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FINE STRUCTURE OF THE SPACE OF

SPHERICAL MINIMAL IMMERSIONS

HILLEL GAUCHMAN AND GABOR TOTH

Abstract. The space of congruence classes of full spherical minimal immer-
sions f : Sm → Sn of a given source dimension m and algebraic degree p
is a compact convex body Mp

m in a representation space Fpm of the special
orthogonal group SO(m+ 1). In Ann. of Math. 93 (1971), 43–62 DoCarmo
and Wallach gave a lower bound for Fpm and conjectured that the estimate
was sharp. Toth resolved this “exact dimension conjecture” positively so that
all irreducible components of Fpm became known. The purpose of the present
paper is to characterize each irreducible component V of Fpm in terms of the
spherical minimal immersions represented by the slice V ∩Mp

m. Using this
geometric insight, the recent examples of DeTurck and Ziller are located within
Mp

m.

1. Introduction

Let f : Smκ → SV be an isometric minimal immersion of the m-sphere Smκ ,
m ≥ 2, of constant curvature κ into the unit sphere SV of curvature 1 of a Euclidean
vector space V . A result of Takahashi [7] asserts that f exists iff κ = κp = m/λp,
for some p ≥ 1, where λp = p(p + m − 1) is the p-th eigenvalue of the Laplacian

4Sm on Sm = Sm1 and, in this case, each component α ◦ f , α ∈ V ∗, of f is
an eigenfunction of the Laplacian 4Smκ with eigenvalue m or, scaling the metric
to curvature 1, an eigenfunction of 4Sm with eigenvalue λp that is, classically
speaking, a spherical harmonic of order p on Sm. The universal example is the
standard minimal immersion fm,p : Sm → SHpm that is defined by the requirement

that, relative to a (scaled) L2-orthonormal basis in the space of spherical harmonics
Hpm of order p on Sm, the components of fm,p form an orthonormal basis. (Note
that p = 2 gives the classical Veronese maps.) Rigidity prevails for low ranges of
the source dimension m and the order p. In fact, Calabi [3] showed that, up to a
congruence on the range, a full (= no zero component) isometric minimal immersion
f : S2

κp → SV , p ≥ 1, is standard. Moreover, a general rigidity result of DoCarmo-

Wallach [5, 11] specializes to saying that, for p ≤ 3, again up to a congruence on
the range, an isometric minimal immersion f : Smκp → SV , m ≥ 2, is also standard.

For fixed m ≥ 2 and p ≥ 1, let S(m, p) denote the space of full isometric minimal
immersions f : Smκp → SV , for various V . (Fullness geometrically means that the

image of f is not contained in any great hypersphere.) Two full isometric minimal
immersions in S(m, p) are said to be congruent if they differ by an isometry between
the ranges; this defines an equivalence relation on S(m, p), denoted by ∼=. The
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2442 HILLEL GAUCHMAN AND GABOR TOTH

DoCarmo-Wallach theory [5, 11] asserts that, for m ≥ 3 and p ≥ 4, the space of
congruence classes S(m, p)/ ∼= (of full isometric minimal immersions f : Smκp → SV )
is nontrivial and can be parametrized by a compact convex body Mp

m lying in a
representation space Fpm of the special orthogonal group SO(m+ 1). In fact, Fpm is
an SO(m+1)-submodule of the symmetric square S2(Hpm) of the space of spherical
harmonics Hpm. The (complexification of the) symmetric square decomposes [5, 11]
as

S2(Hpm) =
∑

(u,v)∈4p0 ;u,v even

V
(u,v,0,... ,0)
m+1 ,(1)

where 4p0 ⊂ R2 is the closed convex triangle with vertices (0, 0), (p, p) and (2p, 0)

and V
(u1,... ,ud)
m+1 , d = [|(m + 1)/2|], is the complex irreducible SO(m + 1)-module

with highest weight (u1, . . . , ud) ∈ (1/2)Zd relative to the standard maximal torus

in SO(m + 1). In (1), V
(u,v,0,... ,0)
m+1 is not self-conjugate [2] iff m = 3 and v > 0 so

that, in this case, it actually means V
(u,v)

4 ⊕V (u,−v)
4 . Actually (1) follows from the

recurrence relation [5, 11]

Hpm ⊗Hqm =

q∑
i=0

V
(p+q−i,i,0,... ,0)
m+1 ⊕ (Hp−1

m ⊗Hq−1
m ), p ≥ q ≥ 1, m ≥ 2.(2)

With this, we have [9]

Fpm =
∑

(u,v)∈4p2 ;u,v even

V
(u,v,0,... ,0)
m+1 ,(3)

where the subtriangle 4p2 ⊂ 4
p
0 has vertices (4, 4), (p, p) and (2(p− 2), 4). In fact,

according to the main result of DoCarmo-Wallach [5, 11], the right hand side of
(3) is contained in Fpm; they conjectured the stated equality in (3) that was proved
(some 20 years later) in [9].

As noted above, scaling the metric on the source to curvature 1, aside from
conformality, the components of a minimal immersion are spherical harmonics of
a fixed order on the source. Disregarding conformality and retaining this latter
condition, one arrives at the concept of an eigenmap. More precisely, f : Sm → SV
is said to be a p-eigenmap if each component α ◦ f , α ∈ V ∗, belongs to Hpm. A
DoCarmo-Wallach type argument shows that in the nonrigid range m ≥ 3 and
p ≥ 2, the set of congruence classes of full p-eigenmaps f : Sm → SV can be
parametrized by a compact convex body Lpm in an SO(m + 1)-submodule Epm of
S2(Hpm). Its complexification decomposes [5, 11] (cf. also [8]) as

Epm =
∑

(u,v)∈4p1 ;u,v even

V
(u,v,0,... ,0)
m+1 ,(4)

where 4p1 has vertices (2, 2), (p, p) and (2(p− 1), 2) and is thereby nested between
the previous triangles as

4p0 ⊃ 4
p
1 ⊃ 4

p
2.(5)

Moreover,Mp
m is a linear slice of Lpm cut out by Fpm.

A spherical harmonic of order p on Sm is nothing but the restriction (to Sm) of a
harmonic p-homogeneous polynomial on Rm+1. Thus, a p-eigenmap can be thought
of as a harmonic p-homogeneous polynomial map f : Rm+1 → V that is spherical;
that is, it maps the unit sphere Sm to the unit sphere SV . The set of congruence
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FINE STRUCTURE OF THE SPACE OF SPHERICAL MINIMAL IMMERSIONS 2443

classes of full harmonic p-homogeneous polynomial maps can be parametrized by
convex body Kpm of S2(Hpm) and Lpm is a linear slice of Kpm cut out by Epm.

Comparing (1), (3) and (4), we see that the chain of inclusions

S2(Hpm) ⊃ Epm ⊃ Fpm(6)

corresponds to (restriction in (1) to) the nested triangles in (5), where each sub-
triangle is obtained by “slicing off” the base of the former. In addition, each
SO(m+ 1)-module in (6) carries a geometric meaning, being the linear span of the
parameter space of the congruence classes of full harmonic p-homogeneous poly-
nomial maps, p-eigenmaps and, scaling the metric on the source to curvature 1,
conformal minimal immersions with conformality λp/m.

To complete this process we consider the chain of SO(m+ 1)-modules

S2(Hpm) ⊃ Epm ⊃ Fpm = Fp;1m ⊃ Fp;2m ⊃ . . . ⊃ Fp;[|p/2|]−1
m ,(7)

where each term is obtained from the decomposition of S2(Hpm) in (1) by restriction
to the corresponding triangle in the sequence

4p0 ⊃ 4
p
1 ⊃ 4

p
2 ⊃ 4

p
3 ⊃ . . . ⊃ 4

p
[|p/2|],

and4pk, k = 0, . . . , [|p/2|], is the closed convex triangle with vertices (2k, 2k), (p, p)
and (2(p− k), 2k). ([|.|] is the greatest integer function.) Intersecting each term in
(7) with Kpm we obtain the sequence

Kpm ⊃ Lpm ⊃Mp
m =Mp;1

m ⊃Mp;2
m ⊃ . . . ⊃Mp;[|p/2|]−1

m .

