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Abstract

A codimension ¢ (> 0) orthogonal multiplication of type (k,1;m;m + ¢) for semi-
Euclidean spaces is a normed bilinear map F : R xR™ - R™° k+1<m, k>0,
where the signatures of the semi-Euclidean spaces R™ and R™*¢ are suppressed. For
the Hurwitz-Radon range, i.e. ¢ = 0, F gives rise to (and is determined by) a module
over the Clifford algebra C;x—; whose generators possess certain invariance properties
with respect to the semi-Euclidean structure on the module. For ¢ = 1, we prove an
Adem-type restriction-extension theorem to the effect that F (up to isometries on the
source and the range) restricts to an orthogonal multiplication of type (k,I;m;m)if m
is even, and extends to an orthogonal multiplication of type (k,;m+ 1;m+1)if m
is odd. The resulting types are in the Hurwitz-Radon range, thereby classified. The
main results of the paper give a full description of codimension two full orthogonal
multiplications F of type (k,I;m;m+ 2). We show that, for m even, F extends to an
orthogonal multiplication of type (k,I;m + 2;m + 2). For m odd, we have k + 1 =3
and F restricts (again up to isometries on the source and the range) to an orthogonal
multiplication of type (k,l;m — 1;m — 1) which is a direct summand of F.
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1 Preliminaries and Statement of Results

In this article we study the existence of ‘composition formulas’ of the type

2 2,2 2 2 2_ .2 2
(@4t —zh— . Te) W Y~ Vg — - Yorg)
_ 2 2_ 2 2
= 1+ -z T 2, (1)
where zy, . . ., z,,, are homogeneous bilinear forms in the variables 24, ..., zrrand ¥1, . - -, Yptq

which, in general, take their values in an arbitrary field F (of characteristic # 2). Here we
(may and) will assume that ¥+ < p+ g <7+ s and k > 0. Though the ‘positive definite
case’ (i.e. when [ = ¢ = s = 0) has been posed by Hurwitz nearly a hundred years ago (cf.
[7,8) and Radon [13]) and has an extensive literature (cf. the survey article [14] of Shapiro as
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well as his book [16] which are our general references here), our knowledge of the ‘indefinite
case’ above is rather fragmentary.

The purpose of this paper is to establish existence and classification theorems for (1) over
the reals assuming that the codimension ¢ = (r + 3) — (p + ¢g) 1s at most two. For the
Hurwitz-Radon range (¢ = 0), full classification, in terms of Clifford modules with semi-
Euclidean structures, is known although an explicit and thorough treatment is difficult to
find (cf. Lawrynowicz and Rembielifiski [10]).

Restricting ourselves to real variables, the problem is equivalent to finding all orthogonal
multiplications, i.e. bilinear maps

F:RF x RP9 , R™
between semi-Euclidean spaces that satisfiy
|F(z,9)I" = |z ly]’, =z eR™, yeRr (2)

We express (2) by saying that F' is normed. We say that F' is full if the image of F' spans
the range R™*. Here R%®, a,b > 0, denotes R®*® with the standard semi-Euclidean scalar
product

(u,v) = wv1+... UV — Ug41Vat1 — - - - — UapbVartbs
u= (ul, v aua+b)y v= (vla e ’va+b)-

(For basic facts in semi-Euclidean geometry we refer to O’Neill [11].) Note that if the
signature (a, b) of R*? is irrelevant, we simply write R**® and refer to it as a semi-Euclidean
space. We also say that F' above is an orthogonal multiplication of type (k,I;p,g;r,s), or
shortly, (k,l;m;n), where m=p+qandn=1r+s.

Given two orthogonal multiplications Fp : R* x R™ — R™ and F; : R* x R™ — R™, we
define their direct sum as the orthogonal multiplication F : R* x R™ — R", m = my+m,,
n = ng + n1, by F(z, (y0,41)) = (Fo(z,¥%0), Fi(z, 1)), = € R*, yo € R™ and y, € R™.

Let F be an orthogonal multiplication of type (k,l;m;n) and Fj of type (k,l; mo,no), where
mg < m and ng < n. We say that F restricts to Fy (or that Fy extends to F') if there exist
isometric imbeddings ¢ : R™ — R™ and % : R™ — R" such that Fo (U x ¢) = ¢ o F, for
some isometry U on R¥!. If, in addition, the restriction F|R*! x (im ¢)* maps into (im)*
then we say that Fj is a direct summand of F. In this case, up to isometries on the source
and the range, F is the direct sum of two orthogonal multiplications of type (k,!;mg;no)
and (k,l;m — mg;n — ng).

Our first result describes the codimension one case in much the same way as the result of
Adem [1,2] and Shapiro {15] for the definite case (over arbitrary fields).

Theorem 1 Let F: R¥ x R™ — R™? k+1<m, k>0, be an orthogonal multiplication
between semi-FEuclidean spaces. If m is even then F restricts to an orthogonal multiplication
of type (k,I;m;m). If m is odd then F extends to an orthogonal multiplication of type
(k,,m+1;m+1).
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Our main result gives a complete description of all codimension two orthogonal multiplica-
tions in terms of those in the Hurwitz-Radon range as follows:

Theorem 2 Let F : R*xR™ — R™? k41 < m, k > 0, be a full orthogonal multiplication.
If m is even then then F extends to an orthogonal multiplication of type (k,l;m+ 2;m + 2).
If m is odd then k + 1 = 3 and F restricts to an orthogonal multiplication of type (k,l;m —
1;m — 1) which is a direct summand of F.

