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Abstract. In 1971 DoCarmo and Wallach gave a lower bound for
the dimension of the space of minimal immersions between spheres
and they believed that the lower estimate was sharp. We give here a
different approach using conformal fields and eigenmaps; determine
the exact dimension of this space and conclude that their conjecture
is true.

1. Introduction and preliminaries. Let V be a Euclidean vector space.
An isometric immersion f : Smk → SV of the m-sphere Smk of constant curvature
k into the unit sphere SV of curvature 1 of V is minimal if the mean curvature of f
vanishes [12]. Let S(m, k) denote the space of full minimal isometric immersions
f : Smk → SV , for various V . (Fullness means that the image is not contained
in any great hypersphere.) Composing isometric immersions with isometries
between the ranges gives rise to an equivalence relation ∼= on S(m, k).

A theorem of Takahashi [11] implies that, for fixed m, the set of k > 0 such
that S(m, k) 6= Ø is infinite discrete: {kp}∞p=1. In 1967, Calabi [1] proved that
any isometric immersion f : S2

kp
→ SV is equivalent to the (generalized) Veronese

map, implying that S(2, kp)/ ∼= is a single point. In 1971, DoCarmo and Wallach
[3] showed that S(m, kp)/ ∼= can be parametrized by a compact convex body
Mp

m contained in a finite dimensional vector space Fpm. The parametrization is
continuous on Mp

m and smooth in the interior of Mp
m. They derived a positive

lower estimate d(m, kp) on the dimension ofMp
m and conjectured that it is sharp,

i.e. actually d(m, kp) = dimMp
m. The main result of this paper is a proof of

this conjecture.

The structure of the boundary ofMp
m is subtle. In 1992, DeTurck and Ziller

[2] gave many interesting examples of minimal isometric immersions f : Smkp →
SV , which correspond to boundary points of Mp

m. These ‘boundary minimal
immersions’ possess rich geometry as they are equivariant with respect to proper
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subgroups of SO(m + 1) that act transitively on Sm. For further work in this
direction, cf. [5].

Let f : Smk → SV be an isometric minimal immersion. As noted above,
k = kp for some p = 1, 2, . . .. More precisely, the components ϕ ◦ f , ϕ ∈ V ∗, of
f are eigenfunctions of the Laplacian on Smk with eigenvalue m. In particular,
k = kp = m/λp, where λp = p(p+m−1) is the pth eigenvalue of the Laplacian on
Sm = Sm1 . We now scale the metric on Smkp to curvature 1 so that the isometric
immersion f : Smkp → SV becomes homothetic, i.e. f : Sm → SV satisfies

〈f∗(X), f∗(Y )〉 =

(
λp

m

)
〈X,Y 〉(1.1)

for any vector fields X and Y on Sm. Moreover, since f is minimal, its com-
ponents become spherical harmonics of order p on Sm, i.e. eigenfunctions of
the Laplacian on Sm with eigenvalue λp. Note that a spherical harmonic of or-
der p on Sm is nothing but the restriction (to Sm) of a harmonic homogeneous
polynomial of degree p in the variables x0, . . . , xm, x = (x0, . . . , xm) ∈ Rm+1.

The key to pin down the structure of the space S(m, kp) of isometric minimal
immersions f : Smkp → SV , or what is the same, the space Mp

k parametrizing

the homothetic minimal immersions f : Sm → SV with homothety λp/m is to
introduce a wider class of maps, called eigenmaps, as follows.

A map f : Rm+1 → V into a Euclidean vector space V is a p-form if the
components ϕ ◦ f , ϕ ∈ V ∗, of f are homogeneous polynomials of degree p in the
variables x0, . . . , xm. f is spherical if it maps the unit sphere Sm to the unit
sphere SV of V . In this case, we say that (the restriction) f : Sm → SV is also
a p-form.

A p-form f is harmonic if the components of f : Rm+1 → V are harmonic
functions in the variables x0, . . . , xm. If, in addition, f is spherical then the
components of f : Sm → SV ⊂ V are spherical harmonics of order p, i.e.
eigenfunctions of the spherical Laplacian on Sm with eigenvalue λp = p(p+m−1).
In this case, we say that f : Sm → SV is an eigenmap with eigenvalue λp. By
the above, a homothetic immersion f : Sm → SV is minimal iff it is an eigenmap
with eigenvalue λp for some p. In this case the homothety constant is λp/m so
that (1) is satisfied. Note also that eigenmaps are harmonic in the sense of Eells-
Sampson [4], in fact, an eigenmap with eigenvalue λp is nothing but a harmonic
map with constant energy density λp/2.

A p-form f : Sm → SV is full if its image is not contained in any proper great
sphere. Two p-forms f1 : Sm → SV1

and f2 : Sm → SV2
are equivalent, written

as f1
∼= f2, if there exists an isometry U : V1 → V2 such that f2 = U ◦ f1.

For fixed m and p, the equivalence classes of full eigenmaps f : Sm → SV
(for various V ) with eigenvalue λp can be parametrized by a compact convex
body Lpm in a finite dimensional representation space of SO(m + 1). We now
briefly recall the construction of the parameter space Lp = Lpm; for details cf. [7].
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(Since we will mostly work over a fixed domain Sm, the subscript will often be
suppressed.) Let Hp = Hpm denote the space of spherical harmonics of order p on

Sm. Let {f jp}
n(p)
j=0 ⊂ H

p be an orthonormal basis with respect to the normalized
L2-scalar product

〈h, h′〉 =
n(p) + 1

vol(Sm)

∫
Sm

hh′ v,

where v is the volume form on Sm, vol(Sm) =
∫
Sm

v is the volume of Sm and

n(p) + 1 = dimHp = (m+ 2p− 1)
(m+ p− 2)!

p!(m− 1)!
.

The standard minimal immersion fp : Sm → SHp is the full eigenmap with
eigenvalue λp defined by

fp(x) =

n(p)∑
j=0

f jp (x)f jp , x ∈ Sm.

fp clearly does not depend on the orthonormal basis chosen.
Given a full eigenmap f : Sm → SV with eigenvalue λp, there exists a linear

map A : Hp → V such that f = A ◦ fp. We associate to f the symmetric linear
endomorphism

〈f〉 = A>A− I ∈ S2(Hp), (I = identity ).

