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Abstract. We describe a general method of manufacturing new minimal immersions between round
spheres out of old ones. The resulting spherical minimal immersions are given analytically in terms of
the harmonic projection operator and have higher source dimensions. Applied to classical examples,
this gives an abundance of new minimal immersions of even-dimensional spheres.
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1. Introduction and Preliminaries

An isometric immersion f :Sm
k ! Sn, m � 2, of the m-sphere of constant

curvature k into the unit n-sphere Sn = Sn
1 is said to be a spherical minimal

immersion if f is minimal, that is the mean curvature of f vanishes. Each component
f j, j = 0; : : : ; n, of a spherical minimal immersion f is an eigenfunction of the
Laplacian on Sm

k with eigenvalue m ([9]). Thus, k = kp = m=�p for some
p � 1, where �p = p(p+m� 1) is the pth eigenvalue of the Laplacian acting on
functions of Sm

1 . This suggests scaling the metric on the domain to curvature 1 and
considering a spherical minimal immersion f :Sm ! Sn, as a homothetic minimal
immersion with homothety �p=m. In terms of the differential f� of f , homothety
amounts to the condition

hf�(X); f�(Y )i = (�p=m)hX;Y i (1)

being satisfied for any vector fields X;Y on Sm.
An eigenfunction of the Laplacian on Sm corresponding to the eigenvalue �p

(or clasically, a spherical harmonic of order p on Sm) is the restriction (to Sm)
of a harmonic homogeneous polynomial (on Rm+1) of degree p in the variables
x0; : : : ; xm 2 R ([13]). Thus, a spherical minimal immersion is a conformal immer-
sion f :Sm ! Sn that is the restriction of a harmonic homogeneous polynomial
map f : Rm+1 ! Rn+1; a map whose components f j , j = 0; : : : ; n, are harmonic
homogeneous polynomials of a fixed degree. (By homogeneity the conformality
factor is constant and degree p corresponds to homothety �p=m.)
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188 GABOR TOTH

The oldest example of a spherical minimal immersion is the Veronese map v :
S2 ! S4. It factors through the antipodal action and gives the well-known Veronese
surface; the real projective plane imbedded minimally in S4. A straightforward
generalization (keeping p = 2) gives the Veronese maps vm : Sm ! Sm(m+3)=2�1;
v2 = v. These all share the property that the components of vm form an orthonormal
basis in the space of quadratic spherical harmonics. For further generalization, let
Hp

m denote the linear space of spherical harmonics of order p on Sm. We make
Hp

m Euclidean by endowing it with the normalized L2-scalar product

hh; h0i =
n(m; p) + 1

vol(Sm)

Z
Sm

hh0 vSm ; h; h0 2 Hp
m;

where

n(m; p) + 1 = dimHp
m = (m+ 2p� 1)

(m+ p� 2)!
p!(m� 1)!

: (2)

We now take the elements of an orthonormal basis ff jm;pg
n(m;p)
j=0 in Hp

m as com-
ponents of a map fm;p that, due to the large number of symmetries, turns out (see
[14]) to be a spherical minimal immersion fm;p : Sm ! Sn(m;p) (with homothety
�p=m); fm;2 = vm. The map fm;p is called the standard minimal immersion; it is
uniquely determined up to congruence on the range. For fixed p and m, fm;p has
the largest range dimension among all full spherical minimal immersions. (Here
fullness means that the image spans the range linearly, or equivalently, the com-
ponents are linearly independent.) For p odd, fm;p is an imbedding. For p even,
fm;p factors through the antipodal action on Sm and gives an imbedding of the real
projective m-space into the sphere.

In 1967 Calabi [1] proved that any full spherical minimal immersion f :S2 ! Sn

is standard. (This amounts to showing that n = n(2; p) = 2p for some p and
orthonormality of the components of f .) Using higher fundamental forms, in 1971
DoCarmo and Wallach [3] derived a general rigidity result which implies that, for
p � 3, any full spherical minimal immersion f :Sm ! Sn with homothety �p=m
is standard. Moreover, their main result asserts that, for m � 3 and p � 4, the
space of full spherical minimal immersions f :Sm ! Sn with homothety �p=m
(mod out by congruences on the ranges) is a compact convex body Mp

m in a
nontrivial linear subspace Fp

m of the symmetric square S2(Hp
m). In fact, using

representation theory of the orthogonal group, they gave a (positive) lower bound
for dim(Mp

m) = dim(Fp
m) whenm � 3 and p � 4. Whether this lower bound was

exact remained unsolved until 1994 when, using a completely different (analytical)
approach, the author [11] showed that the lower bound is the actual dimension.
The lowest nonrigid range m = 3 and p = 4 corresponds to the 18-dimensional
parameter spaceM4

