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Abstract. The DoCarmo-Wallach theory studies isometric minimal immer-
sions f : G/K → Sn of a compact Riemannian homogeneous space G/K into
Euclidean n -spheres for various n . For a given domain G/K , the moduli space
of such immersions is a compact convex body in a representation space for the
Lie group G . In 1971 DoCarmo and Wallach gave a lower bound for the (dimen-
sion of the) moduli for G/K = Sm , and conjectured that the lower bound was
achieved. In 1997 the author proved that this was true. The DoCarmo-Wallach
conjecture has a natural generalization to all compact Riemannian homogeneous
domains G/K . The purpose of the present paper is to show that for G/K a
nonspherical compact rank 1 symmetric space this generalized conjecture is false.
The main technical tool is to consider spherical functions of subrepresentations
of C∞(G/K), express them in terms of Jacobi polynomials, and use a recent
linearization formula for products of Jacobi polynomials.

1. Introduction and Statement of Results

Let M = G/K be a Riemannian homogeneous space, where G is a compact Lie
group and K a closed subgroup. Then G acts on the space C∞(M) of (real
valued) functions on M in a natural way: g · ξ = ξ ◦ g−1 , g ∈ G , ξ ∈ C∞(M).
This action preserves the L2 -scalar product on C∞(M) defined by the volume
element vM . Let H ⊂ C∞(M) be a G-submodule. We call a map f : M → SV
into the unit sphere SV of a Euclidean vector space V a spherical H-map if its
components α ◦ f , α ∈ V ∗ , belong to H . The Dirac delta δ : M → SH∗ [5]
defined by evaluating the elements of H on points of M is the universal example
of a spherical H∗ -map. (The scalar product on H∗ is induced by the L2 -scalar
product on H suitably scaled.)

Remark. If M = G/K is naturally reductive, and H ⊂ C∞(M) is irreducible
then H is contained in an eigenspace Vλ of the Laplacian 4M for some eigenvalue
λ [25]. In particular, the components of an H-map f : M → SV are eigenfunctions
of the Laplacian with a common eigenvalue. Thus an H-map is a λ-eigenmap in
the sense of Eells-Sampson [8], a harmonic map with constant energy density λ/2.
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In general, a DoCarmo-Wallach type argument [6] shows that the set of (con-
gruence classes of) full spherical H-maps f : M → SV , for various V , can be
parametrized by a moduli space L(H), a compact convex body in a G-submodule
E(H) of the symmetric square S2(H) (Propositions 3.1-3.2 in Section 3 below).
(The map f is full if its image is not contained in a proper great sphere of the
range [3], and congruent maps differ by an isometry between the ranges.) In what
follows, we identify S2(H) with the space of linear endomorphisms of H . Then
the moduli space is given by

L(H) = {C ∈ E(H) |C + I ≥ 0},

where ≥ means positive semidefinite, and I is the identity. The origin of E(H) is
in the interior of L(H), and it corresponds to δ .
The G-module homomorphism

Ψ0 : S2(H)→ C∞(M)

given by multiplication has image H · H ⊂ C∞(M) consisting of (finite) sums
of products of functions in H . The DoCarmo-Wallach parametrization of L(H)
implies that the kernel of Ψ0 is E(H) (Proposition 3.3). We thus have

E(H) = S2(H)/(H · H),

as G-modules. To determine E(H) (and thereby to compute dimL(H) = dim E(H))
amounts to decomposing H · H into irreducible components.

Let M = G/K be a compact rank 1 symmetric space. Then M is the Euclidean
m-sphere Sm , one of the projective spaces RPm , CPm , HPm , or the Cayley
projective plane CaP 2 [2]. It is well-known that C∞(M) has a multiplicity one
decomposition into irreducible components, and each component H ⊂ C∞(M) is
the full eigenspace Vλ of the Laplacian corresponding to an eigenvalue λ [15-17].
Our first result is the following:

Theorem. A Let M = G/K be a compact rank 1 symmetric space, H ⊂
C∞(M) an irreducible G-submodule. We write H = Vλp , where λp is the p-th
eigenvalue of the Laplacian on H . Then we have

Vλp · Vλp =

{ ∑p
j=0 Vλ2j

if M = Sm∑2p
j=0 Vλj otherwise.

In particular, the dimension of the moduli space is given by

dimL(Vλp) =

{
n(λp)(n(λp) + 1)/2−

∑p
j=0 n(λ2j) if M = Sm,

n(λp)(n(λp) + 1)/2−
∑2p

j=0 n(λj) otherwise,

where n(λp) = dimVλp .

Since n(λp) is known for each case of M (second table in Section 2), an explicit
formula can be derived for the dimension of L(Vλp). If the dimension is zero then
the moduli space reduces to a point, and we have rigidity. This means that the
corresponding spherical Vλp -maps are rigid in the sense that any full f is congru-
ent to the Dirac delta δ .
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Corollary. Let M and H = Vλp be as in Theorem A. Then the cases when
dimL(Vλp) is trivial are summarized in the following table:

M m p
Sm m ≥ 2 p = 1

Sm, RPm m = 2 p ≥ 1
CPm, HPm, CaP 2 m = 2 p = 1

Remark. Rigidity of a spherical Vλ1 -map f : Sm → SV is obvious since f is the
restriction of a linear map, and thereby it is an isometry. Rigidity of spherical Vλp -
maps f : M → SV for M = S2, RP 2 is due to Calabi [3] (stated only for minimal
immersions). (In general, a spherical Vλp -map f : RPm → SV is a spherical Vλ2p -

map f̃ : Sm → SV factored through the twofold projection Sm → RPm .)
A rigidity result of DoCarmo-Wallach [6,25] asserts that a minimal immersion
f : M → SV of a compact analytic manifold M is rigid among minimal immersions,
if the (geometric) degree of f is < 4. For M = CPm, HPm, CaP 2 as in the
corollary, the degree of δ : M → SVλp is 2p [18]. Notice however that the corollary
gives rigidity among all spherical Vλ1 -maps not just minimal immersions.

