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MINIMAL IMMERSIONS OF SPHERES AND MODULI

Gábor Tóth (New Jersey)

Communicated by János Szenthe

Eigenmaps and spherical minimal immersions

Minimal immersions of round spheres into round spheres, or spherical min-
imal immersions for short, or “spherical soap bubbles”, belong to a fast growing
and fascinating area between algebra and geometry. This theory has rich intercon-
nections with a variety of mathematical disciplines such as invariant theory, convex
geometry, harmonic maps, and orthogonal multiplications. In this survey article we
browse through some of the developments of the theory in the last thirtysome years.

The theory of spherical soap bubbles studies minimal immersions of round
spheres into round spheres of different dimensions. A classical example is the imbed-
ding of the real projective plane RP 2 into the 4-sphere S4 as the Veronese minimal
surface. Conveniently described by a minimal immersion Ver : S2 → S4, it is a
twofold covering projection to the image, the Veronese minimal surface, and the
covering is given by the action of the antipodal map on S2. The metric on S2

induced from the curvature one metric on S4 is of constant curvature 1/3.

The general theory of spherical minimal immersions first took off in 1966 with
the following result [18]:

Theorem (Takahashi, 1966). A minimal isometric immersion f : Sm
κ →

SV of the m-sphere of curvature κ into the unit sphere SV (of curvature one) of a
Euclidean vector space V exists iff κ = m/λp, where λp = p(p+m− 1) is the p-th
eigenvalue of the spherical Laplacian �Sm

on Sm. In this case, the components
α ◦ f , α ∈ V ∗, of f are spherical harmonics of order p on Sm (with the curvature
one metric), i.e. eigenfunctions of �Sm

with eigenvalue λp.
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It will be convenient to keep the curvature one metric on the domain Sm. Our
immersions then become homothetic (conformal with conformality factor λp/m):

〈f∗(X), f∗(Y )〉 = 〈X · f, Y · f〉 = λp

m
〈X,Y 〉,(1)

where X,Y are vector fields on Sm.
A map f : Sm → SV is said to be a spherical minimal immersion of degree p if

the components of f are spherical harmonics of order p on Sm, and f is homothetic
(1) (with conformality factor λp/m).

It will also be convenient to consider the wider class of p-eigenmaps by drop-
ping the homothety condition. A map f : Sm → SV is said to be a p-eigenmap
if its components are spherical harmonics of order p on Sm. Eigenmaps (between
spheres) can be characterized by being harmonic in the sense of Eells–Sampson [7]
and having constant energy density (= λp/2). Since the energy density is constant,
a p-eigenmap is a spherical minimal immersion of degree p iff it is conformal.

A fundamental problem in the theory of spherical minimal immersions is the
following:

Problem. For each m and p, what is the minimum dimension of the range
for a spherical minimal immersion f : Sm → SV of degree p?

The next result [15] gives a universal lower bound independent of the degree:

Theorem (J. D. Moore, 1976). For any spherical minimal immersion f :
Sm → SV of degree p ≥ 2, we have dimV ≥ 2m+ 1.

A rich variety of spherical minimal immersions can be obtained by the “equiv-
ariant construction”, first used in this context by Mashimo in 1984 [13, 14], and
later exploited by DeTurck and Ziller [3, 4]. These spherical minimal immersions
are given as orbit maps fξ : S3 → SW by the special unitary group SU(2), where ξ
is an element of unit length of a representation W of SU(2):

fξ(g) = g · ξ = ξ ◦ Lg−1 , g ∈ SU(2) = S3,

where L stands for left quaternionic multiplication.
In the simplest case, W = Wp is the complex irreducible representation of

SU(2) of dimension dimC Wp = p+1. More concretely, Wp can be thought of as the
linear space of degree p homogeneous complex polynomials in two variables z, w ∈ C
with SU(2) acting by precomposition with inverses. Setting g = a + jb ∈ S3,
a, b ∈ C, we have

fξ(a+ jb)(z, w) = ξ(āz + b̄w,−bz + aw), z, w ∈ C.