The correspondence f 7→ 〈f〉 gives a parametrization of the space of equivalence
classes of full eigenmaps f : Sm → SV with eigenvalue λp by the compact convex
body

Lpm = {C ∈ Epm | C + I ≥ 0}

in the linear subspace

Epm = span {fp(x)� fp(x) | x ∈ Sm}⊥ ⊂ S2(Hp).

Here ‘≥’ stands for positive semidefinite, ‘�’ is the symmetric tensor product and
the orthogonal complement is taken with respect to the standard scalar product
〈C,C ′〉 = trace (C · C ′), C,C ′ ∈ S2(Hp).

fp is equivariant with respect to the homomorphism ρp : SO(m + 1) →
SO(Hp) that is just the orthogonal SO(m+ 1)-module structure on Hp defined
by g · h = h ◦ g−1, g ∈ SO(m+ 1) and h ∈ Hp. Equivariance means that

fp ◦ g = ρp(g) · fp, g ∈ SO(m+ 1).

Ep is a submodule of S2(Hp), where the latter is endowed with the module
structure induced from that of Hp. Moreover, Lp ⊂ Ep is an invariant subset.
In fact, for a full eigenmap f : Sm → SV with eigenvalue λp, we have

g · 〈f〉 = 〈f ◦ g−1〉, g ∈ SO(m+ 1).
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The work of DoCarmo-Wallach [3,12] gives the decomposition of S2(Hp)⊗RC
into irreducible components. (Since their proof contains an essential ingredient
for our purposes here, we indicate the idea of the proof in Section 2.) We have,
for m ≥ 3:

S2(Hp)⊗R C =
∑

(u,v)∈4p0 ;u,v even

V (u,v,0,...,0)
m .(1.2)

Here 4p0 ⊂ R2 denotes the closed convex triangle with vertices (0, 0), (p, p) and

(2p, 0) and V
(u1,...,ud)
m , d = [ |(m + 1)/2| ], stands for the complex irreducible

SO(m + 1)-module with highest weight vector (u1, . . . , ud) whose components
are with respect to the standard maximal torus in SO(m+ 1). (Note that, for

m = 3, V
(u,v,0,...,0)
m means V

(u,v)
3 ⊕ V (u,−v)

3 unless v = 0.) Moreover, Ep ⊗R C is
nontrivial iff m ≥ 3 and p ≥ 2 and, in this case, it consists of those components
of the symmetric square that are not class 1 with respect to (SO(m+1), SO(m)).
Hence the decomposition of Ep ⊗R C is obtained by restricting the summation
above to the subtriangle 4p1 ⊂ 4

p
0 whose vertices are (2, 2), (p, p) and (2p−2, 2).

Thus
Ep ⊗R C =

∑
(u,v)∈4p1 ;u,v even

V (u,v,0,...,0)
m .(1.3)

Adding condition (1) to those defining Lp, we obtain that the linear slice

Mp = Lp ∩ Fp,

where
Fp = span {(fp)∗(X )̌ � (fp)∗(Y )̌ |X,Y ∈ T (Sm)}⊥

parametrizes the equivalence classes of full homothetic minimal immersions with
homothety λp/m. Here ˇ : T (V ) → V is the canonical map that translates
tangent vectors to the origin. It follows thatMp is also a compact convex body.
DoCarmo and Wallach [3,12] showed that Fp is nontrivial iff m ≥ 3 and p ≥ 4
and, in this case, we have

Fp ⊗R C ⊃
∑

(u,v)∈4p2 ;u,v even

V (u,v,0,...,0)
m ,(1.4)

where4p2 ⊂ 4
p
1 is the subtriangle with vertices (4, 4), (p, p) and (2p−4, 4). They

conjectured that the lower bound in (4) is actually sharp, i.e. that the modules

V (2`,2,0,...,0)
m , ` = 1, . . . , p− 1,(1.5)

corresponding to the base of4p1 are not components of Fp⊗RC. In what follows
we refer to this as the exact dimension conjecture (although it is actually about

the space Fp itself). Note that dimV
(u1,...,ud)
m can be computed explicitly using

the Weyl dimension formula.
The purpose of this paper is to show that the exact dimension conjecture is

true:
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Theorem 1. For m ≥ 3 and p ≥ 4,

V (2,2,0,...,0)
m , . . . , V (2p−2,2,0,...,0)

m

are not components of Fp ⊗R C so that we have

Fp ⊗R C =
∑

(u,v)∈4p2 ;u,v even

V (u,v,0,...,0)
m .

For m = 3 and p = 4 this was proved by Muto in [6] by explicit tensor
computation. Our method is geometric; it uses eigenmaps and their effect on
conformal fields and, in fact, it provides an analytic and geometric description
of the eigenmaps parametrized by the components in (5). For the proof, we need
three technical tools. First, in Section 2, we describe two operators on eigenmaps
that raise and lower the degree. These have been studied in [8, 9] but our ap-
proach here concentrates on the connection between the degree raising-lowering
operators and the DoCarmo-Wallach differential operator used to decompose the
tensor product Hp⊗Hq leading to (2). The second tool, given in Section 3, is to
study the effect of eigenmaps on conformal fields. This reduces the whole prob-
lem to finding, for fixed m and p, a single eigenmap f : Sm → SV which satisfies
a harmonicity property of a quadratic form in the derivatives of the components
of f . As for the third tool, in Section 4 we show how the nonhomothetic property
of an eigenmap can be carried over to eigenmaps of higher degree. Finally the
examples needed to finish the proof of Theorem 1 are worked out in Section 5.

Acknowledgement. The author is indebted to Hillel Gauchman for his
generous help in providing some examples in Section 5 to complete the proof
of Theorem 1, and to the referee for pointing out improvements on the original
manuscript.

