INFINITESIMAL ROTATIONS OF ISOMETRIC MINIMAL
IMMERSIONS BETWEEN SPHERES

By GaBor ToTH

Abstract. A fundamental problem posed by DoCarmo and Wallach is to give lower bounds for the
codimension of isometric minimal immersions between round spheres. For a given domain dimension
and degree, the moduli space of such immersions is a compact convex body in a representation space
for a Lie group of isometries acting transitively on the domain. Infinitesimal isometric deformations
of these minimal immersions give rise to a linear contraction on the moduli, and the eigenvalues
of the contraction are related to the Casimir eigenvalues on the irreducible components of the
ambient representation space. The study of these eigenvalues leads to new sharp lower bounds for
the codimension of the immersions and gives an insight to the subtleties of the boundary of the
moduli.

1. Preliminaries and statement of results. Let f: S™(k) —» Sy, m > 2,
be an isometric minimal immersion of the Euclidean m-sphere S™(k) of constant
curvature k into the unit sphere Sy of a Euclidean vector space V. A result of
Takahashi [12] asserts that f exists iff k = k, = m/A, for some p > 1, where
Ap = p(p+m—1) is the pth eigenvalue of the Laplace operator A5 on $™ = S™(1).
(Ap and &, also depend on m. To simplify the notation, unless important, we will
suppress the dependence of various objects on m.)

Let G C SO(m+1) be a closed subgroup with Lie algebra G C so(m+1). Each
X € G defines an infinitesimal isometry on S™(k) also denoted by X. Assume that
G acts on S™(k) transitively. (For the list of transitive Lie groups on spheres, see
[21].) Given an isometric minimal immersion f: S™(k,) — Sy, in [15] the author
proved that the map f: S™(kp) — V ® G* defined by

(1) FoX) = \/lrxx f. xeS"(k,), X €G,
P

has image in the unit sphere of V ® G*, and gives rise to an isometric minimal
immersion f: S™(kp) — Sygg+. The purpose of this paper is to show that the
study of the self-map f — f on the space of all isometric minimal immersions of
S§™(kp) (for fixed m and p) into Sy (for various V) gives new sharp lower bounds
for the codimension of these immersions; this is a fundamental problem posed
by DoCarmo and Wallach [4, 18] in the early 1970s. In addition, this self-map
provides a glimpse of the subtleties of the space of minimal immersions as well.
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118 GABOR TOTH

Let f: S™(ky) — Sy, m > 2, be an isometric minimal immersion. For unifor-
mity, we scale the metric on the domain to curvature one and call f: §” — Sy a
spherical minimal immersion of degree p. Due to the scaling, f becomes homoth-
etic with homothety A,/m:

A
2 (L(N).f(2D)) = —'f(Y,Z).

for any vector fields Y, Z on S™. Again by Takahashi {12}, each component ¢of,
¢ € V*, is a spherical harmonic of order p on S™, an eigenfunction of AS" with
eigenvalue ),. Let HP = Hf, denote the space of spherical harmonics of order p
on S™. Precomposing linear functionals on V by f defines a linear map V* — H?
whose image Vy C HP is called the space of components of f. This linear map
establishes an isomorphism V* = V; iff f is full, i.e., if the image of f: S™ — Sy
spans V. Note that any map into a sphere (such as f in (1)) can be made full by
restricting its image to its linear span.

The standard minimal immersion f, = fp: S™ — Syp of degree p is defined
by the requirement that its components are orthonormal relative to an orthonormal
basis in H”. Here HP is endowed with the scaled Lj-scalar product

N(@m,p)+1

s MU AR P
3 {x1, x2) vol (57) /SMX1xzvsm, X1, x2 € H?,

where

= dimHP = _pmtp -t

Nm,p)+1=dimHP =(m+2p— 1) plm =11’

vsm is the volume form of S™, and vol(S™) = [gm tsm is the volume of §™. f,
is unique up to congruence, where two maps fi: S™ — Sy, and f: S” — Sy,
are said to be congruent if f, = U o fi for some isometry U: V, — V. For any
full spherical minimal immersion f: S™ — Sy, we have Vy C V;, = H?, and
there is a unique surjective linear map A: HP — V such that f = A o f,. The
DoCarmo-Wallach parametrization [4] of the space of all full spherical minimal
immersions f: ™ — Sy of degree p associates to f the symmetric endomorphism
(f) =AT - A — I of HP. Clearly, (f) € S*(HP) depends only on the congruence
class of f. Fixing m and p, DoCarmo and Wallach proved that the correspondence
f— {f) gives rise to a parametrization of the space of congruence classes of all
full spherical minimal immersions f: S™ — Sy of degree p. Moreover the moduli
space MP = Mb, (the image of the parametrization) is a compact convex body
in a linear subspace F? = F} of the symmetric square S2(HP). Since ATA is
always positive semidefinite, MP is the linear slice of the semi-algebraic convex
set {C € S>(HP) | C+1 positive semidefinite } by the linear subspace 7. Since
f is full, dimV = dimV; = rank({(f) + /) so that the interior points of M’
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ISOMETRIC MINIMAL IMMERSIONS BETWEEN SPHERES 119

correspond to full spherical minimal immersions with maximal range dimension
dimV = N(m,p) + 1.

‘HP has a natural SO(m + 1)-module structure given by g € SO(m + 1) acting
as g-x = x o g !, x € HP. This action extends to the full tensor algebra over
HP, in particular, to S>(HP). The standard minimal immersion f,: §™ — Syp is
equivariant with respect to the homomorphism g,: SO(m + 1) — SO(HP) that
defines the SO(m + 1)-module structure on H”. The extension of the action of
SO(m + 1) on S*(HP) is given by g - C = py(g) 0 C 0 py(8)~", C € S>(HP). This
action leaves MP and thereby F7, its linear span, invariant; in fact, the action of
g € SO(m+1) on (f) € MP is given by g- (f) = (f o g™!). Thus FP becomes
an SO(m + 1)-submodule of S2(HP).

According to a result of DoCarmo and Wallach in [4], for p > ¢, the (com-
plexification of the) tensor product H” ® H? decomposes into irreducible com-
ponents as

4) HPQHIx Z V(a.b,O.....O)'
(a.b)e APY; a+b=p+q (mod 2)

Here AP4 C R? denotes the closed convex triangle with vertices (p — g,0),
(p.q) and (p +¢,0), and V-t = YUl = rank (SO(m + 1)) = [241],
stands for the complex irreducible SO(m + 1)-module with highest weight vector
(u1,...,uy) € (Z/2) (relative to the standard maximal torus in SO(m + 1)). For
m =3, Vi, y, > 0, actually means V2 @ V"), For p = q, excising the

skew-symmetric part, we obtain the irreducible decomposition

(5) S2(HE) = Z y(@b0...0)

(a.b)EAD; abeven

where AP = APP C R? denotes the closed convex triangle with vertices (0, 0),
(p.p) and (2p,0). (In what follows, unless stated otherwise, we denote an abso-
lutely irreducible representation and its complexification by the same symbol.)
The so called DoCarmo-Wallach problem of determining P thus reduces to
finding the irreducible components of S%(P) in (5) that belong to F7.

In [2], Calabi proved that every full spherical minimal immersion f: $? — Sy
of degree p is congruent to the standard minimal immersion f,. In [4], DoCarmo
and Wallach showed that this is also the case for spherical minimal immersions
fi 8" — Sy of degree p < 3. This means that, for m = 2 or p < 3, the
moduli space MP and therefore 7 reduces to a point. In addition, DoCarmo
and Wallach also proved that in the remaining cases m > 3 and p > 4, the
moduli space MP is nontrivial by exhibiting a lower bound for the dimension of
JFP. In [14], sharpening the DoCarmo-Wallach result, the author proved that, for
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Figure 1
m > 3 and p > 4, F? decomposes as
(6) FP Z V(a.b.o.-...o),
(a,b)EAg abeven

where A’z' - Aﬁ denotes the closed convex triangle with vertices (4,4), (p,p)
and (2(p — 2),4). (See Figure 1 for p = 40 and without the circular arc.)