Note that fξ is automatically a p-eigenmap. By SU(2)-equivariance:



minimal immersions of spheres and moduli 213

fξ ◦ Lg = g · fξ, g ∈ SU(2),

fξ is conformal iff it is homothetic at 1 ∈ S3. This latter condition amounts to solve
a system of quadratic equations in the coefficients of ξ.

A reduction to the real (irreducible) subrepresentation Rp ⊂ Wp, for p even,
dimRp = p+1, gives low codimension examples such as Mashimo’s degree 6 spher-
ical minimal immersion f : S3 → S6 [3, 4, 5, 13]. In particular, choosing ξ ∈ R6 the
minimum degree (=6) absolute invariant [12] for the binary tetrahedral group (the
double cover in SU(2) of the symmetry group of a regular tetrahedron), we obtain
the tetrahedral minimal immersion Tet : S3 → S6. This particular example shows
that Moore’s lower bound cannot be improved in this generality.

Choosing ξ as Klein’s absolute invariants [12] for finite subgroups in SU(2)
(cyclic, dihedral and the binary tetrahedral, octahedral, and icosahedral groups)
allows the orbit maps fξ to be factored into spherical minimal imbeddings of the
corresponding quotient lens spaces and polyhedral manifolds.

A careful enumeration of the possible cases lead DeTurck and Ziller to con-
clude that all homogeneous 3-dimensional spherical space forms can be isometrically
and minimally imbedded into spheres [3, 4]. This is also true in any domain dimen-
sion:

Theorem (DeTurck–Ziller, 1992). All homogeneous spherical space forms
can be isometrically and minimally imbedded into spheres.

It is expected that all spherical space forms (homogeneous or not) can be
isometrically and minimally imbedded into spheres.

For spherical imbeddings of nonhomogeneous space forms, see the recent work
of Escher [9].

A spherical harmonic of order p on Sm is the restriction of a homogeneous
polynomial of degree p on R

m+1 [28]. Our p-eigenmap f : Sm → SV thus extends
to a harmonic homogeneous polynomial map f : R

m+1 → V of degree p that is
spherical, i.e. f maps the unit sphere Sm to the unit sphere SV . (Looking back, the
Veronese map fits perfectly into this picture; its components are given by quadratic
harmonic polynomials, in particular, we see that it factors through the antipodal
projection S2 → RP 2.)

By definition, a p-eigenmap f : Sm → SV can be described by the following
equations on Sm:

�Sm

f = λp · f, |f |2 = 1,(2)

or, as a p-homogeneous polynomial map on R
m+1 satisfying:

�f = 0, |f |2 = ρ2p,
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where� is the Euclidean Laplacian and ρ(x) = |x|, x ∈ R
m+1. Homothety imposed

on a p-eigenmap f : Sm → SV makes f a spherical minimal immersion. This
condition is awkward to work with since it involves all vector fields on Sm, an infinite
dimensional space. To circumvent this technical difficulty, we restrict ourselves to
conformal vector fields on Sm. This does not loose the strength of the condition of
homothety since the conformal vector fields span each tangent space of Sm. The
conformal vector fields are parametrized by the ambient vector space R

m+1 of the
domain Sm; for a ∈ R

m+1, the conformal vector field Xa is the projection of the
uniform vector field a along Sm ⊂ R

m+1 to the various tangent spaces of Sm:

Xa
x = a− a∗ · x = a− 〈a, x〉x, x ∈ Sm.

Now condition (1) of homothety for f is

〈f∗(Xa), f∗(Xb)〉 = 〈Xa · f,Xb · f〉 = λp

m
〈Xa, Xb〉, a, b ∈ R

m+1.(3)

Continuing the analogy with f , all ingredients in this formula can be extended
to R

m+1 as homogeneous polynomials of various degrees. The strong algebraic flavor
of these conditions is not surprising; this is due to our insistence of keeping the metric
on the domain to be of constant curvature.

Moduli

By Takahashi’s result, the problem of “classifying” eigenmaps and spherical
minimal immersions has two natural parameters: the domain dimension m and the
degree p (the range is kept arbitrary). The cases m = 1 and p = 1 are trivial and
will be omitted from the considerations.

