




1
8 0 0 0 −

√
15

24 0 0

0 1
8 0 0 0

√
15

24 0
0 0 0 0 0 0 0
0 0 0 1

3 0 0 0

−
√

15
24 0 0 0 5

24 0 0

0
√

15
24 0 0 0 5

24 0
0 0 0 0 0 0 0




with distortion �(C2) = 4/3.
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We are now in the position to apply Theorem A. Condition (i) is obviously sat-
isfied, since the last copy of R7 in R7⊗R7 is in the common kernel of C1+ I and
C2 + I. The matrix on the left-hand side in (ii) is

I − 1
7 (C1+ I )− 3

7 (C2 + I ) =




53
56 0 0 0 −

√
15

42 0 0

0 53
56 0 0 0

√
15

42 0
0 0 0 0 0 0 0
0 0 0 6

7 0 0 0

−
√

15
42 0 0 0 37

42 0 0

0
√

15
42 0 0 0 37

42 0
0 0 0 0 0 0 1




.

A simple computation shows that this matrix is positive semidefinite. Theorem A
now asserts that the intersection K0 ∩ E is a triangle. Note that the proof actually
constructs the third vertex C0.
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