3. (This particular dimension was calculated by Muto [8] using
explicit tensor calculus.) In 1996, Ziller and the author [12] proved that M4

3 is the
convex hull of two linear slices corresponding to SU(2)- and SU(2)0-equivariant
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spherical minimal immersions f :S3 ! SV , where SO(4) = SU(2) � SU(2)0 is the
standard local product structure.

Although a lot of effort has been made to obtain examples of spherical mini-
mal immersions, or equivalently, minimal isometric imbeddings of spherical space
forms into spheres, apart from the standard minimal immersions, examples are
known only for specific domain dimensions (and specific equivariance properties).
After an initial example of Mashimo [6], [7] and some more by Wang and Ziller
[15] using ‘equivariant constructions’, a groundbreaking work of DeTurck and
Ziller [2] resulted in a host of new spherical minimal immersions. The list is exten-
sive and shows that every homogeneous spherical space form admits a minimal
isometric immersion into a sphere. All these examples possess large groups of
symmetries that act transitively on the domain. In particular, and this is relevant for
this paper, all domains are odd dimensional. Using an entirely different approach,
Escher [4] subsequently derived a necessary condition for the existence of a min-
imal imbedding of (nonhomogeneous) three-dimensional spherical space forms.
In particular, the lens space L(5; 2) cannot be imbedded into any sphere using a
spherical minimal immersion with homothety �p=3 if p < 28.

Apart from the standard minimal immersions, no examples of spherical minimal
immersions are known from even-dimensional domains. The objective of this paper
is to describe a very general method that associates to a set of spherical minimal
immersions from Sm a spherical minimal immersion from Sm+1. More precisely,
we have:

THEOREM 1. Let m � 3 and p � 4. Given full spherical minimal immersions
fq : Sm ! Snq with homothety �q=m, q = 1; : : : ; p, there exists a full spherical
minimal immersion ~f : Sm+1 ! SN , where N =

Pp
q=1(nq + 1).

Remark 1. By rigidity, nq = n(m; q), for q = 1; 2; 3.

Remark 2. A special case of the construction has been used in [5] to study higher
fundamental forms of spherical minimal immersions.

Remark 3. It will be clear from the construction that if there is a common (finite)
symmetry group G � SO(m+ 1) of all fq, that is, fq � a = fq for all a 2 G and
q = 1; : : : ; p, then, under the standard inclusion SO(m + 1) � SO(m + 2), G is
also a symmetry group of ~f .

According to a result of [12], the possible range dimensions of full quartic (p = 4)
spherical minimal immersions f : S3 ! Sn are

n = 9; 14; 15; 18; 19; 20; 22; 23; 24:

Using Theorem 1, we obtain the following sequence of range dimensions for full
quartic minimal immersions ~f : S4 ! SN :

N = 39; 44; 45; 48; 49; 50; 52; 53; 54:
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Precomposition of spherical harmonics and minimal immersions with isometries
on Sm gives rise to compatible orthogonal SO(m+ 1)-module structures on Hp

m,
S2(Hp

m) and Fp
m with Mp

m � Fp
m being SO(m+ 1)-invariant.

THEOREM 2. Let m � 3 and p � 4. There exists a linear imbedding

� : F4
m � � � � � Fp

m ! F
p
m+1

that is equivariant with respect to the standard inclusion SO(m+1) � SO(m+2).
� restricts to an equivariant imbedding

� : M4
m � � � � �Mp

m !M
p
m+1

onto a linear slice of Mp
m+1.