We letHp denote the space of spherical harmonics of order p on Sm (we usually
suppress the domain dimension). The space of components Vf of a p-eigenmap
f : Sm → SV is a linear subspace of Hp. f is full, i.e. f has no zero components
(geometrically, the image of f is not contained in a proper great sphere of SV ), iff
V ∗ ∼= Vf . In addition, congruent maps, i.e. maps that differ by an isometry between
the ranges, have the same space of components.

The universal example of a spherical minimal immersion of degree p is the
standard minimal immersion fp : Sm → SHp . It is uniquely defined (up to con-
gruence) by the requirement that, relative to a (suitably scaled) L2-orthonormal
basis in Hp the components of fp are orthogonal with the same norm. The scaled
L2-scalar product on Hp is given by

〈χ1, χ2〉 =
dimHp

vol (Sm)
〈χ1, χ2〉L2 =

dimHp

vol (Sm)

∫
Sm

χ1χ2 vSm , χ1, χ2 ∈ Hp.

The components of the Veronese map have this property so that Ver : S2 → S4 is



minimal immersions of spheres and moduli 215

actually the standard minimal immersion in degree 2. The following rigidity result
is due to Calabi [2]:

Theorem (Calabi, 1967). For m = 2, any full p-eigenmap f : S2 → SV is
(up to congruence) standard.

The natural question, posed by DoCarmo and Wallach in the early seventies,
is to what extent is the standard minimal immersion unique among all spherical
minimal immersions of the same degree, and if nonuniqueness occurs, what is the
structure of the corresponding moduli space.

For eigenmaps, unicity already fails in degree 2. Indeed, the Hopf map is
a quadratic eigenmap obviously incongruent to the standard minimal immersion
f3 : S3 → SH2 = S8.

Since the components of the Veronese and Hopf maps are L2-orthonormal (up
to scaling) it is natural to pose the following:

Problem (R.T. Smith, 1972). Classify all eigenmaps and spherical minimal
immersions whose components are L2-orthonormal (up to suitable scaling).

This problem is unsolved; for a list of nontrivial examples, see Smith [17].
In 1971 DoCarmo and Wallach [6, 29] proved rigidity of spherical minimal

immersions for p ≤ 3. The main aim of their work, however, was to show that for
the remaining ranges unicity fails:

Theorem (DoCarmo–Wallach, 1971). (a) For m ≥ 3 and p ≥ 2, the set
of (congruence classes of) full p-eigenmaps f : Sm → SV can be parametrized by a
“moduli space” Lp, a compact convex body in a subrepresentation Ep ⊂ S2(Hp) of
SO(m+ 1) of dimension dim Ep ≥ E4 ≥ 10.

(b) For m ≥ 3 and p ≥ 4, the set of (congruence classes of) full minimal
isometric immersions f : Sm → SV of degree p can be parametrized by a moduli
spaceMp, a compact convex body in a subrepresentation Fp ⊂ S2(Hp) of SO(m+1)
of dimension dimFp ≥ F4 ≥ 18.

To get a first glimpse, we briefly elaborate on the parametrization and the
moduli. The parametrization given below is not the original DoCarmo–Wallach
parametrization (see [19]).

The parameter point 〈f〉 ∈ Ep ⊂ S2(Hp) corresponding to a full p-eigenmap
f : Sm → SV is given as follows. With respect to an orthonormal basis in V ,
the set of components {f j}n

j=0 of f , dimV = n + 1, forms a basis in the space
of components Vf . This basis can be made orthonormal using the Gram–Schmidt
orthonormalization process. Now 〈f〉 + I is the orthogonal projection Hp → Vf

followed by the Gram transformation G(f) of f (given by the Gram matrix) relative
to the latter orthonormal basis in Vf .

