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Abstract. We describe a general method of manufacturing new minimal immersions between round
spheres out of old ones. The resulting spherical minimal immersionsare given analyticaly interms of
the harmonic projection operator and have higher source dimensions. Applied to classical examples,
this gives an abundance of new minimal immersions of even-dimensional spheres.
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1. Introduction and Preliminaries

An isometric immersion f:S;* — S™, m > 2, of the m-sphere of constant
curvature k into the unit n-sphere S™ = ST is said to be a spherical minimal
immersionif f isminimal, that isthemean curvatureof f vanishes. Each component
fi,5=0,...,n, of aspherical minimal immersion f is an eigenfunction of the
Laplacian on S} with eigenvalue m ([9]). Thus, k¥ = k, = m/\, for some
p > 1, where A\, = p(p + m — 1) isthe pth eigenvalue of the Laplacian acting on
functionsof S7". This suggests scaling the metric on the domain to curvature 1 and
considering aspherical minimal immersion f: S™ — S™, asahomothetic minimal
immersion with homothety X, /m. In terms of the differential f. of f, homothety
amounts to the condition

(f(X), £ (Y)) = (Ap/m)(X,Y) D

being satisfied for any vector fields X, Y on S™.

An eigenfunction of the Laplacian on S™ corresponding to the eigenvalue )\,
(or clasically, a spherical harmonic of order p on S™) is the restriction (to S™)
of a harmonic homogeneous polynomial (on R™*1) of degree p in the variables
20, - -+, Tm € R([13]). Thus, aspherical minimal immersionisaconformal immer-
sion f: 8™ — S™ that is the restriction of a harmonic homogeneous polynomial
map f:R™*1 — R"*1: amap whose components f7, j = 0, ..., n, are harmonic
homogeneous polynomials of a fixed degree. (By homogeneity the conformality
factor is constant and degree p corresponds to homothety A, /m.)
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The oldest example of a spherical minimal immersion is the Veronese map v :
52 — S§4. Itfactorsthrough the antipodal action and givesthewell-known Veronese
surface; the real projective plane imbedded minimally in S*. A straightforward
generalization (keeping p = 2) givesthe Veronesemapsw,, : ™ — §m(m+3)/2-1,
vz = v. Theseall sharethe property that the componentsof v,,, form an orthonormal
basis in the space of quadratic spherical harmonics. For further generalization, let
‘HP  denote the linear space of spherical harmonics of order p on S™. We make
P, Euclidean by endowing it with the normalized L?-scalar product

n(m,p) +1

) = =aiem) Jom

hh vgm, hh' €HE,

where

(m+p—2)!

n(m,p) +1l=dm#?l =(m+2p—1)————.
pl(m —1)!

2

We now take the elements of an orthonormal basis { f,g;,p};?;"g’p ) in 42, as com-
ponents of amap f,, , that, due to the large number of symmetries, turns out (see
[14]) to be a spherical minimal immersion f,,, ,: S™ — S™(™P) (with homothety
Ap/m); fm,2 = Um. Themap f, , is caled the standard minimal immersion; it is
uniquely determined up to congruence on the range. For fixed p and m, f,, , has
the largest range dimension among all full spherical minimal immersions. (Here
fullness means that the image spans the range linearly, or equivalently, the com-
ponents are linearly independent.) For p odd, £y, is an imbedding. For p even,
fm.p factorsthrough the antipodal action on .S™ and gives an imbedding of thereal
projective m-space into the sphere.