We now return to the general setting. Let G be a compact Lie group. An
orthogonal G-module H is a Euclidean vector space on which G acts linearly
via orthogonal transformations. In other words, H is a representation space for
G , and it is endowed with a G-invariant scalar product.
Let K be a closed subgroup. A class 1 representation of (G,K) is an irreducible
orthogonal G-module H so that there is a nonzero vector χ0 ∈ H fixed by K .
It is well known that, for M = G/K Riemannian homogeneous, the irreducible
components of C∞(M) are class 1 representations of (G,K).
Since all components of C∞(M) are class 1 with respect to (G,K) it is natural
to ask whether H · H ⊂ C∞(M) contains all class 1 components of S2(H).
We reformulate this by introducing Ē(H) as the sum of those irreducible G-
submodules of S2(H) that are not class 1 with respect to (G,K). The very
existence of the homomorphism Ψ0 above implies that

Ē(H) ⊂ E(H),

and the question is whether equality holds. For M = Sm , the answer is yes, and it
follows from the (multiplicity one) decomposition for S2(Vλp) derived by DoCarmo
and Wallach [6]. (For a simple proof, see also [14].)
Our next result shows that the answer is negative for M = CPm .

Theorem. B Let (G,K) = (U(m+1), U(m)×U(1)), and M = CPm , m ≥ 2,
the complex projective m-space. Let H = Vλp , p ≥ 2. Then E(Vλp) contains class
1 submodules with respect to (U(m+ 1), U(m)× U(1)). Equivalently

Ē(Vλp) 6= E(Vλp).

More precisely, we have

2p−2∑
q=2

1

2

(
min (q, 2p− q) +

(−1)q − 1

2

)
Vλq ⊂ E(Vλp).
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Remark. For M = CPm , Theorems A-B correct Theorem 4.2 of Chapter III
in [22]. The formula there should give only a lower bound for E(Vλp) and for the
dimension of the moduli space L(Vλp). This is due to the fact that the osculating
spaces of δ : CPm → SV ∗λp are reducible as U(m)-modules (Theorem 3.3 of Chapter

II).

Assume now that M = G/K is isotropy irreducible. This means that K acts on
the tangent space To(M), o = {K} , irreducibly by the isotropy representation.
Then, for an irreducible G-submodule H ⊂ C∞(M), the Dirac delta δ : M → SH∗
is a minimal immersion inducing the λ/ dimM -multiple of the original Riemannian
metric on M [25].
DoCarmo and Wallach proved that the set of (congruence classes of) full minimal
immersions f : M → SV , for various V , and with induced Riemannian metric the
λ/ dimM -multiple of the original, can be parametrized by a moduli space M(H),
a compact convex body in a G-submodule F(H) of S2(H) (Proposition 3.4). The
moduli space is given by

M(H) = {C ∈ F(H) |C + I ≥ 0},

where ≥ means positive semidefinite.
We now recall the definition of induced representations [25]. If W is a K -module
then IndGK(W) denotes the linear space of continuous maps φ : G → W which
satisfy φ(kg) = k · φ(g), k ∈ K , g ∈ G . The action of G on IndGK(W) given by
g · φ(g′) = φ(gg′), g, g′ ∈ G , defines a G-module structure on IndGK(W). We call
IndGK(W) the G-module induced from the K -module W .
DoCarmo and Wallach constructed a homomorphism

Ψ: S2(H)→ IndGK(S2(p)),

where K -module S2(p) is the symmetric square of the isotropy representation of
M = G/K . The kernel of Ψ is F(H).
Let F̄(H) denote the sum of those components of S2(H) that, when restricted to
K , do not contain any irreducible K -submodules of S2(p). Frobenius reciprocity
[25] says that

F̄(H) ⊂ F(H). (1)

Thus, once the irreducible decomposition of S2(H) is known, this gives a lower
bound on the dimension of the moduli M(H).
DoCarmo and Wallach carried this out for M = Sm , and H = Vλp . Identifying
the irreducible components of F̄(Vλp), for m ≥ 3 and p ≥ 4, they obtained the
lower estimate

dimM(Vλp) = dimF(Vλp) ≥ dim F̄(Vλp) ≥ dim F̄(Vλ4) ≥ 18.

They conjectured that equality holds in (1). This has been resolved by the author
in [21] using different methods. (For a recent algebraic proof, see [26].) For the
lowest dimensional moduli space, M(Vλ4) with m = 3, see [23].
Once again, it is natural to ask whether equality holds in (1) in general, or at least
for compact rank 1 symmetric spaces M = G/K . Our last result is to show that
the answer is negative for M = CPm , and H = Vλp .
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Theorem. C Let m ≥ 3, (G,K) = (U(m + 1), U(m) × U(1)), M = U(m +
1)/(U(m)× U(1)) = CPm , and H = Vλp . Then, for p = 3 and m 6≡ 1 (mod 4),
or for p ≥ 4, we have

F̄(Vλp) 6= F(Vλp).

The striking difference between the spherical and complex projective cases is that
S2(Vλp), Vλp ⊂ C∞(Sm), has a multiplicity one decomposition into irreducible
components, but according to the multiplicity formulas developed by Barbasch
[22], this fails for S2(Vλp), Vλp ⊂ C∞(CPm).

2. Zonal Spherical Functions and Jacobi Polynomials

In this section we describe the main idea of the proof of Theorem A as well as
assemble some preliminary facts.
Let M = G/K be a compact rank 1 symmetric space. As noted above, an
irreducible G-submodule H ⊂ C∞(M) is class 1 with respect to the pair (G,K).
We call a K -fixed vector χ0 ∈ H a zonal spherical function [15,25]. It is well-
known that a zonal spherical function is unique up to a constant multiple [2].
Let χ0 be a zonal spherical function of H . Its square χ2

0 ∈ H·H is also fixed by K .
Since C∞(M) has a multiplicity one decomposition into irreducible components,
as an element of C∞(M), χ2

0 decomposes into a sum

χ2
0 =

n∑
j=1

χj,

where each χj belongs to a unique irreducible component Hj ⊂ C∞(M). Clearly,
χj is a zonal spherical function of Hj . Since χj ∈ Hj is a component of χ2

0 ∈ H·H ,
by Schur’s lemma, Hj projects nontrivially to H · H , and we obtain

n∑
j=1

Hj ⊂ H · H.