Clearly, 〈f〉 is a symmetric endomorphism of Hp, and 〈f〉 + I is positive
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semidefinite. Moreover, 〈f〉 depends only on the congruence class of f . The standard
minimal immersion fp corresponds to the origin. The image of the Do Carmo–
Wallach parametrization f �→ 〈f〉 is the moduli space Lp for p-eigenmaps, and Mp

for spherical minimal immersions of degree p.
Writing the conditions of sphericality (second equation in (2)) and homothety

(3) in relative forms

|f |2 = |fp|2,(4)

and

〈Xa · f,Xb · f〉 = 〈Xa · fp, X
b · fp〉, a, b ∈ R

m+1,(5)

and in terms of the parameter 〈f〉, we obtain homogeneous linear conditions on
S2(Hp). We denote the corresponding linear subspaces of S2(Hp) by Ep and Fp.
We have, Fp ⊂ Ep. Finally, since 〈f〉+ I ≥ 0, the moduli for p-eigenmaps is

Lp = {C ∈ Ep |C + I ≥ 0},

and the moduli for minimal immersions of degree p is

Mp = Lp ∩ Fp = {C ∈ Fp |C + I ≥ 0}.

The defining inequality C+I ≥ 0 being a convex condition, both moduli are convex.
A simple inspection of the eigenvalues of the participating elements shows that the
moduli are also compact. In fact, Ep consists of traceless endomorphisms. Finally,
for full f : Sm → SV , we have rank (〈f〉+ I) = dimV , so that the interior points of
Lp and Mp correspond to maps with maximal range (= Hp).

Problem (DoCarmo–Wallach, 1971). Determine dimLp and dimMp.
In [6], DoCarmo and Wallach computed dimLp, and, as noted above, gave a

lower bound for dimMp. They conjectured that the lower bound was the actual
dimension of Mp. This so-called “exact dimension conjecture” was resolved by the
author in 1994 [22]. In what follows, we give a brief account on the solution. Note
also that, for m = 3, dimM4 = 18 was determined by Muto in 1984 [16], and
recently, Weingart [30] gave an algebraic computation for dimMp.

The standard minimal immersion fp : Sm → SHp is equivariant with respect
to the homomorphism ρp : SO(m+1)→ SO(Hp) that defines Hp as an irreducible
representation space for SO(m+1), where the latter is given by χ �→ g ·χ = χ◦g−1,
χ ∈ Hp, g ∈ SO(m+ 1). Equivariance means that

fp ◦ g = ρp(g) ◦ fp, g ∈ SO(m+ 1).

The DoCarmo–Wallach parametrization is itself equivariant; g · 〈f〉 = 〈f ◦ g−1〉,
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where the representation of SO(m+1) on Hp is extended to the full tensor algebra
over Hp, in particular, to S2(Hp). Since the moduli Lp and Mp are SO(m +
1)-invariant, their linear span Ep and Fp are subrepresentations of S2(Hp). The
problem of determining the dimensions dimLp = dim Ep and dimMp = dimFp

now becomes more tractable since all we need to do is to decompose Ep and Fp

into irreducible components, a standard problem in representation theory (save the
problem of translating sphericality and homothety into representation theoretical
data).

Exact dimension of the moduli

Cartan’s theory tells us that a complex irreducible representation of SO(n)
is determined by its highest weight vector υ. With respect to the standard maxi-
mal torus in SO(n) (providing a coordinate system for the Cartan subalgebra), υ
becomes an [n/2]-tuple υ = (v1, . . . , v[n/2]) ∈ Z[n/2], [n/2] = rank (SO(n)). We
denote this representation by V υ. As an example, we have

Hq = V (q,0,... ,0)(6)

as complex representations of SO(n). With this, our problem becomes twofold:

Problem I. What are the highest weights of the irreducible representations
of SO(m+ 1) that occur (with possible multiplicity) in S2(Hp) or, more generally,
in Hp ⊗Hq?

Problem II. Which of the highest weights in S2(Hp) occur in the subrepre-
sentations Ep and Fp?

The Weyl dimension formula gives dimV υ in terms of the highest weight
υ. Thus, once Problems I–II are solved, the Weyl dimension formula will give
dim Ep = dimLp and dimFp = dimMp.

In 1971 Wallach gave an affirmative answer for Problem I [29]. In fact, with
the notations above, we have

Hp ⊗Hq =
∑

(u,v)∈�p,q
0 ;

u+v≡p+q (mod 2)

V (u,v,0,... ,0), p ≥ q ≥ 1, m ≥ 3,(7)

where �p,q
0 is the closed convex triangle in R

2 with vertices (p − q, 0), (p, q) and
(p+ q, 0).