2. Raising and lowering the degree. To decompose S2(Hp) into irre-
ducible components, DoCarmo and Wallach [3,12] first derived the recurrence
formula

Hp ⊗Hq =

p∑
r=0

V (p+q−r,r,0,...,0)
m ⊕

(
Hp−1 ⊗Hq−1

)
, p ≥ q ≥ 1, m ≥ 3.(2.6)

(In what follows, for notational simplicity, we denote Hp and its complexification
by the same symbol. Since the representations we encounter here are absolutely
irreducible, this will not lead to confusion.) The key role in the proof is played
by the differential operator

D : Hp ⊗Hq → Hp−1 ⊗Hq−1
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defined by

D(h⊗ h′) =

m∑
i=0

∂h

∂xi
⊗
∂h′

∂yi
.

In fact, Young’s theory applied to kerD gives the first summand on the right-
hand-side of (6) and surjectivity of D is established by a careful induction ar-
gument with respect to m using the Branching Rule restricting representations
from SO(m+ 1) to the subgroup SO(m).

Setting p = q, we first describe the restriction D|Lp in terms of eigenmaps.
Let H denote the harmonic projection operator [10]. H is the orthogonal pro-
jection from the vector space Pp of homogeneous polynomials in m+ 1 variables
of degree p onto the linear subspace of harmonic polynomials.

Let f : Sm → SV be a λp-eigenmap. We define the p-forms

f± : Rm+1 → V ⊗H1

by

f+ =

√
λ2p

2λp

m∑
i=0

H(xif)⊗ yi and f− =

√
2

λ2p

m∑
i=0

∂f

∂xi
⊗ yi.(2.7)

The harmonic projection formula

H(xif) = xif −
ρ2

2p+m− 1

∂f

∂xi
, ρ2 = |x|2,(2.8)

along with homogeneity of f easily implies that f± are spherical so that we
obtain eigenmaps

f± : Sm → SV⊗H1

with eigenvalue λp±1.

Theorem 2. Let f : Sm → SV be a full eigenmap with eigenvalue λp.
Then we have

D(〈f〉) =

(
λ2p

2

)
〈f−〉

and

D>(〈f〉) = (p+ 1)2

(
λ2p

2λp

)
〈f+〉.

The proof will be accomplished is several steps. We first claim that f±p
∼= fp±1.

Indeed, since the Laplace operator commutes with the isometries on Sm it also
commutes with the harmonic projection operator H. It follows that f±p : Sm →
SHp⊗H1 are equivariant with respect to the SO(m + 1)-module structure on
Hp ⊗ H1. This translates into 〈f±p 〉 ∈ L

p±1 being left fixed by SO(m + 1).
Since Ep±1 have no trivial summands, 〈f±p 〉 correspond to the origin and the
equivalence follows.
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To make this equivalence explicit, we introduce the SO(m+1)-module mono-
morphisms

ι± : Hp±1 → Hp ⊗H1

by

ι−(h′) = c−p

m∑
i=0

H(xih
′)⊗ yi, h′ ∈ Hp−1,

and

ι+(h′′) = c+p

m∑
i=0

∂h′′

∂xi
⊗ yi, h′′ ∈ Hp+1,

where the requirement

ι>±ι± = I(2.9)

determines the value of the constants c±p . We now have

ι±(fp±1(x)) = f±p (x), x ∈ Sm.(2.10)

Indeed, the linear span of the image of f±p in Hp ⊗ H1 is a copy of Hp±1. By

(6), Hp ⊗ H1 = Hp−1 ⊕ Hp+1 ⊕ V (p,1,0,...,0), in particular, the multiplicities
m[Hp±1 : Hp ⊗H1] = 1 and (10) follows.

Let f : Sm → SV be a full eigenmap with eigenvalue λp. Setting f = A ◦ fp,
we have f± = (A⊗ I)f±p . Thus, by (9), we have

〈f±〉 = ι>±(A> ⊗ I)(A⊗ I)ι± − I

= ι>±((A>A− I)⊗ I)ι±

= ι>±(〈f〉 ⊗ I)ι±.

In view of this we define

Φ±p : S2(Hp)→ S2(Hp±1)

by
Φ±p (C) = ι>± ◦ (C ⊗ I) ◦ ι±.

Clearly, Φ± are homomorphisms of SO(m + 1)-modules. The previous compu-
tation amounts to

Φ±p (〈f〉) = 〈f±〉,

in particular, Φ±p (Lp) ⊂ Lp±1.
To complete the proof of Theorem 2, we show that, on S2(Hp),

D =

(
λ2p

2

)
Φ−p(2.11)
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and

D> = (p+ 1)2

(
λ2p

2λp

)
Φ+
p .(2.12)

Combining these with the results of DoCarmo and Wallach, we obtain the fol-
lowing:

Theorem 3. Φ+
p is injective and restricts to an equivariant imbedding of

Lp into Lp+1. Φ−p is surjective with (complexified) kernel

[|p/2|]∑
r=0

V (2p−2r,2r,0,...,0)
m .

For the forthcoming computations we need the following identities:〈
h,
∂h′′

∂xi

〉
= µp〈H(xih), h′′〉,(2.13)

ι>−(h⊗ yi) =

√
2

λ2p

∂h

∂xi
,(2.14)

ι>+(h⊗ yi) =

√
λ2p

2λp
H(xih),(2.15)

where h ∈ Hp, h′′ ∈ Hp+1 and

µp = (p+ 1)
λ2p

2λp
.