We finally recall the relevant and related results on the positive definite case [ = ¢= s = 0.
First, in 1940-41, Hopf and Stiefel (cf. [6] and [17]) proved that for the existence of a
nonsingular bilinear pairing R¥ x R™ — R" it is necessary that ('T isevenforn—k < j < m.
This, for ¢ = n —m = 2, immediately gives the nonexistence of types (k;m;m+2) form =1
(mod 4) and k > 4. Second, Berger and Friedland [3] and K.Y.Lam and Yiu [9] considered
the problem of finding, for given m and =, the largest k such that a (not necessarily full)
orthogonal multiplication of type (k;m;n) exists. They found and listed the solutions for
¢ < 5 (with the exception of ¢ = 5 with m = 27 (mod 32)). Note that maximality of %
does not imply fullness of the corresponding orthogonal multiplication. Theorem 2 has been
proved in [5] by the authors for the definite case and, for ¢ = 2, the results described above
follow from this. To reduce the length of the proof of Theorem 2 in the indefinite case we
will heavily rely on what has already been proved in [5]. Although we will give generous
outlines for the analogous arguments, we will concentrate on the main technical difficulty
that one encounters in all semi-Euclidean spaces, i.e. the presence of degenerate, especially,
null subspaces.

2 The Hurwitz-Radon Range; Clifford Modules

Let
F:RHM xR™ - R", k+1<m<n,

be an orthogonal multiplication for semi-Euclidean spaces, where the signatures on R™ and
R"™ have not been explicitly indicated. Since F is normed, (by changing the signs of the
scalar products, if necessary) we (may and) will assume that

k>0.

Denote by {e,}ft, ¢ R* and {£;}7, C R™ (= R?9) the standard orthonormal bases. We
then have |ea|? = €, with ¢, = +1fora=1,...,kand e, = —1fora=k+1,...,k+1 and
|fil* = 0i (witho; = +1fori=1,...,pand 0; = —1fori=p+1,...,p+q = m). For fixed
a, F being normed implies that {uf = F(eq, f;)}, is orthonormal in R™ with |[u%|? = ¢,0;.

In particular, since k > 0, the signatures (p,g) of R™ and (r, s) of R™ satisfy
p<r and ¢<s,

and, if I > 0, then
|p_QI+IT_'9ISCa
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where ¢ = n — m is the codimension of F. (These inequalities follow from the fact that if
z € R*! is spacelike (resp. timelike) then, for any y € R™ non-null, the causal characters of
y and F(z,y) are the same (resp. opposite).)

For a,f=1,...,k+1,let PP* = (pjj")7"_, be the m x m-matrix such that

uf = > Fijuf +ng, (3)
i=1
where n?" is perpendicular to the vectors u$, j = 1,...,m, in R". We call (3) ‘the change
of basis formula’. Polarization of (2) gives
(e uf) + (w2, vf) =0, a#£pB. (4)

Substituting the change of basis formula into this, we obtain that PP, considered acting on
the source R™, is skew symmetric, i.e.

(PP)T = —PP2,  a#p, (3)

where the transpose is taken with respect to the semi-Euclidean structure on R™. (In fact,
using coordinates, we have a.-pg-" + a_,-p_f,-’;“ = 0 and skew symmetry follows.)

We can further exploit (4) by substituting the change of basis formula into the first term of
(4) and then repeating this in the second term with a and 8 switched. We obtain

€aP™ + gPP* =0, a#p. (6)

From here on, for the rest of this section, we assume that we are in the Hurwitz-Radon range
m = n and give a brief account on the classification theory from the point of view that will
be adopted for positive codimensions.

The change of basis formula reduces to
P m
u; = Z "jau?.
F=1
Iterating this on two and three indices,we obtain
(PP*)? = —eqepl, a#p,
and

P8 = prapaf a, B, distinct.

Setting U® = P, a = 2,...,k + I, we obtain that {U>}%t, is a family of skew symmetric
transformations of R™ satisfying

(Ua')2 = —el, (7
UeUvP + UPUC =0, a#8. (8)
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We now introduce the Clifford algebra C,, a,b > 0, associated to the semi-Euclidean vector
space R, as the algebra (over R) given by the orthomormal basis {e,}2t: C R%® as
generators and satisfying the relations e2 = 1,a =1,...,a,and €2 = -1, @ = a+1,...,a+b,
and eseg+ egeq = 0, @ # B. Let V be a C,p-module and & a (linear) 2-form on V. We say

that 6 is (X )invariant if, for z,y € V, we have

O(eaz,eay) = Fb(z,y), a=1,...,q,
feaz,eqy) = =b(z,y), a=a+1,...,a+b

In what follows, # will be either semi-Euclidean (nondegenerate and symmetric) or symplectic
(nondegenerate and skew).

Going back to orthogonal multiplications, we see that (7)-(8) translate into the single fact
that R™ is a Cx~1-module. Moreover, by skew symmetry and (7), we have

U°y* = ealyl’, ye€R™,

so that, R™ carries a (+)invariant semi-Euclidean structure. Finally, {U=}%, determines
F up to an isometry on the source R™. More precisely, F : R*! x R™ — R™, is said to be
normalized if F(e;,z) = ¢, £ € R™. Note that, since k¥ > 0, any F can be normalized by
precomposing it with the inverse of the isometry z — F(e;,z). We summarize the above in

the following:

Proposition 1 The set of normalized orthogonal multiplications F : R¥ x R™ — R™,
k+1<m, k>0, is in one-to-one correspondence with the set of C;x_,-modules that carry
(4+)invariant semi-Euclidean structure.

It now remains to classify all (irreducible) C, j-modules that carry (+)invariant semi-Euclidean
structure.