In 1967 Calabi [1] proved that any full spherical minimal immersion f: $% — S™
is standard. (This amounts to showing that n = n(2,p) = 2p for some p and
orthonormality of the componentsof f.) Using higher fundamental forms, in 1971
DoCarmo and Wallach [3] derived a general rigidity result which implies that, for
p < 3, any full spherical minimal immersion f: S™ — S™ with homothety X, /m
is standard. Moreover, their main result asserts that, for m > 3 and p > 4, the
space of full spherical minimal immersions f: ™ — S™ with homothety A, /m
(mod out by congruences on the ranges) is a compact convex body M? in a
nontrivial linear subspace F?, of the symmetric square S?(HZ%,). In fact, using
representation theory of the orthogonal group, they gave a (positive) lower bound
fordim(M?2,) = dim(F?,) whenm > 3andp > 4. Whether thislower bound was
exact remained unsolved until 1994 when, using acompletely different (analytical)
approach, the author [11] showed that the lower bound is the actual dimension.
The lowest nonrigid range . = 3 and p = 4 corresponds to the 18-dimensional
parameter space M3$. (This particular dimension was cal culated by Muto [8] using
explicit tensor calculus.) In 1996, Ziller and the author [12] proved that M3 isthe
convex hull of two linear slices corresponding to SU(2)- and SU(2)-equivariant
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spherical minimal immersions f: S — Sy, where SO(4) = SU(2) - SU(2)’ isthe
standard local product structure.

Although alot of effort has been made to obtain examples of spherical mini-
mal immersions, or equivalently, minimal isometric imbeddings of spherical space
forms into spheres, apart from the standard minimal immersions, examples are
known only for specific domain dimensions (and specific equivariance properties).
After aninitial example of Mashimo [6], [7] and some more by Wang and Ziller
[15] using ‘equivariant constructions’, a groundbreaking work of DeTurck and
Ziller [2] resulted in ahost of new spherical minimal immersions. Thelist is exten-
sive and shows that every homogeneous spherical space form admits a minimal
isometric immersion into a sphere. All these examples possess large groups of
symmetriesthat act transitively on the domain. In particular, and thisisrelevant for
this paper, all domains are odd dimensional. Using an entirely different approach,
Escher [4] subsequently derived a necessary condition for the existence of a min-
imal imbedding of (nonhomogeneous) three-dimensional spherical space forms.
In particular, the lens space L (5, 2) cannot be imbedded into any sphere using a
spherical minimal immersion with homothety A,/3if p < 28.

Apart from the standard minimal immersions, no examplesof spherical minimal
immersionsare known from even-dimensional domains. The objective of this paper
is to describe a very general method that associates to a set of spherical minimal
immersions from S™ a spherical minimal immersion from S+, More precisely,
we have:

THEOREM 1. Let m > 3 and p > 4. Given full spherical minimal immersions
fq: 8™ — S™ with homothety \,/m, ¢ = 1,...,p, there exists a full spherical
minimal immersion f: ™1 — SN, where N = 31 _;(n, + 1).

Remark 1. By rigidity, n, = n(m,q), forg =1,2,3.

Remark 2. A special caseof the construction hasbeen usedin[5] to study higher
fundamental forms of spherical minimal immersions.

Remark 3. It will beclear from the constructionthat if thereisacommon (finite)
symmetry group G C SO(m + 1) of al f,, thatis, f;0a = f,foral e € G and
q = 1,...,p, then, under the standard inclusion SO(m + 1) C SO(m + 2), G is
also asymmetry group of f.

According to aresult of [12], the possible range dimensions of full quartic (p = 4)
spherical minimal immersions f: S° — S™ are
n = 9,14, 15, 18,19, 20, 22, 23, 24.

Using Theorem 1, we obtain the following sequence of range dimensions for full
quartic minimal immersions f: §*4 — SV:

N = 39,44, 45,48, 49, 50, 52, 53, 54.
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Precomposition of spherical harmonicsand minimal immersionswithisometries
on S™ gives rise to compatible orthogonal SO(m + 1)-module structures on H?2,,
S?(HP ) and FP, with M2, C FP, being SO(m + 1)-invariant.