The objective of this paper is to give a geometric characterization of the minimal
immersions that are parametrized by Mp;k

m , for each k = 1, . . . , [|p/2|]− 1.
Let f : Smκp → SV be an isometric minimal immersion. We say that f is isotropic

of order k, 2 ≤ k ≤ p, if, for all 2 ≤ l ≤ k, we have

〈βl(f)(X1, . . . , Xl), βl(f)(Xl+1, . . . , X2l)〉
= 〈βl(fm,p)(X1, . . . , Xl), βl(fm,p)(Xl+1, . . . , X2l)〉,

(8)

where X1, . . . , X2l ∈ T (Smκp) and βl(f) is the l-th fundamental form of f [11]. Note
that it is customary to define the first fundamental form of f as the differential
of f . For l = 1, (8), that is “isotropy of order 1”, means that f is an isometric
minimal immersion.

Theorem 1. Let f : Smκp → SV be an isometric minimal immersion and assume
that f is isotropic of order k. If p ≤ 2k + 1, then f is congruent to the standard
minimal immersion fm,p. For m ≥ 4 and p ≥ 2(k + 1), the set of congruence
classes of full isometric minimal immersions f : Smκp → SV that are isotropic of

order k can be parametrized by the compact convex body Mp;k
m whose linear span is

the SO(m+ 1)-module Fp;km with complexification having irreducible decomposition
as

Fp;km =
∑

(u,v)∈4p
k+1

;u,v even

V
(u,v,0,... ,0)
m+1 ,(9)

where 4pk+1 ⊂ R2 is the closed convex triangle with vertices (2(k + 1), 2(k + 1)),
(p, p) and (2(p− k − 1), 2(k + 1)).
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Remark. For m = 3 and p ≥ 2(k+1), we can only assert that the set of congruence
classes of full isometric minimal immersions f : S3

κp → SV that are isotropic of
order k can be parametrized by a compact convex body that is a slice of Mp

m by

an SO(4)-submodule of Fp3 which contains Fp;k3 .

2. Preliminaries

We endow Hpm, the SO(m+ 1)-module of spherical harmonics of order p on Sm,
with the normalized L2-scalar product

〈h1, h2〉 =
N(m, p) + 1

volSm

∫
Sm

h1h2 vSm , h1, h2 ∈ Hpm,(10)

where vSm is the volume form on Sm, volSm is the volume of Sm, and

N(m, p) + 1 = dimHpm = (2p+m− 1)
(p+m− 2)!

p!(m− 1)!
.(11)

The standard harmonic p-homogeneous polynomial map fm,p : Rm+1 → Hpm is
defined by

fm,p(x) =

N(m,p)∑
j=0

f jm,p(x)f jm,p, x = (x0, . . . , xm) ∈ Rm+1,

where {f jm,p}
N(m,p)
j=0 ⊂ Hpm is an orthonormal basis. Now, given a full harmonic

p-homogeneous polynomial map f : Rm+1 → V , we have f = A ◦ fm,p, where
A : Hpm → V is linear and surjective. We define

〈f〉 = A>A− I ∈ S2(Hpm).

〈f〉 depends only on the congruence class of f . The map that associates to the
congruence class of f the symmetric linear endomorphism 〈f〉 gives a 1-1 corre-
spondence between the set of congruence classes of full harmonic p-homogeneous
polynomial maps f : Rm+1 → V , for various V , and the convex body

Kpm = {C ∈ S2(Hpm) |C + I ≥ 0}

in S2(Hpm). (Here ≥ 0 means positive semidefinite.) This is because A>A ≥ 0 for
all A and, for C = 〈f〉, the unique square root of C + I defines A.

The map fm,p : Rm+1 → Hpm is equivariant with respect to the homomorphism
ρm,p : SO(m+1)→ SO(Hpm) that is just the usual SO(m+1)-module structure on
Hpm (given by precomposing spherical harmonics with the inverse of the isometries
of Sm). The induced action of g ∈ SO(m+ 1) on Kpm is given by

〈f〉 7→ g · 〈f〉 = 〈f ◦ g−1〉 = ρm,p(g)〈f〉ρm,p(g−1)

and thus it is the restriction of the SO(m+1)-module structure on S2(Hpm) extended
from that of Hpm. By equivariance, fm,p maps the unit sphere Sm into a sphere in
Hpm which, due to the normalizing in (10), is also unit. Restricting, we obtain the
standard p-eigenmap fm,p : Sm → SHpm . As noted in the introduction, a harmonic

p-homogeneous polynomial map f : Rm+1 → V is (or, more precisely, restricts to)
a p-eigenmap f : Sm → SV iff it is spherical that is

|f(x)|2 = |x|2p, |x|2 = x2
0 + . . .+ x2

m, x = (x0, . . . , xm) ∈ Rm+1.(12)
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Setting f = A ◦ fm,p with 〈f〉 = A>A − I as above and noting that fm,p satisfies
(12), we can rewrite this condition as

|f(x)|2 − |x|2p = |f(x)|2 − |fm,p(x)|2 = 〈〈f〉fm,p(x), fm,p(x)〉 = 0, x ∈ Rm+1.

(13)

Let Pqm+1 denote the SO(m+ 1)-module of q-homogeneous polynomials on Rm+1

(with the same module structure as that of the spherical harmonics). Consider the
SO(m+ 1)-module homomorphism

Ψ0
m,p : S2(Hpm)→ P2p

m+1

defined by

Ψ0
m,p(C) = 〈Cfm,p, fm,p〉, C ∈ S2(Hpm).

By (13), Ψ0
m,p(〈f〉) = 〈〈f〉fm,p, fm,p〉 = 0 iff f is spherical, that is f : Rm+1 → V

restricts to a p-eigenmap f : Sm → SV . We obtain that setting

Epm = ker Ψ0
m,p ⊂ S2(Hpm)

and

Lpm = Kpm ∩ Epm = {C ∈ Epm |C + I ≥ 0},
the convex body Lpm parametrizes the set of congruence classes of full p-eigenmaps
f : Sm → SV , the parametrization being the same as for harmonic p-homogeneous
polynomial maps above. Each endomorphism in Epm is traceless [5] so that, unlike

Kpm, Lpm is compact. It is easy to see that Ψ0 maps onto P2p
m+1 (by evaluating it

on the harmonic p-homogeneous function H(xpm) : Rm+1 → R that represents the
unique zonal in Hpm, where H : Pqm+1 → Hqm is the harmonic projection operator

[10]). Thus Epm = S2(Hpm)/P2p
m+1. The canonical decomposition of polynomials into

spherical harmonics [10] gives

P2p
m+1 =

p∑
l=0

H2l
m · |x|2(p−l)

so that, as SO(m+ 1)-modules:

P2p
m+1 =

p∑
l=0

H2l
m =

p∑
l=0

V
(2l,0,... ,0)
m+1 ,

where we follow the usual (mal)practice of denoting a representation and its com-
plexification by the same symbol (for sums of absolutely irreducible representa-
tions). Going back to the decomposition of S2(Hpm) in (1), we see that (4) follows.

We now wish to use (an upgraded version of) this argument to obtain (3) for
minimal immersions. In the following brief account we summarize some of the
results in [9].

As noted in the introduction, a map f : Smκp → SV is an isometric minimal
immersion iff, scaling the metric on the source to curvature 1, f : Sm → SV is a
p-eigenmap that is homothetic with homothety λp/m:

〈f∗(X), f∗(Y )〉 = (λp/m)〈X,Y 〉, X, Y ∈ T (Sm).(14)

Since Sm has the property that, at each point of Sm, the isotropy subgroup of
SO(m+1) acts transitively on the unit sphere of the tangent space, by equivariance,
fm,p : Sm → SHpm satisfies (14) and thus it is minimal. fm,p : Sm → SHpm is called
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2446 HILLEL GAUCHMAN AND GABOR TOTH

the standard minimal immersion. The homothety condition (14) for f can be
rewritten as

〈f∗(X), f∗(Y )〉 = 〈(fm,p)∗(X), (fm,p)∗(Y )〉, X, Y ∈ T (Sm).(15)

Given a p-eigenmap f : Sm → SV , we introduce the 2-tensor Ψ1
m,p(f) on Sm by

Ψ1
m,p(f)(X,Y ) = 〈f∗(X), f∗(Y )〉 − 〈(fm,p)∗(X), (fm,p)∗(Y )〉, X, Y ∈ T (Sm).