We now recall the classification of Clifford algebras (cf. Porteous [12] or Benn and Tucker
[4]). We denote by F(d) the algebra of d x d-matrices with entries in F', where F = R, C, H.
Clearly, C;o =R ® R, (13 2 R(2), Cp1 = C and Co,2 = H and, little computation shows
that Cos = H @ H and Cp4 = H(2). Now the isomorphisms

ca+1,b = cb-)-l,a (9)
Catrpt1 & Cap ®Cip (10)
Ca,b+4 = Ca,b ® CO,4 (11)

completely describe all Clifford algebras. (For an explicit tableau, cf. Porteous [12], p.250.)
In particular, each C,j is isomorphic either to F(d) or F(d) & F(d). The only irreducible
module(s) over F(d) (®F(d)) being F? with the usual matrix multiplication (precomposed
with the projections), the only problem that remains is the existence of (+)invariant semi-
Euclidean structure on these modules.

We can now apply a Hurwitz-type induction in the use of (10) to show that an irreducible
Cap-module carries a (+)invariant semi-Euclidean structure iff, for any ¢ > 0, an irreducible
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Cattp+e-module carries a (*)invariant 2-form, where * is the sign of (—1)¢, and it is semi-
Euclidean if £ = 0,1 (mod 4) and symplecticif t =2, 3 (mod 4). The existence of these
forms are easily verified for low ranges of a and b. Using the isomorphisms (9)-(11) and
periodicity (with period 8) in both coordinates a and b, we finally arrive at the following
tableau:

7T o oo 00 o0 o0 o
6 o oo 00 @ @
5 o 0o oo 0o 0 o @
4 o # 0 00 @ 0 @
3 o oo oo 0 o0 o
2 0 e o @ 0 0 0 @
l o e @ ¢ 06 0 0 o
0 o e @ @ 0 @ 0 o

0123 456717

where o and o at (a,b) means existence and nonexistence of a (+)invariant semi-Euclidean
structure on an irreducible C, p-module. Notice that symmetry to the y + 1 = z line is the
consequence of (9). The table is extended periodically in both directions by period 8.

Remark. Irreducibility of the C,s-module is crucial for the (non)existence of a (+)invariant
semi-Euclidean structure. In fact, it is easy to see that, given an irreducible C,s-module V,
a (+)invariant semi-Euclidean structure always exists on the double of V.

Examples. The orthogonal multiplication F': R xR — R, defined by F((z,y), (uv,v))
(zu + yv,yu + zv) is reducible, i.e. it splits into the direct sum of two orthogonal mul-
tiplications. F corresponds to the (reducible) C;o-module R? with the generator e act-
ing as reflection in the line v = v. The situation is the same for the orthogonal mul-
tiplication F : R*? x R** — R™? where, using complex coordinates, F' is given by
F((z1, 22), (w1, w2)) = (21w1+ 223, 29wy + 2w, ). Here the (reducible) C; ;-module is R2pR?
with the generators e, ey, es acting as follows: e; (resp. e3) switches the copies of R? and
acts as a reflection in the first axis (resp. in the u = v line) on each copy; e; acts as the
positive rotation by 7 /2 on each copy.

3 Proof of Theorem 1

Let F : R¥ x R™ —» R™1! k+1 < m, k > 0, be a full orthogonal multiplication. We
use the notations of the beginning of the previous section. For each a = 1,...,k + [, let
E* € R™* be the (uniquely determined) vector such that {ug,...,u2, E*} is an oriented
orthonormal basis in R™** in the following sense: We rearrange {u2,...,u2, E°} in such
a way that (i) The vectors with positive norms always precede those with negative norms;
(ii) The lower index is always increasing unless it violates (i); (iii) E* follows the vectors
u3 unless it violates (i). With this, we assume that the rearranged system agrees with the
standard orientation of R™*1. Since E® is a unit vector, we have

|E®)? = v, = %1.
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Since 7P in (3) is proportional to E*, we rewrite the change of basis formula as

“? = Z el + ‘I?aEaa (12)

i
where ¢ € R.

We now recall that P#° is, by (5), skew and satisfies (6). Moreover, substituting (12) into
the orthonormality condition (uf ,u?) = €g0:0;;, we obtain

(PP2)? = —eatpl + eavad® (™), (13)

where ¢°* stands for the vector with coordinates ¢® and the transpose is taken with respect
to the semi-Euclidean structure in R™, i.e. (¢°*)7 is a row-vector with coordinates a';q? e
i=1,...,m.

Lemma 1 For a # 3, we have
(i) PPagha = 0;

(1) |¢°*|* = €gVa, provided that ¢°* is nonzero.

Proof. Assume that ¢°* is nonzero. To simplify the notation, we suppress the upper double
indices Ba and put € = €65 and v = €,v,. With these, (13) rewrites as

P=—el+vqq". (14)

We now introduce what will be called the ‘P3-trick’ (to be used later in various instances).
For z € R™, we have
P3z = P*(Pz) = —¢Pz + v(q, Pz)q
and
Pz = P(Pzz) =—ePz + V(q, :B)Pq,
s0 that
(¢, Pz)g = (¢,z)Pg, =z €R™

Taking scalar product of both sides by « and using skew symmetry of P, we obtain
(g,z)(Pg,z) = 0.

Since q # 0, this certainly gives Pg = 0. Going back to (14) and using P%q = 0, we get
|g]?> = ev and the proof is complete.

Lemma 2 Let V be a semi-Euclidean vector space and P a skew endomorphism of V. If P
1s nonsingular then dimV is even.

Proof. We have
det P = det PT = det (—P) = (—1)&™V det P.
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Lemma 3 m is odd provided there is at least one nonzero ¢°*.