THEOREM 2. Let m > 3andp > 4. Thereexists a linear imbedding
i Fp X X FB 5 FP

that isequivariant with respect to the standard inclusion SO(m +1) C SO(m+2).
® restrictsto an equivariant imbedding

¢t M, x o x MB - MP

: , P
onto a linear slice of M},

2. Spherical Harmonics

Since construction of the new spherical minimal immersionswill use the harmonic
projection operator, in this section we summarize some well-known facts from the
theory of spherical harmonics ([13]). Let P% . ; denote the space of homogeneous
polynomialsof degreep inthevariablesxzy, . . . , z,,. Viewi ng aspheri cal harmonic
as a (harmonic) polynomial gives HP, C pr P Lettingr? = g+ - + a2, €
P2 41, With respect to the L2 scalar product on P? . ,, the orthogonal complement

m

of H?, in PP g1 1S r2. pP=2 mt1- The harmonic prOJ ection operator is the orthogonal

projection H : PP — HP (with kernel rzP” 1)- H can be expressed in terms of
powers of the Laplacian:

(lp/2]]
_ (=1)'A'g 2i
Hlg) = g—i—Z 241(2p+m — 3) .. (2p+m—22’—1)r ’

g€ Pm+1. 3

We now add the variable z,, 11 (replace . by m + 1) and consider h € H}, .,
Letting z = (zo, . .., zn), we have ([13])

‘T .’I‘m+1 Z xmi-glh 7” + ‘T72n—|—1)g(x7 *TM+1)7

where by € HY,, ¢ = 0,...,p, are uniquely determined by h. Taking harmonic
projection of both sides, we abtain the orthogonal decomposition

p

h($a$M+1) :Z ( nglh ( ))’ hq EHZ’Z’ q:O,...,m. (4)
q=0
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In terms of the spaces of spherical harmonics, this tranglates into
p
M alsomar) = Y Hih, (5)
q=0

where H{, means the image of =}, % #{, under the harmonic projection H. This
is legitimate since (being a homomorphism of SO(m + 1)-modules) H isinjective
on these subspaces.

In (4), all higher order Laplacians of 27 "%, h,(x) can be worked out explicitly

so that, using (3), we obtain
H(xfni-gth(x)) = Km,p,q(rzv xm+1)hq($)7 (6)

where K, , , is a polynomial in 72 and z,,1 and is independent of h,. More
explicitly, we have

Km,p,q(fﬂv Tny1) (7)

(p—q)!T(m/2+4q)
2r=1'(m/2 + p)

2 2 (p—q)/2 m/2+q Tm+1
X + G, —s |, 8
(r" + 27 41) =g ((7“2‘1‘11572714_1)1/2) ®

where I is the Gamma function and G is the Gegenbauer polynomial:
wn _ 2M(a+d) [,  d(d—1)
Galt) = d'T'(a) [ C 22(a+d—1)
d(d ~1)(d = 2)(d - 3) o]
24.1-2(a+d—1)(a+d—-2)
For fixed a, the normalized Gegenbauer polynomials

2
20-1p(g) (%) Git), d=0,1,...,

form an orthonormal system on the interval [—1, 1] with respect to the weight
(1 _ t2)a—1/2.

=24

_l’_

3. Decomposition of the Standard Minimal Immersion

Each component of the standard minimal immersion f,,1,: S™1 — gn(m+1p)
isin %ﬁwl which splits according to (5).

PROPOSITION. The standard minimal immersion fy, 1, : S™1 — gn(m+1p)

can bewritten as

fm1,p(%, Tmi1) = (Cm,p,qH(ng;glfm,q(x)))OSqu (fmo=1), 9)
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where

_ (P o mt+q=2)! [m(m+2)...(m+2p— 2)]2
,pq—<>(m+2q 1)(m+p—1)!m(m+1)...(m+p+q— )(10)

Remark. By definition, f,, o = 1.