If we replace in (2) the differential f, of a spherical minimal immersion
f: 8™ — Sy of degree p by the higher fundamental forms Gi(f), I=1,...,k, of
f, k < p, we arrive at the concept of isotropic minimal immersion of degree p
and order of isotropy k. A spherical minimal immersion f: S™ — Sy of degree p
is isotropic with order of isotropy k, 1 < k < p, if, forl=1,...,k, we have

BN, YD, BNZy, .. Z) = (B )Yy ., Y0, B fp) (20, . . ., Z))),
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ISOMETRIC MINIMAL IMMERSIONS BETWEEN SPHERES 121

for all vector fields Y,,...,Y;,Z,...,Z on §*. (For details, see [8, 18].) Isotropy
of order 1 is just homothety. In [8], Gauchman and the author proved that if p <
2k + 1 then a full isotropic minimal immersion of degree p and order of isotropy
k is congruent to the standard minimal immersion. In addition, for p > 2(k +
1), the space MP* of congruence classes of full isotropic minimal immersions
of degree p and order of isotropy k corresponds, under the DoCarmo-Wallach
parametrization, to the linear slice of MP by the SO(m + 1)-submodule FP#* of
S2(HP) whose complexification decomposes as

N FPk o 2 V0@b0...0)

(a,b)e A’;“ ;a,beven

where A%, C R? is the closed convex triangle with vertices (2(k + 1), 2(k + 1)),
(p,p) and (2(p — k — 1),2(k + 1)). (This was proved in [8] for m > 4. The proof
can be extended to cover the case m = 3 as well. Recently, Weingart [20] gave
an independent algebraic proof for all m > 3.) In particular, for m > 4, p even,
and k = p/2 — 1 (maximal), FP#/2-1 = y(P»0..0) is jrreducible.

A map f: S — Sy is said to be a p-eigenmap if the components of f are
spherical harmonics of order p on $™. The DoCarmo-Wallach parametrization
extends to eigenmaps. The congruence classes of all full p-eigenmaps f: S — Sy
are parametrized by a moduli space £P = £}, a compact convex body in a linear
subspace EP = Ef, of S2(HP). (We have FP C EP; the linear slice MP of LP is
obtained by imposing (2) on eigenmaps.) This parametrization of eigenmaps is
implicitly contained in the work of DoCarmo and Wallach. Form =2 orp =1, LP
is trivial (the former is just a reformulation of the result of Calabi cited above),
and for m > 3 and p > 2, the complexification of £7 decomposes as

3 EP Z (@50,..0)

(a.b)EA’,’ ;a,beven
We thus have the chain of moduli
LP = MPO 5 MP = MPY 5 ... 5 MmPiLP/2-1
each of which is a compact convex body obtained by intersecting £? with the
corresponding SO(m + 1)-submodule in the chain of SO(m + 1)-submodules of
S2(HP):
EP = FPO ~ FP = FPl o .. ~ FPlp/2-1

given by restricting the summation in (8) to the triangles

P P 14
Al D Az DD A[p/2]—|'
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122 GABOR TOTH

For a uniform treatment, we agree that isotropy of order 0 means that f: S — Sy
is a p-eigenmap.

We now return to the initial setting. Let G C SO(m + 1) be a closed subgroup
with Lie algebra G C so(m+ 1), and assume that G acts on S™ transitively. Given
a spherical minimal immersion f: S™ — Sy of degree p, formula (1) defines
the spherical minimal immersion f: 8™ — Sygg-. Since congruence is preserved
under the correspondence f — £, we obtain a self-map Ap = App of the moduli
MP by setting A,((f)) = (f). In Section 3 we derive another formula for A,
which shows that A, is the restriction of a linear self-map of S2(HF) to MP.
In fact, according to a result in [15], this map is a symmetric endomorphism of
the SO(m + 1)-module S2(HP). We denote this extension by the same symbol.
A, leaves the compact convex body L7 invariant, and hence the eigenvalues of
A, are contained in [ — 1,1]. Finally, the eigenspace of A, corresponding to
the eigenvalue +1 is (EP)C = Fixg(£P), and the eigenspace corresponding to the
eigenvalue —1 is contained in the orthogonal complement of (£7)C in (EP)IC.C).
In particular, for m > 4 and G = SO(m + 1), the eigenvalues of A, on £P are
contained in ( — 1,1) so that A, is a contraction on LP.

Our first result is the following:

THEOREM 1. (a) Let G C SO(m + 1) be a closed subgroup with Lie algebra
G, and assume that G acts transitively on S™. Then A, maps FP* into itself, k =
0,...,[p/2]) — 1, or equivalently, iff: S™ — Sy is an isotropic minimal immersion
of degree p and order of isotropy k then so is f: S™ — Sygge. On EP, we have

1
(9) Ap-l—mCas,

where Cas = —trace {(X,Y) — [X,[Y, .11} is the Casimir operator of G acting on
EP C S2(HP).

(b) For G = SO(m + 1) and m > 4, the eigenvalue A,“,'b = A;’,;g of Ap on the
irreducible component V@00 c £P (a,b) € A}, a,b even, is

b e

ab _1 _

(10) AP =1-3 "

where

(11) p®P = yob = @ + b + a(m — 1) + b(m - 3)

is the eigenvalue of the Casimir operator on y@b0...0)

Remark 1. As noted above, for k = 0 and k = 1, the first statement in part (a)

of Theorem 1 was proved in [15] covering the cases of eigenmaps and spherical
minimal immersions.
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ISOMETRIC MINIMAL IMMERSIONS BETWEEN SPHERES 123

Remark 2. The Casimir eigenvalue for the basic representations can be com-
puted in terms of the highest weight and the Cartan matrix (for a comprehensive
account, see the article by Wang and Ziller [19], especially formula (2.5) therein;
note that their conventions are somewhat different from the ones we adopted
here (essentially taken from Wallach), as they write a representation in terms of
its dominant weight as an integral linear combination of dominant fundamental
weights). Thus (11) can be derived using only representation theory. In our proof
of Theorem 1 given in Section 3, we derive (10)—(11) as a byproduct of the (fairly
technical) proof of the first statement, the preservance of isotropy under A,. We
thus obtain an independent computation for the Casimir eigenvalues (11).

Regarding a and b as variables, the equation A“;"’ = 0 defines the circle

(12) (a+m;1)2+(b+m;3)2=2)\p+ (m;l)2+(1";—3)2.

A;"’ > 0 iff the even lattice point (a,b) € Af is inside this circle. Figures 1-2
depict the situations for m = 4, p = 40, and m = 1000, p = 40.

THEOREM 2. Letf: S™ — Sy, m > 4, be a full spherical minimal immersion of
degree p. Assume that (f) is contained in an irreducible component V@50--0) of
FP with Ag'b 2 0. Then, we have

h dimH?  2(m+2p— 1)m+p —2)!
a3 e e pim+ 1)

Remark 1. (a) If A;"’ < 0 in Theorem 2, then either (f ) is an interior point of
MP, in which case the lower estimate (13) applies, or {f) is a boundary point of
MP_ In the latter case the Connecting Lemma in [16] gives the weaker estimate

Gimy > — GmH__ 2m+2p — m+p—2)!
dimso(m+1)+1 ~ pl(m — Di(m(m+1)+2)

(cf. [15)).

(b) If (f) is not contained in an irreducible component of F? then the dth
power of A, sends (f) into the interior of MP, where d is the number of dis-
tinct eigenvalues of A, on the submodule of F7 that contains {f). This follows
from Theorem 4 in [15]. Since the components of the minimal immersion cor-
responding to (.A,,)d(( f)) are obtained by applying monomials of degree < d of
infinitesimal isometries to the components of f, we obtain

dimV > dim HP % dim HP
= dimY(so(m+1)) =1 ~ ( ﬂ(rgjud) 1’
5 il
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where U(so(m+1)) is the universal enveloping algebra of so(m+1), and U4 (so(m+
1)) is the linear subspace of elements of degree < d.