2. Spherical Harmonics

Since construction of the new spherical minimal immersions will use the harmonic
projection operator, in this section we summarize some well-known facts from the
theory of spherical harmonics ([13]). Let Pp

m+1 denote the space of homogeneous
polynomials of degree p in the variables x0; : : : ; xm. Viewing a spherical harmonic
as a (harmonic) polynomial gives Hp

m � Pp
m+1. Letting r2 = x2

0 + � � � + x2
m 2

P2
m+1, with respect to the L2-scalar product on Pp

m+1, the orthogonal complement

of Hp
m in Pp

m+1 is r2 � P
p�2
m+1. The harmonic projection operator is the orthogonal

projection H : Pp ! Hp (with kernel r2Pp�2
m+1). H can be expressed in terms of

powers of the Laplacian:

H(g) = g +

[jp=2j]X
i=1

(�1)i4ig

2ii!(2p+m� 3) : : : (2p+m� 2i� 1)
r2i;

g 2 Pp
m+1: (3)

We now add the variable xm+1 (replace m by m + 1) and consider h 2 H
p
m+1.

Letting x = (x0; : : : ; xm), we have ([13])

h(x; xm+1) =

pX
q=0

xp�qm+1hq(x) + (r2 + x2
m+1)g(x; xm+1);

where hq 2 Hq
m, q = 0; : : : ; p, are uniquely determined by h. Taking harmonic

projection of both sides, we obtain the orthogonal decomposition

h(x; xm+1) =

pX
q=0

H(xp�qm+1hq(x)); hq 2 H
q
m; q = 0; : : : ;m: (4)
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In terms of the spaces of spherical harmonics, this translates into

H
p
m+1jSO(m+1) =

pX
q=0

Hq
m; (5)

where Hq
m means the image of xp�qm+1H

q
m under the harmonic projection H . This

is legitimate since (being a homomorphism of SO(m+ 1)-modules) H is injective
on these subspaces.

In (4), all higher order Laplacians of xp�qm+1hq(x) can be worked out explicitly
so that, using (3), we obtain

H(x
p�q
m+1hq(x)) = Km;p;q(r

2; xm+1)hq(x); (6)

where Km;p;q is a polynomial in r2 and xm+1 and is independent of hq . More
explicitly, we have

Km;p;q(x; xm+1) (7)

=
(p� q)!�(m=2 + q)

2p�q�(m=2 + p)
�

� (r2 + x2
m+1)

(p�q)=2G
m=2+q
p�q

 
xm+1

(r2 + x2
m+1)

1=2

!
; (8)

where � is the Gamma function and Ga
d is the Gegenbauer polynomial:

Ga
d(t) =

2d�(a+ d)

d!�(a)

�
td �

d(d� 1)
22(a+ d� 1)

td�2+

+
d(d� 1)(d� 2)(d� 3)

24 � 1 � 2(a+ d� 1)(a+ d� 2)
td�4 � � � �

�
:

For fixed a, the normalized Gegenbauer polynomials

2a�1�(d)

�
2(a+ d)d!
��(2a+ d)

�2

Ga
d(t); d = 0; 1; : : : ;

form an orthonormal system on the interval [�1; 1] with respect to the weight
(1� t2)a�1=2.

3. Decomposition of the Standard Minimal Immersion

Each component of the standard minimal immersion fm+1;p : Sm+1 ! Sn(m+1;p)

is in Hp
m+1 which splits according to (5).

PROPOSITION. The standard minimal immersion fm+1;p : Sm+1 ! Sn(m+1;p)

can be written as

fm+1;p(x; xm+1) = (cm;p;qH(xp�qm+1fm;q(x)))0�q�p (fm;0 = 1); (9)
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where

cm;p;q =

 
p

q

!
(m+ 2q� 1)

(m+ q � 2)!
(m+ p� 1)!

[m(m+ 2) : : : (m+ 2p� 2)]2

m(m+ 1) : : : (m+ p+ q � 1)
:(10)

Remark. By definition, fm;0 = 1.