Proof. Take V = (¢°*)*. By Lemma 1, V is nondegenerate and, by (13), P#2|V satisfies
the conditions of Lemma 2. Hence dim V = m — 1 is even.

From now on, we assume that F is full. In terms of (12), this is equivalent to saying that at
least one ¢°* is nonzero; thus m is odd and, by Lemma 2, all ¢°* are nonzero. Notice also
that the first part of Theorem 1 is proved.

Lemma 4 We have
(1) €aVa = €gvg ;
(i) EP = —eqva X1, a,-qfau}’.

Proof. Let Ef* denote the right hand side in (ii). Using orthonormality of the vectors ug,
we compute

BPet = 3 (g g

i=1

= fal‘lﬂal2

= €a€gla(= *1),

where we used (ii) of Lemma 1. Next, changing the basis and using (i) of Lemma 1, we have
(Eﬂ", uf) = —€qlq E a,-q?a(u?, Z pf,':uﬁ + qf"E“)
=1 k=1

m
S =0
~Va &G =0

i=1

Thus )

Efe = +BP (15)
in particular, the norm square of both sides gives (i). It remains to show that we have
positive sign in (15). To do this, we consider the orthonormal bases {u,...,u%, E°} and

{48,... ,u,‘;,Eﬂ"} and show that, with the order defined at the beginning of this section,
they have the same orientation. This is done by case-by-case verification and, the proofs
being very similar, we give the details only for two cases. Assume first that e, = 1, eg=1

and €,v, = €gvg = 1. Let (p, q) be the signature of the source R™ and write PP* and ¢°* in
block form accordingly:

A B T
Ba _ a _

Ppha — [ c D ] and ¢f* = [ 3 ] .
Then the transfer matrix between the two (rearranged) bases is

Ar B
—rt 0 st

C s D

b
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where ! means ordinary transpose. Now both

[Ar] awd D

—t 0

are skew and hence have positive determinants. It follows that the transfer matrix preserves
space and time-orientation and we are done.

Second, assume that €, = 1, ¢g = —1 and e,¥, = €egrg = 1. In this case, we interchange
the last p+ 1 rows and the first g rows in the transition matrix and then change the sign in
the last ¢ rows. We obtain a skew matrix. Its determinant is positive. The row operations
amount to multiply this with (—1)(P+1)9+4 {0 get the determinant of the transfer matrix. The
sign is, however, positive since m = p + ¢ is odd and we are done.

Lemma 5 For a # 5, we have
¢ = —eaepq™.

Proof. Changing the basis, and using Lemmas 1 and 4, we compute

m m
Yo ouaffup = Y oug?Ppfuf + |9 EP
i=1 i,5=1
T B ap B
= — Y opilaPuf + |g*P P EP
£,5=1
m
= eau,gEﬁ = —eaq;Za;qf“u?

=1

and the lemma follows.

Lemma 6 Let o, § and v be pairwise distinct. We have

(i) PP = P + egupq*(q™)";

(ii) P*q* = g"P;

(i59) (¢, ™) = 0.

Proof. The proof is a simple computation and is completely analogous to the proof of
formulas (17)-(19) in [5]) and is therefore omitted.

Proof of Theorem 1. Let U®, a = 2,...,k + I, be the linear transformation of R™*?
whose matrix, with respect to the orthonormal basis {u},...,u},, E'} is

Pal qal
-1 (qul)T 0

e =
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The symmetry properties of P, the change of basis formula and Lemmas 1, 5 and 6 then
translate into

(%) = —eud
ﬁal’j‘ﬁ + ﬁﬁﬁn=07 a#ﬂ7

(°u,v) + (u,0°0)=0, u,veR™.

From now on, we think of the source R™ as being a linear subspace of R™*! by the linear
isometry ¢ — F(e;,z), in particular, we have f; = u}, ¢ = 1,...,m. We define the bilinear
map

F:RM™ xR™! — R™!
by

_ k41 _

F(z,y) = z1y + Y zaU%,

a=2
where £ = Y5, z,¢e,. Using the properties of U* above, we compute

k+1 i .
2yl + Y zazp(U°y, TPy)
«,f8=2
k41

2y’ = Y zaza(0°U%y,y)
a,f=2

k+l A
z3lyl* + 3 eazilyl
a=2
|z|*|yf?
so that F is normed, i.e. an orthogonal multiplication. Finally, we have

F(ela ft) = fi' = F(el)fi)

and, for a > 2, the change of basis formula gives

|F(z,y)I*

F(eay fl) = [7“ :.l = ZP?,-IH} + Q?IEI = '"';'! = F(eaa fi)

i=1
so that F is an extension of F. The proof of Theorem 1 is complete.
4 Codimension Two Orthogonal Multiplications; General Setting

Let F:R* xR™ — R™?2 k+1<m, k > 0, be a full orthogonal multiplication. We retain
the notations introduced at the beginning of Section 2. For each a = 1,...,m, we choose
E¢ and E$ in R™? such that {ug,...,u2, EZ, ES} is an orthonormal basis of R™2. We
set the signs as

|EY|* = v, and |EZ|"=u,.




286 Gauchman and Toth

For a # B, the normal vectors nf* in (3) are linear combinations of Ef and Eg. Thus, we

can write the change of basis formula as

of =Y ol + By + 7By, a#p. (16)

i=1

As usual, we denote by ¢°* and rP the vectors in R™ whose components are ¢°* and rPe,
respectively.

For a # B, let
VP = span {¢, P}
and
Wha = (VAL

Then V?* and W#* are linear subspaces of R™ of complementary dimension and they span
R™ iff one (and hence both) are nondegenerate.