(16)

By (15), f is homothetic (and thereby minimal) iff Ψ1
m,p(f) = 0. The tensor

Ψ1
m,p(f) depends only on the congruence class 〈f〉 of f . In fact, rewriting the

homothety condition (15), we obtain

Ψ1
p,m(f)(X,Y ) = Ψ1

m,p(〈f〉)(X,Y ) = 〈X〈f〉fp, Y fp〉,(17)

where X,Y ∈ T (Sm) act on the vector valued functions as differentiations. The
goal is to extend this to Rm+1 and write it as the kernel of a homomorphism,
defined on Epm, but (15) gives infinitely many conditions because of the presence
of the tangent vectors. We remedy this by restricting ourselves to conformal fields
Xa, parametrized by a vector a ∈ Rm+1 = H1

m, defined by

(Xa
x )̌ = a− 〈a, x〉|x|2 x, x ∈ Rm+1,(18)

where ˇ denotes translation of vectors to the origin. Given a p-eigenmap f : Sm →
SV thought to be a spherical p-homogeneous harmonic polynomial map f : Rm+1 →
V , we now define

Ψ1
m,p(f)(Xa, Xb) = 〈f∗(Xa), f∗(X

b)〉 − 〈(fm,p)∗(Xa), (fm,p)∗(X
b)〉

= 〈f∗(Xa), f∗(X
b)〉 − (λp/m)〈Xa, Xb〉|x|2(p−1).

(19)

The right hand side, as a function on Rm+1, is actually a polynomial; an element

of P2(p−1)
m+1 [9]. More precisely, we have

Ψ1
m,p(f)(Xa, Xb) = 〈∂af, ∂bf〉 − 〈∂afm,p, ∂bfm,p〉

= 〈∂a〈f〉fm,p, ∂bfm,p〉,
(20)

where the partial derivatives with vector parameters are directional derivatives in
the corresponding direction. In fact, by (18), as differential operators,

Xa
x = ∂a −

〈a, x〉
|x|2 ∂x,(21)

so that the principal part of Xa is ∂a since the radial derivative ∂x acts on homo-
geneous polynomials by a constant multiple of the identity. The lower order terms
give no contribution in (20) since the corresponding scalar products are independent
of f and thereby cancel when taking the difference.

The obvious extension of (20) is to define, for C ∈ Epm, Ψ1
m,p(C) as a map

H1
m ×H1

m → P
2(p−1)
m+1 by

Ψ1
m,p(C)(a, b) = 〈∂aCfm,p, ∂bfm,p〉.

Ψ1
m,p is symmetric, that is actually defined on S2(H1

m) and traceless, that is zero on

the trivial summand in S2(H1
m) = H0

m⊕H2
m. Restricting, it becomes a linear map
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Ψ1
m,p(C) : H2

m → P
2(p−1)
m+1 , or equivalently, an element Ψ1

m,p(C) ∈ P2(p−1)
m+1 ⊗ H2

m.
Varying C ∈ Epm, we obtain the linear map

Ψ1
m,p : Epm → P

2(p−1)
m+1 ⊗H2

m

which is a homomorphism of SO(m + 1)-modules (since the entire construction is
equivariant under SO(m + 1)). Since the conformal fields span (pointwise) each
tangent space, we have

Fpm = ker Ψ1
m,p.

As SO(m+ 1)-modules

P2(p−1)
m+1 ⊗H2

m =

p−1∑
l=0

H2l
m ⊗H2

m

so that the recurrence formula (2) immediately gives that the only common irre-
ducible components in Epm and P2(p−1) ⊗H2

m are

V
(2l,2,0,... ,0)
m+1 , l = 1, . . . , p− 1.(22)

In (4), these correspond to the base of 4p1. The DoCarmo-Wallach lower bound
[5, 11] follows immediately. The proof of (3) now amounts to show that Ψ1

m,p is
nonzero (and hence isomorphic) on each component in (22). This (most technical
part) is carried out by a (2-step) induction in the use of the “degree raising and
lowering” operators that will also play a crucial role here. We give a brief account
on these operators as follows. (For details and proofs, cf. [9].)

Let H : Pqm+1 → Hqm denote the harmonic projection operator [10]. Given a
harmonic p-homogeneous polynomial map f : Sm → SV , we define the harmonic
(p± 1)-homogeneous polynomial maps

f± : Rm+1 → V ⊗H1
m

by

f+ =
√
λ2p/(2λp)

m∑
i=0

H(xif)⊗ yi and f− =
√

2/λ2p

m∑
i=0

∂f

∂xi
⊗ yi.

Taking congruence classes, the correspondences f 7→ f± are the restrictions of
SO(m+ 1)-module homomorphisms

Φ±m,p : S2(Hpm)→ S2(Hp±1
m )

that can be described explicitly as follows. By the recurrence formula (2), Hp±1
m

are both SO(m + 1)-submodules of Hpm ⊗H1
m. More explicitly, the corresponding

SO(m+ 1)-module monomorphisms

ι± : Hp±1
m →Hpm ⊗H1

m

are given by

ι−(h′) = c−
m∑
i=0

H(xih
′)⊗ yi, h′ ∈ Hp−1

m ,

and

ι+(h′′) = c+
m∑
i=0

∂h′′

∂xi
⊗ yi, h′′ ∈ Hp+1

m .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2448 HILLEL GAUCHMAN AND GABOR TOTH

The value of the normalizing constants c± is given by the requirement that

(ι±)> ◦ ι± = I.

Now

Φ±m,p(C) = ι>± ◦ (C ⊗ I) ◦ ι±, C ∈ S2(Hpm),

and, as noted above

Φ±m,p(〈f〉) = 〈f±〉
for any harmonic p-homogeneous polynomial map f : Rm+1 → V . Note finally [9]
that

ι±(fm,p±1(x)) = f±m,p(x), x ∈ Sm.
Φ+
m,p is injective and Φ−m,p, being, up to a constant multiple, the transpose of

Φ+
m,p, is surjective. In terms of the decomposition of S2(Hpm) in (1), Φ+

m,p corre-

sponds to the inclusion of the triangles 4p0 ⊂ 4
p+1
0 , and Φ−m,p to “slicing off” the

northeast side of 4p0 to get 4p−1
0 . Equivalently

coker Φ+
m,p = ker Φ−m,p+1 =

[|(p+1)/2|]∑
i=0

V
(2(p+1−i),2i,0,... ,0)
m+1 .

The degree raising and lowering operators f 7→ f± preserve sphericality, conformal-
ity [9] and, as we will see later, isotropy for all order. In particular, degree raising
defines equivariant imbeddings Kpm → Kp+1

m , Lpm → Lp+1
m and Mp

m →Mp+1
m (and

similarly for isotropy of all order).

Remark. Degree lowering appears implicitly in the work of DoCarmo-Wallach [5, 11]
in the form of the differential operator

m∑
i=0

∂2/∂xi∂yi : Hpm ⊗Hqm →Hp−1
m ⊗Hq−1

m

as a technical tool to derive the recurrence formula in (2).

3. Isotropy

Let f : Sm → SV be a minimal immersion with homothety λp/m. (From now on
we scale the metric on the source to curvature 1.) Let βk(f), k = 1, . . . , p, denote
the k-th fundamental form of f . Recall [11] that βk(f) and the k-th osculating
bundle Okf are defined inductively on a (maximal) open and dense set Df ⊂ Sm

as follows. For x ∈ Df , βk(f) : Sk(Tx(Sm)) → Okf ;x is a linear map of the k-th

symmetric power of the tangent space Tx(Sm) onto the fibre Okf ;x of Okf at x. The

latter is called the k-th osculating space of f at x. For k = 1, β1(f) = f∗ is defined
on D1

f = Sm and, for x ∈ D1
f , the first osculating space O1

f ;x at x is the image of

β1(f)x. The general induction is given by

βk(f)(X1, . . . , Xk) = (∇Xkβk−1(f))(X1, . . . , Xk−1)⊥k−1 ,

X1, . . . , Xk ∈ Tx(Sm), x ∈ Dk−1
f ,

(23)

where ⊥k−1 is the orthogonal projection with kernel O0
f ;x ⊕ O1

f ;x ⊕ . . . ⊕ Ok−1
f ;x ,

O0
f ;x = R · f(x), and Dk

f is the set of points x ∈ Dk−1
f at which the image Okf ;x of

βk(f)x has maximal dimension. We define Df =
⋂p
k=0 D

k
f . The largest k for which
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βk(f) is nonvanishing is called the geometric degree df of f . We have df ≤ dfp = p
and, by equivariance, Dfp = Sm.

For k = 1, the first fundamental form β1(f) makes sense for a p-eigenmap f :
Sm → SV and will be interpreted as the differential of f . Finally, for a harmonic
p-homogeneous polynomial map f : Rm+1 → V , the 0-th fundamental form β0(f)
(with no argument) will be interpreted as f itself.

