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The DoCarmo-Wallach theory studies isometric minimal immersions f : M — S™ of a
compact Riemannian homogeneous space M = G/K into Euclidean n-spheres. The pa-
rameter space of such immersions is a compact convex body in a representation space for
the Lie group G. In this article we give a very general definition of the moduli space and
study its geometric properties such as the distortion (as a convex set). In addition, we
introduce a general notion of operators, derive various criteria under which they map
the moduli into one another, and finally, we show that, under general conditions, the
operators are distortion decreasing.
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1. Introduction

The construction of the DoCarmo-Wallach moduli space for spherical minimal
immersions 2, 10, 11] can be generalized substantially. Given a compact Lie group
G and an orthogonal G-module H, we define the general moduli space as

KH)={CEe Sz(’H)IC+I20},
and the restricted moduli space as
Ko(H) = {C € K(H) | trace (C) = 0} .

Both moduli are convex sets in S?(H) and Ko(#) is compact (since the eigenvalues
of C' in Ko(#) are bounded). In addition, K(#) and Ky(#) have nonempty interiors
in their linear span, so that they are convex bodies. All moduli for spherical minimal
immersions (and their generalizations such as the moduli for eigenmaps) satisfying
various geometric properties are slices of Xo(#) by affine or linear subspaces of
S%(H) [4, 10].

In Sec. 2, we discuss the geometry of Ko(#) in general. Given a compact convex
body Ko in a Euclidean vector space V and a base point o € Ky, any (directed) line
¢ passing through o intersects Kg in a finite line segment. o splits this segment in
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a specific ratio called the distortion of Ko with respect to £. In Sec. 2, we derive a
general estimate on the distortion of Ko(#) (relative to the origin). This will show,
in particular, that Ko(#) is considerably less distorted than a simplex (relative to
its centroid).

Given orthogonal G-modules H, H', and W, we define an operator as a G-
module homomorphism D : W — H* ® H'. Special cases of operators such as the
degree raising and lowering operators and the operator of infinitesimal rotations
have been used to determine the exact dimension of the moduli [4, 10] and to give
lower estimate for the range dimension of spherical minimal immersions [9]. The
operator D induces a G-module homomorphism &7 : S2(H) — S%(#’) in a natural
way. The principal question is when does &7 carry the moduli into one another. In
Sec. 3, we show that the answer is affirmative if D satisfies a conformality condition.
In addition, we prove that an operator D in general decreases the distortion of the
moduli, and give an estimate on the operator norm of ®”. In Sec. 4, we give a
variety of explicitly computable examples of operators.

Let M be a compact Riemannian manifold with compact group G of isometries.
The space C™(M) of smooth functions on M is a representation space for G in a
natural way. If # is a finite dimensional G-submodule of C*°(M) then the moduli
K(H) and Ko(#) can be interpreted as parameter spaces of certain maps as follows.
A map f : M — V into a Euclidean vector space V is called an H-map if the
components a o f, a € V*, belong to . Then a DoCarmo~Wallach argument |2,
11] shows that the set of congruence classes of full H-maps f : M — V can be
parametrized by the general moduli space K(H). Here f : M — V is full if the
image spans V, and two maps f, : M — V; and f2 : M — V, are congruent if
there is a linear isometry U : Vi — V; such that f = U o f;. The reduced moduli
Ko () parametrizes the normalized H-maps, i.e. maps f : M — V that satisfy

/ |f12vm = vol (M) .
M

Here v)y is the Riemannian volume element and vol (M) is the volume of M. A map
f: M — V is spherical if the image is contained in the unit sphere Sy of V. The
set of congruence classes of full spherical #-maps f : M — Sy can be parametrized
by the moduli space

L(H) = Ko(H)NE(H),

a slice of Ko(H) by a G-submodule £(#) (defined in Sec. 2).

Let D: W — H* @ H' be an operator such that 7 carries Ko(#) into Ko(H').
A principal question again is whether D preserves sphericality in the sense that
®7 carries £(H) into L(#H'). (D above can be defined to carry H-maps to H'-maps
and this induces P on the moduli; cf. Sec. 3.) In Sec. 5, we derive a necessary
and sufficient condition for an operator to preserve sphericality in case when H,
H' C C*(M) are certain finite dimensional G-submodules.
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2. Moduli

Let G be a compact Lie group. An orthogonal G-module # is a Euclidean vector
space on which G acts linearly via orthogonal transformations. In other words, H is
a representation space for G, and it is endowed with a G-invariant scalar product.

Let # be an orthogonal G-module. As in the introduction, we define the general
moduli space for 4 by

K =K(H)={Ce S*H)|C+I>0},

where > means positive semidefinite and I is the identity. K is a G-invariant set in
S2(#), where the G-module structure on S2(#) is extended from that of .

K is a convex set since C+1 > 0 is a convex condition. The interior of X consists
of those C for which C'+I > 0. Clearly K has a nonempty interior, and hence it is a
convex body in S2(#). Moreover K is noncompact since the multiples AI, A > —1,
are contained in K.