Proof. For each q, we fix an orthonormal basis ff jqm;qg
n(m;q)
jq=0 � Hq

m and this
defines fm;q. The proposition will now follow if we can show that the spherical
harmonics in (8) are orthonormal. This amounts to working out the integralZ

Sm+1
H(x

p�q
m+1f

jq
m;q(x))H(x

p�q0

m+1f
j0

q0

m;q0(x))vSm+1 :

By (6)–(7), in terms of the Gegenbauer polynomials, up to constant multiple, the
integrand rewrites asZ

Sm+1
f jqm;q(x)f

j0

q0 (x)G
m=2+q
p�q (xm+1)G

m=2+q0

p�q0 (xm+1)vSm+1 :

We introduce the transformation 
 : [0; �]� Sm ! Sm+1 defined by


(�; x) = (sin � � x; cos � � jxj); x 2 Sm; � 2 [0; �]:

This maps the cylinder [0; �] � Sm to Sm+1 with 0 and � corresponding to the
North and South poles in Sm+1 relative to the equator Sm. The determinant of the
Jacobian of 
 being (�1)mjxj sinm �, the integral transforms intoZ �

0
G
m=2+q
p�q (cos �)Gm=2+q0

p�q0 (cos �) sinm+q+q0

� d�
Z
Sm

f jqm;q(x)f
j0

q0

m;q0(x)vSm

and orthogonality follows from orthogonality of the Gegenbauer polynomials. It
remains to work out the normalization constants cm;p;q in (9). To simplify the
matters, for fixed q = 0; : : : ; p, we replace the component f jm;q by an arbitrary
spherical harmonic hq 2 Hq

m of unit length

jhqj
2 =

n(m; q) + 1
vol(Sm)

Z
Sm

hq(x)
2vSm = 1:

Using the calculus above, we computeZ
Sm+1

H(xp�qm+1hq(x))
2vSm+1

=

�
(p� q)!�(m=2 + q)

2p�q�(m=2 + p)

�2

�

�

Z
Sm+1

G
m=2+q
p�q (xm+1)

2hq(x)
2vSm+1
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=

�
(p� q)!�(m=2 + q)

2p�q�(m=2 + p)

�2

�

�

Z �

0
G
m=2+q
p�q (cos �)2 sinm+2q � d�

Z
Sm

hq(x)
2vSm

=
�(p� q)!�(m+ p+ q)

22p+m�1(m=2 + p)�(m=2 + p)2

Z
Sm

hq(x)
2vSm :

Taking into account the various normalizing constants, we arrive at

jH(x
p�q
m+1hq(x))j

2 =
n(m+ 1; p) + 1

vol (Sm+1)

Z
Sm+1

H(x
p�q
m+1hq(x))

2vSm+1

=
�(p� q)!�(m+ p+ q)

22p+m�1(m=2 + p)�(m=2 + p)2 �

�
n(m+ 1; p) + 1
n(m; q) + 1

vol (Sm)

vol (Sm+1)
:

The value of the ratio of the spherical volumes is

vol(Sm)

vol(Sm+1)
=

2m�2m�(m=2)2

��(m)
:

(Note that this also follows from our computations for p = q = 0.) Using this and
the dimension formula (2), the value of cm;p;q in (9) now follows.

4. Proof of Theorem 1

For q = 1; : : : ; p, let fq : Sm ! Snq , be a full spherical minimal immersion with
homothety �q=m. In analogy with (8), we define ~f : Rm+2 ! RN , N + 1 =Pp

q=1(nq + 1) by

~f(x; xm+1) =

�
cm;p;qH(xp�qm+1fq(x))

�
0�q�p�1

; (f0 = 1): (11)

We first show that ~f maps Sm+1 to SN by comparing it with the standard minimal
immersion fm+1;p. Using the decomposition (8) and (6)–(7), we have

j ~f j2 � jfm+1;pj
2

=

pX
q=0

c2
m;p;q(jH(xp�qm+1fq(x))j

2 � jH(xp�qm+1fm;q(x))j
2)

=

pX
q=0

c2
m;p;qKm;p;q(r

2; xm+1)
2(jfq(x)j

2 � jfm;q(x)j
2) = 0:
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Thus ~f maps spheres to spheres. Since it is a harmonic polynomial map, to prove
Theorem 1, it remains to verify that the restriction ~f : Sm+1 ! SN is homothetic
with homothety �p=(m + 1). ( ~f is clearly full since its components are linearly
independent.)