Lemma 7 The normal vectors Ef and EF can be chosen in such a way that, whenever

dim V8 = 1, we have
g # 1rPe,

Remark. We emphasize here that, at this point, we keep E{ and EZ arbitrary (subject
only to orthogonality) provided that dim V2> # 1.

Proof of Lemma 7. Let dim V#* = 1 and assume that ¢?* = +r*. We first consider the
case Vo'v," = 1. We change {Ef, E5} to {Ef, Eg} such that
E? = costE? —sint B

Eg sint B + cost E2.

The change of basis formula then implies that

F it cost ¢°* + sint rP®
e = _sint¢P® + costrfe.

Taking ¢ (small) such that sin¢ # 0 and cost # 0, we obtain §* # 7#* (without affecting
the other relations). If v,'v,” = —1, instead of rotation, we use hyperbolic boost, i.e. the
transformation

EY
By

cosh tE;" + sinh tEZ,
sinh tEZ 4+ cosh tEg.

Recall that PP possesses the symmetry properties (5)-(6). As in the earlier cases, using the
change of basis formula (16) in the orthonormality of the vectors u?, we arrive at

(PP)? = —€atpl + c:',,ua'qﬂ"(qa"')T + eave" TP (1) T (17)
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Fundamental Lemma Let F: R¥ x R™ - R™?2 k+1<m, k>0, be a full orthogonal
multiplication. Then, by a suitable change of basis in R®!, we have the following three cases:

(i) For all a # B, VP2 is 2-dimensional and nondegenerate; m is even.
(i) For all a # B, VP* is 2-dimensional and null; m is even.
(ii) For all @ # B, VP2 is 1-dimensional and nondegenerate; m is odd.

The proof of the Fundamental Lemma is the content of the next section. Then the proof of
Theorem 2 will be accomplished in the following two sections corresponding to m even or
odd. We finish this section by some preliminary considerations preparing the proof of the
Fundamental Lemma.

Lemma 8 Let diim VA = 1. We have
(i) Pooghe = 0;
(i) Setting r8* = P2gP=, ¢P> # 0, we have
(v + ()T = 5.

VBa = Vb gnd it is PP*-invariant and nondegenerate. Finally, m is odd.

Proof. We simplify the notations by suppressing the upper indices Sa and setting v/ = €ava’
and v = e,v,". Since g and r are linearly dependent, we may assume that g # 0 and r = cq.
With this, (17) rewrites as
P?=—el+ (V' +")qq".

By Lemma 7, ¢ # +1 so that ' + c®»” # 0. We now use the P3-trick as in the proof of
Lemma 1 (with v replaced by v/ +c?") to obtain (i)-(ii). Everything follows now (cf. Lemma
2) except that the upper indices in V can be switched. To do this, we return to indices and
first note that, by the above, WP is the —e,eg-eigenspace of (PP®)?2. Since (P*P)? = (PP=)?,
(17) implies that W= C W#*. Assume that W # W#*. Then dim V*# = 2, i.e. ¢® and
728 are linearly independent. Take z € WP \ WeB. Applying both sides of (17) (with a
and @ switched) to z and using that ¢*® and 7P are linearly independent, we obtain that
z € (V*#)* = WP which is a contradiction. Hence WP* = WP and, taking perpendicular
complements, the statement follows.

Lemma 9 Let dim VP2 = 2. Then VA= = V# and it is PP-invariant. Moreover, we have

PPagfe — ' AgarPe,
Pﬂa,’.ﬂa - —'Va”/\ﬁaqﬁa7 (18)
where
(Mga)’ = €atpra'va” — €ava”|¢™|?

€atpVa'Va' — €aa |72,
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in particular,
Irpalz - VuIVa”Iqﬁalz-
Furthermore, we have
(qﬂa’rﬁa) =0.

VPe is either nondegenerate or null and, in both cases, m is even.

Proof. We again use the simplified notation. We first claim that W is the —e-eigenspace of
P2, Indeed, let = be a P?-eigenvector with eigenvalue —¢, i.e. Pz = —ez. Applying z to
both sides of (17), we then obtain (g, z) = (r,z) = 0 since g and r are linearly independent.
Thus = € VL = W and the claim follows.

Returning to indices for a moment, we see that W# C W42 since (PP*)? = (P*#)?. But W#=
is of codimension two so that equality holds. Taking perpendicular complements, VA% = Vo8
follows.

Returning to the index-free notation, we next claim that W is P-invariant. Indeed, given
z € W, we have P?(Pz) = P(P2?z) = —cPxz so that Pz is a P%-eigenvector with eigenvalue
—e. By the above, Pz € W and hence the claim. P is skew and so V = W* is also
P-invariant.

We now use the P3-trick again. Given z € R™, by (17), we have
P(P%z) = —ePz + v'(q,z)Pq + v"(r,z) Pr

and

P?(Pz) = —¢Pz + V'(q, Pz)q + V" (r, Pz)r.
Combining these, we arrive at
v'{q,z)Pq+ v"'(r,z)Pr + v'(Pq,z)q + v"(Pr,z)r = 0. (19)
V is P-invariant so, for a moment, we can set

Pq = ag+r
Pr = blq+dr.

Substituting these back to (19) and using linear independence of ¢ and r, we obtain

|
o

2'a{q, z) + (V' + V") (r,z)
(V'Y +v"8")(q,z) + 2v"d(r,z) = 0.