For 0 ≤ k ≤ p, we introduce the (2k)-tensor Ψk
m,p(f) on Df ⊂ Sm by

Ψk
m,p(f)(X1, . . . , X2k) = 〈βk(f)(X1, . . . , Xk), βk(f)(Xk+1, . . . , X2k)〉

− 〈βk(fm,p)(X1, . . . , Xk), βk(fm,p)(Xk+1, . . . , X2k)〉

(24)

where X1, . . . , X2k ∈ T (Sm). Clearly, for k = 1 this definition agrees with (16) for
p-eigenmaps f : Sm → SV . Moreover, for a harmonic p-homogeneous polynomial
map f : Rm+1 → V , we have β0(f) = f , so that this definition, for k = 0, agrees
with the one introduced in Section 2.

A minimal immersion f : Sm → SV with homothety λp/m is said to be isotropic
of order k, 2 ≤ k ≤ p if

Ψ2
m,p(f) = . . . = Ψk

m,p(f) = 0.(25)

Using the extended meaning of the fundamental forms for k = 0, 1, we see that a
p-eigenmap f : Sm → SV is isotropic of order 1 iff it is a minimal immersion with
homothety λp/m and a harmonic p-homogeneous polynomial map f : Rm+1 → V is
isotropic of order 0 iff it is spherical. Thus, the order of isotropy (in the appropriate
category) is defined for all 0 ≤ k ≤ p.

As before, we now restrict ourselves to conformal vector fields Xa parametrized
by a ∈ H1

m. Let f : Sm → SV any minimal immersion with homothety λp/m. We
claim that, on Df , we have

βk(f)(Xa1 , . . . , Xak )̌ = ∂a1 . . . ∂akf + lower order terms ,

a1, . . . , ak ∈ H1
m, k ≥ 1,

(26)

where ˇmeans translating vectors to the origin. We prove this by induction with
respect to k. The basic step, k = 1, is clear:

β1(f)(Xa)̌ = f∗(X
a)̌ = Xa(f) = ∂af + p

〈a, x〉
|x|2 f,

where we used (21) and that the radial derivative ∂x acts on the p-homogeneous
polynomial map f as multiplication by p. For the general induction step k−1⇒ k,
we recall from the inductive definition of higher fundamental forms that, apart from
the orthogonal projection to the previous osculating subbundle that is obtained (by
the induction hypothesis) by subtracting an appropriate multiple of lower order
terms, βk(f)(Xa1 , . . . , Xak )̌ is the covariant derivative

(∇Xakβk−1(f))(Xa1 , . . . , Xak−1 )̌ .

The principal term of this is the same as that of Xak(βk−1(Xa1 , . . . , Xak−1 )̌ ). The
principal term in Xak is ∂ak and, by the induction hypothesis, the principal term
in βk−1(f)(Xa1 , . . . , Xak−1 )̌ is ∂a1 . . . ∂ak−1

f . (26) follows.

Remark. Let f : Sm → SV be a minimal immersion with homothety λp/m and set
f = A ◦ fm,p. Then we have

Aβl(fm,p)(X
a1 , . . . , Xa2l )̌ = βl(f)(Xa1 , . . . , Xa2l )̌ , 1 ≤ l ≤ p.
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Thus, A maps Ǒlfm,p;x onto Ǒlf ;x. Now isotropy of order k just says that A defines

a fibrewise isometry between the l-th osculating spaces, 1 ≤ l ≤ k. We obtain that
order k isotropy implies that the osculating bundles Olf and Olfm,p , 1 ≤ l ≤ k, are

isomorphic with a fibrewise isometry. As SO(m)-modules [5, 11], Olfm,p;o = Hlm−1,

0 ≤ l ≤ p, so that order k isotropy gives a lower bound on the codimension of the
minimal immersion.

We now evaluate Ψk
m,p(f) in (24) on conformal fields Xa1 , . . . , Xa2k , a1, . . . , a2k

∈ H1
m. Retaining only the top term in (26) for the k-th fundamental forms of f

and fm,p, the difference of the scalar products in (24) gives the term

〈∂a1 . . . ∂akf, ∂ak+1
. . . ∂a2k

f〉 − 〈∂a1 . . . ∂akfm,p, ∂ak+1
. . . ∂a2k

fm,p〉
= 〈∂a1 . . . ∂ak〈f〉fm,p, ∂ak+1

. . . ∂a2k
fm,p〉.

(27)

In view of this, for C ∈ S2(Hpm) and 0 ≤ k ≤ p, we define

Ψk
m,p(C)(a1, . . . , a2k) = 〈∂a1 . . . ∂akCfm,p, ∂ak+1

. . . ∂a2k
fm,p〉,(28)

for a1, . . . , a2k ∈ H1
m. Note that (28) is a 2(p − k)-homogeneous polynomial on

Rm+1, that is an element of P2(p−k)
m+1 . In the following crucial lemma we use

standard multi-index notation; that is, for I = {i1, . . . , il}, we set |I| = l and
∂aI = ∂a1 . . . ∂al .

Inductive Lemma. Given C ∈ S2(Hpm) and 1 ≤ k ≤ p, assume that

Ψ0
p,m(C) = Ψ1

p,m(C) = . . . = Ψk−1
p,m (C) = 0.

Then we have

〈∂aICfm,p, ∂aJfm,p〉 = 0(29)

for all I and J with 0 ≤ |I|+ |J | ≤ 2k − 1, I, J ⊂ {1, . . . , 2k}; and

Ψk
m,p(C)(a1, . . . , a2k) = (−1)(|I|−|J|)/2〈∂aICfm,p, ∂aJfm,p〉(30)

for all I and J disjoint with I ∪ J = {1, . . . , 2k}.
Proof. We use induction with respect to k. For k = 1, the assumption says that

Ψ0
m,p(C) = 〈Cfm,p, fm,p〉 = 0.

Differentiating and using symmetry of C, this implies that

〈∂aCfm,p, fm,p〉 = 〈Cfm,p, ∂afm,p〉 = 0

and (29) follows. Finally, differentiating this again, we obtain

Ψ1
m,p(C)(a, b) = 〈∂aCfm,p, ∂bfm,p〉 = −〈∂a∂bCfm,p, fm,p〉

and (30) follows. For the general induction step k − 1 ⇒ k, we introduce the
notation

F (I; J) = F (i1, . . . , ir; ir+1, . . . , ir+s) = 〈∂aICfm,p, ∂aJ fm,p〉,
where I = {i1, . . . , ir} and J = {ir+1, . . . , ir+s}. By symmetry of C, we have
F (I, J) = F (J, I) so that we can write F (I; ∅) = F (I) and F (∅; J) = F (J). By the
induction hypothesis,

F (i1, . . . , ir; ir+1, . . . , ir+s) = 0, 0 ≤ r + s ≤ 2k − 2,

in particular,

F (i1, . . . , ir; ir+1, . . . , i2k−2) = 0, 0 ≤ r ≤ 2k − 2.
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Differentiating this at the direction a2k−1, we obtain

F (i1, . . . , ir; ir+1, . . . , i2k−2, i2k−1) = −F (i1, . . . , ir, i2k−1; ir+1, . . . , i2k−2),

0 ≤ r ≤ 2k − 2.
(31)

Using this repeatedly, we arrive at

F (i1, . . . , ik−1; ik, . . . , i2k−1) = (−1)kF (i1, . . . , i2k−1),

F (ik, . . . , i2k−1; i1, . . . , ik−1) = (−1)k−1F (i1, . . . , i2k−1).

These, however, are equal by symmetry, so that F (i1, . . . , i2k−1) = 0. Using (31)
repeatedly again, we obtain

F (i1, . . . , ir; ir+1, . . . , i2k−1) = 0, r = 0, . . . , 2k − 1.(32)

This is (29). Now (30) is obtained by differentiating (29).