We let Sg(?) denote the G-submodule of S?(#) comprised by the traceless
symmetric endomorphisms of V. We define the reduced moduli space for H as

Ko = Ko(H) = K(H) N SE(H) = {C € SAH)|C +1 > 0} .

The eigenvalues of the symmetric endomorphisms in K are > —1. Hence the eigen-

values of the endomorphisms in Ko are bounded, in fact, they are contained in

[-1,dim# — 1]. It follows that Ko is compact, and a convex body in S2(#).
Given C € Ky, C £0, let

/\0>/\1>"'>)\N>/£o

be the distinct eigenvalues of C in decreasing order. Since traceC = 0, we have
Ao > 0 and pp < 0. We define the opposite C° of C by

Ho
ce=20
Ao
The distinct eigenvalues of C° are
2
Ko Mo Ko
— > —=AND>-> =)
By N * 1> to

in decreasing order. Thus

Ho  Ho
C°)° = —C=C.
(@) H3/ X0 Ao
Indicating the dependence of the eigenvalues on the respective endomorphisms, we
have

#o(C)?

X(0) = B

and hence

l10(C)] = v/ 20 (C)Ao(CP).
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Recall from the definition of Ko that C € K is a boundary point if and only if
C + I is semi-definite if and only if po(C) = —1. Since the minimal eigenvalues of
C and C° are the same, we see that C € 9K, if and only if

s "alep
2o(C)

(Note that the multiplicities of po(C) = —1 and po(C°) = —1 are, in general,
different.) We see that the line passing through C and C?° intersects Ko in a line
segment with endpoints C' and C°. (The open line segment is contained in the
interior of Kp [1].) The origin splits this segment in the ratio |C|/|C°| which is
called the distortion of Kg at C.

co = C € 8Ky. (2.1)

Theorem 2.1. The distortion of C € dKo(H) (with respect to the origin) is the
mazimal eigenvalue A\og(C) of C as a symmetric endomorphism of H. The distor-
tions function Mg on 8Ko(H) ertends as a convez function to Ko(H). In particular,
maximum distortion occurs at an extremal point (in the sense of convex geometry).
The distortion satisfies

1 .
mﬁ)oﬁdﬂﬂﬂ—l. (22)
Proof. By (2.1), we have
_ lc
AO(C’) e ICOI ’

and the first statement follows. The maximal eigenvalue )¢ as a function on Ky is
convex since

Xo(C) = max{(Cx, x)| x| < 1,x € H}.
The right-hand side of this equation is the convex extension of Ag to Kg. Finally,

for C € 8Ky, we have Ag(C°) = 1/Ao(C). Since A\g < dimH — 1, we obtain
(2.2). m

Remark 2.2. According to a result in convex geometry |1, 3], the distortion func-
tion Ag of a compact convex set Ko C V in a Euclidean vector space V satisfies

1 .
d—i-m_v S A() S dnnV,
provided that the base point is chosen suitably. (This estimate is sharp, e.g. consider
a simplex in V with base point the centroid.) Since
_ dimH(dimH +1)
= 5 -

we see that the estimate in (2.2) is significantly better than this general estimate.
In other words, the moduli Ko(H) is significantly less distorted than a simplex.

dim Ko(H) = dim K(H) ~ 1 = dim S*(H) - 1 1
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As in the introduction, let  C C*°(M) be a finite dimensional G-module, where
M is a compact Riemannian manifold with compact Lie group G of isometries.
is an orthogonal G-module with respect to the scaled L2-scalar product

( ) = dimH / . -
X1, X2 _—_vol(M) MX1X2 M,  X1,X2 .
We define the Dirac delta as a map d4 : M — H* by

onu(z)(x) = x(z), zeMxeH.

We identify #** and H in the usual way. The component of 44 corresponding to
X € H =H*" i8 (0y,Xx) = x. In particular, 64 is a full #-map.

We identify # with its dual H* via the scalar product on . With this, and
with respect to an orthonormal basis {x? };-Lo C H,dimH = N +1, the Dirac delta
as a map 0y : M — H can be written as

N
bu(@) =Y X @, zeM.

=0

In fact, for x € H, we have

N N
(), x) = x(2) = Y _ (o x ) (z) = <Z X (@)X ,x> -

(Note that 6z has been introduced in [2] as the standard minimal immersion.) The
Dirac delta d3 is equivariant with respect to the homomorphism p3 : G & O(H)
that defines the orthogonal G-module structure on H = H*.

Given a full H-map f: M — V, we have f = Ao dy, where A: H — V is a
surjective linear map. We associate to f the symmetric linear endomorphism

(fy=A"A-T€ S*H).

Clearly (f) depends only on the congruence class of f. Since A*A is always

positive semidefinite, we also have (f) € KX(H). A DoCarmo-Wallach type argu-

ment shows that f +— (f) gives rise to a one-to-one correspondence between the set

of congruence classes of full #/-maps and the general moduli space K(#) (2, 7, 11].
For a full #-map f: M — V with f = Aoy as above, we have

trace ((f) + I) = trace A A

so that (f) is traceless if and only if

/ |f2vpm = vol (M).
M

Wecall f : M — V normalized if this is satisfied. We obtain that the reduced moduli
Ko(#) parametrizes the set of congruence classes of full normalized #H-maps.