For p = q, Hp ⊗ Hp = S2(Hp) ⊕ ∧2(Hp), and the irreducible subrepresen-
tations in the skew-symmetric part ∧2(Hp) have highest weights with odd integral
components. We obtain
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S2(Hp) =
∑

(u,v)∈�p
0 ;

u,v even

V (u,v,0,... ,0),(8)

where we set �p
0 = �p,p

0 .
For Problem II we need to make a slight detour. The space of homogeneous

polynomials Pq of degree q is a representation space for SO(m+ 1) with the same
action as for the irreducible subrepresentation Hq ⊂ Pq. It is a classical fact that
any homogeneous polynomial ξ of degree q can be written as ξ = χ+ ρ2 · ξ0, where
χ ∈ Hq, and ξ0 ∈ Pq−2 are uniquely determined. The linear map H : Pq → Hq,
H(ξ) = χ, is called the harmonic projection operator. Iterating this procedure, we
obtain

Pq =
[q/2]∑
j=0

Hq−2j · ρ2j .

Thus, by (6), as complex representations of SO(m+ 1), we have

Pq =
[q/2]∑
j=0

V (q−2j,0,... ,0).

The key to encode sphericality of eigemaps into our representation theoretical
framework is to consider the difference

Ψ0
p(f) = |f |2 − |fp|2 = 〈〈f〉 · fp, fp〉

of the two sides of (4) as a linear map

Ψ0
p : S2(Hp)→ P2p =

p∑
l=0

V (2l,0,... ,0)

defined by Ψ0
p(C) = 〈C · fp, fp〉, C ∈ S2(Hp). Since the entire construction is

SO(m + 1)-equivariant, Ψ0
p is a homomorphism of SO(m + 1)-representations. By

definition, the kernel of Ψ0
p is Ep. A little analysis shows that Ψ0

p is onto. Thus,
we see that the irreducible subrepresentations of S2(Hp) that do not occur in Ep

correspond to the even lattice points along the base of the triangle �p
0 in (8):

Ep =
∑

(u,v)∈�p
1;

u,v even

V (u,v,0,... ,0),(9)
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where �p
1 is the closed convex triangle in R

2 with vertices (2, 2), (p, p) and
(2(p− 1), 2).

We obtain the following result (contained in [6] with a different proof):

Theorem (DoCarmo–Wallach, 1971). The symmetric square S2(Hp)
contains P2p as an SO(m+ 1)-submodule and

Ep ∼= S2(Hp)/P2p.(10)

In particular, we have

dimLp = dim Ep

=

( (
p+m

m

)
−
(
p+m−2

m

)
+ 1

2

)
−
(
2p+m

m

)
.(11)

Although technically more involved, encoding the condition of homothety into
this framework follows the same lines. The difference

Ψp(f)(a, b) = 〈Xa · f,Xb · f〉 − 〈Xa · fp, X
b · fp〉

= 〈Xa〈f〉 · fp, X
b · fp〉

of the two sides of (5) can be viewed as a linear map

Ψp : Ep → P2(p−1) ⊗ (H1 ×H1),

defined by

Ψp(C)(a, b) = 〈XaC · fp, X
b · fp〉, a, b ∈ R

m+1.

Here we extended all data to homogeneous polynomials in R
m+1 and identified H1

with the dual of R
m+1. Ψp is bilinear, symmetric and traceless in the arguments

(a, b) ∈ R
m+1 ×R

m+1. Since the traceless part of S2(H1) ⊂ H1 ⊗H1 is isomorphic
to H2 as representations of SO(m+ 1), we arrive at

Ψp : Ep → P2(p−1) ⊗H2

As before, Ψp is a homomorphism of SO(m+1)-representations. By definition, the
kernel of Ψp is Fp. The range of Ψp decomposes as

P2(p−1) ⊗H2 ∼=
p−1∑
l=1

H2l ⊗H2

as representations of SO(m+ 1). A quick comparison of this in the use of (7) with
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the decomposition of the domain Ep in (9) shows that the only common components
of the domain and the range of Ψp are the representations

V (2l,2,... ,0), l = 1, . . . , p− 1.(12)

These correspond to the base of the triangle �p
1. We obtain

Fp ⊃
∑

(u,v)∈�p
2 ;

u,v even

V (u,v,0,... ,0)(13)

where �p
2 is the closed convex triangle in R

2 with vertices (4, 4), (p, p) and (2(p −
2), 4).