Theorem 2. Let f : Sm → SV be a p-eigenmap and assume that f is isotropic of
order k − 1, k ≥ 1. Then, we have

Ψk
m,p(f)(Xa1 , . . . , Xa2k) = Ψk

m,p(〈f〉)(a1, . . . , a2k), a1, . . . , a2k ∈ H1
m.(33)

We prove Theorem 2 by induction with respect to k. The basic step k = 1 was
done in Section 2, cf. (20). Now let k ≥ 2 and perform the general induction step
0, . . . , k − 1⇒ k. Assume that f is isotropic of order k − 1 that is

Ψ0
m,p(f) = . . . = Ψk−1

m,p (f) = 0.(34)

Since f is also isotropic of order ≤ k − 2 the induction hypothesis gives

Ψl
m,p(f)(Xa1 , . . . , Xa2l) = Ψl

m,p(〈f〉)(a1, . . . , a2l) = 0, 0 ≤ l ≤ k − 1.(35)

Combining (34) and (35), we obtain

Ψl
m,p(〈f〉)(a1, . . . , a2l) = 0, 0 ≤ l ≤ k − 1.(36)

These are precisely the assumptions of the Inductive Lemma. Consider now

Ψk
m,p(f)(Xa1 , . . . , Xa2k).

As noted above, using the expansion in (26) for f and fm,p in (24), this can be
written as

Ψk
m,p(〈f〉)(a1, . . . , a2k)

plus a sum of terms (with functional entries) of type

〈∂aIf, ∂aJf〉 − 〈∂aIfm,p, ∂aJfm,p〉 = 〈∂aICfm,p, ∂aJfm,p〉,
where I and J satisfy |I| + |J | ≤ 2k − 1. By the Inductive Lemma, these are all
zero. Theorem 2 follows.

Corollary 1. Let f : Sm → SV be a p-eigenmap. Then f is isotropic of order k,
iff

Ψ0
m,p(〈f〉) = . . . = Ψk

m,p(〈f〉) = 0.(37)

Proof. By Theorem 2, we need only to prove that (37) implies isotropy of order k.
Since the conformal fields span each tangent space, it is enough to show that

Ψl
m,p(f)(Xa1 , . . . , Xa2l) = 0, a1, . . . , a2l ∈ H1

m, 0 ≤ l ≤ k.
We now observe that, in the proof of Theorem 2, in deriving (33) we used only (36)
that is precisely (37) (with k replaced by k + 1).

We are now able to prove rigidity; that is the first statement of Theorem 1.
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Corollary 2. Let f : Sm → SV be a minimal immersion with homothety λp/m
and assume that f is isotropic of order k. If p ≤ 2k+1 then f is congruent to fm,p.

Proof. Let C = 〈f〉. By Corollary 1

Ψ0
m,p(C) = . . . = Ψk

m,p(C) = 0.

Let p ≤ 2k + 1. By (29) of the Inductive Lemma (with k replaced by k + 1), we
have

〈∂a1 . . . ∂apCfm,p, fm,p〉 = 0, a1, . . . , ap ∈ H1
m.

The first vector in the scalar product is constant since the degree of fp is p. On the
other hand, fm,p is full so that

∂a1 . . . ∂apCfm,p = 0.

Since this is valid for all a1, . . . , ap, we can remove them and obtain

Cfm,p = 0.

Again by fullness, this means that C = 0 so that f is standard.

4. The Main Induction Step

We now return to the main line and, proceeding inductively with respect to the
order of isotropy, we let p ≥ 2(k+ 1) and assume that the set of congruence classes
of full minimal immersions f : Sm → SV that are isotropic of order k − 1 are
parametrized by Mp;k−1

m with linear span Fp;k−1
m . We refer to this as the main

induction hypothesis. It amounts geometrically to

Fp;k−1
m = {C ∈ S2(Hpm) |Ψ0

m,p(C) = . . . = Ψk−1
m,p (C) = 0}(38)

and algebraically to

Fp;k−1
m =

∑
(u,v)∈4p

k
;u,v even

V
(u,v,0,... ,0)
m+1 .(39)

Given C ∈ Fp,k−1
m , (30) of the Inductive Lemma applies (with J = ∅) yielding that

Ψk
m,p(C)(a1, . . . , a2k)

is symmetric in all vector variables and can therefore be considered as a linear map

Ψk
m,p(C) : P2k

m+1 → P
2(p−k)
m+1 .

By harmonicity of fm,p, contraction of Ψk
m,p(C)(a1, . . . , a2k) with respect to any

two vector variables is zero. This means that Ψk
m,p(C), considered on P2k

m+1, is

zero on multiples of |x|2 so that no information is lost by restricting it to H2k
m ; the

orthogonal complement of P2(k−1)
m+1 · |x|2 in P2k

m+1:

Ψk
m,p(C) : H2k

m → P
2(p−k)
m+1 .

Equivalently, Ψk
m,p(C) can be thought of as an element of P2(p−k)

m+1 ⊗H2k
m . Varying

C within Fp;k−1
m we obtain the linear map

Ψk
m,p : Fp;k−1

m → P2(p−k)
m+1 ⊗H2k

m .(40)

This is a homomorphism of SO(m+ 1)-modules. In fact, given g ∈ SO(m+ 1), we
have

Ψk
m,p(g · C)(ga1, . . . , ga2k) = Ψk

m,p(C)(a1, . . . , a2k) ◦ g−1, a1, . . . , a2k ∈ H1
m,
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where we use the transformation rule g · C = ρm,p(g)Cρm,p(g
−1) and equivariance

of fm,p.
Let f : Sm → SV be a minimal immersion with homothety λp/m and assume

that f is isotropic of order k − 1. Then 〈f〉 ∈ Mp;k−1
m (main induction hypothesis)

and Corollary 1 to Theorem 2 asserts that

Ψk
m,p(〈f〉)(a1, . . . , a2k), a1, . . . , a2k ∈ H1

m.

is zero iff f is isotropic of order k. Thus, we obtain that the linear slice

M̄p;k−1
m =Mp;k−1

m ∩ ker Ψk
m,p

parametrizes the set of congruence classes of full minimal immersions f : Sm → SV
with homothety λp/m that are isotropic of order k. We denote the linear span by

F̄p;km = ker Ψk
m,p(41)

The general induction step and thereby the proof of Theorem 1 will be accomplished
if we show that F̄p;km = Fp;km with Fp;km defined in (9).

We now return to (40) and consider the canonical decomposition

P2(p−k)
m+1 =

p−k∑
l=0

H2l
m · |x|2(p−k−l).

As SO(m+ 1)-modules, we have

P2(p−k)
m+1 ⊗H2k

m =

p−k∑
l=0

H2l
m ⊗H2k

m .(42)

Decomposing the tensor products of spherical harmonics by the recurrence formula
(2) we see that the only irreducible SO(m+ 1)-modules that are contained in both

Fp;k−1
m and P2(p−k)

m+1 ⊗H2k
m are of the form

V
(2l,2k,0,... ,0)
m+1 , l = k, . . . , p− k.(43)

These are precisely the ones corresponding to the base of the triangle 4pk. In
particular, since they are disjoint from Fp;km , we immediately obtain

Fp;km ⊂ F̄p;km .

Moreover, equality holds iff

V
(2l,2k,0,... ,0)
m+1 6⊂ Fp;km , l = k, . . . , p− k,

and, by (41), this is certainly guaranteed by

Ψk
m,p |V

(2l,2k,0,... ,0)
m+1 6= 0, l = k, . . . , p− k.(44)

5. Isotropy and Degree Raising and Lowering

The purpose of this section is to reduce (44) to the statement

Ψk
m,p |V

(2(p−k),2k,0,... ,0)
m+1 6= 0, p ≥ 2(k + 1),(45)

that is nonvanishing at the southeast vertex (2(p−k), 2k) of4pk. The key is to show
that isotropy is preserved under degree raising and lowering. This is an immediate
consequence of the following:
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Theorem 3. Let C ∈ S2(Hpm) and assume that

Ψ0
m,p(C) = . . . = Ψk−1

m,p (C) = 0.

Then, for a1, . . . , a2k ∈ H1
m, we have

Ψk
m,p+1(Φ+

m,p(C))(a1, . . . , a2k) = (λ4k/(4k))(p/λp)Ψ
k
m,p(C)(a1, . . . , a2k)|x|2

+ (p2/(λpλ2p))4(Ψk
m,p(C)(a1, . . . , a2k))|x|4,

(46)

and

4(Ψk
m,p(C)(a1, . . . , a2k)) = λ2pΨ

k
m,p−1(Φ−m,p(C)(a1, . . . , a2k)).(47)

Proof. Using the properties of degree raising, we compute

Ψk
m,p+1(Φ+

m,p(C))(a1, . . . , a2k) = Ψk
m,p+1(ι>+(C ⊗ I)ι+)(a1, . . . , a2k)

= 〈∂a1 . . . ∂ak(ι>+(C ⊗ I)ι+)fm,p+1, ∂a1 . . . ∂a2k
fm,p+1〉

= 〈∂a1 . . . ∂ak(C ⊗ I)f+
m,p, ∂ak+1

. . . ∂a2k
f+
m,p〉

= (λ2p/(2λp))
m∑
i=0

〈∂a1 . . . ∂akH(xiCfm,p), ∂ak+1
. . . ∂a2k

H(xifm,p)〉.