(13) can be obtained by direct integration using the fact that spherical harmonics
of different order are L2-orthogonal. (14)-(15) are direct consequences of (13).
Indeed, take the scalar product of both sides of (10) with h⊗ yi and transpose.
(To indicate a different proof, first note that h 7→ H(xih), h ∈ Hp, defines
an SO(m + 1)-module homomorphism of Hp ⊗ H1 onto Hp+1. By (6), this
homomorphism is a constant multiple of ι>+. The same applies to (14). Now (13)
follows from (14) or (15).) Finally, note that (14)-(15) combined with (9) gives
the value of c±p as:

c+p =
1

p+ 1

√
2λp
λ2p

and c−p =
p√
λ2p/2

λ2(p−1)

2λp−1
.(2.16)

Turning to the proof of (11), we let C ∈ S2(Hp) and compute

D(C) = D
( n(p)∑
j,`=0

cj`f
j
p ⊗ f

`
p

)
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=
m∑
i=0

n(p)∑
j,`=0

cj`
∂f jp
∂xi
⊗
∂f `p
∂yi

=
m∑
i=0

n(p)∑
j,`=0

n(p−1)∑
r,s=0

cj`

〈
∂f jp
∂xi

, frp−1

〉〈
∂f `p
∂yi

, fsp−1

〉
frp−1 ⊗ f

s
p−1

= µ2
p−1

m∑
i=0

n(p−1)∑
r,s=0

〈C(H(xif
r
p−1)), H(yif

s
p−1)〉frp−1 ⊗ f

s
p−1

= µp−1

m∑
i=0

n(p−1)∑
r,s=0

〈
∂

∂xi
C(H(xif

r
p−1)), fsp−1

〉
frp−1 ⊗ f

s
p−1.

Thus

D(C)(h′) = µp−1

m∑
i=0

∂

∂xi
C(H(xih

′)), h′ ∈ Hp−1.(2.17)

On the other hand,

Φ−p (C)(h′) = ι>−(C ⊗ I)ι−(h′)

= (pλ2(p−1)/(λ2pλp−1))

m∑
i=0

∂

∂xi
C(H(xih

′)).

Comparing this with (17), we find that (11) follows.

Finally, we prove (12) by showing that, up to a constant multiple, Φ+ is the
transpose of Φ−. We compute, for C ∈ S2(Hp) and C ′ ∈ S2(Hp−1):

〈Φ−p (C), C ′〉 =

n(p−1)∑
l=0

〈(ι>−(C ⊗ I)ι−)f `p−1, C
′f `p−1〉

=

(
pλ2(p−1)

λ2pλp−1

) m∑
i=0

n(p−1)∑
l=0

〈
∂

∂xi
(C(H(xif

`
p−1)), C ′f `p−1

〉

=

(
pλ2(p−1)

λ2pλp−1

) m∑
i=0

n(p)∑
j=0

n(p−1)∑
l=0

〈H(xif
`
p−1), f jp 〉

〈
∂

∂xi
(Cf jp), C ′f `p−1

〉

=

(
2

λ2p

) m∑
i=0

n(p)∑
j=0

n(p−1)∑
l=0

〈
f `p−1,

∂f jp

∂xi

〉〈
∂

∂xi
(Cf jp), C ′f `p−1

〉
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=

(
p2

λ2p

)(
λ2(p−1)

λp−1

) m∑
i=0

n(p)∑
j=0

〈ι+(Cf jp), (C ′ ⊗ I)ι+f
j
p 〉

=

(
p2

λ2p

)(
λ2(p−1)

λp−1

)
〈C,Φ+

p−1(C ′)〉.

Thus, (12) follows.

3. Conformal fields and eigenmaps. Let f : Sm → SV be a full eigen-
map with eigenvalue λp. We define the symmetric 2-tensor Ψ(f) on Sm by

Ψ(f)(X,Y ) = 〈f∗(X), f∗(Y )〉 −

(
λp
m

)
〈X,Y 〉,(3.18)

where X and Y are vector fields on Sm. By definition, Ψ(f) = 0 iff f is ho-
mothetic. In what follows, unless stated otherwise, we will always consider f
a harmonic p-form f : Rm+1 → V . Then (18) defines Ψ(f) as a symmetric
2-tensor on Rm+1.

We now restrict Ψ(f) to conformal fields on Sm. Given a ∈ Rm+1, the
conformal field Xa is a vector field on Sm defined by

(Xa
x )̌ = a− 〈a, x〉x, x ∈ Sm.

Setting Ψ(f)(a, b) = Ψ(f)(Xa, Xb), we obtain that Ψ(f)(a, b) = 0 for all a, b ∈
Rm+1, iff f is homothetic. This is because pointwise the conformal fields span
each tangent space.

We now extend the conformal field Xa to Rm+1 by

(Xa
x )̌ = a−

〈a, x〉

ρ2
x, x ∈ Rm+1, ρ2 = |x|2(3.19)

and, on Rm+1, define

Ψ(f)(a, b) = 〈f∗(X
a), f∗(X

b)〉 −

(
λp
m

)
〈Xa, Xb〉ρ2(p−1).

Lemma 1. Given a, b ∈ Rm+1, Ψ(f)(a, b) is a homogeneous polynomial of
degree 2p− 2.

Proof. Let ∂a, a ∈ Rm+1, denote the directional derivative at a. We claim
that

Ψ(f)(a, b) = −〈f, ∂a∂bf〉+ p(p− 1)(3.20)

×

((
1 +

1

m

)
〈a, x〉〈b, x〉 −

(
1

m

)
〈a, b〉ρ2

)
ρ2(p−2).
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Lemma 1 clearly follows from this. This formula will be a useful computational
tool in the sequel; note for example that the coefficient of ρ2(p−2) is harmonic.
Turning to the proof of (20), we first note that

f∗(X
a)̌ = ∂af − p

〈a, x〉

ρ2
f.

and

〈f, ∂af〉 =
1

2
∂a|f |

2

=
1

2
∂aρ

2p = p〈a, x〉ρ2(p−1).

Using these, straightforward computation gives

Ψ(f)(a, b) = 〈∂af, ∂bf〉+

(
λp
m
− p2

)
〈a, x〉〈b, x〉ρ2(p−2)(3.21)

−

(
λp
m

)
〈a, b〉ρ2(p−1).

Finally, we have
〈∂af, ∂bf〉 = −〈f, ∂a∂bf〉+ ∂a〈f, ∂bf〉.