Coupled with the Weyl dimension formula, this gives (a different proof for) the
DoCarmo–Wallach lower bound for dimMp noted above [6]. Notice that our proof
gives the main result of DoCarmo–Wallach almost immediately from the setup.

To prove that the lower bound is sharp, one needs to show that Ψp is nonzero
on the irreducible representations (12). This is technical, and it is accomplished
by a double induction with respect to the domain dimension m and the degree p.
The main tool in the general induction step is to use operators that associate to
a p-eigenmap f : Sm → SV , a p-eigenmap with domain dimension m + 1 (domain
dimension raising operator), and (p ± 1)-eigenmaps (degree raising and lowering
operators). We give some details of the latter below.

Once we proved nonvanishing of Ψ on the components (12), we arrive at the
decomposition

Fp =
∑

(u,v)∈�p
2 ;

u,v even

V (u,v,0,... ,0).(14)

As noted above, this decomposition now gives the dimension of the moduliMp, and
resolves the exact dimension conjecture of DoCarmo–Wallach.

The clear analogy between eigenmaps and spherical minimal immersions sug-
gests to consider the sum

Fp;k =
∑

(u,v)∈�p
k+1;

u,v even

V (u,v,0,... ,0), k = 1, . . . , [p/2]− 1,(15)

where �p
k+1 is the closed convex triangle in R

2 with vertices (2(k + 1), 2(k + 1)),
(p, p) and (2(p−k−1), 2(k+1)). The moduliMp;k =Mp∩Fp;k, should parametrize
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“isotropic” spherical minimal immersions, where isotropymeans that the k-th funda-
mental form of the immersions are “intrinsically the same” as the k-th fundamental
form of the standard minimal immersion. This is indeed the case [11, 23].

For m = 3, the “equivariant moduli” (Lp)SU(2) and (Mp)SU(2) of SU(2)-
equivariant eigenmaps and minimal immersions f : S3 → SV are distributed along
the northwestern edge of the triangles �p

1 and �p
2. These moduli are perhaps the

least subtle to analyze. We have

dim(Mp)SU(2) = dim(Fp)SU(2) =
(
2
[p
2

]
+ 5
)([p

2

]
− 1
)
.

This formula was first derived by DeTurck–Ziller [4] using a “partially heuristic
argument”. The exact computation above is due to Tóth–Ziller [27].

In the case m = 3 and p = 2, the 5-dimensional equivariant moduli space
(L2)SU(2) is the convex hull of a Veronese surface minimally imbedded into S4.

For m = 3 and p = 4, the 9-dimensional equivariant moduli space (M4)SU(2)

is the convex hull of an octahedral manifold minimally imbedded into S8 plus some
more complicated structure. In fact, for m = 3, the entire moduli L2 and M4 can
be completely described (see Tóth [26] and Tóth–Ziller [27]).

The finer technical details of the proof of the exact dimension conjecture
require a novel approach that uses operators defined on eigenmaps and spherical
minimal immersions. The simplest of these are the degree raising and lowering
operators that associate to a p-eigenmap f : Sm → SV (p ± 1)-eigenmaps f± :
Sm → SV ⊗H1 [25]. f± are defined by

f+(a) =

√
λ2p

2λp
δaf and f−(a) =

√
2

λ2p
∂af, a ∈ R

m+1,

where, as usual, H1 = (Rm+1)∗, and f is considered as a vector-valued spherical
harmonic with values in V , and, in δaf = H(a∗f), a∗(x) = 〈a, x〉, x ∈ R

m+1, the
harmonic projection operator H acts on f componentwise. With respect to the
standard basis {er}m

r=0 ⊂ R
m+1, we have

f+ =

√
λ2p

2λp

m∑
r=0

δrf ⊗ yr and f− =

√
2

λ2p

m∑
r=0

∂rf ⊗ yr,(16)

where, e∗
r = yr, r = 0, . . . ,m, are the elements of the dual basis in H1. (We use

here the variable y ∈ R
m+1 to distinguish it from the natural variable x of f .) Note

that f± may not be full even if f is.