These are valid for all z € R™ and so we finally arrive at

a=d=0
V,b, + V”b” = 0

and (18) follows. In particular
qu - —Vll/”/\zq.
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On the other hand

P*q = —eq+'|al*q + v"(g, ).
Comparing, we obtain orthogonality of ¢ and r and the first equation for A2. The second
can be obtained by considering P?*r. To prove the last two statements, assume that V is
degenerate, i.e. |g|%|r|* = (g,r)? = 0. By the above, this, however, means that |g|? = |r|> = 0
so that V is null.

Finally, we show that m is even. This is clear if V is nondegenerate since W is then
nondegenerate and codimension two and Lemma 2 applies. Assume now that V is degenerate,
hence null, iie. V C W. V is P-invariant and P|W generates a finite cyclic group so
that there exists a P-invariant linear subspace V' C W complementary to V in W. V' is
nondegenerate. Indeed, if v’ € V' is perpendicular to V’ then it is perpendicular to all W
since v € W = V! and V with V' span W. Thus, v' € V and so v' = 0. Moreover, V' is
codimension two in W and so it is codimension four in R™. Lemma 2 applies to V' yielding
that m is even. The proof is complete.

Lemma 10 If m s even then v,'v,"” does not depend on a.

Proof. The space R™*? has signature (r, s) so its determinant (discriminant) is (—1)*. Using
the orthonormal basis {uf,...,uS, BZ, E$} we get another expression for the determinant:
(—1)* = (€a)™01 ... Omva'va". I m is even it follows that v,'v,” does not depend on a.

5 Proof of the Fundamental Lemma
For any 7 # 6, we set
A% = [P — (g, 59,
Step 1. Assume that for a pair of indices @ # B, we have AP* £ 0. We show that, after a
suitable change of the basis in R*!, we can get A% # 0, for all 7 # 6.

Fix an index v # a, 8. Change the orthonormal basis {e, }5t, in R** to another orthonormal
basis {é,}5t, as follows:

If ege, = 1 then let

€y = coste,—sinteg,
€s = sinte, 4 costeg,
55 = €5 if § ;é ,3,’7.

If ege, = —1 then we apply a hyperbolic boost by replacing the trigonometric functions
above by their hyperbolic analogues.

From now on we give details only for the case ege, = 1, the treatment of the opposite sign
being very similar. Then, we have

@] = costu] — sintud
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and using the change of basis formula for both terms on the right hand side (going down to
u?), with obvious notations, we arrive at

"™ = costq™ —sint¢?*,
71 = costr™ —sintrfe, (20)

Assume now that A™ = 0. Using the transformation rules above, an easy computation gives
A" = —1/2 AP cos(2t) + A + Bsin(2t) + C cos(4t) + D sin(4t),

where A, B, C and D do not depend on ¢. Since AP* # 0, A7, as a function of ¢, is
nonconstant. Thus, by a small change of ¢, we get A7 3 0. Repeating this process finitely
many times, and retaining the earlier notation, we can now assume that A" £ () for all
7(# a). By Lemma 9, V" = V*7 50 that A*” # 0 also follows. Changing the basis in R*!
once again, we obtain A% # 0, for all 4 # 6.

This however means that, for all vy # &, V® is 2-dimensional and nondegenerate and we
arrive at Case (i) of the Fundamental Lemma. Note that, by Lemma 9, m is even.

Step 2. We can now assume that
(1) For all 4 # §, either V*7 is 2-dimensional and null or dim V*7 < 1;

(2) Property (1) is preserved under any change of the basis in R®!. (If property (1) is not
preserved under any change of the basis in R*!, we will return to the situation of Step 1
after a suitable change of the basis.

Assume that for a pair of indices o # 3, dim V#* = 2. We show that, after a suitable change
of the basis in R*!, we have dim V%" = 2, for all 7 # §. As in Step 1, we fix v # a, 8 and
apply the same transformations.

Assume that dimV"® < 1 along with dim V7@ < 1. Setting " = A¢ and 7™ = p,
A p€Rand 0 # ¢ € R™, we claim that £ € span {¢?®,7%°}. Indeed, in the opposite
case, for sint # 0, the linear span of ¢, —sint¢®* and —sin¢+#® is 3-dimensional. Hence
the linear span of £, §™ and 7" is also 3-dimensional and this is a contradiction since §7
and 77* are linearly dependent. Thus, we can write

= g + broe

so that
@ = (Macost—sint)g® + AbcostrP,
#* = pacostg® + (ubcost — sint)rfe.

By linear dependence, the determinant of the coefficients, i.e.
sintcost (tant — (Aa + pb))

must vanish. Hence, if we take 0 < ¢ < 7/2 with tant # Ae + ub then §"* and #*® become
linearly independent. Repeating this process finitely many times, and retaining the earlier
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notations, we arrive at a system, where dim V** = 2 for all 4 (# a). By Lemma 9, V7* = V*7
so that dim V" = 2. Now the process applied again gives dim V%" = 2, for all 4 # §. Since
we are in Step 2, all these spaces are null and we land in Case (ii) of the Fundamental
Lemma. Note that m is even by Lemma 9.

Step 3. We can now assume that
(1) For all v # §, we have dim V%7 < 1;

(2) Property (1) is preserved under any change of the basis in R*!. (Otherwise we return to
Case 1 or 2.)

Assume that for a pair of indices a # 3, we have dim V#* = 1. We may assume that
g?® # 0. Changing the basis in R*! in exactly the same way as above, we obtain ¢’* # 0,
in particular, dim V7@ = 1, for all 7(# a). By Lemma 8, V7® = V7 and we can finish the
process as above. Again by Lemma 8, we arrive at Case (iii) of the Fundamental Lemma
and m is odd.