In Section 4 we will prove Theorem A by showing that equality holds here.
We now illustrate this in a different setting by a simple example.

Example. Let G be a compact Lie group viewed as a symmetric space G ×
G/G∗ of compact type, where G∗ ⊂ G × G is the diagonal [15,16,24]. (The
map (g1, g2)G∗ 7→ g1g

−1
2 , g1, g2 ∈ G , identifies G × G/G∗ with G .) The space

C∞(G × G/G∗,C) of complex valued smooth functions on G × G/G∗ has a
multiplicity one decomposition into irreducible components. A component, a
complex irreducible G×G-submodule of C∞(G×G/G∗,C), has the form H∗⊗H ,
where H is a complex irreducible G-module. The G∗ -fixed vectors in H∗⊗H can
be identified with the (multiples of a normalized) character χ0 of H [24]. Given
χ0 , according to our procedure, we need to decompose the square χ2

0 into a sum
of (nonzero) characters

χ2
0 =

n∑
j=1

cjχj.
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By elementary character theory, this decomposition corresponds to the decompo-
sition of the tensor product

H⊗H =
n∑
j=1

cjHj

as a G-module, where χj is the character of Hj and cj ∈ N is the multiplicity of
Hj in H⊗H . Since χ2

0 ∈ (H∗ ⊗H) · (H∗ ⊗H), Schur’s lemma tells us that

n∑
j=1

H∗j ⊗Hj ⊂ (H∗ ⊗H) · (H∗ ⊗H)

as G×G-modules. We claim that equality holds here. Indeed, consider the natural
extension of Ψ0 above

Ψ0 : (H∗ ⊗H)⊗ (H∗ ⊗H)→ (H∗ ⊗H) · (H∗ ⊗H)

given by multiplication. The domain of Ψ0 , as a G×G-module, can be decomposed
as

(H∗ ⊗H)⊗ (H∗ ⊗H) = (H∗ ⊗H∗)⊗ (H⊗H)

=

(
n∑
j=1

cjH∗j

)
⊗

(
n∑
l=1

clHl

)
=

n∑
j,l=1

cjcl
(
H∗j ⊗Hl

)
.

Finally, by Schur’s lemma again H∗j ⊗Hl contains a G∗ -fixed vector if and only if
j = l [24]. The claim follows.

We now return to our compact rank 1 symmetric space M = G/K . As noted in
Section 1, the full eigenspace Vλ of the Laplacian 4M corresponding to an eigen-
value λ is an irreducible G-module. Moreover, if {λp}∞p=0 denotes the sequence of
eigenvalues of 4M in increasing order, then we have

C∞(M) =
∞∑
p=0

Vλp .

By the above, Vλp ⊂ C∞(M) contains a zonal spherical function χ0 , unique up to
a constant multiple.
We now recall that, for fixed α, β > −1, the Jacobi polynomials P

(α,β)
n , n ≥ 0,

form an orthogonal series on [−1, 1] with respect to the weight function (1 −
x)α(1− x)β [1]. The polynomial P

(α,β)
n can be defined by

(1− x)α(1− x)βP (α,β)
n (x) =

(−1)n

2nn!

dn

dxn
[(1− x)n+α(1− x)n+β].

With a suitable choice of parameters on M , the zonal function χ0 of a component
Vλp of C∞(M) is a constant multiple of P

(α,β)
n with α , β , n depending on Vλp

[4,10,24]. (For example, n = p in all cases but M = RPm for which n = 2p .)
The classification of compact rank 1 symmetric spaces M , the eigenvalues of 4M

[2], and the Jacobi polynomials corresponding to the zonal spherical harmonics χ0

are summarized in the following table:
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(G,K) M = G/K λp χ0

(SO(m+ 1), SO(m)) Sm p(p+m− 1) P
(m/2−1,m/2−1)
p

(SO(m+ 1), O(m)) RPm 2p(2p+m− 1) P
(m/2−1,m/2−1)
2p

(U(m+ 1), U(m)× U(1)) CPm 4p(p+m) P
(m−1,0)
p

(Sp(n+ 1), (Sp(n)× Sp(1)) HPm 4p(p+ 2m+ 1) P
(2m−1,1)
p

(F4, Spin(9)) CaP 2 4p(p+ 11) P
(7,3)
p

The multiplicities n(λp) = dimVλp are given as follows:

M n(λp)

Sm
(
p+m
m

)
−
(
p+m−2
m

)
RPm

(
2p+m
m

)
−
(

2p+m−2
m

)
CPm

(
p+m
m

)2 −
(
p+m−1
m

)2

HPm 2p+2m+1
2m(2m+1)

(
p+2m
2m−1

)(
p+2m−1

2m−1

)
CaP 2 2p+11

1320

(
p+10

7

)(
p+7

7

)
To simplify the treatment and to avoid some overlapping cases, we will assume
that m ≥ 2.
Since, up to parametrization, the zonals are Jacobi polynomials, we need to obtain
a decomposition of the square (P

(α,β)
p )2 into a sum of Jacobi polynomials:

(P (α,β)
p )2 =

2p∑
j=0

c(j, p;α, β)P
(α,β)
j . (2)

More generally, a formula of the type

P (α,β)
p P (α,β)

q =

p+q∑
j=|p−q|

c(j, p, q;α, β)P
(α,β)
j . (3)

is usually called “linearization of the product.”
For α = β , the Jacobi polynomial P

(α,β)
p is, up to normalization, the ultraspherical

(or Gegenbauer) polynomial Cν
p , where ν − 1/2 = α = β . (The precise formula

is given in (20) below.) Linearization of the product of ultraspherical polynomials
dates back to the early twentieth century, and the coefficients c(j, p, q;λ−1/2, λ−
1/2) have been calculated explicitly [1,7,24]. For our purposes, we need only that
c(j, p, q;λ−1/2, λ−1/2) is positive if and only if |p− q| ≤ j ≤ p+ q and j ≡ p+ q
(mod 2).
For Jacobi polynomials in general linearization proved to be much more difficult
and the exact decomposition formula is fairly recent [19]. A general and sharp
positivity result for the coefficients c(j, p, q;α, β) (covering the remaining cases in
the table above for m ≥ 2) is due to Gasper [11,12]. It states that if α, β > −1,
a = α + β + 1, b = α − β , then c(j, p, q;α, β) > 0 provided that (α, β) is in the
interior of the set

V = {(α, β) |α ≥ β, a(a+ 5)(a+ 3)2 ≥ (a2 − 7a− 24)b2}.