We now work out the second term on the right-hand-side to arrive at (20). �

Lemma 1 can be reformulated by saying that, for any full eigenmap f : Sm →
SV with eigenvalue λp, Ψ(f) defines a symmetric bilinear map

Ψ(f) : H1 ×H1 → P2p−2,

where, as usual, we identify Rm+1 with H1. We now notice that Ψ(f) depends
only on the equivalence class of f . Indeed, setting f = A ◦ fp and using that fp
is homothetic, i.e. it satisfies (1), we compute

Ψ(f)(X,Y ) = 〈A(fp)∗(X )̌ , A(fp)∗(Y )̌ 〉

− 〈(fp)∗(X )̌ , (fp)∗(Y )̌ 〉

= 〈(A>A− I)(fp)∗(X )̌ , (fp)∗(Y )̌ 〉

= 〈〈f〉(fp)∗(X )̌ , (fp)∗(Y )̌ 〉.

In view of this, for C ∈ Ep, we define

Ψ(C) : H1 ×H1 → P2p−2

by
Ψp(C)(a, b) = 〈C(fp)∗(X

a)̌ , (fp)∗(X
b)̌ 〉, a, b ∈ H1.
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Lemma 2. We have

Ψ(C)(a, b) = 〈∂aCfp, ∂bfp〉.(3.22)

Proof. This follows from (21) by taking the difference Ψ(f)(a, b)−Ψ(fp)(a, b),
where the second term is zero because fp is homothetic. �

Lemma 3. We have

4p−1Ψ(C)(a, b) = 0.

Proof. The components of f are harmonic homogeneous polynomials of de-
gree p. Thus

4p−1Ψ(C)(a, b) = 2p−1
m∑

i1,...,ip−1=0

〈
C∂a

∂p−1f

∂xi1 . . . ∂xip−1

, ∂b
∂p−1f

∂xi1 . . . ∂xip−1

〉

= 2p−2∂a∂b

m∑
i1,...,ip−1=0

〈
C

∂p−1f

∂xi1 . . . ∂xip−1

,
∂p−1f

∂xi1 . . . ∂xip−1

〉
=

1

2
∂a∂b4

p−1〈Cf, f〉 = 0. �

Lemma 4. Ψ(C) is traceless.

Proof. Setting a = b = ei in (20) and summing up with respect to i =
0, . . . ,m, the statement follows from the harmonicity of f . �

We now introduce the notation

P2q
0 = {ψ ∈ P2q | 4qψ = 0}.

Lemma 3 says that, for C ∈ Ep, Ψ(C) defines a linear map

Ψ(C) : S2(H1)→ P2p−2
0 .

Moreover, the trivial summand in the decomposition

S2(H1) = H0 ⊕H2

corresponds to the trace so, using Lemma 4, we finally arrive at the linear map

Ψ(C) : H2 → P2p−2
0 .

Equivalently, we will think of Ψ(C) as an element of P2p−2
0 ⊗H2.
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Lemma 5. For g ∈ SO(m+ 1), we have

Ψ(g · C)(g·a, g·b) = Ψ(C)(a, b) ◦ g−1.

Proof. This is again a straightforward computation in the use of equivariance
of fp. Since Lp spans Ep, we can also take C = 〈f〉 with f : Sm → SV a full
eigenmap with eigenvalue λp. Then the claim reduces to

Ψ(f ◦ g−1)(g·a, g·b) = Ψ(f)(a, b) ◦ g−1.(3.23)

We now use

g−1
∗ (Xga)x̌ = g−1(ga− 〈ga, x〉x)

= a− 〈a, g−1x〉g−1x = (Xa)̌ g−1x, x ∈ Sm.

and arrive at (23)
By Lemma 5, we obtain that the correspondence C 7→ Ψ(C) defines a homo-

morphism
Ψ : Ep → P2p−2

0 ⊗H2

between SO(m+ 1)-modules. We now decompose

P2p−2
0 =

p−1∑
`=1

H2`ρ2(p−`−1)(3.24)

into irreducible SO(m+ 1)-modules. By (6), for each ` = 1, . . . , p− 1, we have

H2` ⊗H2 =
∑

(u,v)∈4(2`,2)
0 ;u,v integer

V (u,v,0,...,0)
m ,(3.25)

where 4(2`,2) has vertices (2`−2, 0), (2`, 2) and (2`+2, 0). The only common

term in (3) and (25) is V
(2`,2,0,...,0)
m . On the other hand

ker Ψ = Fp

so that the lower estimate (4) of DoCarmo and Wallach follows immediately.

Moreover, for ` = 1, . . . , p − 1, V
(2`,2,0,...,0)
m 6⊂ Fp iff Ψ|V (2`,2,0,...,0)

m 6= 0 iff Ψ is

injective on V
(2`,2,0,...,0)
m .

Remark 1. DoCarmo and Wallach used Frobenius Reciprocity to prove that
a lower bound for Fp is given by the sum of those irreducible components of Ep

which, when restricted to SO(m)(⊂ SO(m+1)), contain no copies ofH0 andH2.
Applying the Branching Rule to the components of Ep they arrived at (4). The
method above gives an alternative way to prove (4) without the use of induced
representations. Note also that again by the work of DoCarmo-Wallach, (3) can
be obtained without the use of Frobenius Reciprocity. Another proof of (3) will
be indicated at the end of Section 4.
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Remark 2. By Theorem 1, the image of Ψ : Ep → P2p−2
0 ⊗H2 is

p−1∑
`=1

V (2`,2,0,...,0)
m .

For fixed ` = 1, . . . , p− 1, consider H2`⊗H2 as an SO(m+ 1)-submodule of the
Weyl’s space ⊗2`+2C of tensors of rank 2` + 2 (cf. [3, 12]). The kernel of D in
H2`⊗H2 is the SO(m+1)-submodule of tensors whose contraction with respect

to any two arguments is zero. Finally, V
(2`,2,0,...,0)
m ⊂ kerD corresponds to the

Young tableau Σ(2`,2) with two rows of row lengths 2l and 2 (cf. again [3,12]).
Theorem 1 implies that given a traceless symmetric bilinear map Ψ : H1×H1 →
H2` sufficiently close to zero such that Ψ possesses the symmetries prescribed
by the Young symmetrizer corresponding to Σ(2`,2), there exists a full eigenmap
f : Sm → Sn (actually, n = n(p)) with eigenvalue λp such that Ψ = Ψ(f).