Remark 2. Some eigenvalues of A, may well be zero on F?. For example,
Af,;; =0 ((a,b) € A\?, a,b even) for all m > 4, iff

(14) a=e(e+2), b=e?, and p=ele+l)

for some e even. Since the origin in F? corresponds to the standard minimal
immersion, we obtain that for a full spherical minimal immersion f: S™ — Sy,
m > 4, of degree e(e + 1), e even, with (f) € VD00 the minimal
immersion f 1 8™ — Sygsom+1)» (made full) is standard, i.e. congruent 10 fe(e+1).
The points in (14) correspond to the northeast edge of the triangle b since
a+b = e(e+2)+e? =2e(e+1) = 2p. Finally, note that A;',;; may vanish for some

m > 4 for (a, b) inside A5, for example A}31, =0.
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ISOMETRIC MINIMAL IMMERSIONS BETWEEN SPHERES 125

The circle (12) intersects the line a + b = 2p in two points

_.1_ +l +l:t +l
P 2:F P 4.P 2 P i

where the lower sign gives the intersection point on the northeast side of the
triangle Af. In particular, the northern vertex (p,p) is always inside the circle
(12), or equivalently, for p even, A5? is positive. Isotropy of order k =p/2 — 1,
p even, imposed on a full spherical minimal immersion f: S™ — Sy of degree
p, guarantees that (f) lies in the irreducible component FP?/2~1 = y(p20...0),
Theorem 2 now gives:

COROLLARY 1. Let m > 4 and p even. If f: S — Sy is an isotropic minimal
immersion of degree p and order of isotropy p/2 — 1 then the lower estimate (13)
holds.

For p = 4 isotropy becomes redundant, and we obtain:

COROLLARY 2. Let m > 4. For a quartic spherical minimal immersion f:
S™ — Sy, we have

(15) dimV > @12—1)(221-7—)

A result of Moore [11] asserts that for any spherical minimal immersion f: S™ —
Sy, we have dim V > 2m. (15) replaces this linear estimate with a quadratic lower
bound in the quartic case as well as improves the first result of the author [15]
in this direction.

Remark. Rescaling the original metric on S§™, Corollary 2 states that the
sphere S’”(,‘(—”’.";S—)) of curvature 4(T":-35 (the first nontrivial admissible case) cannot

be isometrically immersed into S” for n < ""—"21)-%’”—*72 -1

Theorem 2 automatically extends to the case when ( f) lies in the convex hull
of slices of MP with irreducible components on which .4, acts with nonnegative
eigenvalues. The problem of giving suitable lower bounds on the codimension of
spherical minimal immersions thus amounts to studying how far the moduli M?
is from this convex hull.

The case m = 3 deserves special attention since it is not covered by part (b)
of Theorem 1, and Theorem 2. This case is also unique since S? is itself a Lie
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126 GABOR TOTH

group. The orthogonal group SO(4) splits as
(16) SO(4) = SU(2) - SU(2Y,

where SU(2) N SU(2) = {£I} and SU(2) is a conjugate of SU(2) in SO(4). The
following notation will be useful in the sequel: If W is an SU(2)-module then w’
denotes the SU(2)'-module obtained from W by conjugating first SU(2)’ back to
SU(2) in SO(4), and then applying the SU(2)-module structure W. In addition, if
—1I acts on W’ trivially, then W’ is also an SO(4)-module with trivial action of
SU(2) on W'. The notation is analogous when the roles of SU(2) and SU(2)' are
switched.

The complex irreducible SU(2)-modules are parametrized by the dimension;
we denote by W, the irreducible SU(2)-module with dim W), = p+1. We realize W),
as the SU(2)-module of homogeneous polynomials of degree p in two complex
variables. The tensor product W, @ Wp, r 2> ¥ > 0, decomposes as

'J
an W, ®Wp =) Wrap_a.
=0

In view of the splitting (16), the SO(4)-module of (complex valued) spherical
harmonics ‘Hj can be written as

(18) HE =W, ®@ W,
As SO(4)-modules:
Viu.u) =Wu @ Wéu'

For p even, W, is the complexification of a real SO(m + 1)-submodule R,. For
p odd, W, is irreducible as a real SO(m + 1)-module. For p even, we have (with
obvious notations):

(19) HEX R, @R, Milsumy=(p+DRp, V" =Ru @R,

as real modules. (For details, see Section 1.5 in [16].)
The SU(2)-equivariant eigenmaps and spherical minimal immersions are
parametrized by the “SU(2)-equivariant moduli”

(£}3’)SU(2) - E}; N (gg)SU(Z) aﬂd (Mg)SU(Z) = M}; 2 (]_-g)SU(Z).
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By (6), (8) and (19), as real modules

[p/2] [p/2}
EVD= 3 Ry and (RO = 3 Ry
k=1 k=2

In [16] Ziller and the author proved that the linear slice of £’3’ with the SO(4)-
submodule

o o A
3 VR = (EDVD @ (E5VP = ™ (Ry © Rap)
=1 k=1

corresponding to the even lattice points along the northwest edge of A} is the
convex hull of the two equivariant moduli (L5)5U® and (£5)SU®', (The proof in
[16] is given only for the slice of the moduli with Vﬁz"‘z"), but it immediately
extends to this more general situation.) In particular, in the lowest nonrigid range
m =3 and p = 2, A® reduces to the single point (2,2): £2 = R} ® R4. The moduli
L2 is the convex hull of the linear slices (£3)5U® and (£2)SV@’, Based on this,
a complete geometric description of £3 is given in [13].

In the lowest nonrigid range p = 4 for spherical minimal immersions, we have
F3 = R, @ Ry, and M}, is the convex hull of the equivariant moduli (M%)SV@®
and (M3)SU®', The structure of M3 is subtle; a full analysis of M} is given in
[16].

The “equivariant construction,” first used by Mashimo [10] in the context
of spherical minimal immersions, and subsequently exploited by DeTurck and
Ziller [3] provides a general method to manufacture SU(2)-equivariant spherical
minimal immersions f: > — Sy. If V is a multiple of W, then the orbit map
fe: S8 — Sy of a polynomial £ € V of unit length automatically gives a p-
eigenmap. Homothety imposed on f; gives finitely many quadratic conditions
on the coefficients of £&. Any solution of this system provides an example of
an SU(2)-equivariant spherical minimal immersion f;. For p even, replacing W,
by R, allows one to reduce the range dimension of f;. If, in addition, £ is an
invariant of a finite subgroup K of S3 then one obtains a minimal imbedding of
a 3-dimensional spherical space form into a sphere. (K is either cyclic, or the
binary group of a regular spherical tessellation [21]. £ is what Klein called an
absolute invariant of K, see [9] for a classical exposition.) Solving the quadratic
system for homothety within the invariants, in [3], DeTurck and Ziller showed
that every homogeneous spherical space form (such as the homogeneous lens
spaces, the dihedral, tetrahedral, octahedral, and icosahedral manifolds) can be
minimally imbedded into spheres. Explicit examples given by Escher [6] show
that homogeneity for lens spaces can in some cases be dispensed with. The
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128 GABOR TOTH

tetrahedral, octahedral, and icosahedral invariants are given by
Erer = coab(a®—b%), Eo = c1(a®+14a*b*+b%),  £1cp = ca(a' b +11a%00 —ab'),
where we used the complex variables a,b € C and

1 1 1
= (= —p=, ()= ———,
O= a5 T oevElT 2T 3600411

The orbit maps of £z, o and &y, define the tetrahedral, octahedral, and
icosahedral minimal immersions

Tet: S — Sg., Oct: S — Sg,, Ico: §* — Sg,,.
6 8 12

Factored through the respective binary groups, these minimal immersions give
minimal imbeddings of the corresponding space forms into spheres. The minimal
imbeddings obtained this way have the smallest codimension within the class of
SU(2)-equivariant minimal immersions.

The tetrahedral immersion Tet: S> — Sg, discovered by Mashimo [10] (its
mapping properties recognized later by DeTurck and Ziller [3]) provides an exam-
ple for a spherical minimal immersion of degree 6 where Moore’s linear estimate
is sharp. DeTurck and Ziller showed that Tet is rigid among all SU(2)-equivariant
minimal immersions. It is an open question whether it is actually rigid in the class
of all minimal immersions. Most recently, Escher [7] proved that Tet is rigid
among all minimal immersions in the infinitesimal sense, i.e., if Tet is subjected
to an infinitesimal deformation through minimal immersions then the deformation
is obtained from infinitesimal isometric deformations on both the domain and the
range.