826 G. Toth

An H-map f : M — V is called spherical if the image of f is contained in
the unit sphere Sy of V. A finite dimensional G-module # C C*®(M) is called
d-spherical if 64 is spherical. # is d-spherical if and only if

N .
Y 6d)P=1
=0

on M for an(y) orthonormal basis {x?}o C H.
If M = G/K is homogeneous then any H C C*(M) is é-spherical. Indeed, by is
equivariant, and hence its image is a G-orbit in H which must be contained in Sy.
Let #H be a é-spherical G-module. A full H-map f : M — V is spherical if and
only if

|f(2)? - |63(x)]? = ((A*A - I)dn(z), 6 (z)) = ((f), On(z) @ bn(z)) = 0,
for all z € M. We define
E(H) = {0n(z) ® bu(z) |z € M}* C S2(H). (2.3)

The computation above implies that an #-map f : M — V is spherical if and only
if (f) € £(H). Again by the equivariance of dy, £(H) C S?(H) is a G-submodule.

‘We obtain that the set of congruence classes of full spherical #-maps f: M —
Sy can be parametrized by the moduli space

L(H) = K(H)NEH).

L(H) is a compact convex body in £(#). Note that £(H) is compact since spherical
maps are automatically normalized

L(H) C Ko(H) = E(H) C S:(H),
and thus
L(H) = Ko(H)NE(H).
Given a d-spherical G-module H C C°°(M), we define
U0 =09, : S3(H) — C™(M) (2.4)
by
VO(C)(z) = (Con(z), bu(z)) = (C,bu(z) ® bu(z)), zeM.

By (2.3), ¥° is a homomorphism of G-modules (since 63 is equivariant). By defi-
nition, we have

ker U0 = £(H). (2.5)
The image of ¥° is the G-submodule

H-H={xixz|x1,x2 € H} C C®°(M).
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This follows immediately writing ¥° in coordinates
N
‘I’D(C) = Z cjlxjxl’
Ji=0
where {x? };Lo C H is an orthonormal basis, and the ¢;;’s are the matrix entries of
C € S%(H).
As a byproduct, we obtain the isomorphism of G-modules;

SPH)IEH)=H-H.
If M = G/K is a compact rank one symmetric space then an irreducible G-
submodule H C C*°(M) is the full eigenspace V of the Laplacian AM of M for

some eigenvalue A [5]. According to a result in [8] if A, denotes the pth eigenvalue
then we have

P
Z Vi if M is a Euclidean sphere
=0

VA, . VAF =

2p

Z VA, otherwise.

=0

This gives the dimension dim £(V3,) = dim&(V),). In Sec. 5, we give another
computation for V), -V, for the case when M is a Euclidean sphere.

3. Operators

Let W, #, H’ be orthogonal G-modules. An operator is a G-module homomorphism

D:W - H*@H'. We also write D: H@W — H'. For £ € W, we set D(£) = D; :

‘H — H'. With this, the homomorphism property can be written as
Dg£=g-D5=gO’D§og_l, geQG.

We think of D as a family of linear maps D : H — H' parametrized by &£ € W.

If W = R is the trivial G-module then D; : H — H' is a G-module homo-
morphism and it uniquely determines D since D; = tD,, t € R. There is thus a
one-to-one correspondence between G-module homomorphisins and operators with
W=R.

The adjoint of D is the operator D* : W — H'* ® H, defined by Di = (Dg)",
EeW.

Let D: W > H*®@H and D’ : W — H'* @ H" be operators, where all modules
are over G. We define the composition D' oD : W @ W — H* @ H” by

(D' OD)E’®€ = Dé, 0D€ ¥ 5 € W, 6, e W’ . (3.1)

(On W' ® W, we take the orthogonal G-module structure defined by W and W'.)
We have

(D' oD)* =D* 0 D"
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The restriction of an operator D : W — H* ® H' to a G-submodule Wp C W is
defined in an obvious way.

Example 3.1. As an application, given an operator D : W — H* ® ', we can
consider the restriction of the composition DoD* : W@ W — H"* @ H' to any of
the three summands in

WeW =R S53(W) e A2(W),

where S3(W) C S%(W) is the G-module of traceless symmetric endomorphisms
of WW.