Note that Theorem 1 in [12] states nonnegativity of the coefficients for (α, β) ∈ V .
As Professor Gasper communicated to the author [13], a closer inspection of his
proof of Theorem 1 in [12], pp. 585-591, shows strict positivity of the coefficients
if (α, β) is in the interior of V . Another proof of the positivity follows by using
the { }9F8 series representations for the linearization coefficients in [19] (formula
(3.9)).
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3. Generalities on the Moduli

Let G be a compact Lie group and H an orthogonal G-module. We define

K(H) = {C ∈ S2(H) |C + I ≥ 0}.

We write K = K(H) if there is no danger of confusion. K is a G-invariant set in
S2(H), where the G-module structure on S2(H) is extended from that of H .
Since C + I ≥ 0 is a convex condition, K is a convex set. The interior of K
consists of those endomorphisms C that satisfy C + I > 0. It follows that K
has a nonempty interior, and hence it is a convex body in S2(H). Notice that
K is noncompact since the multiples λI , λ ≥ −1, are contained in K . We call
K = K(H) the general moduli space for H .
We let S2

0(H) denote the G-submodule of S2(H) comprised of the traceless
symmetric endomorphisms of V . We define

K0 = K0(H) = K(H) ∩ S2
0(H) = {C ∈ S2

0(H) |C + I ≥ 0}.

The eigenvalues of the symmetric endomorphisms in K are greater or equal to −1.
Hence the eigenvalues of the endomorphisms in K0 are contained in [−1, dimH−1].
It follows that K0 is compact, and a convex body in S2

0(H). We call K0 = K0(H)
the reduced moduli space for H .

We now give an interpretation of the moduli as parameter spaces for certain maps.
We let M be a compact Riemannian manifold, and G a compact Lie group of
isometries of M . (G is a closed subgroup of the full isometry group of M .) The
space C∞(M) of smooth functions on M is a representation space for G , where
g ∈ G acts on ξ ∈ C∞(M) by g · ξ = ξ ◦ g−1 . We fix a finite dimensional
G-submodule H ⊂ C∞(M). We endow H with the scaled L2 -scalar product

〈χ1, χ2〉 =
dimH

vol (M)

∫
M

χ1χ2vM , χ1, χ2 ∈ H, (4)

where vM is the Riemannian volume form on M , and vol (M) =
∫
M
vM is the

volume of M . With this scalar product H becomes an orthogonal G-module.
A smooth map f : M → V into a Euclidean vector space V is said to be full if
the image of f spans V . A component of f is α ◦ f ∈ C∞(M), where α ∈ V ∗ .
The space of components of f is defined as

Vf = {α ◦ f |α ∈ V ∗} ⊂ C∞(M).

The map f is full if and only if the linear map f ∗ : V ∗ → Vf , given by precomposi-
tion with f , is an isomorphism. Since V is Euclidean we also have V ∼= V ∗ ∼= Vf .
Note that any map can be made full by restricting its range to the linear span of
the image.
Two maps f1 : M → V1 and f2 : M → V2 are said to be congruent if there is a
linear isometry U : V1 → V2 such that f2 = U ◦ f1 .
With H as above, f : M → V is said to be an H-map if Vf ⊂ H . Note that
any smooth map f : M → V is an H-map for H the smallest G-invariant linear
subspace in C∞(M) that contains Vf .

The Dirac delta as a map δH : M → H∗ is defined in the usual way

δH(x)(χ) = χ(x), x ∈M, χ ∈ H.
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The component of δH corresponding to χ ∈ H = H∗∗ is 〈δH, χ〉 = χ . Hence,
VδH = H and δH is a full H-map.
In what follows we will identify H with its dual H∗ via the scalar product on H .
With respect to an orthonormal basis {χj}Nj=0 ⊂ H , dimH = N + 1, the Dirac
delta as a map δH : M → H can be written as

δH(x) =
N∑
j=0

χj(x)χj, x ∈M. (5)

Indeed, for χ ∈ H , we have

〈δH(x), χ〉 = χ(x) =
N∑
j=0

〈χ, χj〉χj(x) =

〈
N∑
j=0

χj(x)χj, χ

〉
.

The Dirac delta δH is equivariant with respect to the homomorphism ρH : G →
O(H) that defines the orthogonal G-module structure on H ∼= H∗ .
For a full H-map f : M → V , we have f = A ◦ δH , where A : H → V is a
surjective linear map. We associate to f the symmetric linear endomorphism

〈f〉 = A∗A− I ∈ S2(H).

It is clear that 〈f〉 depends only on the congruence class of f . Since A∗A is
always positive semidefinite, we also have 〈f〉 ∈ K(H). A DoCarmo-Wallach type
argument shows that f 7→ 〈f〉 gives rise to a one-to-one correspondence between
the set of congruence classes of full H-maps and the general moduli space K(H)
[6,25].
Let f : M → V be a full H-map. With respect to an orthonormal basis in V ,
f can be written in components as f = (f 0, . . . , fn), dimV = n + 1. With the
orthonormal basis {χj}Nj=0 ⊂ H as above, A : H → V becomes an (n+1)×(N+1)-
matrix with entries akj , k = 0, . . . , n , j = 0, . . . , N . In components, f = A ◦ δH
can be written as

fk =
N∑
j=0

akjχ
j, k = 0, . . . , n.