For G = SU(2), the Casimir eigenvalue on W, is p(p +2) [19]. By Theorem
1, for p even and k = 1,...,p/2, the eigenvalue of A3, on R}, C (&)V@

is 1 - %2%2_ (For p = 2,4 and k = 1,2, these values have been obtained

in [15] by explicit computations.) Let f: S> — Sy be a full SU(2)-equivariant
minimal immersion of degree p. Since the eigenvalues of A3, on the SU(2)-
irreducible components of (F%)SU? are distinct, the smallest A3 p-invariant linear
subspace Ay that contains ( f) is at most (p/2 — 1)-dimensional. The intersection
S; = AN M3 is of importance since it admits a simpler geometric description than
the whole moduli. In our next result we will describe & for f = Tet and f = Oct,
the tetrahedral and the octahedral minimal immersions. If {f) is contained in one
of the SU(2)-irreducible components of (F5)SV®), say R}, k = 2,...,p/2, then
this slice collapses to a segment. In this case, if the eigenvalue of Az, is positive
on RQ,( then the proof of Theorem 2 gives dimV 2> (p + 1)2/3. Otherwise, the
weaker estimate dimV > (p + 1)/4 holds. In both cases V is a multiple of R,
so that dimV is divisible by p + 1. In particular, for a full SU(2)-equivariant
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R_12

<Tet>

R'_8

<Tetr>

Figure 3.

minimal immersion f: S* — Sy of degree 6, if (f) € R; then dimV > 14,
and if (f) € R), then dimV > 21. In any case, it is then clear that the weaker
lower bound 14 applies to any point in the convex hull of the slices of Mg
by R; and R{, corresponding to a full SU(2)-equivariant minimal immersion of
degree 6. We conclude that the tetrahedral minimal immersion Tet: S — Sg,
is not in the convex hull of the slices of the moduli (M$)SU® by irreducible
SU(2)'-components.

THEOREM 3. (a) dim A7 = 2, and Sy, is an isosceles triangle with vertex at
(Tet) and one endpoint of the base at (Tet) (cf. Figure 3). The other endpoint on the
base corresponds to a minimal immersion with range 3Rg.

(b)dim Agp, = 3, and So: is a tetrahedron with one vertex at (Oct) and another
at (55) with range 3Rg (cf. Figure 4). The other two vertices correspond to ranges
2R8 and 3R8.
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R'_16

<Oct>R_8

R'_12
R'_8

<Oct™> 3R_8
Figure 4.

The triangle Sz, has the property that side/base = V2, and the origin splits
the altitude from (Tet) in the ratio 1:6. The interior points of the sides correspond
to minimal immersions with range 4Rg, while the points at the interior of the
base to range 6R¢. In Sp,, the ranges of minimal immersions corresponding to
the interior points of the edges and the faces are contained in the last two tables
at the end of Section 4.

COROLLARY. There exists a full SU(2)-equivariant isotropic minimal immersion
$3 — 5?7 of degree 6 and order of isotropy 2. Also there exist full SU(2)-equivariant
isotropic minimal immersions S — $>* of degree 8 and order of isotropy 2 and 3.

An explicit description of the tetrahedron in Theorem 3 as well as the isotropic
minimal immersions in the corollary will be given in Section 4.

Based on analogy, it may be reasonable to conjecture that Ay, is 4-
dimensional and Sy, is a pentatope. Most recently Weingart proved, however,
that dim A;,, = 3 and Sy, is a tetrahedron. The computations are facilitated by
his observation that all matrices in A, (and also in Az, and Ag) commute.
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2. Operators on spherical minimal immersions. We motivate the concept
of operator by a simple example. Let f: §™ — Sy be a p-eigenmap. We define a
map f~: R™! . V ® H! as follows. Since H! = (R™")*, for a € R™!, f~(a)
should be a vector valued function on S™ with values in V. We set

[ (@)= ‘/i Bof, a€R™!,
Azp

where the directional derivative 9, acts on f componentwise: ¢ o 9,f = 9,(¢ of),
¢ € V*. (As usual, we identify a spherical harmonic of order p on S™ with its
extension to R™! as a harmonic polynomial of degree p.) With respect to the
standard basis {e,}™, C R™!, we have

2 m
T =y — ar®r’
f \/Ang f®y

where {y,}™ C H! is the dual basis. Clearly, the components of f~ are spherical
harmonics of order p — 1 on §™. f~ is thus a (p — 1)-eigenmap iff it maps into
the unit sphere Sygyp. Actually, according to a result in [8], f~ is an isotropic
minimal immersion of degree p — 1 and order of isotropy k iff f is an isotropic
minimal immersion of degree p and order of isotropy k.

The correspondence f +— f~ can be conveniently expressed in terms of the
SO(m + 1)-module homomorphism D~: R™! — (HP)* @ HP~! defined by

D (a) = 1/;\253,,, a € R™!,

We call D~ the degree lowering operator.

Let G C SO(m + 1) be a closed subgroup, G C so(m + 1) the Lie algebra of
G, and assume that G acts on S™ transitively. Let W be an orthogonal G-module
(a representation space for G with a G-invariant scalar product; irreducibility is
not assumed). We call a homomorphism D: W — (HP)* ® H? of G-modules
(by restriction) an operator. For a € W, D(a): HP — H? is a linear map. For
simplicity, we write D, = D(a), a € W. Since D is a homomorphism we have

Dga=g-Dy=pp(g)oD, Opp(g)—l, g2 €G,

where p,: SO(m + 1) — SO(HP) is the SO(m + 1)-module structure on HP.
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Taking transposes, D determines (and is determined by) a homomorphism
v =1P: HT — HP @ W of G-modules, where

n
Po)=Y_Dlx' ®er. X €HY,
r=0

and
(P (x®e)=D.x, x€HP,

with {e,}y C W an orthonormal basis.

An operator D is called metric if .2 is an isometric imbedding, or equivalently,
if (\®)T o (P is the identity on H9. If G = SO(m + 1) then, up to a constant
multiple, any nontrivial operator is metric; this is because 7 is irreducible as an
SO(m + 1)-module.

The degree lowering operator D~: R™! — (HP)* ® HP~! is an operator
with G = SO(m+ 1), and W = R™! with its standard SO(m + 1)-module structure
given by matrix multiplication. We claim that D~ is metric. We first note that
the transpose of d, is

20+m—1 k-
(20) & x = p-;:-—m—_—z baX's X €HETY,
where
(1) bax' =H@'x')=a"x' — B T dax'.

2p+m-—73

Here a* € ‘H}, is defined by a*(x) = (a, x), x € R™!, H is the harmonic projection
operator [17], and (20) follows by integration. Letting :~ = ¢p-, we have

2p+m-—3 p 25 e
) ,
p+m-—2 p+m—2§ X ®r

() =

where {y,}7, C H! is the standard orthonormal basis. Differentiating (21),
)T o¢™ can easily be verified to be the identity on HPY,

Let D: W — (HP)* ® H? be a metric operator. Given a p-eigenmap f: §™ —
Sv, we define fP: §* — V ® W* as follows. For a € W, fP(a) should be
a vector valued function on S™ with values in V. We set f2(a) = D.f. Here,
Dg: HP — 'H? is applied to the vector valued spherical harmonic f of order
p, and gives a vector valued spherical harmonic of order ¢ in a natural way:
@ 0 Dof = Do(¢p of), ¢ € V*. In terms of an orthonormal basis {e,}"_, C W and
its dual basis {¢,}"_o C W*, we have fP = 3", D,.f ® ¢,. Our present problem
is to study under what circumstances will f2 map into the unit sphere Sygw-,
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and when will 2 be a spherical minimal immersion assuming that f is. Our first
lemma asserts that, for metric D, ( ﬁ,)" 1 8" — HP ® W* (made full) is congruent

LemMma 2.1, We have
(22) (F)Px) = P(fy(x)), x€S™

Proof. Let {f}}1g"” C HP be an orthonormal basis. With the previous nota-
tions, we compute

n N(mp)

FHPE =) Y Def))®) £ ® ¢
=0 j=0

n_N(m,p)

=3 5" FDefl SO ® b

=0 jl=0
n N(mp)

=Y 3 ™D (fH® ¢
=0 =0

r=0

S DI (f(x) ® oy
r=0

P fH(x).
The lemma follows.