For example, as noted above, the restriction D o D*|r (to the trivial summand)
is defined by the G-module endomorphism (D o D*); of H'. With respect to an
orthonormal basis {£}4, C W, 1 € R corresponds to the tensor 2?=1 & ® &80
that (D o D*); can be written as

d
(DoD*)1 =Y D¢ oD},

i=1

Given an operator D : W — H* ® H', we define Dt : #' — H ® W as the adjoint of
D viewed as a G-module homomorphism D : H @ W — H'. D! is a homomorphism
of G-modules. D' is the trace of the bilinear form (¢,7) Dg ®n), i.e. with respect
to an orthonormal basis {£;}¢ , C W, we have

d
D' =) "D ®¢. (3.2)
i=1

Indeed, for x € H, X’ € H', £ € W, we have

(DY), x® &) = (X, D(x ® E)) = (X', Dex)
d

Z (DE. X,’ X) (gl'a 5)

i=1

d
<Z(DE.-X') ® &, x ®§> -

i=1

Using (3.2), we obtain

d
Dol =3 D 0D, = (Do D). 63

i=1

Given an operator D, we define the G-module homormorphism
o7 : S%(H) - SE(H')
(between the symmetric squares of H and H') by

®P(C)=Do(C®I)oD', CeS*H). (3.4)
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Using (3.2) again, with respect to the orthonormal basis above, we have

d
#P(C)=) D 0CoD,. (3.5)
i=1
Substituting C = I in (3.4), we obtain
®P(I) = Do Dt. (3.6)
(3.1) and (3.5) give
3PP = g7 o 3P, (3.7)

We define the operator norm of D : W — H* ® H’ in the usual way as
ID|| = max{|De(x)| | €] < 1,|x] < 1}.

Proposition 3.2. Let D : W — H* ® H' be an operator. Then the following are
equivalent:

® 1Dl <15
(i) |ID7) <1
(iif) SP(K(H)) C K(3H').
Proof. By a standard result
120 = 121
so that (i) and (ii) are equivalent. (ii) is clearly equivalent to
I-DoD'=1-87(I) >0, (3.8)

where we also used (3.6). It remains to show that this is equivalent to (iii). Assume
that (3.8) holds. Let C € K(#) so that C+I > 0. By (3.5), ®P(C +I) > 0. Adding
this and I — ®P(I) > 0, we obtain ®P(C) + I > 0. This means ®P(C) € K(H').
(iii) follows.

Conversely, if (iii) holds then $P(—1) € K(#'), so that

®P(-N+1=1-d°(I)>0,
and (3.8) follows. m]
A (nontrivial) operator D : W — H*®%H' is called conformal if, up to a constant

multiple 5, DT : #' - H ® W is a linear isometry. & is called the conformality
constant. This holds if and only if

®P(I) = Do Dt = &I, (3.9)
or equivalently

(D'x1, Dxa) = (x1,x2), x1,Xx2€H'.
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In terms of an orthonormal basis {¢,}%., C W, this rewrites as

d

D (D x1 DEx2) = M, xe), x1,x2 € H'.

i=1
Note that if #’ is irreducible then any operator D : W — H* ® H' is conformal.
Using (3.7), we see that if D and D’ are conformal (with conformality constants x
and «’) then D’ o D is also conformal (with conformality constant xx').

A conformal operator D with conformality £ = 1 is called metric. In other words,

D: W —H*®H is metric if Dt : H' - H ® W is a linear isometric imbedding:

®P(I)=DoDt =1. (3.10)

ID: W H*®H is a conformal operator with conformality x then x > 0, and
D/+/k is metric.

Theorem 3.3. Let D : W — H* @ H' be a conformal operator with conformality
k. Then, for C € S%(H), we have

20 (2P(C)) < kX(0), (3.11)
where Ap stands for the mazimal eigenvalue. Equality holds in (3.11) if and only if
D(im (C — X(C)) @W) # H'. (3.12)
Similarly, we have
1o(2P(C)) 2 Kpo(C), (3.13)
where po stands for the minimal eigenvalue, and equality holds if and only if
D(im (C - po(CY) @W) #H' . (3.14)

Proof. Let C € S%(H). Using that (1/y/k)D! : H' - H ® W is a linear isometry,
we compute

2(2%(C)) = max{(2P(C)x, x) | Ix| < 1,x € H'}
= max{{(C ® I)D'x, D'x) | Ix| < 1,x € H'}
= kmax{{(C ® I)(r),7)||7| < 1,7 € im (D1)}
< kmax{({(C ® I)(0),0)||o] < 1,0 € HR W}
= KX(C R I) = kXo(C). (3.15)

Equality holds in (3.16) if and only if equality holds in (3.15). The eigenvalues of
C ® I are the same as the eigenvalues of C (with the multiplicities multiplied my
dim H). Hence, equality holds in (3.11) if and only if

im (D) N ker(C — Ao(C)I) @ W #0.
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Since C is symmetric, this holds if and only if
im (DY) Nim (C — Xo(C))* @ W # 0.
This is equivalent to (3.12). m]

The proof of the last statement is analogous.

Corollary 3.4. Let D: W — H* @ H' be a conformal operator with conformality
k < 1. Then, we have

®P(K(H)) c K(H'). (3.16)
Proof. Let C € S*(H). Since C is a symmetric endomorphism of #, it is
diagonalizable, and C + I > 0 holds if and only if the eigenvalues of C are > —1.