Moreover f can be made unique by requiring 〈f〉 ∈ V (2`,2,0,...,0)
m .

Let C ∈ Ep and decompose

C =
∑

(u,v)∈4p1 ;u,v even

Cu,v

as in (3). Then

Ψ(C) =

p−1∑
`=1

Ψ(C2`,2)

and, for a, b ∈ H1, Ψ(C2`,2)(a, b) is the harmonic homogeneous polynomial of
degree 2` multiplied by ρ2(p−`−1) as in (24). Summarizing, we arrive at the
following:

Theorem 4. Let C ∈ Ep and write

Ψ(C)(a, b) =

p−1∑
`=1

ha,b` ρ2(p−`−1).(3.26)

If, for some a, b ∈ H1, we have ha,b` 6= 0 then

V (2`,2,0,...,0)
m 6⊂ Fp ⊗R C.

Theorem 4 thus reduces the exact dimension conjecture to finding, for each
m ≥ 3 and p ≥ 4, an eigenmap f : Sm → SV with eigenvalue λp such that, for
C = 〈f〉, the harmonic coefficients in (26) are nonzero.
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4. Conformal fields and raising and lowering the degree. We write
Ψp = Ψ : Ep → P2p−2 ⊗H2 to indicate the dependence of Ψ on p.

Theorem 5. For C ∈ Ep, we have

Ψp+1(Φ+
p (C))(a, b) =

λ4/4

λp/p
Ψp(C)(a, b)ρ2(4.27)

+
p2

λpλ2p
4(Ψp(C)(a, b))ρ4

and
4(Ψp(C)(a, b)) = λ2pΨp−1(Φ−p (C)(a, b)).(4.28)

Corollary 1. Let 1 ≤ ` ≤ p − 1. Then V
(2`,2,0,...,0)
m 6⊂ Fp ⊗R C iff

V
(2`,2,0,...,0)
m 6⊂ Fq ⊗R C for (some or) all q ≥ p.

Proof of Corollary 1. Without loss of generality, we set q = p+1. Assume

V
(2`,2,0,...,0)
m ⊂ ker Ψp+1. By (28), we have V

(2`,2,0,...,0)
m ⊂ ker (Ψp◦Φ−p+1) so that

V
(2`,2,0,...,0)
m ⊂ ker (Ψp◦Φ

−
p+1◦Φ

+
p ). On the other hand, by Theorem 3, Φ−p+1◦Φ

+
p

is an isomorphism on V
(2`,2,0,...,0)
m for 0 ≤ ` ≤ p−1 so that V

(2`,2,0,...,0)
m ⊂ ker Ψp.

The proof of the converse is analogous (in the use of (27)). �

A general rigidity theorem of DoCarmo and Wallach asserts that any homo-
thetic minimal immersion f : Sm → SV with homothety λp/m is equivalent to
the standard minimal immersion if p ≤ 3. This means that, for p ≤ 3, Fp is
trivial. Corollary 1 then gives:

Corollary 2. For m ≥ 3 and p ≥ 3,

V (2,2,0,...,0)
m and V (4,2,0,...,0)

m

are not components of Fp.

Remark. The exact dimension problem is equivalent to Ψp|V
(2p−2,2,0,...,0)
m 6=

0, for all p ≥ 4, since we can then use induction with respect to p.

Proof of Theorem 5. We work out only (27) since the proof of (28) is
entirely analogous and technically much simpler. Using (22), we have

Ψp+1(Φ+
p (C)(a, b)) = 〈(C ⊗ I)((f+

p )∗X
a)̌ , ((f+

p )∗X
b)̌ 〉.(4.29)

By homogeneity, we have

((f+
p )∗X

a
x )̌ = Xa

x(f+
p ) = ∂a(f+

p )− (p+ 1)

(
1

ρ2

)
〈a, x〉f+

p .
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Substituting this back to (29) and using

〈(C ⊗ I)f+
p , f

+
p 〉 = 〈Φ+

p (C)fp+1, fp+1〉 = 0

we arrive at

Ψp+1(Φ+
p (C)(a, b)) = 〈(C ⊗ I)∂af

+
p , ∂bf

+
p 〉

=

(
λ2p

2λp

) m∑
i=0

〈∂aH(xi(Cfp)), ∂bH(xifp)〉.

Differentiating the harmonic projection formula (8), for h ∈ Hp, we have

∂aH(xih) = aih+ xi∂ah−

(
4p

λ2p

)
〈a, x〉

∂h

∂xi
(4.30)

−

(
2p

λ2p

)
ρ2 ∂(∂ah)

∂xi
.

For h = Cfp, we write the four terms on the right-hand-side as A1+A2+A3+A4.
Replacing a with b, for h = fp, we write this sum as B1+B2+B3+B4. It remains

to compute
∑4
r,s=1〈Ar, Bs〉, where summation with respect to i = 0, . . . ,m has

been suppressed. This we do term by term as follows:

〈A1, B1〉 = 〈a, b〉〈Cfp, fp〉 = 0;

〈A1, B2〉 = 〈a, x〉〈Cfp, ∂bfp〉

=
1

2
〈a, x〉〈Cfp, fp〉 = 0;

〈A1, B3〉 = −

(
4p

λ2p

)
〈b, x〉〈Cfp, ∂afp〉 = 0;

〈A1, B4〉 = −

(
2p

λ2p

)
〈fp, ∂a∂bfp〉ρ

2

=

(
2p

λ2p

)
〈∂aCfp, ∂bfp〉ρ

2

=

(
2p

λ2p

)
Ψp(C)(a, b)ρ2;

〈A2, B2〉 = Ψp(C)(a, b)ρ2;

〈A2, B3〉 = −

(
4p2

λ2p

)
〈b, x〉〈∂aCfp, fp〉 = 0;

〈A2, B4〉 = −

(
2p(p− 1)