Let f: S™ — Sy be a full p-eigenmap with (f) = ATA — I € S(MP), where
A: H? — V is the unique surjective linear map satisfying f = Af,. Applying a
metric operator D: W — (HP)* ® H? to both sides of the equality f = Af,, for
x € S, we have

fP0 = (A8 D)) = (A DP(fy(x),
where, in the last equality, we used (22). Since D is metric, we thus obtain
(2 =(P) 0o (ATA-DoP+1=(P) o ((f) ® ) 0 P.
This motivates us to define ®P: S2(HP) — S?(H9) by

(23) PO =(P)To(C® Do P, CeSHHP).
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By the previous computation, we have
24) () = (fP).

®P: S2(HP) — S2(H9) is a homomorphism of G-modules. By (24), given a
p-eigenmap f: S — Sy, f2 will map into the unit sphere Sygw- and thereby
fP will become a g-eigenmap, if ®P(EP) C £9. In a similar vein, if f is a
spherical minimal immersion, then so is fP if ®P(FP) C F9. We arrive at the
following:

PROPOSITION 2.2. Let G C SO(m + 1) be a closed subgroup acting transitively
on S™. Let D: W — (HP)* ® H9 be a metric operator, and r = max (p, q). Assume
that S>(H")|G has multiplicity 1 decomposition into irreducible G-modules. Then,
for any spherical minimal immersion f: S™ — Sy of degree p, fP: 8™ — Syew- is
a spherical minimal immersion of degree q. The statement is also true for isotropic
minimal immersions, including eigenmaps.

Remark. In view of (5), for G = SO(m + 1), the conditions of Proposition 2.2
are satisfied.

The degree lowering operator applied to a full p-eigenmap f: S™ — Sy,
gives the map f~ =f07: §" — Syg defined at the beginning of this section.
Proposition 2.2 asserts that f~ is a p-eigenmap; in fact, degree lowering preserves
minimality and isotropy. As usual, we have the extension ®~ = ®P~; S?(HP) —
S2(HP!) that is a homomorphism of SO(m+ 1)-modules. One of the main results
in [14] asserts that @~ is surjective, so that its kernel must consist of the sum of
the SO(m + 1)-modules

V(2(p—k).2k.0,....0), k= 1,58 [P/2]

corresponding to the even lattice points along the northeast edge of Af. Note that
the restriction @~ |cp: LP — LP~!, ®~((f)) = (f~) is, in general, not surjective.
The degree raising operator D*: R™' — (HP)*®HP*! is defined analogously

by
2p+m— 1
D+= LRy | m+l’
" ‘/p+m—16" acR

where 8, is defined in (21). A simple computation shows that D* is metric. As
before, degree raising preserves minimality and isotropy. Setting ¢* = 2, we
have

1 2p+m—
p+l\ p+m-—

] m
) = T 20X ®y X €M
r=0
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@t = BP*: §2(HP) — S2(HPH) is injective [14] (in fact, up to a nonzero constant
multiple, ®* are transposes of each other), and it thus restricts to an SO(m + 1)-
equivariant imbedding ®*: LP — LP*!, @*((f)) = (f*), where f: S™ — Sy isa
full p-eigenmap, and f* =f2": §™ — Sygs.

In degree raising and lowering we have set G = SO(m + 1). In our next
example we let G C SO(m + 1) be a closed subgroup with Lie algebra G, and
assume that G acts on S™ transitively. We let W = G be the G-module with the
adjoint representation, and .A, the induced action of G on HP. Then A,: G —
(HP)* ® HP is an operator; inserting a factor of 1/),, it becomes metric [15].
By definition, for a full p-eigenmap f: §™ — Sy, we have Ay({f)) = (f), where
fim— Svgg- is given in (1). We call A, the operator of infinitesimal rotations.
(For G = SO(m+1), an orthonormal basis of so(m+1) is given by {E. }o<,r<r'<m»
where E,» = x+0, — x,0, is infinitesimal rotation on the x,x,s-plane.) We denote
ap = 1. With this, for C € S2(HP), (23) specializes to A,(C) = a) o(C®I)oay.
As noted in Section 1, A, is a symmetric endomorphism of S%(HP) that may well
vanish on some irreducible components. As shown in [15], we have A,(EP) C €7,
and A,(FP) C FP, in particular, A, restricts to self-maps on the moduli £? and
MP, Note also that Proposition 2.2 implies the first statement in part (a) of
Theorem 1 for G = SO(m + 1).

3. Isotropy and the eigenvalues of A, on £7. Let G C SO(m + 1) be a
closed subgroup acting transitively on ™, and let G denote the Lie algebra of G.
Let {E;}i, C G be an orthonormal basis, and {¢;}{_; C G* its dual basis. For
C € S%(H”) and x € HP, we have

Ap(C)x

a, (C ® Day(x)

= a;r(c®l) (\/YPZEIX®¢')

i=1

= \/r,, Z o, (CEix ® ¢y)

i=1

= —— ZE,CE,X
p i=1

On the other hand, for the Casimir operator, we have

Cas(C)

—mem

—ZEZOC CoZE2+22E,oCoE,

i=1 i=1 i=1
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On HP, we have 31, E? = — ), so that the first two terms on the right-hand
side give 2\p1. By the previous computation, 3", E;CE; = — ), Ap(C). Putting
these together, (9) follows. We also see that (11) implies (10). We will prove (11)
at the end of this section.

To prove the first assertion in part (a) of Theorem 1, we need a sketch
proof of the decompositions (7)~(8) (for more details, see {8, 14]) as well as
some preparations. A vector valued map f: S™ — V with spherical harmonic
components (that is V¢ C HP) is a spherical minimal immersion iff f maps
into the unit sphere Sy and f is homothetic. This is because harmonicity of
the components guarantees that f is harmonic in the sense of Eells-Sampson,
and a homothetic immersion is minimal iff it is harmonic [5]. To pin down the
two constraints, we now recall that a spherical harmonic of.order p on S™ is the
restriction of a harmonic homogeneous polynomial of degree p in m+1 variables.
Thus f automatically extends to a map f: R™! — V. The image of the unit sphere
S™ under f is contained in Sy iff the homogeneous polynomial

VAN =1 -p* @)= x=(0,...,xm) € R™,

of degree 2p vanishes. Setting f = Af, and C = (f) =ATA — I, we have ¥9(f) =
(Cfyrfp). We now redefine ¥ by the right-hand side of this formula. We obtain
the linear map

. SY(HP) — P,

where P47 denotes the SO(m + 1)-module of homogeneous polynomials of degree
g on R™! (with the obvious action of SO(m + 1) on P9; an extension of the
action on H? C P19). ‘Pg is a homomorphism of SO(m + 1)-modules. An easy
induction [8] in the use of the canonical decomposition

p
P - ZHZI )
I=0

shows that ‘Pg is surjective. Comparing this with (5) and (8), we see that the
irreducible SO(m + 1)-modules

(25) HY . pp=D = y@O-0 - j =0, . p,

are exactly the ones that need to be deleted from S2(HP) to satisfy the condition
that our map f sends S™ into Sy. The modules in (25) are parametrized by the
even lattice points along the base of the triangle Af. We now define A] C R?
as the triangle with vertices (2,2), (p,p) and (2(p — 1),2). A DoCarmo-Wallach
type argument then gives the moduli space £P as a compact convex body in £7
parametrizing the p-eigenmaps.
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For the condition of homothety, we first note that (2) needs to be satisfied
only for conformal fields on S™ since they span each tangent space of S™. Given
a € R™!, we define the conformal field X on R™*! by

X§=a— <|ax’|‘:)x, X € Rm+l.