We now calculate

trace (〈f〉+ I) = traceA∗A =
n∑
k=0

N∑
j=0

a2
kj =

n∑
k=0

|fk|2.

We conclude that, in terms of the scaled L2 -scalar product (4) on H , the parameter
point 〈f〉 ∈ K(H) is traceless if and only if∫

M

n∑
k=0

(fk)2vM = vol (M). (6)

We call f normalized if (6) is satisfied. Clearly, δH is normalized.
It is also clear that, by suitable scaling, any nontrivial map can be normalized.
Summarizing, we obtain the following:
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Proposition 3.1. Let M be a compact Riemannian manifold with compact
group G of isometries. Given a finite dimensional G-submodule H of C∞(M),
the set of congruence classes of full H-maps f : M → V can be parametrized
by the general moduli space K(H). The reduced moduli K0(H) parametrizes the
normalized H-maps.

An H-map f : M → V is called spherical if the image of f is contained in the
unit sphere SV of V . A finite dimensional G-module H ⊂ C∞(M) is called δ -
spherical if δH is spherical. Due to the scaling of the L2 -scalar product in (4), H
is δ -spherical if and only if

N∑
j=0

(χj)2 = 1

on M , where {χj}Nj=0 ⊂ H is an orthonormal basis.
If M = G/K is homogeneous then any H ⊂ C∞(M) is δ -spherical. This is
because δH is equivariant, and thereby its image is a G-orbit in H necessarily
contained in SH .
Let H be a δ -spherical G-module. A full H-map f : M → V is spherical if and
only if

|f(x)|2 − |δH(x)|2 = 〈(A∗A− I)δH(x), δH(x)〉 = 〈〈f〉, δH(x)� δH(x)〉 = 0,

for all x ∈M . Here � denotes the symmetric tensor product. We define

E(H) = {δH(x)� δH(x) |x ∈M}⊥ ⊂ S2(H). (7)

The previous computation shows that an H-map f : M → V is spherical if and
only if 〈f〉 ∈ E(H).
Once again, since δH is equivariant, E(H) ⊂ S2(H) is a G-submodule.
We obtain the following:

Proposition 3.2. Let M be a compact Riemannian manifold with compact
group G of isometries, and H ⊂ C∞(M) a δ -spherical G-submodule. Then the set
of congruence classes of full spherical H-maps f : M → SV can be parametrized
by the moduli space

L(H) = K(H) ∩ E(H).

Moreover L(H) is a compact convex body in E(H).

Compactness follows since spherical maps are automatically normalized:

L(H) ⊂ K0(H)⇒ E(H) ⊂ S2
0(H),

so that
L(H) = K0(H) ∩ E(H).

Remark. Let M = G/K be a compact naturally reductive Riemannian ho-
mogeneous space, and Vλ ⊂ C∞(M) the eigenspace of 4M corresponding to an
eigenvalue λ . Recall from Section 1 that a λ-eigenmap f : M → SV is a spherical
Vλ -map.
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Let H ⊂ C∞(M) be a finite dimensional G-submodule. Then H ⊂ Vλ for some
λ . Proposition 3.2 asserts that L(H) parametrizes the congruence classes of full
λ-eigenmaps f : M → SV with components in H ⊂ Vλ . In particular, L(Vλ)
parametrizes the congruence classes of all full λ-eigenmaps f : M → SV .

Returning to the general situation, let H ⊂ C∞(M) be a δ -spherical G-module.
We define

Ψ0 = Ψ0
H : S2(H)→ C∞(M) (8)

by
Ψ0(C)(x) = 〈CδH(x), δH(x)〉 = 〈C, δH(x)� δH(x)〉, x ∈M.

Since δH is equivariant, Ψ0 is a homomorphism of G-modules. By (7), we have

ker Ψ0 = E(H). (9)

We claim that the image of Ψ0 is the G-submodule

H · H = span {χ1χ2 |χ1, χ2 ∈ H} ⊂ C∞(M).

Indeed, using (5) in the definition of Ψ0 , we obtain

Ψ0(C) =
N∑

j,l=0

cjlχ
jχl,

where {χj}Nj=0 ⊂ H is an orthonormal basis, and the cjl ’s are the matrix entries
of C ∈ S2(H). The claim follows.
Note that H · H always contains the trivial G-module, a consequence of δ -
sphericality.
We obtain the following:

Proposition 3.3. Let H ⊂ C∞(M) be a δ -spherical G-module. Then the G-
module homomorphism

Ψ0 : S2(H)→ H · H

is onto, and has kernel E(H). In particular, H · H is (isomorphic to) a G-
submodule of S2(H) and we have

E(H) ∼= S2(H)/(H · H)

as G-modules.

Let K ⊂ G be a closed subgroup. Recall that an irreducible orthogonal G-module
V is called class 1 with respect to the pair (G,K) if V contains a nonzero K -fixed
vector, or equivalently, if V|K contains the trivial representation.
We now assume that M = G/K is Riemannian homogeneous. As noted in Section
1, any irreducible G-submodule of C∞(M) is class 1 with respect to (G,K).
Conversely, any class 1 G-module V with respect to (G,K) is isomorphic to an
irreducible G-submodule of C∞(M) [25].
Let H ⊂ C∞(M) be a δ -spherical G-submodule. We define Ē(H) ⊂ S2(H) as the
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sum of those irreducible G-submodules in S2(H) that are not class 1 with respect
to (G,K). By the description of class 1 modules above and (8)-(9), we see that

Ē(H) ⊂ E(H). (10)

Equality holds if and only if the sum of all irreducible G-submodules in S2(H)
that are class 1 with respect to (G,K), is isomorphic to H · H .