Due to the harmonicity of fm,p, the harmonic projection formula [10] specializes to

H(xifm,p) = xifm,p −
2p

λ2p

∂fm,p
∂xi

|x|2.

We need to take the directional derivative of both sides of this k times. For this
purpose we use the product rule

∂a1 . . . ∂ak(u · v) =
∑
I,J

∂aIu · ∂aJv,

where the summation is taken with respect to I and J such that I ∩ J = ∅ and
I ∪ J = {1, . . . , k}. We obtain

∂a1 . . . ∂akH(xiCfm,p)

=
∑
I,J

∂aI (xi)∂aJ (fm,p)− (2p/λ2p)
∑
I,J

∂aI (|x|2)∂aJ (∂fm,p/∂xi).

We write this as
∑5
α=1 A

i
α, where

Ai1 = xi∂a1 . . . ∂akfm,p,

Ai2 =
k∑
l=1

ail∂al̂fm,p,

Ai3 = −(4p/λ2p)
k∑
l=1

〈al, x〉∂(∂al̂fm,p)/∂xi,

Ai4 = −(2p/λ2p)
k∑

l,l′=1

〈al, al′〉∂(∂a ˆll′
fm,p)/∂xi,

Ai5 = −(2p/λ2p)|x|2∂(∂a1 . . . ∂akfm,p)/∂xi,
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where ail is the i-th coordinate of al;

∂al̂ = ∂a1 . . . ∂̂al . . . ∂ak

and

∂a
l̂l′

= ∂a1 . . . ∂̂al . . . ∂̂al′ . . . ∂ak

and ̂ means that the corresponding factor is absent. Similarly, we write

∂ak+1
. . . ∂a2k

H(xifm,p)

as
∑5
β=1B

i
β , where the formulas for B’s are obtained from those of A’s by replacing

Cfm,p by fm,p and moving up the value of the vectorial index l to l+k. Summarizing

Ψk
m,p+1(Φ+

m,p(C))(a1, . . . , a2k) = (λ2p/(2λp))
m∑
i=0

5∑
α,β=1

〈Aiα, Biβ〉.

Using (29) of the Inductive Lemma and its Laplacian

m∑
i=0

〈∂(∂aICfm,p)/∂xi, ∂(∂aJfp)/∂xi〉 = 0, |I|+ |J | ≤ 2k − 1,

we see that all expressions
∑m
i=0〈Aiα, Biβ〉 are zero with the exception of the follow-

ing:

m∑
i=0

〈Ai1, Bi1〉 = Ψk
m,p(C)(a1, . . . , a2k)|x|2;

m∑
i=0

〈Ai1, Bi5〉 =
m∑
i=0

〈Ai5, Bi1〉

= −(2p/λ2p)〈∂a1 . . . ∂a2k
Cfm,p,

m∑
i=0

xi∂(∂ak+1
. . . ∂a2k

fm,p)/∂xi〉|x|2

= −(2p(p− k)/λ2p)〈∂a1 . . . ∂akCfm,p, ∂ak+1
. . . ∂a2k

fm,p〉|x|2

= −(2p(p− k)/λ2p)Ψ
k
m,p(C)(a1, . . . , a2k)|x|2;

m∑
i=0

〈Ai2, Bi5〉 =
m∑
i=0

〈Ai5, Bi2〉

= −(2p/λ2p)
k∑
l=1

〈∂al̂Cfm,p, ∂al∂ak+1
. . . ∂a2k

fm,p〉|x|2

= (2pk/λ2p)Ψ
k
m,p(C)(a1, . . . , a2k)|x|2;

m∑
i=0

〈Ai5, Bi5〉 = 2p2/λ2
2p4(Ψk

m,p(C)(a1, . . . , a2k))|x|4.

Putting these together, we obtain (46). The proof of (47) is analogous and techni-
cally much simpler since it does not require differentiation of the harmonic projec-
tion formula.

Corollary 1. Let k ≤ l ≤ p−k. Then Ψk
m,p|V

(2l,2k,0,... ,0)
m+1 6= 0 iff Ψk

m,q|V
(2l,2k,0,... ,0)
m+1

6= 0 for (some or) all q ≥ p.
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Proof. We may assume that q = p + 1. Let Ψk
m,p+1|V

(2l,2k,0,... ,0)
m+1 = 0. By (47),

we have Ψk
m,p ◦ Φ−m,p+1|V

(2l,2k,0,... ,0)
m+1 = 0. As noted in Section 2, Φ−m;p+1 is an

isomorphism on V
(2l,2k,0,... ,0)
m+1 for k ≤ l ≤ p−k so that Ψk

m,p|V
(2l,2k,0,... ,0)
m+1 = 0. The

converse is analogous in the use of (46).

Corollary 2. For m ≥ 3 and p ≥ 2k, Ψk
m,p|V

(2k,2k,0,... ,0)
m+1 6= 0.

Proof. Rigidity (Corollary 2 in Section 3) says that Ψk
m,2k|V

(2k,2k,0,... ,0)
m+1 6= 0. Now

apply Corollary 1 above.
We now assume (45), or equivalently:

Ψk
m,k+l|V

(2l,2k,0,... ,0)
m+1 6= 0, l ≥ k + 2.

By Corollary 1 above, k + l can be replaced by p ≥ k+ l and this is precisely (44).
To close this section, we finally note that (45) is equivalent to the existence of

C ∈ S2(Hpm) such that

Ψ0
m,p(C) = . . . = Ψk−1

m,p (C) = 0(48)

and

H(Ψk
m,p(C)(a1, . . . , a2k)) 6= 0, for some a1, . . . , a2k ∈ H1

m.(49)

This is because by taking the harmonic part of the polynomial Ψk
m,p(C)(a1, . . . ,a2k),

we land in H2(p−k)
m (⊗H2k

m ) of (42) that contains the component V
(2(p−k),2k,0,... ,0)
m+1

in (45) corresponding to the southeast vertex of 4pk.

6. The Source Dimension Raising Operator

In what follows we give a brief account on some facts from the theory of spher-
ical harmonics; for details, cf. [10]. We will consider p-homogeneous polynomials
ξ ∈ Ppm+2 in the variables x = (x0, . . . , xm) ∈ Rm+1 and xm+1 ∈ R and write
ξ(x, xm+1) when display of the arguments is necessary.

Any h ∈ Hpm+1 has a unique decomposition

h(x, xm+1) =

p∑
q=0

H(xp−qm+1hq(x)), hq ∈ Hqm, q = 0, . . . , p.(50)

For fixed q = 0, . . . , p, we have

H(xp−qm+1hq(x)) =
(p− q)!Γ(m/2 + q)

2p−qΓ(m/2 + p)
|x|p−qCm/2+q

p−q

(
xm+1

|x|

)
hq(x),(51)

where Γ is the Gamma function and Cad is the Gegenbauer polynomial defined by

Cad (t) =
2dΓ(a+ d)

d!Γ(a)

[
td − d(d− 1)

22(a+ d− 1)
td−2

+
d(d− 1)(d− 2)(d− 3)

24 · 1 · 2(a+ d− 1)(a+ d− 2)
td−4 − . . .

]
.

The factor

|x|p−qCm/2+q
p−q

(
xm+1

|x|

)
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in (51) is a polynomial in xm+1 and |x|2. For fixed a, the normalized Gegenbauer
polynomials

2a−1Γ(d)

(
2(a+ d)d!

πΓ(2a+ d)

)2

Cad (t), d = 0, 1, . . . ,

form an orthonormal system on [−1, 1] relative to the weight (1− t2)a−1/2. Equiv-
alently, we have ∫ 1

−1

Cad (t)Cad′(t)(1− t2)a−1/2dt = 0, d 6= d′,(52)

and ∫ 1

−1

Cad (t)2(1− t2)a−1/2dt =
πΓ(2a+ d)

22a−1d!(a+ d)Γ(a)2
.(53)

For the exact normalizing constants in the source dimension raising operator, we
need an elementary integral formula that allows us to compare integrals on Sm+1 ⊂
Rm+2 with those on the equatorial hypersphere Sm ⊂ Rm+1 (given by xm+1 = 0).
It is actually the change of variable formula under the transformation

γ : [0, π]×Rm+1 → Rm+2

defined by

γ(φ, x) = (sinφ · x, cosφ · |x|), x = (x0, . . . , xm) ∈ Rm+1, φ ∈ [0, π].