Here we identify tangent vectors on R™! with their translates at the origin; note
also that the factor 1/|x|? is inserted to preserve homogeneity. In analogy with the
previous condition, for a map f: S™ — Sy with spherical harmonic components,
we define

THON@D) = (fL) ~ 22X, X?)
= (XL XD) = (o (X fu(XD)),

where a,b € R™!. Clearly, f is homothetic (and thereby minimal) iff ¥}(/f)
vanishes. Writing X° as a differential operator (in terms of directional derivatives);

r=m—%§¢

with the previous notation C = (f) € P, we obtain
(26) ¥,(f)a,b) = (BaCp, Oufp)-

As before, the right-hand side of (26) defines ‘P},(C)(a, b), with C € &P, As
SO(m + 1)-modules, (R"™1)* & H!, so that the symmetric bilinear map L 41(o)
becomes a tensor ‘¥(C) € PAP~1 @ S2(H). ¥} is zero on the trivial summand
of S?(H!) ¥ HO® M2 since it corresponds to the trace. By restriction, we end up
with an element ¥}(C) € P2P~D @ H2. Varying C within £ finally gives the
SO(m + 1)-module homomorphism

¥;: & — PV @ 12,

By the canonical decomposition applied to PX?=1), as SO(m + 1)-modules

-1
(e2)] PHrD@H? ,,Z HY* @ M.
=0

A quick comparison reveals that the only common irreducible components in (8)
and in (27) are

@20 = . p-1,
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and these correspond to the even lattice points along the base of Al. Now ‘¥
is nonzero on these components [14] so that these are exactly the components
that are to be deleted from (8) to satisfy the homothety condition for our maps
to become spherical minimal immersions. Formula (6) follows.

The proof of (7) patterns that of (6). Proceeding inductively, for f: S™ — Sy
a full isotropic minimal immersion of degree p and order of isotropy k—1, k > 2,
we define

(28) Yi(f)a,- .- a0 b1, ..., be)
= (B XD, ..., X%), B(HXD, ..., X))
— (Bl )XY, XM, B Sr) XD, .. XPE))
={(Bay - - - Ba,f+ O, - - - Op,f)

— (Bay - - - Bafps B, - - - Oy fp)
= (Bay - - - Oa (s Oy - . . B S,

where (f) € FP*=1. As before, Wk(f) vanishes iff f is isotropic of order k. ¥}
extends to a homomorphism

\p: . Fpk-1 _, pAp—h) o 2k

of SO(m + 1)-modules. The canonical decomposition gives
p—k

(29) PAPb @ H* = Y HY @ HE,
1=0

and ‘Pf, is nonzero on the components

V(2I'2k'0""'0), 1= k, cenap — k.

Degree raising and lowering interact with ‘l’;‘, in a particularly beautiful way
(and this provides the main induction step in proving (7)). Given a full isotropic
minimal immersion f: S™ — Sy of degree p and order of isotropy k — 1, k > 1;
for cy,...,cx € R™! we have

Aak

¥ (e ocm) = EH(en - ca)p?
P’ k 4
* i SN cap,
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and
(30) ACPESNers - c)) = Agp Wi _ 1 (F)ens - - s C20).

In particular, we see that if f is isotropic of order k then so are f*.

Finally, we will need a technical tool called the Inductive Lemma [8]; this
will help to rearrange the partial derivatives inside various scalar products in
YE(er- . ), €1,.. ., € R™), where f: S™ — Sy is a full isotropic
minimal immersion of degree p and order of isotropy k — 1, k > 1. To simplify
matters, we use multiindex notation J,, = ki, ...ac,l, for I = {iy,...,i}. We
have

GD {Oc, (F)ps Oeslp) = 0
for all 7 and J with |I| +|J| < 2k—-1,1,J C {1,...,2k}; and

(_1)115-“l

(32) L 0 G E (Bey () Ocyfy)

for all I and J disjoint with JUJ = {1,...,2k}.

With f: ™ — Sy as above, let EX(f)(c1,...,cu), 1. .., cx € R™1, be the
trace of the bilinear form

2k
33) X.Y) - XD (e g1 Yo ey c2n)
J=l

on G (with values in P2P—R),

ProrosITION 3.1. Let f: S™ — Sy be a full isotropic minimal immersion of
degree p and order of isotropy k — 1, k > 2. Then, forcy,...,cx € R™!, we have

(34) 20,5 (e, - .. o)
= (2Xp — p2P70% 4 2km — 4)PE(f)(cts - )

2k
=Y WA((er - .1 cio1s Cas (e Ciats - -, C2)
=

+22k (et - o).

+ A WE_ 1 (f ) - ),
where p2P=%2 is given in (11). For G = SO(m + 1), we have

(35) ER(f)es. - . ) = 2K¥E (), - . o),
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in particular

2(p—k),2k
-2k g B "
(36) A2 1 oy

If f: S — Sy is a full isotropic minimal immersion of degree p and order of
isotropy k, k > 2, then ¥%(f) = 0 and hence E§(f) = 0, so that (34) along with
(30) imply that ‘i’;‘,(f') = 0. This is the first statement in part (a) of Theorem 1.
Also, for G = SO(m+1), substituting (35) into (34), we obtain that ‘P;‘,(f’) is a linear
combination of ‘Pl’j( ) and ‘P"_l( f7). (The Casimir operator on R™! =@ H! js
multiplication by m = A, so that the contribution from the second term on the
right-hand side of (34) is —2mk‘P:‘,( f). By (35), the contribution from the third
term is 4k¥%(£).) If, in addition, (f) € V(P~0:2k0.-0), then WE_,(f~) vanishes
and Wk(f) becomes a constant multiple of W5(f). The constant then must be

Ag(” —b2k Thys (36) follows. To prove Theorem 1, it remains to derive (34) and
(35), as well as to extend (36) to all even lattice points (a, b) in A’,’ .
We need some preparatory lemmas.

LEMMA 3.2. Fora € R™! and X € G, we have
37 [0s, X] = Ox.a-

Proof. With obvious notations
m
Xx = aXx = Zxraxe,.
r=0

Here X is first the vector field induced by the action of G on R™*!, and then the
skew-symmetric matrix in G C so(m + 1) acting on vectors in R™! by matrix
multiplication. With this, we compute

[0s, X] = E [Oa, xraXer] = Z aa(xr)a)(ey
r=0 r=0
= Z ar6Xe, = Oxa.
r=0

Lemma 3.3. Fora € R™! and X,Y € G, we have
(38) Xay“ + YaxG = —BXYa + aaYX = Yxaa-
Proof. Replacing a by Ya in (37) we have

X, aYa] = _aXYa-
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Using this, we compute

X0y + Oxva = OraX = [0, Y1X
= 0,¥YX — Y8, X
= 0,YX — Y([04, X] + X3s)
= 0,YX — YOxq — YXO,.

The lemma follows.

Taking traces of both sides of (38), we obtain that on H”:

where Cas (a) is the Casimir operator of a € G on R™!; the trace of the bilinear
map (X, Y) — —XYa. Formula (39) follows because the trace of the bilinear map
(X,Y)— XY on HP is =X, - 1.

Proof of Proposition 3.1. Let {E;}..; C G be an orthonormal basis. For
notational convenience, we set aj = ¢j, and b; = x4, j = 1,..., k. In view of (28)
and (1), we need to work out

(40) (Bay - - - OapfOpy - - . O, f)
13
= A_ (aal vee aakEif, ab] P 0.0 abkElf>’
P =1

By Lemma 3.2, we have

(41) aal o aakEif = aal . e aak__, [aak, E]]f + aa| P aak_lEiaakf
= 3E,a,,3a, e aak_lf + aa, e aak_lE,-aabf

k
= 06000, ... 00 ... 00f
=1

+Ei6a, o0 .3%/',

where we also used that directional derivatives commute. As usual, ~ means that
the corresponding factor is absent. We write the result as A; +A,, and as B, + B;
when ay,...,a; are replaced by b,,...,b. To work out (40) now amounts to
determining Y., Zg’pﬂ (Aa, Bg). To simplify the computations we will use the
notation

F(ay,...,a1) = Oy, ...aa,f.
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142 GABOR TOTH

Since f is harmonic, we have
m

(42) A(F(alv- --1a1),F(b'l’- -"bl)) =2Z(F(enal’- . °9al)’F(er’bl’-'°,bl));
r=0

where A is the Euclidean Laplacian and {e,}™, C R™! is the standard basis.
We now simplify each scalar product (Aq, Bg). Using (41), we have

s s k
@3) DY XALB)=) > (FEgj.ai,....d,....a) FEb,b,.. . ,bi,....by).
i=1 i=1 j,l=1

Recall from (32) that in the difference of the right-hand side of (43) and the
analogous terms when f is replaced by the standard minimal immersion f5, the
partial derivatives can be permuted. Thus, up to sign, it is enough to consider

s k
ZZ(F(E;aj,E,-bl,al,. & .,Ej,. ..,ak),F(bl,. g .,b[,.. .,bk))
i=] jl=I1

k s
=303 (OrqBem) Fl@r, .. Gju...,00), Fby, .., B, .. b))
Jil=1 =l

We need to work out the differential operator 5., 8g,408, a,b € R™!, acting

on HP~**! (since F(ay,...,d;,...,a) is of degree p — k + 1). Using Lemma 3.2
and (39), we compute

k) 5
E aE,-aaEib = Z [aa, El']aE,b
=1 i=]
R §
=8 Y Ebgp— Y EiOgp0a
i=1 i=]

1
= iaa (Ocas by — (Ap—ks1 — Ap—k)Bp)

1
=5 (Ocas by — (Ap—k = Ap—k=1)0b) 84

1
= - E(Ap—lm + Ap—k—1 = 2Ap—k)0a0p
—aaab.