A map f : M → V is said to be conformal if

〈f∗(X), f∗(Y )〉 = c〈X,Y 〉, X, Y ∈ T (M),

where c > 0 is a constant. Then c is called the conformality constant of f .
We say that a finite dimensional G-module H ⊂ C∞(M) is δ -conformal if δH is
conformal.
Using (5), we have

(δH)∗(X) = XδH =
N∑
j=1

X(χj)χj, X ∈ T (M). (11)

Thus, H is δ -conformal if and only if

N∑
j=0

X(χj)Y (χj) = c〈X, Y 〉, X, Y ∈ T (M), (12)

holds for any orthonormal basis {χj}Nj=0 ⊂ H .

Let f : M → V be a conformal map as above, and assume that Vf ⊂ Vλ for some
eigenvalue λ of 4M . Then f : M → V is an isometric immersion with respect
to c times the original metric on M . By Takahashi’s theorem [20] f maps into a
sphere rSV for some r . Calculating 4M(|f |2), we obtain c = r2λ/ dimM . If f is
normalized then r = 1 and we get c = λ/ dimM . Again by Takahashi, we obtain
that f : M → SV is an isometric minimal immersion of the λ/ dimM -multiple of
the metric on M .

Let H ⊂ Vλ be a δ -conformal G-submodule. By definition, δH : M → H is
conformal with VδH = H ⊂ Vλ so that the argument above applies. Since δH is
automatically normalized, we obtain that δH : M → SH is an isometric minimal
immersion of the λ/ dimM -multiple of the metric on M . In particular, H is
δ -spherical.

Remark. Let M = G/K be isotropy irreducible. Then any irreducible G-
submodule H ⊂ C∞(M) is δ -conformal. Indeed, (12) holds because

∑N
j=0 dχ

j �
dχj is a G-invariant bilinear form on H . Its coordinate representation in (5) shows
that δH : M → SH∗ is the standard minimal immersion [6,25].

A DoCarmo-Wallach type argument gives the following:
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Proposition 3.4. Let H ⊂ Vλ ⊂ C∞(M) be a δ -conformal G-submodule.
Then the congruence classes of isometric minimal H-immersions f : M → SV
(with respect to the λ/ dimM -multiple of the metric on M ) are parametrized by
the compact convex body

M(H) = K0(H) ∩ F(H), (13)

in the G-module

F(H) = {XδH � Y δH |X, Y ∈ T (M)}⊥ ⊂ S2(H). (14)

We also have

F(H) ⊂ E(H), (15)

so that

M(H) = L(H) ∩ F(H).

Let M = G/K be a naturally reductive homogeneous space with orthogonal
decomposition g = k ⊕ p , where g and k are the Lie algebras of G and K , and
p is identified with the tangent space To(M), o = {K} . The subgroup K acts
on its Lie algebra k by the adjoint representation, and, under the identification
p ∼= To(M), this action corresponds to the action of K on To(M) via the isotropy
representation.
As noted in Section 1, if W is any (finite dimensional) orthogonal K -module then
the induced G-module IndGK(W) is comprised of continuous maps f : G→W that
satisfy f(kg) = k · f(g), g ∈ G , k ∈ K . Precomposition of these maps by right
multiplication on G defines the G-module structure on IndGK(W). In addition,
integration with respect to the Haar measure on G and the scalar product on W
define a G-invariant scalar product on IndGK(W).
By Frobenius reciprocity, we have

HomG(V , IndGK(W)) = HomK(V|K ,W),

where V is an orthogonal G-module and W is an orthogonal K -module.

Let H ⊂ C∞(M) be a δ -conformal G-module. Restricting the differential of δH
to p = To(M) gives a K -equivariant linear imbedding (δH)∗ : p→ H . We identify
the K -module p with the image, and think of p as a K -submodule of H|K . Notice
that this can also be thought of as the inclusion p ⊂ H∗ ∼= H given by the action of
the tangent vectors at o to M on the elements of H by directional differentiation.
We define

Ψ: S2(H)→ IndGK(S2(p)) (16)

as follows. For C ∈ S2(H), we let Ψ(C) : G → S2(p) be the map defined by
Ψ(C)(g) = π(g · C), where π : S2(H) → S2(p) is the orthogonal projection, a
homomorphism of K -modules.
We have

ker Ψ = F(H).
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Indeed, for C ∈ S2(H), Ψ(C) = 0 if and only if 〈g ·C, S2(p)〉 = 0 for all g ∈ G , if
and only if 〈C, g ·S2(p)〉 = 0 for all g ∈ G . In view of the identification p ⊂ H|K ,
this holds if and only if

〈C, S2((δH)∗(Tx(M)))〉 = 0, x ∈M.

This is equivalent to C ∈ F(H).

4. Proofs of Theorems A-C.

Proof of Theorem A. We first let (G,K) = (SO(m + 1), S(m)), SO(m) =
SO(m) ⊕ [1] ⊂ SO(m + 1), with M = G/K = Sm the Euclidean m-sphere, and
H = Vλp . The eigenspace Vλp corresponding to λp = p(p + m − 1) is Hp , the
irreducible SO(m+ 1)-module of spherical harmonics of order p on Sm .
We let Pp denote the SO(m + 1)-module of homogeneous polynomials on Rm+1

of degree p (with the usual action g · ξ = ξ ◦ g−1 , g ∈ SO(m + 1), ξ ∈ Pp ).
By homogeneity, a polynomial in Pp is uniquely determined by its restriction to
Sm ⊂ Rm+1 .
We also think of a spherical harmonic χ of order p on Sm as a harmonic homoge-
neous polynomial on Rm+1 of degree p . (The equivalence of these two representa-
tions is given by restriction from Rm+1 to Sm , and comparison of the Euclidean
and spherical Laplacians. We suppress the restriction if there is no danger of con-
fusion.) This way Hp becomes an SO(m + 1)-submodule of Pp . We have the
orthogonal decomposition