It turns out that f± are spherical so that the definitions above make sense.

Between the moduli spaces, the correspondences f �→ f± give rise to homo-
morphisms Φ± : S2(Hp) → S2(Hp±1) of SO(m + 1)-representations. They satisfy
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Φ±(Lp) ⊂ Lp±1 and Φ±(Mp) ⊂ Mp±1. In terms of the decomposition (8), Φ+ is
injective and corresponds to the inclusion �p

0 ⊂ �p+1
0 , and Φ− is surjective with

kernel distributed along the northeastern edge of �p
0. Injectivity of Φ+ [22] gives

the folowing:

Equivariant Imbedding Theorem (Tóth, 1997). The correspondence
f �→ f+ gives rise to SO(m + 1)-equivariant imbeddings of the moduli spaces: Lp

into Lp+1, and Mp into Mp+1.

Notice that F4 is the whole kernel of Φ−. This means that f−, for any quartic
spherical minimal immersion f : Sm → SV , is congruent to the standard minimal
immersion, in particular

dimV ⊗H1 ≥ dimH3.

Hence we have the following [22]:

Theorem (Tóth, 1997). Let f : Sm → SV be a quartic (p = 4) spherical
minimal immersion. Then we have

dimV ≥ m(m+ 5)
6

.

Notice that the lower bound is quadratic in m, a significant improvement of
Moore’s linear bound. It is not known whether the quadratic lower bound is sharp.
In fact, very few examples of spherical minimal immersions are known for domain
dimension m ≥ 4.

Most of the developments here can be naturally extended to isometric minimal
immersions f : M → SV of a compact isotropy irreducible Riemannian homogeneous
manifold M .

Problem. Derive the dimension formula for the moduli of isometric minimal
immersions f : M → SV , where M is a compact rank one symmetric space.

For lower bounds on the dimension of certain moduli of isometric minimal
immersions f : CPm → SV , see [26]. Note that the representation theory for the
case M = CPm is simpler than the spherical case due to the Littlewood-Richardson
rule.
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The operator of infinitesimal rotations

A general operator associating to a p-eigenmap a q-eigemap is determined by
an irreducible component W of Hp ⊗ Hq, and is described by polynomials in the
two sets of commuting variables ∂0, . . . , ∂m and δ0, . . . , δm. The operator reflects
the symmetries of the Young tableau of W [24].

A prominent example is the operator of infinitesimal rotations that associates
to a p-eigenmap f : Sm → SV a p-eigenmap f̂ : Sm → SV ⊗so(m+1)∗ whose compo-
nents are obtained by infinitesimally rotating the components of f in the coordinate
planes [20, 21]. More generally, given a closed subgroup G ⊂ SO(m + 1) that acts
transitively on Sm, for a p-eigenmap f : Sm → SV we can define a p-eigenmap
f̂ : Sm → SV ⊗G∗ , where G is the Lie algebra of G, as follows:

f̂(x)(X) =
1√
λp

Xx(f), X ∈ G, x ∈ Sm.

Given an orthonormal basis {Xs}n
s=1 ⊂ G with dual basis {φs}n

s=1 ⊂ G∗, we have

f̂ =
1√
λp

n∑
s=1

Xs(f)⊗ φs.(17)

Note that f̂ may not be full even if f is.
The following result [21] describes the correspondence f �→ f̂ on the moduli:

Theorem (Tóth, 1999). (i) For a p-eigenmap f : Sm → SV , f̂ : Sm →
SV ⊗G∗ is spherical, and hence a p-eigenmap.

(ii) On the congruence classes, the correspondence f �→ f̂ gives rise to a
self-map of Lp which is the restriction of a symmetric linear map Ap : Ep → Ep.