To show that ®P(C) +I > 0, we thus need to prove that the eigenvalues of 2(C)
are > —1. This follows from (3.11) since s < 1. The corollary follows. o

Proposition 3.5. Let D: W — H* @ H' be an operator. Then the adjoint of ®P
is ®7°, i.e. for C € S%(H) and C' € S(H'), we have

(@%(C),C") = (C, 27" (C"). (3.17)

Proof. Using (3.5), we compute
(@P(C),C") = trace (C' 0 P(C))

n
= trace (C' o ZD& oCo DE')

i=1
= trace (C ) ZDE:- oC' o'D&)
=1
= trace (C o ®2°(C"))
= (C,87°(C")).
The proposition follows. m]

Corollary 3.6. We have
®P(S2(H)) C SE(H') (3.18)
if and only if D* is conformal. In particular, this holds if H is irreducible.
Proof. Substituting C = I in (3.17), we obtain
trace (87 (C)) = (8" (I),C). (3.19)
We have the orthogonal decomposition

S%(H) = R- I & S2(H),
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and similarly for S2(#’). By (3.19), (3.18) holds if and only if 7" is a multiple of
the identity, say ®2°(I) = kI. Replacing D by D* in (3.9), this means that (D)t
is conformal with conformality constant . 0

Corollary 3.7. Let D : W = H* @ H' be a metric operator with D* conformal.
Then, we have

QD(IC()(’H)) C ’Co(?‘l') .
Proof. We have Ko(H) = K(H) N S2(H), and similarly for #'. The first statement

follows from the corollary to Theorem 3.3 and Corollary 3.6 above.
Let C € Ky(H), C # 0. By the definition of the antipodal, we have

im(C ~ A(C)]) = im (’\"Egi co - AO(C)I)

= im (C° ~ uo(C)]) = im (C° — o(C°)I).

We obtain that (3.12) (for C) is equivalent to (3.14) for C°. In particular, equality
holds in (3.12) (for C) if and only if equality holds in (3.14) for C°. Since pg = —1
on the boundary of Ky, we obtain the following: |

Corollary 3.8. Let D : W = H* @ H' be a metric operator with D* conformal.
Then ®P|oxy(w) is distortion decreasing, i.e. if C € 8Ko(H) and 8P (C) € 8Ko(H'),
then we have

2(#P(C) < Xo(C).
Equality holds if and only if ®P(C°) € 0Ko(H').

Corollary 3.9. Let D: W — H* @ H' be a conformal operator with conformality
k < 1. Then, with respect to the operator norms on S*(H) and S%(H'), we have

2P| < 1. (3.20)

Proof. By the definition of the operator norm, for C € S%(#), we have
ICN? = max{|Cx[?||x| < 1,x € H} = max{(C*x, x) | Ix| < 1,x € H}
= Xo(C?) = max(Ao(C)?, po(C)?)
Similarly
127 (C)I* = max(Ao(@P(C))*, o (2P (C))%) -
Hence
I#P©)l < lICl -

By the definition of the operator norm, this is equivalent to (3.20). O
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Assume that M is a compact Riemannian manifold on which a compact Lie
group G acts via isometries. Let # C C°°(M) be a finite dimensional G-submodule.
As noted in Sec. 2, the general moduli space IC(#{) can be interpreted as a parameter
space of the congruence classes of full #-maps f: M — V.

Now let D : W — H* ® H' be a metric operator, where H, #' C C*(M) are
finite dimensional G-submodules. By the corollary to Theorem 3.3, the induced G-
module homomorphism ®7 : $2(H) — S%(#') carries K(#) into K(#'). In view of
the interpretation of the general moduli as parameter spaces of maps, it is natural
to ask whether the operator D can be used to carry H-maps to H’-maps inducing
®? on the congruence classes.

To do this, we let f : M — V be a H-map, and define f : M - V @ W*
by fP(€) = Def, where f is viewed as a vector valued function on which D acts
componentwise; a o (D¢f) = D¢(ao f), @ € V*. Clearly, f? is an H'-map, and
Vio CD(Vy @ W), where D is viewed as D: HQ W — H'.

With respect to an orthonormal basis {£;}7.; C W, we have

n
fD = ZD&f®£ia
i=1
where, as usual, we identify W with its dual W*.
Note that, in general, f? is not full even if f is.

Proposition 3.10. Let D : W = H* ® H' be a metric operator where H, H' C
C™(M) are finite dimensional G-submodules. Then we have

60(z) = D' (B3 (x)), zeM. (3.21)
For a full H-map f : M — V, we have
(FP) = @P((f)). (3.22)

Proof. Choosing orthonormal bases in 4 and H', we write the Dirac delta maps as

N N’
bu(z) =) _x(z)x! and b (z) =D x!(z)x".

We compute

n N
5@ =) Dead) @) ® &

i=1 j=0

=Y e M ) @ &

n N N’
=1 j=0 [=0

1

n N N

=33 X' @0 Dx' )X @&

i=1 j=0 =0
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n N’

=Y Y X'@Dix" @&

=1 =0

=Y D} (0w(=) ®&

i=1

=Dt (67'{' (m)) )

where we used (3.2). (3.21) follows. For (3.22), we let f : M — V be a full H-
map, and f = Ao Jy where A: H — V is linear and onto. The parameter point
corresponding to f is (f) = A*A — I € S?(H). For f®: M — V ® W, we have

n

fP=) Def®&= AoDeby®¢;

i=1 i=1

= (AR Dby ®&

i=1
= (A® )6y,
=(A®I)oDloby .
Hence, we have
(fP)=Do(A®I)* o (A®I) oDl -1
=Do((A*4)®I) oDl -1
=Do((A*A-I)®I) oDt
= Do ((f) ® I) o D! = ®P((f)).