Proof. For each ¢, we fix an orthonormal basis { fi: ,q} ) ¢ HZ and this
defines f,, ;. The proposition will now follow if we can shovv that the spherical
harmonicsin (8) are orthonormal. This amounts to working out the integral

H (a1 f5 4 (2)) H ( m+1fmq( ) )Vgm+1.

By (6)—7), in terms of the Gegenbauer polynomials, up to constant multiple, the
integrand rewrites as

[ @ @G5 @) G @i a)vsma,

Sm+l

We introduce the transformation -y : [0, 1] x S™ — S™*1 defined by
v(0,z) = (sinf - z,cos0 - |z]), €S, 0€[0,n].

This maps the cylinder [0, 7] x S™ to S™*+1 with 0 and = corresponding to the
North and South polesin S+ relative to the equator S™. The determinant of the
Jacobian of y being (—1)™|z| sin™ @, the integral transformsinto

./

/ Gm/2—|—q COSH)Gm/ +¢' (COSH)SInm+q+q gdg/ x)fiz:q,(ﬂ))’l)sm

and orthogonality follows from orthogonality of the Gegenbauer polynomials. It
remains to work out the normalization constants c,, ,, , in (9). To simplify the
matters, for fixed ¢ = 0,...,p, we replace the component fg%q by an arbitrary
spherical harmonic h, € #H, of unit length

> n(m,q) +1 2
== h m = 1‘
| q| V0|(Sm) gm q(ZE) vs
Using the calculus above, we compute

H(ffﬁziflhq(x))zvswl

Sm+1

_ <(p —¢)'T(m/2 + q))2
2=aT(m/2 + p)

2
x /S LG )y ()05
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_ <(p —@)'T(m/2 + q))2
2p=4T(m/2 + p)

/ G2 (cos0)2 SN2 000 | hy(x)?vsm
Sm

_ w(p—'I'(m+p+9q) / () 2vgm
22+ m=1( /2 + p)(m/2 + p)2 TS

Taking into account the various normalizing constants, we arrive at

HEE b = e

Sm+1 H (27, Yy hy(z ) vsinss
7(p—q)'T(m +p+ q)
22p+m—1(m/2+p)r(m/2+p)2

n(m+1,p) +1 vol (S™)
n(m,q) +1 vol (§m+1)

The value of the ratio of the spherical volumesis
vol(S™)  2™=2mID(m/2)?
vol(Sm+1) ml'(m) '

(Note that this also follows from our computationsfor p = ¢ = 0.) Using this and
the dimension formula (2), the value of ¢, , 4 in (9) now follows.

4. Proof of Theorem 1

Forq=1,...,p, let f,: S™ — S™4, be afull spherical minimal immersion with
homothety \,/m. In analogy with (8), we define f : R™*2 — RY, N + 1 =
Zf]):l(nq +1) by

Fo. i) = (cmpal W 225@)) L (fo=1), 11
0<g<p-1
Wefirst show that f maps S™ 11 to SN by comparing it with the standard minimal
immersion f,,1,. Using the decomposition (8) and (6)—«7), we have

[P = | frnspl?
p

g | H (@ fo(@) P = [H (2l fng(2)) )
=0

q
p

= Z Cyzn,p,qu,p,q(rza wm+l)2(|fq($)|2 - |fm,q($)|2) =0.

q=0
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Thus f maps spheres to spheres. Since it is a harmonic polynomial map, to prove
Theorem 1, it remains to verify that the restriction f: S™+1 — SV is homothetic
with homothety ), /(m + 1). (f is clearly full since its components are linearly
independent.)