(iii) All eigenvalues of Ap are real and contained in [−1, 1].
(iv) Ap is an endomorphism of the G-representation Ep|G. The eigenspace of

Ap corresponding to the eigenvalue +1 is the fixed point set (Ep)G. The eigenspace
of Ap corresponding to the eigenvalue −1 is contained in the orthogonal complement
of (Ep

m)G in (Ep
m)[G,G]. In particular, −1 is not an eigenvalue if G is semisimple.

Ap is also a self-map of Mp. The eigenvalues of Ap on the irreducible com-
ponents of Ep can be computed since, up to a suitable affine transformation, Ap is
essentially given by the Casimir operator [20]. In fact, we have

Ap|Ep = I − 1
2λp

Cas,(18)

where Cas = −trace {(X,Y ) → [X, [Y, .]]} is the Casimir operator of G acting on
Ep. In fact, the eigenvalue of Ap on the irreducible component V (u,v,0,... ,0) ⊂ Fp is
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Λu,v
p = 1− µu,v

2λp
,

where

µu,v = u2 + v2 + u(m− 1) + v(m− 3)

is the eigenvalue of the Casimir operator on V (u,v,0,... ,0).

Ap is a contraction on Lp, and suitable (and computable) iterates of Ap bring
all boundary points of Lp into the interior of Lp. Since the interior corresponds to
maximal range dimension, we obtain a variety of lower bounds for the range of the
original spherical minimal immersions [20]:

Theorem (Tóth, 2000). Let f : Sm → SV be a full spherical minimal
immersion of degree p, and assume that the corresponding point in the moduliMp is
contained in a sum of irreducible components of Fp|G with d ≥ 2 distinct eigenvalues
of Ap. Then, we have

dimV ≥ dimHp

dimUd(G) =
dimHp(

dimG+ d

d

) ,

where U(G) is the universal enveloping algebra of G, and Ud(G) is the linear subspace
of elements of degree ≤ d.

Once again, for quartic minimal immersions f : Sm → SV , m ≥ 4, we obtain
dimV ≥ (m + 2)(m + 7)/12, a quadratic lower bound that is slightly weaker than
the one we obtained above.

The structure of the moduli

The inclusion relation among the space of components defines a cell-decompo-
sition of the moduli. Each cell is a compact convex set that has nonempty interior
in its affine span. The cell containing the point corresponding to an eigenmap (resp.
spherical minimal immersion) f : Sm → SV is called the relative moduli of f , and
it is denoted by Lf (resp. Mf ). Clearly, Lfp = Lp and Mfp = Mp. The interior
points of each relative moduli Lf and Mf (within the affine span) correspond to
maps whose space of components are maximal (= Vf ) within the relative moduli.

The cell-decomposition is SO(m+1)-equivariant. Apart from the cases m = 3
and p = 2 (eigenmaps), or m = 3 and p = 4 (spherical minimal immersions), very
little is known about the cell-structures of Lp and Mp.
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Problem (Hard). Describe the cell-structure of the boundary of the moduli
Lp and Mp in general.

A p-eigenmap f : Sm → SV is called linearly rigid if Lf is one point. This no-
tion is due to Wallach [29]. Similarly, a spherical minimal immersion f : Sm → SV

of degree p is linearly rigid if Mf is trivial. The extremal points of the moduli
(as a convex set) in Lp and in Mp correspond to linearly rigid p-eigenmaps and
linearly rigid spherical minimal immersions of degree p. By the Krein-Milman the-
orem [1], the convex hull of the extremal points gives the whole moduli. Thus, the
linearly rigid eigenmaps and spherical minimal immersions determine the structure
of the moduli. For example, for m = 3 and p = 2, the extremal points in L2 fill
two Veronese surfaces minimally imbedded into a pair of orthogonal 4-spheres of
common radius 2

√
3. For m = 3 and p = 4, the minimum range dimension (lin-

early rigid) spherical minimal immersions correspond to points in two octahedral
manifolds minimally imbedded into a pair of orthogonal 8-spheres of common radius
5
√
3/2, but there are other linearly rigid spherical minimal immersions whose range

dimension is not minimal.

Conjecture. The points in Mp furthermost from the origin correspond to
spherical minimal immersions with least range dimension. (This is true for m = 3
and p = 4 by explicit computation, cf. Weingart [30].)
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