Pp = Hp ⊕ Pp−2 · ρ2 =

[p/2]∑
k=0

Hp−2k · ρ2k, (17)

where ρ(x) = |x| , x = (x0, . . . , xm) ∈ Rm+1 [15,24].
Since Hp ⊂ Pp , we have

Hp · Hp ⊂ P2p =

p∑
j=0

H2j

as SO(m + 1)-modules. Theorem A for M = Sm states that equality holds, and
this is what we need to show.
We define the harmonic projection operator as the orthogonal projection H : Pp →
Hp with kernel kerH = Pp−2 · ρ2 [24]. It is given explicitly by

H(ξ) = ξ +

[p/2]∑
j=1

(−1)j(p− 1) . . . (p− j)
j!λ2(p−1) . . . λ2(p−j)

4jξ · ρ2j, ξ ∈ Pp. (18)

Since SO(m) fixes xm , a zonal spherical harmonic in Hp is H(xpm). By (18), it is
given by

H(xpm) = xpm

+

[p/2]∑
j=1

(−1)j(p− 1) . . . (p− j)p(p− 1) . . . (p− 2j + 1)

j!λ2(p−1) . . . λ2(p−j)
xp−2j
m ρ2j.
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Rewriting the coefficients in terms of the Gamma function, we obtain

H(xpm) =
p!

2pΓ
(
p+ m−1

2

) [p/2]∑
j=0

(−1)jΓ
(
p+ m−1

2
− j
)

j!(p− 2j)!
(2xm)p−2jρ2j.

Up to a normalizing factor, this is the ultraspherical polynomial Cν
p with ν =

(m− 1)/2 [1,24]:

H(xpm) =
p!Γ
(
m−1

2

)
2pΓ

(
p+ m−1

2

)ρpC(m−1)/2
p (cos θ), (19)

where xm/ρ = cos θ . In terms of the Jacobi polynomials, we have

Cν
p =

(2ν)p
(ν + 1/2)p

P (ν−1/2,ν−1/2)
p , (20)

where (a)p = Γ(a + p)/Γ(a). The choice of the zonal spherical harmonic χ0 for
M = Sm specified in the first table of Section 2 follows. The linearization of the
product formula for ultraspherical polynomials [7] reads as

Cν
pC

ν
q =

min (p,q)∑
k=0

(p+ q + ν − 2k)

(p+ q + ν − k)

×(ν)k(ν)p−k(ν)q−k(2ν)p+q−k
k!(p− k)!(q − k)!(ν)p+q−k

(p+ q − 2k)!

(2ν)p+q−2k

Cν
p+q−2k.

We now let p = q and ν = (m − 1)/2. In view of (20), the linearization
formula above reduces to (2) with α = β = m/2 − 1, and we also obtain an
explicit formula for the linearization coefficients. This immediately shows that
c(j, p;m/2 − 1,m/2 − 1) is nonzero if and only if 0 ≤ j ≤ 2p is even. By (19),
evaluating (2) on cos θ , the Jacobi polynomials become zonal spherical harmonics.

Suppressing the argument cos θ , by definition, (P
(m/2−1,m/2−1)
p )2 ∈ Hp · Hp . The

restriction of the orthogonal projection P2p → H2j , j = 0, . . . , p , to Hp ·Hp ⊂ P2p

maps (P
(m/2−1,m/2−1)
p )2 to a nonzero constant multiple of P

(m/2−1,m/2−1)
2j since

c(2j, p;m/2− 1,m/2− 1) is nonzero. Schur’s lemma implies that H2j must be a
component of Hp · Hp for j = 0, . . . , p . Theorem A follows for M = Sm .

For M = RPm , the real projective m-space, the eigenspace Vλp corresponding to
the p-th eigenvalue λp = 2p(2p+m− 1) of the Laplacian 4RPm can be identified
with H2p . Theorem A follows from the spherical case above.

Next we let (G,K) = (U(m+ 1), U(m)× U(1)) with CPm = U(m+ 1)/(U(m)×
U(1)), the complex projective m-space. Let Pp,q denote the space of complex
homogeneous polynomials of bidegree (p, q) on Cm+1 . An element ξ ∈ Pp,q is
a complex valued homogeneous polynomial that has degree p in the variables
z0, . . . , zm ∈ C and degree q in the variables z̄0, . . . , z̄m ∈ C . By homogeneity, ξ
can be thought of as a function on the unit sphere S2m+1 ⊂ Cm+1 .
The space Pp,p is the complexification of a real U(m + 1)-submodule, and this
real submodule is also denoted by the same symbol. An element in Pp,p can be
thought of as a function on CPm .
The decomposition in (17) gives

Pp,q = Hp,q ⊕ Pp−1,q−1 · ρ2 =

min (p,q)∑
k=0

Hp−k,q−k · ρ2k,
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where ρ = |z| , z = (z0, . . . , zm) ∈ Cm+1 , and Hp,q is the space of complex
harmonic homogeneous polynomials of bidegree (p, q) on Cm+1 . Then Hp,q is a
complex irreducible U(m+ 1)-module. For real valued polynomials we also have

Pp,p =

p∑
k=0

Hp−k,p−k · ρ2k,

as real U(m+1)-modules. Here Pp,p is the space of real valued homogeneous poly-
nomials of bidegree (p, q) on Cm+1 , and Hj,j is the eigenspace Vλj corresponding
to the j -th eigenvalue λj = 4j(j +m).
Since Hp,p ⊂ Pp,p , we have

Hp,p · Hp,p ⊂ P2p,2p =

2p∑
j=0

Hj,j (21)

as real U(m + 1)-modules. To prove Theorem A for M = CPm , it remains to
show that equality holds.
Since U(m) fixes zm and the center U(1) acts on Hp,p trivially, a zonal spherical
harmonic in Hp,p is H(|zm|2p). Here the harmonic projection operator H is the
restriction of the harmonic projection for the spherical case above. We have

H(|zm|2p) =
p!(p+m− 1)!

(2p+m− 1)!
ρ2pP (m−1,0)

p (cos(2θ)),

where |zm|/ρ = cos θ . (See also [24], formula (5’) in Chapter 11.3.2, Vol.2.) In the

linearization of the square (P
(m−1,0)
p )2 all coefficients c(j, p;m−1, 0), j = 0, . . . , 2p ,

are positive for m ≥ 2. As in the spherical case it follows that Hj,j , j = 0, . . . , 2p ,
are U(m+ 1)-submodules of Hp,p · Hp,p . The equality in (21) follows.