λ2p

)
〈∂aCfp, ∂bfp〉ρ

2
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= −

(
2p(p− 1)

λ2p

)
Ψp(C)(a, b)ρ2;

〈A3, B3〉 =

(
16p2

λ2
2p

)
〈a, x〉〈b, x〉

m∑
i=0

〈
∂(Cfp)

∂xi
,
∂fp
∂xi

〉

=

(
8p2

λ2
2p

)
〈a, x〉〈b, x〉4〈Cfp, fp〉 = 0;

〈A3, B4〉 =

(
8

λ2
2p

)
〈a, x〉

m∑
i=0

〈
∂(Cfp)

∂xi
,
∂(∂bfp)

∂xi

〉
ρ2 = 0;

〈A4, B4〉 =

(
4p2

λ2
2p

)
m∑
i=0

〈
∂(∂afp)

∂xi
,
∂(∂bfp)

∂xi

〉
ρ4

=

(
2p2

λ2
2p

)
4(Ψp(C)(a, b))ρ4.

Putting these together, (27) follows.

Remark. The idea in Section 3 can be used to prove (3). Indeed, for a
full harmonic p-form f : Rm+1 → V , we define Ψ0(f) = |f |2 − ρ2p ∈ P2p.
Clearly, Ψ0(f) depends only on the equivalence class of f . Setting f = A ◦ fp,
we obtain Ψ0(f) = 〈Cfp, fp〉, where C = A>A − I ∈ S2(Hp). Adopting this as
the definition of Ψ0 on S2(Hp), we obtain a homomorphism Ψ0 : S2(Hp)→ P2p

of SO(m + 1)-modules with ker Ψ0 = Ep. Once we prove that Ψ0 is onto, (3)
will follow, since P2p =

∑p
`=0H

2`ρ2(p−`). We now take f : Rm+1 → R given
by f(x) = H(xp0). Computation in the use of the harmonic projection formula
shows that Ψ0(f) = H(xp0)2 − ρ2p has nonzero component in H2p. Finally, we
use induction with respect to p along with the analogue of Theorem 5.

5. Examples. Case I. m = 2m0 + 1 is odd. The advantage here is that we
can use complex terminology. All eigenmaps will be of the form f : S2m0+1 →
S2n0+1 and we assume that f is the restriction of a spherical harmonic p-form
f : Cm0+1 → Cn0+1, p ≥ 4, with components f j , j = 0, . . . , n0, where f j is a
complex polynomial in the variables z0, z̄0, . . . , zm0

, z̄m0
(of (combined) degree

p).

We first derive an expression for Ψ(f)(a, b). For our purposes, it will be
sufficient to locate the components of Ψ(f)(a, b) in H2p−2 and H2p−4ρ2. Hence,
in the computations below we will use congruences mod ρ4. Finally, we need only
to consider a = e0 = (1, 0, . . . , 0) and b = e1 = (i, 0, . . . , 0) in Cm0+1. Setting
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zj = xj + iyj , j = 0, . . . ,m0, we have

∂e0∂e1 =
∂2

∂x0∂y0
= i

(
∂2

∂z2
0

−
∂2

∂z̄2
0

)
.

We now compute

Ψ(f)(e0, e1) ≡
n0∑
j=0

=

(
f̄ j
(
∂2f j

∂z2
0

−
∂2f j

∂z̄2
0

))

≡
n0∑
j=0

=

(
∂2f j

∂z2
0

f̄ j + f j
∂2f̄ j

∂z2
0

)

≡
n0∑
j=0

=

(
∂2

∂z2
0

|f |2 − 2
∂f j

∂z0

∂f̄ j

∂z0

)

≡ −2

n0∑
j=0

=

(
∂f j

∂z0

∂f̄ j

∂z0

)
( mod ρ4).(5.31)

The last congruence is because

∂2|f |2

∂z2
0

=
∂2ρ2p

∂z2
0

= p(p− 1)ρ2(p−2)z̄2
0

and this is a multiple of ρ4 for p ≥ 4. Note that the main advantage of (31) is
that the holomorphic and antiholomorphic components of f cancel.

Theorem 6. Given m = 2m0 + 1 odd and p = 2q even, q ≥ 2, there exists
a full eigenmap f : S2m0+1 → S2N−3, N =

(
m+p
p

)
, with eigenvalue λp such that,

in the decomposition

Ψ(f)(e0, e1) =

p−1∑
`=1

hlρ
2(p−`−1)

we have
hp−1 6= 0 and hp−2 6= 0.

Applying Theorem 4, we obtain

V
(2p−2,2,0,...,0)
2m0+1 , V

(2p−4,2,0,...,0)
2m0+1 6⊂ Fp ⊗R C

and so, induction with respect to q in the use of Corollary 1 gives Theorem 1 for
m odd.

Proof of Theorem 6. We start with the complex Veronese map Fp : S2m0+1 →
S2N−1, given by

Fp(x) =

(√
p!

i0! . . . im!
zi00 . . . zimm

)
i0+...+im=p; i0,...,im≥0

.
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By (31), Ψ(Fp)(e0, e1) ≡ 0 ( mod ρ4), so we need to modify Fp. This we will
do by replacing three components of Fp by two spherical harmonics of order p.
From now on we assume that p = 2q is even. The components to be deleted are

(32)

√
(2q)!

(q − 1)!(q + 1)!
zq−1

0 zq+1
1 ,

√
(2q)!

(q − 1)!(q + 1)!
zq+1

0 zq−1
1 , and√

(2q)!

q!
zq0z

q
1

and the components to be added are√
(2q)!

(q − 1)!(q + 1)!
(|z0|

2 − |z1|
2)zq−1

0 zq−1
1 and

√
3q + 1

q + 1

√
(2q)!

q!
zq0z

q
1 .(5.33)

Since the sum of squares of the absolute values of the terms in (32) is the same
as in (33), we obtain a full eigenmap f : S2m0+1 → S2N−3 with eigenvalue
λ2q. It remains to determine Ψ(f)(e0, e1) modulo ρ4. Since f has only one
nonholomorphic component, the right-hand-side of (31) reduces to a single term.
Differentiating, we obtain

Ψ(f)(e0, e1) ≡
2(2q)!