Step 4. We are left with the case when dim V%" = 0 for all v # §. This however contradicts
to fullness of F' as can be readily seen from the change of basis formula.

6 Proof of Theorem 2

If m is odd we are in Case (iii) of the Fundamental Lemma. The proof of Theorem 2 in this
case is completely analogous to the proof of Theorem 3 in [5] and is therefore omitted.

In what follows we give a unified treatment of Cases (i)-(ii) of the Fundamental Lemma.
Throughout, we assume that m is even and, for @ # 8, V#* is 2-dimensional and nondegen-
erate or null. We use the notations introduced in Section 4 including (16)-(17) and Lemma
9. We set

Iqﬂalz - Va,Va”hﬁalz

= egla’ — €alaAg,. (21)

Hpa

Note that, by Lemma 10, v,'v," is independent of a.

Recall that in the codimension one case (Section 3) a crucial fact was (anti)symmetry of ¢°*
in the upper indices as proved in Lemma 5. The proof depended on (ii) of Lemma 4 which,
in turn, was due to the unicity of E®. Here the main technical difficulty is the nonuniqueness
of Ef and EZ.

Lemma 11 We have
’\Zxﬁ = ’\Ecn
in particular
Hap = €a€pVa VB Hpa-

Proof. By Lemma 9, we have (P?2)?|[VPe = —u,'y,"A% I since this holds for ¢°* and
7P% and they span V#°. Switching @ and A, again by Lemma 9, the left hand side remains
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unchanged so that we obtain v,'va"A3, = vg'vs"A%s and Lemma 10 gives the first statement.
The second follows from this and (21).

Lermma 12 Without loss of generality, we may assume that either As, # 0, for all v # §,
or Asy =0, for all v # 6.

Notation. In what follows, we write A # 0 (resp. A = 0) to indicate that sy # 0 (resp.
Asy = 0) for all v # 6.

Proof of Lemma 12. Assume that, for a pair of indices a # 8, we have Mg, # 0. By (21),

Mpo 7 €pVa’. We show that, after a suitable change of the basis in R*!, we can get As, # 0,
for all v # 6.

Fix an index 7 # a, B and assume that ege, = 1 (the other case can be treated similarly).
We now apply the rotation of Step 1 in the proof of the Fundamental Lemma. Taking norm
square of both sides of (20), we obtain

fiva = 1/2(ptya — ppa) cos(2t) — (g%, qﬁa> sin(2t) + 1/2(pya + ppa)-

If Aya = 0 then pyo = €V’ = €g¥a’ # pga 50 that fi,e, as a function of ¢, is noncontant.
Thus, by a small change of ¢, we get A,a # 0. Repeating this finitely many times, and
retaining the earlier notation, we can assume that A, # 0, for all y(# a). By Lemma 11,
we also have A,, # 0. Changing the basis again, we obtain As, # 0, for all 4 # 6.

We now impose an orientability constraint on the choice of Ef and ES. We first denote
by B® the orthonormal basis {uf,...,u%, E?, Eg} in R™? where the vectors appear in
this order. Next, we rearrange this basis in such a way that (i) The vectors with positive
norms always procede those with negative norms; (ii) The lower index is always increasing
unless it violates (i); (iii) EY and B3 always follows uJ unless it violates (i). We denote the
rearranged basis by B and we choose Ef and Ef such that the orientation of BS agrees
with the standard orientaion of R™*2. Let T denote the transfer matrix from B> to B®.
In block form
Paﬁ qaﬁ B
T8 = | equa' ()" vg'(E,EY) wg"(Ef, Ef) (22)
epva(rP)T wg'(E5,EY) vg"(Ef, EY)

Lemma 13 We have
det (T°P) = v,'vg'(eaes)™.

Proof. We write O(B*) = +1 if B® is (+)-oriented in R™*2, Since T is the transition
matrix from B* to B?, we have det (T°%) = O(B*)O(B?). Now the proof can be settled by
case-by-case verification, where the cases correspond to the various signs e, €8, V', Vo' and
vg' (cf. Lemma 10). For example, consider the case when €, = ¢ = —1, v,/ = —v,”" =
—vg' = yg" = 1. Looking at B* and B%, we see that we need pq + p transpositions of
(adjacent) vectors to obtain one from the other. Hence O(B®) = (—1)?9*?, In a similar vein,
O(BP) = (~1)P2*?*! Combining these, we arrive at det (T*%) = —1 = v,'vg’(eaes)™?.
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Lemma 14 We have
Aaﬁ = (_1)q+1(Eafp)m/zVa,Vﬁ”Aﬁa.

Proof. By Lemma 11, we may assume that A # 0. The proof of the following formulas is
similar to that of formulas (30) in [5] (and is omitted):

—€atpapg™ = (Ef, E5)q° + (Eg, E§)r,
~eatphapr®® = (EZ,EP)¢P* + (B3, Ef)rfe. (23)

Iterating (23) on af and Ba, we obtain
(Efv Ef)(E‘;aElp) - (E;’,Ef)(E;‘,EE) = ’\ﬂﬂAﬂﬂ' (24)

Let 5*# denote the (m + 2) x (m + 2)-matrix

—vg'(Eg, E) —vg"(Eg, Ef)

S8 = diag[oq,...,0m)®
gl 1O | Loims, B (B, BE)

The product matrix $*PT*# after dividing the last two rows by €,V 'vg' Aag, becomes skew,
in particular, the determinant of $*2T? is nonnegative. By Lemma 13, we obtain
(atp)™ *va'vg' det (5%F) > 0. (25)
By (24), det (S°P) = (—1)9"'vg'vg" AapAga. This, along with (25) gives
(—1)7* (catp)™*va'vp" AapApa 2 0.
Dividing by A2; = A3, the lemma follows.