In the last equality we used (3.4). (3.22) follows. o

Remark 3.11. Let H, H', D, and f be as in the proposition above. Then, for
C = (f) € 0Ko(H), we have im (C — po(C)I) = im(C + I) = V}, the space of
components of f. Thus (3.11) in Theorem 3.3 is equivalent to D(V; @ W) # H'. In
a similar vein, (3.13) is equivalent to D(Vyo ® W) # H’, where f°: M — V°isa
representative of the congruence class C° of C.

4. Examples

Example 4.1. Let G be a compact Lie group with Lie algebra g, and H an irre-
ducible orthogonal G-module. H is also a module over the Lie algebra g in a natural
way. The elements of g act as skew-symmetric endomorphisms on H:

(€-x1,x2) = —(x1,€-x2), xuLx:€eH,E€8.
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The Casimir operator Casy; of g on H is the trace of the symmetric bilinear form
(€,m) » —& o). Since it commutes with the elements of g, Casy is a constant
multiple of the identity:

d
Casy =—» & =M. (4.1)
i=1

(The Casimir eigenvalues are known for all modules over semisimple Lie
algebras [12].)
The g-module structure on H defines an operator D" : g -+ H* @ H, by
1
Dg(x) = HE K femxel.

This operator is metric. Indeed, by (3.3), we have

d
Dho (DY) = -5 Y800 =x-

i=1

For the induced map between the moduli, we have

A 1
DA _
d =1- ﬁcaSS’(H) )
where Casga(y) is the Casimir operator on S%(#), the trace of the bilinear form
(€,m) = —[& [n,]]. In fact, with respect to an orthonormal basis {£;}2, C g, for
C € S%(H), we compute

d
Casga)(C) = — ) _[&, &, C])

i=1

d d n
=-Y 80C-CoY +2) &oCog
i=1 i=1

i=1

d
=2AC+2)) DfoCoD}

t=1
=2) - 2287"(C),

where we used (3.5) and (4.1). The formula for 2" above follows.

Finally, note that D is skew-adjoint: D* = —D. In particular, since D is metric,
D* is conformal. Corollary 3.7 applies, and we obtain that % carries Ko(#) into
itself. D" is introduced in [9] in the special case when G C SO(m + 1) is a closed
subgroup transitive on the Euclidean m-sphere S™, and H = H?, is the G-module
of spherical harmonics of order p on S™. D is called the operator of infinitesimal
rotations since § - x, for a canonical basis element £ in so(m + 1), is the spherical
harmonic x € #? infinitesimally rotated in the plane singled out by €. The induced
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G-module homomorphism ®P" is a self-map of K2 = KB(#P), and its contrac-
tion properties play a crucial role in giving lower estimates on the codimension of
minimal isometric immersions between spheres.

We now take a look at the case when m = 3 and p = 6. Let Tet : S — 56 be the
tetrahedral minimal immersion (7, 9]. Let C = (Tet) be the corresponding point on
the moduli. We have C € 8K§. For reasons of dimension, we also have 2" (C) €
8K§. By the computations in [9], it follows that Ao(C) = 6, A(®P" (C)) = 4/3,
and these are the distortions at C and 2" (C). For the antipodal, we have C° =
—(1/6)C, and ®P"(C?) = (1/8)®P" (C)®, in particular, 2" (C°) is in the interior
of K§.

The minimal ®2" -invariant slice of K38 is 2-dimensional, and it is an isosceles
triangle with vertices C and 2" (C), and —(1/3)C — 2" (C).

Example 4.2. As above, let #” denote the irreducible SO(m + 1)-module of
spherical harmonics of order p on S™. There are two natural operators acting on
spherical harmonics. First, for a € R™+!, directional derivative at the direction a
defines a linear map

Oy : HP — HPL.

Second, multiplication by the linear functional a* € H! corresponding to a € R™+1
(a*(z) = (a,z), z € R™*1), followed by harmonic projection H defines

0o : HP — HPTL.
We have
6,.X=H(a"-x)=a‘-x—f—paax-pz, a € R™ (4.2)
2p

where p? = |22, z € R™+1,
Up to constant multiples, 3, and d, are adjoints of each other. In fact [10], on
HP, we have

1

Hp-1

;= ppby, and 8 = —0,, (4.3)

where

Azp

= 1 . 44
In what follows we will need the derivative of the harmonic projection formula (4.2).

Using 9,b* = {(a,b) and 9,p? = 2a*, a, b € R™*! we obtain

4 2
Oabox = (a,b)x + b"Oax — Xzﬂa*abx = X‘zgpzaaab)( :
P P
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Taking traces (in (a,b) with respect to the standard orthonormal basis in {e;}j%, C
R™+1), and using homogeneity, we obtain

ia.g.x e 2_'\1_’\3(145&,( x € HP (4.5)
i=0 b Ap 2(p+ 1) y :
where we set 8; = J., and 4; = é,.