Restricting to the unit spheres, γ projects the cylinder [0, π]× Sm to Sm+1 with 0
and π corresponding to the north and south poles. The determinant of the Jacobian
of γ is

(−1)m|x| sinm φ.
Now given ξ ∈ Prm+2 and η, any function on [0, π], the change of variable formula
for γ gives∫

Sm+1

ξ(x)η(xm+1)vSm+1 =

∫ π

0

η(cosφ) sinm+r φdφ ·
∫
Sm

ξ(x)vSm .(54)

Lemma 1. With respect to the decomposition (50), the standard p-eigenmap
fm+1,p : Sm+1 → SHp

m+1
can be written as

fm+1,p(x, xm+1) =

(
cm,p,qH(xp−qm+1fm,q(x))

)
0≤q≤p

,(55)

where x = (x0, . . . , xm) and

cm,p,q =

(
p

q

)
(m+ 2q − 1)

(m+ q − 2)!

(m+ p− 1)!

[m(m+ 2) . . . (m+ 2p− 2)]2

m(m+ 1) . . . (m+ p+ q − 1)
.(56)

Proof. For each q, we fix an orthonormal basis {f jqm,q}N(m,q)
jq=0 ⊂ Hqm. Writing fm,q

in terms of these as components, it remains to show that the spherical harmonics
in (55) are orthonormal. By the above, up to a constant multiple, the integral∫

Sm+1

H(xp−qm+1f
jq
m,q(x))H(xp−q

′

m+1f
j′
q′
m,q′(x))vSm+1

is equal to ∫
Sm+1

f jqm,q(x)f j
′
q′ (x)C

m/2+q
p−q (xm+1)C

m/2+q′

p−q′ (xm+1)vSm+1 .
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By the change of variable formula above, this rewrites as∫ π

0

C
m/2+q
p−q (cosφ)C

m/2+q′

p−q′ (cosφ) sinm+q+q′ φdφ

∫
Sm

f jqm,q(x)f
j′
q′
m,q′(x)vSm

and orthogonality follows. To finish the proof we work out the normalization con-
stants cm,p,q in (55). To simplify the notation, for fixed q = 0, . . . , p, we replace
f jm,q by a spherical harmonic hq ∈ Hqm and assume that

|hq|2 =
N(m, q) + 1

vol (Sm)

∫
Sm

hq(x)2vSm = 1.(57)

Using (54) again, we compute∫
Sm+1

H(xp−qm+1hq(x))2vSm+1 =

(
(p− q)!Γ(m/2 + q)

2p−qΓ(m/2 + p)

)2

×
∫
Sm+1

C
m/2+q
p−q (xm+1)2hq(x)2vSm+1

=

(
(p− q)!Γ(m/2 + q)

2p−qΓ(m/2 + p)

)2

×
∫ π

0

C
m/2+q
p−q (cosφ)2 sinm+2q φdφ

∫
Sm

hq(x)2vSm

=
π(p− q)!Γ(m+ p+ q)

22p+m−1(m/2 + p)Γ(m/2 + p)2

∫
Sm

hq(x)2vSm .

Normalizing in the use of (57), we obtain

|H(xp−qm+1hq(x))|2 =
N(m+ 1, p) + 1

vol (Sm+1)

∫
Sm+1

H(xp−qm+1hq(x))2vSm+1

=
π(p− q)!Γ(m+ p+ q)

22p+m−1(m/2 + p)Γ(m/2 + p)2

× N(m+ 1, p) + 1

N(m, q) + 1

vol (Sm)

vol (Sm+1)
.

(58)

The value of the ratio of the volumes is known [1]. Instead of recalling however, we
note that, for p = q = 0, (58) gives just that:

vol (Sm)

vol (Sm+1)
=

2m−1m/2Γ(m/2)2

πΓ(m)
.

Substituting this back to (58) and using the dimension formula (11) for the space
of spherical harmonics, the value of cm,p,q in (56) follows.

To define the source dimension raising operator, we first split off the component
in (55) corresponding to p = q. We obtain

fm+1,p(x, xm+1) =

(
cm,p,pfm,p(x), (cm,p,qH(xp−qm+1fm,p(x)))0≤q≤p−1

)
.(59)

Now let f : Rm+1 → V be a full harmonic p-homogeneous polynomial map. We
define

f̃ : Rm+2 → V ⊕ (Hpm+1/Hpm), Hpm+1/Hpm =

p−1∑
q=0

Hqm,
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by

f̃(x, xm+1) =

(
cm,p,pf(x), (H(xp−qm+1fm,q(x)))0≤q≤p−1

)
.(60)

We claim that f̃ is spherical if f is. Indeed, fm+1,p = f̃m,p differs from f̃ by
replacing fm,p with f so that

|f̃ |2 − |fm+1,p|2 = |f̃ |2 − |f̃m,p|2

= c2m,p,p(|f |2 − |fm,p|2).

Note that, in terms of Ψ0, this rewrites as

Ψ0(f̃) = c2m,p,pΨ
0(f)

and the claim follows. If f : Sm → SV is a p-eigenmap, restricting to the unit
spheres, we defined the p-eigenmap

f̃ : Sm+1 → SV⊕(Hp
m+1

/Hpm).

We say that f̃ is obtained from f by raising the source dimension. Looking at the
components in (59), we see that f̃ is full.

Taking equivalence classes, the source dimension raising operator f 7→ f̃ gives
rise to a map Θm,p : Lpm → L

p
m+1. More explicitly, let f = A ◦ fm,p with a linear

map A : Hpm → V . Comparing (59) and (60), with obvious notations, we have

f̃ = (A⊕ IHp
m+1

/Hpm) ◦ fm+1,p.

Thus

Θm,p(〈f〉) = 〈f̃〉 = (A>A− IHpm)⊕ 0Hp
m+1

/Hpm

= 〈f〉 ⊕ 0Hp
m+1

/Hpm .

We obtain that Θm,p extends to the SO(m+ 1)-module homomorphism

Θm,p : S2(Hpm)→ S2(Hpm+1)

induced by the inclusion Hpm ⊂ H
p
m+1.

Remark. Note that, if f : Sm → Sn is a p-eigenmap with n < N(m, p) then f̃ has
range dimension

n+N(m+ 1, p)−N(m, p) < N(m+ 1, p).

Thus Θm,p sends boundary points of Lpm to boundary points of Lpm+1.
Summarizing, Θm,p imbeds Lpm into Lpm+1 as a linear slice and the imbedding is

equivariant with respect to the inclusion SO(m+ 1) ⊂ SO(m+ 2).
The next lemma follows from the definition of Ψk

m,p in (28).

Lemma 2. Let C ∈ S2(Hpm). Then, for 0 ≤ k ≤ p, we have

Ψk
m+1,p(Θm,p(C))(ã1, . . . , ã2k) = c2m,p,pΨ

k
m,p(C)(a1, . . . , a2k),(61)

where ai ∈ H1
m, i = 0, . . . , 2k, is the orthogonal projection of ãi ∈ H1

m+1 to H1
m.
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Let f : Sm → SV be a p-eigenmap and assume that it is isotropic of order k− 1.
By (61), f̃ is also isotropic of order k − 1 that is

Ψ0
m+1,p(〈f̃〉) = . . . = Ψk−1

m+1,p(〈f̃〉) = 0

and, using (61):

Ψk
m+1,p(〈f̃〉)(ã1, . . . , ã2k) = c2m,p,pΨ

k
m,p(〈f〉)(a1, . . . , a2k).

It is a crucial point here that the left hand side is considered as a polynomial in
the variables x = (x0, . . . , xm) and xm+1 that, by looking at the right hand side,
actually does not depend on the variable xm+1. Taking the harmonic projection

H : P2(p−k)
m+2 →H2(p−k)

m+1 of both sides (in all variables) we obtain that

H(Ψk
m+1,p(〈f̃〉)(ã1, . . . , ã2k)) 6= 0

provided that Ψk
m,p(〈f〉)(a1, . . . , a2k) 6= 0. This is the consequence of the following

elementary:

Lemma 3. Let ξ ∈ P2(p−k)
m+1 be a nonzero polynomial in the variables x =

(x0, . . . , xm). Then, ξ, considered as a polynomial in P2(p−k)
m+2 in the variables x

and xm+1, has nonzero harmonic part H(ξ) ∈ H2(p−k)
m+1 .