We now recall ([11]) a useful criterion of homothety. Let f: S™ — S™ be
(the restriction of) a (harmonic) homogeneous polynomial map of degree p. We
introduce the symmetric 2-tensor ¥ ( f) on S™ by

V()XY) = (fo(X), [ (Y)) = (Ap/m)(X,Y),
where X and Y are vector fields on S™, and note that, by (1), homothety of f is
equivalent to the vanishing of U (f). As f, ¥(f) extendsto R™*1:

V()X Y) = (fulX), £o(Y)) = Ap/m)(X, Y )r?@—Y,

where X and Y are vector fields on R™*1 and the correction factor r27—1 s for
(future) homogeneity of ¥ ( f). Wenow evaluate ¥ ( f) onapair of conformal fields.
A conformal field X¢, a € R™*1, is, on S™, given by

X! =a—(a,z)x, z€S™,
and, on R™*1, by

a, T
nga—< ’2>:1c, z € R™HL
r

Givena,b € R™L, U (f)(a,b) = ¥(f)(X*, X*)isahomogeneouspolynomial of
degree2(p—1) ([11]). More explicitly, we havethefollowing useful computational
formula:

U(f)(a,b) = =(0af, 00 f)
+ ((Ap/m) = p%) () (b, )20~
— (Ap/m)(a, b)r?P=H. (12)
Here 9, and 9, denote directional derivativesin the direction of ¢ and b. Since the
conformal fields span each tangent space in S™, homothety of f is equivalent to
the vanishing of ¥ (f)(a, b) for al a,b € R™*1,
We are now ready to show that f is homothetic. As before we compare f with

fm-+1,- Noticing that thelast two termsin (11) donot depend on £, for a, b € R™ "2,
we compute

U(f)(a,b) = U(fimirp)(a,b)
= _<aaf7 abf> + <8afm+l,p7 8bfm+1,p>

p

= =Y i (O H (b fy(2)), OpH (a1 fy ()

q=0

— (OaH (27,11 fm,q (%)), O H (21,1 frmq(2)))-
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By (6), taking the directional derivative of each term givestwo terms, e.g. we have

H(z m+1fq( 7)) = Ou(K ,pq(r2 $m+1)fq( T))
= 0u(Km.p, q(rz Tmt1)) fq(z) +
+Kmypyq(r27xm+l)aafq(x)

so that

(0o H (z m+1fq( ), 8bH(37g1_+qlfq($)>
splitsinto four terms. The term involving
90 Kmp,gOKmpq

cancelswith the analogousterm for the standard minimal immersions. The * mixed
terms’ areindependent of f, sincee.g.

<8afq7fq> = laa|fq|2 = %dﬂ”zq.
Thusthey also cancel. Finaly, the derivative terms, e.g.

<8fq7 8bfq>

cancel with the analogous terms for the strandard minimal immersion since f, is
homothetic. Theorem 1 follows.

5. Proof of Theorem 2

Let f: S™ — S™ be afull spherical minimal immersion with homothety X, /m.
Since the components of the standard minimal immersion f,, , span H%,, thereisa
unique (n + 1) x (n(m,p) + 1)-matrix (of maximal rank) suchthat f = A - f;, 5.
Associating to f the symmetric matrix (f) = ATA — I € S2(R(mP)HL) —
S2(HP,) gives rise to the DoCarmo-Wallach parametrization of all full spherical
minimal immersions f: S™ — S™ with homothety A, /m by the compact convex
body MP, C FP,. The linear subspace 72, C S?(H?,) is obtained by translating
the condition of homothety of a spherical minimal immersion in terms of the point
inS?(H?,) itisrepresentedwith. (Notethat ( f) determines f only up to congruence
on therange.)

Given a full spherical minimal immersion f,: S™ — S™ with homothety
N/m, g =1,...,p,wehave f, = Ay - fmq fOran (ng + 1) x (n(m,q) + 1)-
matrix A, so that the corresponding parameter point in M4, is (f,) = AqTAq -1
in S2(#4,). By the definition of £, it is clear that, under the isomorphism (5), the
diagonal matrix

(fa) x - x(fp)
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corresponds to (f). (Note that (f,) is zero for ¢ = 1,2,3.) This showsthat ® is
obtained from the natural inclusion

SHHE) x - x S2(HE) — SA(HE, 1)

via(5). Theorem 2 follows.
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