We now introduce the operators D* = DF : R™+! — (#P)* @ HP*! defined by

- 2 A2
/ + / ;.
D, = —Azp 8, and D) = P 0a -

We claim that D* are both metric. To do this, we first work out the adjoints
(DE)F : HPEL 5 HP @ H1. Using (4.3), we find

m
(D—)T(X) = ; 261X® Yi, XE€ Hp_l ’

=0

and

m
OO ) =t Y dix @y, xe€H,
=0

where

With this, we have

- . 2 & .
D™ o(D )1(X)=Cp‘fgzaa5ix=x, xeH .
P

=0

This shows that D~ is metric. The computation for D* is analogous (but simpler).
Due to (4.3), we also know that, up to constant multiples, D% are adjoints of each

other. Indeed, we have
- [ 22-1)
* o —ap—l) pt
(Dp ) ¥4 Ap—lAZP p—1>

where we indicated the dependence of D+ on the degree by subscripts.

In particular, it follows that (D%)* are both conformal so that Corollary 3.7
applies. Thus

&D* (KP) c KBE!.




838 G. Toth

By Corollary 3.8, &P are both distortion decreasing. D* are called the degree
raising and lowering operators. They play a crucial role in determining the exact
dimension of the moduli for spherical minimal immersions [10], a problem posed by
DoCarmo and Wallach in [2].

Example 4.3. Applying the construction in the example in Sec. 3 to G =
SO(m +1), H =P, H' = HP"!, and D = D, we obtain three operators. Since,
up to a constant multiple, (D, )* is D+ 1 (Example 4.2), we will consider the re-
strictions of D _1© Dy to the three summands in

R™I@R™! =RoH>®so(m+1).

Here S3(R™*!) is identified with its dual #2, and so(m + 1) is identified with
AZ(R™+1),
Using the definitions of D*, for a, b € R™*1, we obtain

- / Ag(p—1)
(D+-1 ODp )a®b = A2p;p— ‘sa 86 (4'6)

To obtain (D}_, o D, )|r we first note that 1 € R corresponds to Simo€i ® e,
where {e,},_o C R"“"1 is the standard orthonormal basis. For x € HP, we have

2(p-1) A2(p—1)
(Dp-1 0 D7)z igex =4 55— 26, X = p,/ oo X

where, in the last equality we used homogeneity of x as a polynomial. We thus

have
[ A2o-1)
D D, I.
( -1 o )IR p AZpAp-—

For the restriction to so(m + 1), we note that
(0g 08 —p00a)x = (a0 - b*8,)x, x€HP,

since the right-hand side is harmonic. Moreover, for a, b orthonormal, this is X
infinitesimally rotated in the plane spanned by a and b, a typical element in

so(m + 1). Hence
+ )‘2(17—1)
(Dp1 0Dy )ans = P
A2pAp--1

A2(p-1)
(Dy-1 0 D; )2y = W'D )

We obtain

where D" is defined in Example 4.1.
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Finally, we have

— 1 A ] * x
(Di-1 0D} )laebx = 5” :\'::—f\p%H(a Obx +b"0:x), x€HP.

Discarding the trace, this defines the restriction (D}_; o D} )|#z.

Example 4.4. The composition

;—q+1 Doese D;—l o D; . (Rm+1)®q - (pr)* ® »Hp—q+1 (4.7)
is given by
q/2
(D—— 0-:Dyy0 D_)ei ®..Qe; X = & 3,'1 'S
p—q+1 r-1 P /€iq 41 \/T q

2pA2(p—1) - - - A2(p—g+1)
(4.8)

Since this is symmetric in the indices i1, .. . , iq, We restrict (4.7) to S7 (R™+1). The
dual §9(R™t1)* = S9(#!) is the space of degree ¢ homogeneous polynomials in
R™*+!, We have

SUH) =HI® p* - STTH(HY).
Since  is harmonic, (4.8) vanishes on the component p? - S9-2(#!). We obtain the
operator

(Dp_gi10-- Doy 0D )lma : HI = (HP)* ® HPIFL

5. Operators on Moduli for Spherical Maps

In this section we first give a necessary and sufficient condition for an operator to
preserve sphericality. Let M be a compact Riemannian manifold with a compact
Lie group G of isometries, and # C C*(M) a finite dimensional G-module. Recall
from Sec. 2, the G-module epimomorphism

0 S2(H) > H-H
with kernel £(H).
Theorem 5.1. Let M be a compact Riemannian manifold with a compact Lie group
G of isometries. Let H, H' C C®(M) be spherical G-submodules. Let D : W —
H* ® H' be an operator. Then ®P : S2(H) — S2(H') carries E(H) into E(H') if

and only if there ezists a G-module homomorphism ®P : H-H — H'-H' that makes
the diagram

SZ(H) _.@_D._) SZ(HI)

wg{j 1‘1'9*'

H,H_‘E.D_.) HI.HI

commutative.
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Proof. If ®? exists then
®P(E(H)) = & (ker ¥),) C ker 93, = E(H).
Conversely, if ®P(£(H)) c (') then &P defines a homomorphism of G-modules