Summarizing, we see that the terms coming from (A, B;) contribute to 2)\p‘i’f,(f )
the term —2k2‘l’§( f) (where we suppressed the arguments (ay, . ..,a, by, . . ., by)).
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Second, we have

s s k
Z(AlvBZ) = ZZ(aEgajF(ali---vaj’-°'»ak)’EiF(bls---rbk)>
i= =] j=1

s k
= ZZEi(aElajF(alv-”aajv'--9ak)1F(b]9-'~9bk))
i=1 j=1

k s
- Z(ZEiaa,ajF(al,- cer@jy..ap), F(by, ..., by)).
j=1 =l

The resulting first sum along with the analogous term from )}, (A2,B;) con-
tribute to ZAP‘P;‘,(?) the term 25.5( ). Using (39), the second sum rewrites as

N =

k
Z(F(alv- <2 8j—1, Cas(aj)!aj"-]" --’ak)sF(blv'- "bk)>
p=

k
+ E(Ap—k-f-l . >‘p—k)<F(a]v v ’ak)’ F(bl’ v ’bk))'

These contribute to 21\,,‘1’1‘,(?) the term

k
=Y ¥i(f)a...,aj-1, Cas(@), a1, .., G by, . . i)
=

+ k(Ap—is1 — Ap—)¥E(N)@1, - - @, i, . ., Bi).

The computation for }";_, (A1, Bz) is analogous.

Finally, using the fact that the components of f are spherical harmonics on
S™ of order p, the connection between the Euclidean and spherical Laplacians,
and A" = — YL, E?, we compute

2 (A2, By) = 2) (EiF(ai,...,&),EF(b,... b))
=1 i=1

-AS (Fay,. .., a) F(by, ... b))
+{A"F(ay,...,a), F(by,. .., by))
+(F(ay,...,ar), AT F(by, ..., b))

A(F(ay, ... a5, F(by,. .., b))

+ 2ok = Map-n)F (@, ..., ar), F(by,...,by))
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(where we doubled for convenience). These contribute to 2)\p‘l’;‘,(f) the terms
Aop¥k_1(f7) (by (30)) and (2Ap— — Aa(p—1))¥5(f). We now put all the contri-
butions together and obtain (34).

To prove (35) we assume that G = SO(m + 1). As usual, we choose the
orthonormal basis {Err'}0_<_r<r’$m C so(m+ 1), where E,+ = x40, — x,0p, r,r =
0,...,m. To work out the trace of the bilinear form (33), we compute

k
Z ZE,H(aE”,F(al,-..,{ij,.--,ak),F(bl,...,bk))
0<r<r'<m j=1

N —

> Z (x+8; — x,07)((aj 8 — a;,0p)F(ay, ..., 8j,...,a), F(by,...,by))
rr'=0 j=1

k
> (@, x)0, (B, F(a, ..., .., a), F(by,..., b))
=1

oy

Se,

k
> %00(8F @y, ..., &, ... ai), Flby, ..., b))
Jj=1

[~ ILMS

(aj,x)\(F(ay,...,dj,...,a&),F(b,...,b))

N =
s,
il
&

k
Eaj.r(F(er!al" . -1&}9' . ,ak),F(bl,. . '9bk))
=1

+

M~ LME

aj(zxrarF(al, SR ’&}s- Q °’ak)9F(b|9- 0o 9bk))

~.
1l
—

(g, x)A(F(ay, . ..,@j,...,a&). F(by, ..., b))

Nl'-'
M»

—

]=
+k(F(ay,...,a),F(by,... » b))

—(p- k+1)26a,<F(a., @y ar), Fbr, .. by)).
=

The first and third terms in the resulting sum contribute zero by (31), and the
second term contributes k‘l‘;‘,( Nay,...,ax by, ..., b). Switching the roles of the
a’s and the b’s, (35) now follows.

We finally show that (36) implies the eigenvalue formula (10)-(11) for all
even lattice points (a,b) in AY. To do this, we need to see how degree raising
interacts with A,. A formula that relates these two operators was derived in [15];
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in fact, for C € S2(HP), we have
(44) A(@F(C) — HALON) = Apr1 (PH(C) — Aps(BHO).
Restricting C to an irreducible component, we obtain
(45) Ap(1 = APy = Ag(1 — AZP).
Indeed, for g = p+1, this follows immediately from (44); in general, by induction.

Formula (36) combined with (45) now gives all eigenvalues of A, on £”.
Indeed, for (a,b) € AF, a, b even, (36) rewrites as

a.b
A% -1 — [ ,
aib 2/\%

and (45) with g = %2 now gives (11). Theorem 1 follows.

Proof of Theorem 2. Let f; S™ — Sy be a full spherical minimal immersion
of degree p, and assume that (f) € V@00 c 7P with A%> > 0. Then
f: §™ — Sy corresponds to an interior point of MP since the contraction A,
is multiplication by the nonnegative constant A%* < 1 on V@590, Since the
interior points of MP correspond to spherical minimal immersions with maximal
range dimension, we have

dim (V ® so(m + 1)*) > dim H".

4. SU(2)-equivariant minimal immersions. As in Section 1, we let W,
denote the irreducible SU(2)-module of homogeneous polynomials of degree p in
two complex variables. Given a polynomial £ € W, of unit length, the equivariant
construction [3] applied to £ gives a p-eigenmap f: 53— Sw, defined by

fe@=¢€oL,-, a€SU@R)=S.

Here L is left quaternionic multiplication, the identification SU(2) = §° is given
by

[Z —“:]=z+jw, zweC,
wo oz

and left quaternionic multiplication corresponds to left matrix multiplication. In
coordinates, we have

fe(z + jw)(a, b) = £(az + bw, —aw + bz),

This content downloaded from 165.230.100.213 on Thu, 21 Jul 2016 11:24:06 UTC
All use subject to http://about jstor.org/terms



146 GABOR TOTH

where we used a,b € C as variables for £. For p = 2d even, Wy4 has a real
SU(2)-submodule Ry, given by the fixed point set of the antilinear map a?b*—9
(—1)9a%-9b9, ¢ = 0,...,2d. If £ € Ry, then the image of f; lies automatically in
R4 so that we have f;: S* — Sk, Finally, note that the equivariant construction
extends naturally to any multiples of W, and Ryg4.

Throughout this section, we define the operator A3, of infinitesimal rota-
tions with respect to the group G = SU(2)'. We let X1, Y., Z, the left-invariant
extensions of the standard basis elements X, Y,Z € su(2), where

01 0 i i 0
We have, as differential operators:

XL = —Waz — Waz + zaw + ZaW9
YL = i( — w8, + wd; + 20, — 20y),

Z; = i(z0, — 0; + w0y, — W).

LemMMA 4.1. For any U € su(2), we have

UL fe = —fuge
where Ug is the right-invariant extension of U.

Proof. Using standard notation, we compute

(ULfe )z + jw)(a, b)

d

dt |:=0f5((z + jw) exp (¢tU))(a, b)
d

T a |i=0€ (Lexp (~tyizjwy~1(a: D))

d
= ‘_1} le=0€ (Lexp(- tU)L(z+jw)—| (a,b))
= -(URg)(L(z-o-jw)-' (a,b))
~fuge(z +jwXa, b).