(q − 1)!(q + 1)!
=(qψq−1,q−1 − (q − 1)ψq−2,q)( mod ρ4),(5.34)

where
ψk,`(z) = z2

0 |z0|
2k|z1|

2`, k, ` ≥ 0.

Using the complex form of the Laplacian

4ψk,` = 4(k(k + 2)ψk−1,` + `2ψk,`−1),

where we agree that ψk,` with a negative subscript is zero. ψk,` has degree
2(k + `+ 1). The harmonic projection formula then gives

ψk,` ≡ H(ψk,`) +
ρ2

4(2(k + `+ 1) +m0 − 1)
H(4ψk,`)

≡ H(ψk,`) +
ρ2

2(k + `) +m0 + 1
(k(k + 2)H(ψk−1,`) + `2H(ψk,`−1)) ( modρ4).

Substituting this back to (34), we arrive at

(q + 1)!(q − 1)!

2(2q)!
Ψ(f)(e0, e1) ≡ qH(=ψq−1,q−1)− (q − 1)H(=ψq−2,q)

+
q(q − 1)

4(q − 1) +m0 + 1

(
H(=ψq−2,q−1)

+ (q − 1)H(=ψq−1,q−2)− (q − 2)H(ψq−3,q)

)
( mod ρ4).
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To complete the proof, we need to show that

qH(=ψq−1,q−1)− (q − 1)H(=ψq−2,q) 6= 0,(5.35)

and

H(=ψq−2,q−1) + (q − 1)H(=ψq−1,q−2)− (q − 2)H(=ψq−3,q) 6= 0.(5.36)

We prove (35); the verification of (36) is analogous. Assuming the contrary of
(35) means that there exists a polynomial ϕ such that

q=ψq−1,q−1 − (q − 1)=ψq−2,q = ρ2ϕ,

or in coordinates

=(z2
0)(q|z0|

2 − (q − 1)|z1|
2)|z0|

2(q−2)|z1|
2(q−1) = (|z0|

2 + . . .+ |zm0
|2)ϕ.

Clearly m0 = 1. Dividing by the irreducible factors (over R), this reduces to

q|z0|
2 − (q − 1)|z2

1 = c(|z0|
2 + |z1|

2)

where c ∈ C. This is impossible so that Theorem 6 follows. �

Case II. m = 2(m0 + 1) is even. Although the following argument works
in both cases, it gives an example only implicitly. For this reason, we saw
no harm splitting the treatment into two cases. Moreover, to construct the
example here, we use some of the computations of Case I. First we note that
the components of the eigenmaps we consider here are complex valued spherical
harmonics (of real or complex variables). To imitate Case I, we single out the
first four real coordinates x0, x1, x2, x3 and rewrite them in terms of z0 = x0+ix1

and z1 = x2 + ix3 and their conjugates.

Lemma 6. For each m = 2(m0 + 1) and p = 2q even, there exists a full
eigenmap F : S2(m0+1) → Sn with eigenvalue λp which contains (a constant
multiple of)

zq−1
0 zq+1

1 and zq+1
0 zq−1

1 .(5.37)

Proof. We use induction with respect to q. For q = 1, we define F :
S2(m0+1) → Sn by

F (z, t) =

(
z2

0 , . . . , z
2
m0
, (
√

2zizj)0≤i<j≤m0
,√

2 +
2

m+ 1
tz0, . . . ,

√
2 +

2

m+ 1
tzm0

,

t2 −
(|z0|2 + . . .+ |zm0

|2)

m0 + 1

)
,
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where z = (z0, . . . , zm0
) ∈ Cm0+1 and t ∈ R. For the general induction step,

assume that for fixed q an eigenmap F with two of its coordinates as in (37)
exists. We now raise the degree twice and consider (F+)+. For r, s = 0, 1, 2, 3,
(up to a constant multiple) it certainly contains

H(xrH(xsz
q±1
0 zq∓1

1 )) = H(xrxsz
q±1
0 zq∓1

1 ).

Now, in general, if ψ′ and ψ′′ are components of an eigenmap, then replacing
them by (1/

√
2)(ψ′ + ψ′′) and (1/

√
2)(ψ′ − ψ′′) gives a new eigenmap. Thus,

modifying (F+)+, we arrive at an eigenmap wich contains

H(<(z0z1)zq±1
0 zq∓1

1 ) and H(=(z0z1)zq±1
0 zq∓1

1 ).

Again, in general, if ψ′ and ψ′′ are components of an eigenmap, then replac-
ing them by (1/

√
2)(ψ′ + iψ′′) and (1/

√
2)(ψ′ − iψ′′) gives a new eigenmap.

Applying this to the situation above we arrive at the eigenmap claimed in the
lemma. (Note that the harmonic projection operator can now be omitted since
the corresponding polynomials are holomorphic).

We now restart with F : S2(m0+1) → Sn as in the lemma and replace the two
components in (37) by

(|z0|
2 − |z1|

2)zq−1
0 zq−1

1 and zq0z
q
1 .

with suitable constant multiples. We denote by f the eigenmap thus obtained.
(Note that the coefficients of (37) in F are equal.) We are now in the situation
of Case I to apply (31) to the difference

Ψ(f)(e0, e1)−Ψ(F )(e0, e1).

We obtain that (again up to a constant multiple) this difference has nonvanishing
harmonic coefficients hp−1 and hp−2. Now the argument used in Case I applies
since either f or F has the required nonvanishing property. Theorem 1 follows.

Remark. The role of the spherical harmonic

(|z0|
2 − |z1|

2)zq−1
0 zq−1

1

is crucial. We realized this (after many searches among the classical eigenmaps)
when we worked out the components of the quartic eigenmap f : S7 → S7

obtained by lifting the Hopf map h : S3 → S2 to a quadratic eigenmap h̃ : S4 →
S7 and precomposing it with the quaternionic Hopf map.
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