The cases of the quaternionic projective space HPm and the Cayley projective
plane CaP 2 are entirely analogous [10]. The zonal spherical functions for HPm

are explicitly derived in [24] (cf. formula (14) in Chapter 11.7.4, Vol. 2). Another
approach for the Cayley projective plane is to determine the highest weights of
the class 1 modules with respect to the pair (F4, Spin(9)) and to use the Weyl
dimension formula for the multiplicities.

Proof of Theorem B. One of the principal results of [22] (Theorem 4.1, p.
136) gives the multiplicity m of Hq,q in S2(Hp,p) as follows:

m
[
Hq,q : S2(Hp,p)

]
=

1

2

[
min (q, 2p− q) + 1 +

1 + (−1)q

2

]
.

By the definition of Ē(Hp,p), we thus have

S2(Hp,p) =

2p∑
q=0

1

2

(
min (q, 2p− q) + 1 +

1 + (−1)q

2

)
Hq,q ⊕ Ē(Hp,p).

On the other hand, by Proposition 3.3 and Theorem A, we have

E(Vλp) = S2(Vλp)/(Vλp · Vλp) = S2(Vλp)/

(
2p∑
q=0

Vλq

)
.
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Since Vλq = Hq,q , combining these two formulas, Theorem B follows.

Proof of Theorem C. The proof is based on comparing the multiplicities of
some irreducible components of the domain and the image of Ψ in (16) . To do
this, we first complexify, and consider

Ψ: S2(Hp,p)⊗R C→ Ind
U(m+1)
U(m)×U(1)(S

2(Cm)⊗R C), (22)

where Cm = To(CP
m) with U(m)×U(1)-module structure given by U(m) acting

on Cm by matrix multiplication, and the center U(1) ⊂ U(m+ 1) acting trivially.
For the irreducible decompositions, recall that a complex irreducible U(m + 1)-
module V is given by its highest weight which, with respect to the standard
maximal torus in U(m + 1), is an (m + 1)-tuple with integral coefficients. We
write V ρ = V ρ

U(m+1) , where ρ = (ρ1, . . . , ρm+1) ∈ Zm+1 with

ρ1 ≥ ρ2 ≥ . . . ≥ ρm+1.

The center U(1) ⊂ U(m+ 1) acts by the weight
∑m+1

j=1 ρj .
For example, we have

Hp,q = V (p,0,... ,0,−q).

The branching rule for restrictions from U(m+ 1) to U(m) takes the form

V ρ
U(m+1)|U(m) =

∑
σ

V σ
U(m),

where the summation runs over all σ ∈ Zm for which

ρ1 ≥ σ1 ≥ ρ2 ≥ . . . ≥ ρm ≥ σm ≥ ρm+1.

The decomposition of the domain in (22) into irreducible components is one of the
technical results in [22] (Theorem 4.1 on p. 136). For m ≥ 3, we have

S2(Hp,p)⊗R C ∼=
2p∑
b=0

min (b,2p−b)∑
c=0

min (b,p,e)∑
d=0

n0(b, c, d) +m0(b, c, d)

2
(23)

× V (b,c,0,... ,0,−d,d−b−c).

Here e =
[
b+c

2

]
, and

n0(b, c, d) = min (b− c, b− d, p− c, p− d, b+ c− 2d, 2p− b− c) + 1.

m0(b, c, d) = 0 for b 6≡ c( mod 2), and for b ≡ c( mod 2), we have

m0(b, c, d) =

{
−1 if b, d are odd and m ≡ 1( mod 4)
1 otherwise.

We now fix a component V (b,c,0,... ,0,−d,d−b−c) in S2(Hp,p) ⊗R C . We need to
determine the multiplicity

m
[
V (b,c,0,... ,0,−d,d−b−c) : Ind

U(m+1)
U(m)×U(1)(S

2(Cm)⊗R C)
]
. (24)
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First note that the multiplicity in (24) is the dimension of the module

HomU(m)

(
V (b,c,0,... ,0,−d,d−b−c)|U(m), S

2(Cm)⊗R C
)
. (25)

This follows by Frobenius reciprocity along with the fact that U(1) acts trivially.
In particular, the multiplicity in (24) is nonzero if and only if V (b,c,0,... ,0,−d,d−b−c)

is disjoint from F̄(Hp,p).
As a real SO(2m)-module

S2(Cm) = S2(R2m) = H0 ⊕H2.

Complexifying, and restricting to U(m) ⊂ SO(2m), we obtain

S2(Cm)⊗R C = H0|U(m) ⊕H2|U(m) = H0,0 ⊕
2∑
j=0

H2−j,j.

Thus (25) can be written as

HomU(m)

(
V (b,c,0,... ,0,−d,d−b−c)|U(m),H0,0 ⊕

2∑
j=0

H2−j,j

)
.

The dimension of this module is equal to

m
[
H0,0 : V (b,c,0,... ,0,−d,d−b−c)|U(m)

]
+

2∑
j=0

m
[
H2−j,j : V (b,c,0,... ,0,−d,d−b−c)|U(m)

]
.

By the branching rule, the first multiplicity is 1 if and only if c = d = 0 and
zero otherwise. The remaining multiplicities can be obtained similarly using the
branching rule. For 0 ≤ j ≤ 2, we obtain

m
[
H2−j,j : V (b,c,0,... ,0,−d,d−b−c)|U(m)

]
=

{
1 if b ≥ 2− j ≥ c and −d ≥ −j ≥ d− b− c
0 otherwise.

Comparing this with (23), we see that, for m 6≡ 1 (mod 4), p = 3, b = 3,
c = d = 1, the multiplicity of the component V (3,1,0,... ,0,−1,−3) is 2 in the domain
of Ψ and 1 in the image of Ψ. The same holds for p = 4, b = 4, c = d = 1.
Theorem C follows.
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