Lemma 4.1 provides a particularly simple way to expressf{ in terms of &:

COoROLLARY. With respect to the standard basis X,Y,Z € su(2), we have

1
(46) fe= T (Fxges frnesfzne) »
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where the right-invariant extensions Xg, Yr, Zg acting on W, are

XR = ba,, - aab
Yr = i(bO, + alp)
Zgr = (a0, — bOp).

In view of this corollary, we writefg = f?’ where

-~ 1
= ———=(XRgE&, YrE, Zg€).
3 \/Y,,( RE, YRE, ZRE)

This we will also apply when £ has several components, that is, when £ is an
element of some multiples of W, or Raq4.

From now on let p = 2d be even. We fix the orthonormal basis {¢}?4! in
Ry C Wyy with elements

1
& = m(a

1
§Zl+2 = w

T
d—!-ab.

2-lpl 4 (- Da'b®Y, 1=0,...,d-1

@' - (- Dd'b¥h, 1=0,...,d-1

€2d+l

LEMMA 4.2. Let p = 2d be even. The 2d-eigenmap fr4: S — S2d+1)R,y defined
by

1
@7 Jaa = J_—zﬁ(f" e oo ’ffzdn)'

is congruent to the standard minimal immersion f3 2.

Proof. We use the general fact that a full p-eigenmap f: S™ — Sy that is
equivariant with respect to the entire group SO(m + 1) must be standard. (This is
because £P has no trivial component.) In our case, we have SO(4) = SU(2)-SU(2),
and fo4 is clearly SU(2)-equivariant since its components are. It remains to show
that f54 is also SU(2)'-equivariant. SU(2) is obtained from SU(2) by conjugation
with the diagonal matrix  with diagonal elements 1, 1, 1, — 1. In terms of complex
variables, v: (z,w) — (z,w). The stated SU(2)'-equivariance follows from the
(easily verifiable) formula

feo(yoLs107) =feor, o, a€SUQ).
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(Notice that «y o Lg 0 v = Ry(q), a € SU(2).) We have

2d+1

§oLlyay= Y pyéy,

j=1

where the matrix (p,jr)z“,’:‘, is orthogonal. The lemma follows.

With respect to the orthonormal basis in R4 above, any £ € Ry4 can be written
2",* . aj,a;€R,j=1,...,2d+1. Applying the equivariant construction

to all the polynomials mvolved we obtain

2d+1 2d+1

Je= E"ffj ‘/—Z ¢2—Zjﬁffj'

j=1

Comparing this with (47), we see that f¢ = Afog, where A: (2d + 1)Ryg — Ry is
a linear map. In terms of the orthonormal basis in Ry4, A can be written in the
block form

A= V2d+1[a1’a2,---9a2d+1]’

where the jth block is a diagonal (2d + 1) x (2d + 1)-matrix with diagonal element
aj, j = 1,...,2d + 1. Using the DoCarmo-Wallach parametrization, we obtain
(fe) = C=ATA — 1 € $*((2d + 1)R4) where the jj'th block of C is a diagonal
(2d + 1) x (2d + 1)-matrix with diagonal element c; = (2d + 1)ajay — 2#, i =
1,...,2d + 1. In what follows, we always represent our points in £3° in this
form This notation also naturally extends to the case when § is vector valued. In
particular, it also applies toﬁ = f? Letting fg= Af2q, the matrix A and therefore
(f) = C=ATA — I can be computed in terms of A.

To begin with a simple example, we first consider the case of quadratic
eigenmaps, i.e., d = 1. The equivariant construction applied to the polynomial £3 =
iab gives the quadratic eigenmap fg,: §3 — Sg, which is congruent to the Hopf
map. Simple computation in the use of (46) now gives ff, = % (F-efe)) : S* -
S2r, (with a component vanishing), and this is congruent to the complex Veronese
map (the lift of the holomorphic imbedding CP — CP?). On the moduli, we
have C = —1C in agreement with the fact that A;, has eigenvalue —1 on
(EHSUD = R,

We skip the case of quartic minimal immersions as it has been treated thor-
oughly in [16]. We now put d = 3 and study the effect of A3 on (F$)SU? =
R, ® R|,. As noted in Section 1, the eigenvalues of A3 on R} and on R}, are }
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and —3. We also have £7r = £3. As before, using (46), we obtain

A 1 V30 1 V30, 1
&Ter = (_2\/§€]+ 5 &s, 2\/§Ez+ 12 €6» %&s)-

The corresponding matrices are

A =+/7[0,0,1,0,0,0,0]

and
-5 00 0¥ 00
A= 1 30
A=V7 omolo 0 ¥ o
0o 00 0 00

The matrices C and C are linearly independent, and they span the A3 ¢-invariant
plane Ag,,. Using C and C as a basis, we see that the intersection of Are with /\46
consists of those linear combinations »C + vC for which uC + vC + I is positive
semidefinite. This is easily resolved, and we obtain the isosceles triangle with
vertices C, C and C' = —%C — C. (The three sides of the triangle are determined

by det(uC + vC +I) = 0.) The matrix C is in the interior of the triangle. The
assertion about the range of the corresponding minimal immersions follows by
working out the rank of uC + vC + I for the vertices and (open) edges of the
triangle. As for the first statement in the corollary to Theorem 3, we see that
the point %C - %E‘ is on the side of the triangle with vertices C and C’, and
it is an eigenvector of A3 ¢ with eigenvalue —- , thereby it belongs to R),. The
corresponding minimal immersion f: $® — S.m‘5 is therefore isotropic of order
2. The explicit form of f can be obtained by inverting the DoCarmo-Wallach
parametrization, i.e., by working out \/ %C - %6‘ + 1 and precomposing it with
the standard minimal immersion fg.
Finally, we treat the case d = 4. We have

(FUO =Ry &R, O R}

and the eigenvalues of A3zg on the terms of the right-hand side are ;, 20,

and —— . As in Section 1, in terms of the chosen orthonormal basis in Rg, the
octahedral minimal immersion Oct corresponds to

£0ct = \/\/—-61 \/\/—-59
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Using (46), we have

- V2 V14 V2 V14
£oct = (4f§3 4\/—57, 4\/—64 4\/_58’ \/—§2>

Applying once more (46) to this, we obtain

et L
0t ™ 960v/21
x (—336\/565 — 48+/35¢, + 1680€5, —48v/35€, + 336V/5¢,

— 72V/70€4 + 168v/10¢3, 48v/35¢; + 336V/5¢,
— 48v/35¢, — 672v/5€5 — 168089, —72v/70¢3 — 16810,
— 96/70€4, —96V/70€3, —384\/3—551) :

The matrices corresponding to £o., and {o. are

V5 Vi
A=3|—=,0,0,0,0,0,0,0, —=
[2\/5 2V3
and
0 0 A§. 000 -V 00
A - 2 14
A=|o0 0 —% 0 0 0 —3%
0 ‘ 0 000 0 0

V3

The matrices C, C and C are linearly independent, and they span the Ajsg-
invariant 3-space Ag.. The intersection of Ao with Mg is a tetrahedron with

vertices C, C, and

4 9. 40=
¢ =5C-3C-3¢
Mg, 3p, 25
c’ = 14C 7C 7C.

(The computations are tedious but elementary; the use of a computer algebra

system is recommended.) C is in the interior of the tetrahedron. The metric prop-
erties of the tetrahedron can be easily derived using the orthogonal decomposition
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C=C +Cy+C3, C1 € Ryy, 1=1,2,3, and solving the system

C=Ci+C+C5

~ 1 1 4
C = ECI — 2—0C2— §C3
é = lC] + LC'z + EC}

4 400 25

The range (in multiples of Rg) of the minimal immersions corresponding to the
vertices, (open) edges, and (open) faces are summarized in the following tables:

Vertex |[C | C | C | C"
Range | 1 | 3| 2| 3

Edge | [CC] | [cC'1 | [cc™ | (EC | (Ec™ | (c'c™
Range | 4 3 4 5 6 5

Face | [CCC] | [cCc™ | [cc'c"] | (EC'cM
Range 6 7 6 8

Theorem 3 follows. (Notice additivity of the ranges.) Finally, note that (7) implies
the second statement in Corollary to Theorem 3.
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