S2(H)/E(H) — S*(H')/E(H'). Since S?](H)/E(H) = H -H and SEHIEH) =
' - H', this also defines $2. O

®? naturally extends to a G-module homomorphism &% : H®H — H' @ H' by
setting

d
®° =3 D, ®D;,
i=1
where {&}%, C W is an orthonormal basis. The fact that this is an extension
follows from (3.5). With this, the commutative diagram above becomes

HoH -2 HWeon

Hul Jnu,

@D
HH— H - H
where the vertical arrows are given by multiplications. (The extended diagram

commutes since Il3 | 2(3) = 0, and similarly for #’.) Hence, commutativity of the
diagram amounts to the existence of a G-module homomorphism ®? such that

d
Ty 0 ®P) (' @ x?) = Y Dex'Dex® =8P(x'x?), xLxPeH. (5.1)
i=1
Example 5.2. Let M be a Riemannian manifold with a compact Lie group G of
isometries, and # C C°° (M) an irreducible d-spherical G-submodule. Let D* : g
H* ® H be the operator defined in Example 4.1. Using the notations there, for x?!,
x2 € H, we have

d
(M3 0 @%")(x' ® x?) = % Z &x'Ex®.
On the other hand, since A is the Casimir eigen\::llue of H, we have
d
Cascen(ary (x'x7) = = Y E2(x*x®)
i=1
d
= Caspx' - x* - 2)_ &ix'&x? + x* - Casyx®

i=1

d
=2x'x* -2 &x'ixe,
t=1

where we used the fact that £ € g acts as a vector field on C>(M).
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Combining these, we obtain that 2" : S2(H) — S?(#) exists, and it is given by

éD" I- Ex Cascm (M) -

By the corollary to Theorems 3.3 and 5.1, 87" is a self-map of L(#). Note finally
that if M = G/K is naturally reductive then Casces(as) is the Laplacian i

Example 5.3. Consider again the degree raising and lowering operators D* :
H! - (HP)* ® HPE! with induced homomorphisms

=L HP @ HP — HPE! @ HPEY,

We cla.im that 82 on X1 ® x2 € HP ® HP exists and determine it explicitly. We
let 3!, x? € HP. We work out (5.1) with respect to the standard orthonormal basis
{& = &} C R™1L, Using (4.2), we have

Azp
ZDE‘X e‘x 2Ap alxlafx
i=0

i=0
A
= 3 e H o)
P i=0
m
S ( ix' — —aix! pz) (mzxz-— 2P px? p’)

7 i 2y 8
(1 Ap)xx p+A>\ AGCXP) - Pt

where A in the Euclidean Laplacian. In a similar vein

ZD&XID— 2= Zatxlalx = TA( )

i=0 P i=0
If we define P ; P2p — P2Arl) by

2 2
&0 = (1— p—) J g ALY\ 5.2
o e (5.2)
and
> = 1A (5.3)
A2p
then the diagrams
7=
S2(HP) = S2(HPEL)
‘I’g{l’]’ l \I’gtp:i:l

- pt
P2p S5 HP . HP L 'Hp:tl . 'Hp:tl C 732(p:l:1)
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commute. We obtain that
¥ (E(HP) € (EHEY)
and hence ®P* carries the moduli M(HP) into M(HPEY).
As an application, now use the operator Dt to prove that
HEEHE— Pe7X (5.4)

(Another proof using linearlization of ultraspherical polynomials is in [8].) We pro-
ceed by induction with respect to p. For p = 0,1 this is obvious. For the general
induction step, p = p+ 1, we first note that, by definition, HP*! . #P+1 c P2(p+1),
Since P2(P+1) = }2(P+1) ¢ P2P_ it remains to show that

HAPHY) ¢ YL Pl and PP g2 C YPFL. P (5.5)

First, by definition, H(z5*!)? € #P*!. #P*!1, Its harmonic projection to H2P+D)
within P2(P+1) js

H(H(z§™)?) = H(z3®),

since H annihilates multiples of p?. This latter polynomial is nonzero, and thus
irreducibility of #2(P*+1) gives

H2(P+Y) - P+l P+l
This is the first inclusion in (5.5). It remains to show the second inclusion in (5.5).
Comparison of the Euclidean and spherical Laplacians shows that, on PP, we have
A =-A5" 4 2,1,
Thus (5.2) and (5.3) are rewriten,

2
Dt _ 7 P s™
&P = —/\pz\sz i (5.6)
and
3P =1—$A5“. (5.7)
 J

By the induction hypothesis, we have (5.4). We claim that
&P Py Y+ et

is injective. Indeed, if £ € P?% is in the kernel of P then, writing £ = > F 0 Xi»
X; € H%, we have

()
>
[y

2

_uyl'ﬁ
4

Xk X3

2p
and this is possible only for x; = 0.

By injectivity, P?? is an SO(m + 1)-submodule of #P*! - HP+!, The second
inclusion in (5.5) follows. (Also, (5.7) implies that ®P : P? — P2(-1) ig onto
with kernel H?%?.)
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