We now recall ([11]) a useful criterion of homothety. Let f : Sm ! Sn be
(the restriction of) a (harmonic) homogeneous polynomial map of degree p. We
introduce the symmetric 2-tensor 	(f) on Sm by

	(f)(X;Y ) = hf�(X); f�(Y )i � (�p=m)hX;Y i;

where X and Y are vector fields on Sm, and note that, by (1), homothety of f is
equivalent to the vanishing of 	(f). As f , 	(f) extends to Rm+1:

	(f)(X;Y ) = hf�(X); f�(Y )i � (�p=m)hX;Y ir2(p�1);

where X and Y are vector fields on Rm+1 and the correction factor r2(p�1) is for
(future) homogeneity of	(f). We now evaluate	(f) on a pair of conformal fields.
A conformal field Xa, a 2 Rm+1, is, on Sm, given by

Xa
x = a� ha; xix; x 2 Sm;

and, on Rm+1, by

Xa
x = a�

ha; xi

r2 x; x 2 Rm+1:

Given a; b 2 Rm+1,	(f)(a; b) = 	(f)(Xa;Xb) is a homogeneous polynomial of
degree 2(p�1) ([11]). More explicitly, we have the following useful computational
formula:

	(f)(a; b) = �h@af; @bfi

+((�p=m)� p2)ha; xihb; xir2(p�2)

� (�p=m)ha; bir2(p�1): (12)

Here @a and @b denote directional derivatives in the direction of a and b. Since the
conformal fields span each tangent space in Sm, homothety of f is equivalent to
the vanishing of 	(f)(a; b) for all a; b 2 Rm+1.

We are now ready to show that ~f is homothetic. As before we compare ~f with
fm+1;p. Noticing that the last two terms in (11) do not depend on f , for a; b 2 Rm+2,
we compute

	( ~f)(a; b) � 	(fm+1;p)(a; b)

= �h@a ~f; @b ~fi+ h@afm+1;p; @bfm+1;pi

= �

pX
q=0

c2
m;p;q(h@aH(xp�qm+1fq(x)); @bH(xp�qm+1fq(x))i

� h@aH(xp�qm+1fm;q(x)); @bH(xp�qm+1fm;q(x))i):
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By (6), taking the directional derivative of each term gives two terms, e.g. we have

@aH(x
p�q
m+1fq(x)) = @a(Km;p;q(r

2; xm+1)fq(x))

= @a(Km;p;q(r
2; xm+1))fq(x) +

+Km;p;q(r
2; xm+1)@afq(x)

so that

h@aH(x
p�q
m+1fq(x); @bH(x

p�q
m+1fq(x)i

splits into four terms. The term involving

@aKm;p;q@bKm;p;q

cancels with the analogous term for the standard minimal immersions. The ‘mixed
terms’ are independent of fq since e.g.

h@afq; fqi =
1
2@ajfqj

2 = 1
2@ar

2q:

Thus they also cancel. Finally, the derivative terms, e.g.

h@fq; @bfqi

cancel with the analogous terms for the strandard minimal immersion since fq is
homothetic. Theorem 1 follows.

5. Proof of Theorem 2

Let f : Sm ! Sn be a full spherical minimal immersion with homothety �p=m.
Since the components of the standard minimal immersion fm;p spanHp

m, there is a
unique (n+ 1)� (n(m; p) + 1)-matrix (of maximal rank) such that f = A � fm;p.
Associating to f the symmetric matrix hfi = A>A � I 2 S2(Rn(m;p)+1) =

S2(Hp
m) gives rise to the DoCarmo–Wallach parametrization of all full spherical

minimal immersions f : Sm ! Sn with homothety �p=m by the compact convex
body Mp

m � Fp
m. The linear subspace Fp

m � S2(Hp
m) is obtained by translating

the condition of homothety of a spherical minimal immersion in terms of the point
inS2(Hp

m) it is represented with. (Note that hfi determines f only up to congruence
on the range.)

Given a full spherical minimal immersion fq: Sm ! Snq with homothety
�q=m, q = 1; : : : ; p, we have fq = Aq � fm;q for an (nq + 1) � (n(m; q) + 1)-
matrix Aq so that the corresponding parameter point in Mq

m is hfqi = A>
q Aq � I

in S2(Hq
m). By the definition of ~f , it is clear that, under the isomorphism (5), the

diagonal matrix

hf4i � � � � � hfpi
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196 GABOR TOTH

corresponds to h ~fi. (Note that hfqi is zero for q = 1; 2; 3.) This shows that � is
obtained from the natural inclusion

S2(H4
m)� � � � � S2(Hp

m)! S2(H
p
m+1)

via (5). Theorem 2 follows.
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