Proof. If ξ ∈ P2(p−k)
m+2 had vanishing harmonic part then canonical decomposition

in P2(p−k)
m+2 would imply that ξ is a multiple of |x|2 +x2

m+1. This is impossible since
ξ does not depend on the variable xm+1.

Thus, finally it remains to exhibit an example of a p-eigenmap f : Sm → SV ,
m ≥ 3, that is isotropic of order k − 1, k ≥ 1, and Ψk

m,p(〈f〉) 6= 0, since we then

raise the source dimension to obtain f̃ with the required nonvanishing property (49)
(and land in source dimensions ≥ 4). But the existence of this map follows from
rigidity (Corollary 2 of Section 5). In fact, let f : Sm → SV be a nonstandard p-

eigenmap such that 〈f〉 ∈ V (2k,2k,0,... ,0)
m+1 . Then, by the main induction hypothesis, f

is isotropic of order k−1 and, by Corollary 2, Section 5, Ψk
m,p(〈f〉)(a1, . . . , a2k) 6= 0

for some a1, . . . , a2k ∈ H1
m. Theorem 1 follows.

Remark. It also follows that the source dimension and degree raising operators do
not commute. In fact, let f : Sm → SV be a nonstandard p-eigenmap such that

〈f〉 ∈ V (2k,2k,0,... ,0)
m+1 . Then 〈f+〉 ∈ V (2k,2k,0,... ,0)

m+1 is still nonzero since degree raising

is injective on congruence classes. Since Ψk
m,p+1(〈f+〉)(a1, . . . , a2k) 6= 0, for some

a1, . . . , a2k ∈ H1
m (Theorem 1), by Lemma 3,

H(Ψk
m+1,p+1(〈(f+ )̃ 〉)(a1, . . . , a2k)) 6= 0,

so that 〈(f+)̃ 〉 has nonvanishing component in V
(2(p+1−k),2k,0,... ,0)
m+2 . On the other

hand, it is impossible for 〈(f̃)+〉 to reach V
(2(p+1−k),2k,0,... ,0)
m+1 since the top non-

vanishing component of 〈f̃〉 is in V
(2(p−k),2k,0,... ,0)
m+2 and the desired component

V
(2(p+1−k),2k,0,... ,0)
m+2 is in the cokernel of the corresponding degree raising opera-

tor Φ+
m+1,p.
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7. The Examples of Mashimo and DeTurck-Ziller

To prove Theorem 1 for m = 3 one needs, for each p ≥ 4 and k ≥ 2, 2k + 1 ≤ p,
an example of a minimal immersion f : S3 → SV with homothety λp/3 that is
isotropic of order k − 1 and satisfies the nonvanishing property

H(Ψk
3,p(〈f〉)(a1, . . . , a2k)) 6= 0,

for some a1, . . . , a2k ∈ H1
m. In this section, restricting ourselves to k = 2, we show

that in all the examples of Mashimo [6] and DeTurck-Ziller [4], we have

Ψ2
3,p(〈f〉)(a, b, c, d) ≡ 0 ( mod |x|2(p−4)),(62)

for all a, b, c, d ∈ H1
3. This means that, taking the canonical decomposition of

Ψ2
3,p(〈f〉)(a, b, c, d) ∈ P2(p−2)

4 , the components of Ψ2
3,p(〈f〉) in

V
(4,4)

4 , V
(6,4)
4 , . . . , V

2(p−2)
4

all vanish except (possibly) in V
(4,4)

4 . The component in V
(4,4)
4 thus vanishes iff

f is isotropic of order 2. For example, it follows that the minimum codimension

example f : S3 → S6 with homothety λ6/3, has vanishing components in V
(6,4)

4 and

V
(8,4)
4 but the component in V

(4,4)
4 does not vanish since f is not isotropic of order

2. (If it were, the second osculating bundle would be isomorphic with that of the
standard minimal immersion f3,6 so that the second osculating space O2

f ;o would

be isomorphic, as an SO(3)-module, with H2
2. This is, however, 5-dimensional so

that it does not fit in the 3-dimensional fibre (at o) of the normal bundle of f).
To prove (62) we first make a general remark. Let f : Sm → SV , m ≥ 3, be a

minimal immersion with homothety λp/m. We claim that

Ψ2
m,p(〈f〉)(a, b, c, d) ≡ 〈∂a∂bf, ∂c∂df〉 ( mod |x|2(p−4)).(63)

This follows by tedious but elementary computation (cf. the analogous statement
for Ψ1 in [9]) in the use of the formula

〈β(fm,p)(X,Y ), β(fm,p)(U, V )〉 = (c/2)

(
〈X,U〉〈Y, V 〉+ 〈X,V 〉〈Y, U〉

)
− (c/m)〈X,Y 〉〈U, V 〉,

(64)

where the value of the constant

c2 =
1−m/λp
1/2− 1/m

follows from the equation of Gauss. (In fact, restricting to the base point o =
(0, . . . , 0, 1) ∈ Sm, the SO(m)-module homomorphism

β(fp)o : S2(H1
m−1)→H2

m−1

is surjective [5, 11], so that it must be B → B − (1/m) traceB, B ∈ S2(H1
m−1).

Now (64) follows by equivariance.)
Let Vp denote the irreducible complex SU(2)-module of polynomials in the com-

plex variables z, w ∈ C that are homogeneous of degree p; dimCVp = p + 1. The
module structure

T : SU(2)→ GLC(Vp)
is given by

Tgµ(z, w) = µ(ᾱz − βw, β̄z + αw), µ ∈ Vp,
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where

g =

(
α β
−β̄ ᾱ

)
∈ SU(2).

T is unitary with respect to the Hermitian scalar product on Vp given by declaring{
ziwp−i√
i!(p− i)!

}p
i=0

an orthonormal basis. For fixed µ ∈ Vp, consider the orbit map

f : S3 → Vp(65)

given by

f(g) = Tgµ, g ∈ SU(2).

Then [4, 6], under suitable conditions imposed on µ, and up to scaling, f gives
rise to a minimal immersion f : S3 → SVp with homothety λp/3. (Note that, as
in [4], one can consider polynomials µ depending also on z̄ and w̄. This requires
somewhat more computations but (62) remains true.) To show (62), we suppress
the vectors a, b, c, d ∈ Hp3 and, by (63), using complex coordinates r, s ∈ C, rewrite
it as

Ψ2
3,p(f) ≡ <〈D1µ(r̄z − sw, s̄z + rw),D2µ(r̄z − sw, s̄z + rw)〉 ( mod ρ2(p−4))

where ρ2 = rr̄ + ss̄ and D1 and D2 are second order differential operators with
constant coefficients with respect to the variables r, r̄, s, s̄. With these notations,
we now claim

Ψ2
3,p(f) ≡ 0 ( mod ρ2(p−4)).

We take, for example

D1 =
∂2

∂r2
and D2 =

∂2

∂r∂s
;

the other cases can be treated analogously. We have

Ψ2
3,p(f) ≡ <

〈
∂2µ

∂w2
(r̄z − sw, s̄z + rw)w2,

∂2µ

∂z∂w
(r̄z − sw, s̄z + rw)(−w2)

〉
.

Setting

g =
1

ρ

(
r s
−s̄ r̄

)
∈ SU(2)
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and using that T is unitary, we compute

Ψ2
3,p(f) ≡ <

〈
ρp−2 ∂

2µ

∂w2

(
r̄

ρ
z − s

ρ
w,

s̄

ρ
z +

r

ρ
w

)
w2,

ρp−2 ∂2µ

∂z∂w

(
r̄

ρ
z − s

ρ
w,

s̄

ρ
z +

r

ρ
w

)
(−w2)

〉
= ρ2(p−2)<

〈(
Tg
∂2µ

∂w2

)
(z, w),−

(
Tg

∂2µ

∂z∂w

)
(z, w)w2

〉
= ρ2(p−2)<

〈
∂2µ

∂w2
(z, w)

(
− s̄
ρ
z +

r̄

ρ
w

)2

,

− ∂2µ

∂z∂w
(z, w)

(
− s̄
ρ
z +

r̄

ρ
w

)2〉
≡ 0 ( modρ2(p−4)).

Thus (62) follows.
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