We introduce, for a # 3, an auxiliary set of vectors by

m

B = Y0560 — eava'va"Aga B3,
i=1
m

e = 3 0iriuf + eava'va Aga S (26)
=1

These vectors are analogous to the vectors given by formula (28) in [5]. In the same way as
in [5] the following lemma can be proved:

Lemma 15
(i) For a # 8, % ond If“ form an orthonormal basis in span {Ef,E.f} and
172212 = e epvy’ and |I29)2 = eqepva’’.

(i) We have
q,-"'S'E{3 + 'r'.-"ﬂEgJ = el P2 1P + €pvy 1P IR,
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From now on we split the proof into two cases corresponding to the cases (i) and (ii) of the
Fundamental Lemma.

Case 1. V°# is nondegenerate.

The proof in this case is similar to the proof of Theorem 2 in [5]. We will sketch the
argument omitting most of the details. First we obtain the ‘angular switching formulas’
and the ‘three-index formulas’ similar to the ones in Lemmas 6 and 7 in [5]. (If V*# is
indefinite, hyperbolic functions must be used in place of trigonometric functions.) Then we
specify a choice of vectors EY and ES. We take E] and E} arbitrary and, for a # 1, we

set BF = e I?, ES = (&)™*V I3 if v'v," = 1 and Ef = €., E§ = —e,™/2Ig if
Va'Va" = —1. Then, as in 5], we obtain the crucial equalities
P = —¢%,
™ rPe = g™/ pob, 27

Finally, we finish Case 1 by showing that the conclusion of Theorem 2 holds in this case.
As usual, we think of R™ as being a linear subspace of R™*? via the linear isometry
z — F(ey,z), so that we have f; = u}, i = 1,...,m. Let U%, a = 2,...,k + I, be
the linear transformation of R™*? whose matrix, with respect to the orthonormal basis
{ul,...,ul,E} El}is

Pal qal ,’.al
U° = | —v(¢")7 0 via
()T - Am 0

Direct computation, in the use of the angular switching and three index formulas and (27)
shows that

(U%)? = —€al,
Ue0® + UPU= = 0.

We also have
(OU*u,v) + (u,U%) =0, u,v € R™?,

as can be checked by case-by-case verification. Now the proof is identical with that of the
Theorem 1 in Section 3.

Case 2. VP* is null for all a # B.
By (21), A3, = €a€pta’v," so that
Asa = %1 and eqa65 = v,'va".

Since, by Lemma 10, v,'v,” is independent of a, we have to distinguish two subcases as
follows:

Subcase 1. k=l=1and v,/ = —v,", fora=1,2.
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Subcase 2. [=0and v,' = v, fora=1,...,k.

We consider first Subcase 1 and show that F : R¥ x R™ — R™*? is the restriction of an
orthogonal multiplication F': R x R™*? — R™*? in the Hurwitz-Radon range.

Setting P = P?, g = ¢, r = 7*! and V = V!, by Lemma 9, we have
g

Pq = A,
Pr = g,

where A = £1. Since V is null, we have

gl = Irl* = (g,7) = 0

and
P2 — I+l/'qu +V”‘I‘1‘T,

where v/ = 1} and V" =17

We now think of the source as being a linear subspace of R™*? by the linear isometry z —

F(e1,z), or equivalently, we set f; = ul,i=1,...,m. Let U be the linear transformation of -
R™+2? whose matrix, with respect to the basis {u],...,u},, B}, E3}, is
P q r
U= —v¢g" 0 =2 |[.
"7 =X 0

A direct calculation, in the use of the computational rules above, shows that
0*=1

and ~
(Ou,v) + (v,0v) =0, u,v € R™2,
We now define the bilinear map F : R x R™*2 — R™? by

F(z,y) = 21y + 2.0y,

where ¢ = z1€1 + zze5. The rest follows in the same way as the proof of the codimension
one case.

We now turn to Subcase 2. We have ¢, = 1 and v,/ = v,", for all @ = 1,...,k. We may

assume that actually v,’ = v, = 1 for all @ = 1,...,k (since otherwise we change the signs
of the semi-Euclidean structures on R™ and R™*2?). Thus, we have

€a=Va =Vs =1 and Agg =%l

By Lemma 14,
Aap = (_1)q+1’\ﬁa- (28)

Our main purpose is to show that k£ < 2.
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Lemma 16 Without loss of generality, we may assume that, for a, B and v distinct:
(@",¢%) = 0,
(rre, 7Py = o,
(@) + () =0.

Proof. We change the basis of R* as in Step 1 of the proof of the Fundamental Lemma in
Section 5. Using (20), we obtain

lg"* —sin(2t)(q™, ¢*),

|77*]* = —sin(2t)(r™®,rPe),
(@, 77%) = -1/2sin(2t)((g",7%) + (¢°2,77)).

If any of the claimed equations fails to be satisfied then we choose a small ¢ and land in Case
(i) of the Fundamental Lemma according to its proof.

We now prove the angular switching formulas:
Lemma 17

(i) There ezists *F € [—m, 7] such that

e

cos §°PqP — gin §oPyab,

P (—1)%(sin §*¢°8 + cos §°ProF),

1l

(i)

gPa — (—1)+1ges.

Proof. The following formulas are analogous to (32) and (33) in [5] and can be proved in
the same way as in [5]:

(Ef,EPy = (-1)%Eg,ES),
(E?»Eé’) (—l)q+]<E;’vEf)’ (29)
(B3, E)* + (Eg,Efy=1.

Using the last equation in (29), we introduce the angle §°° € [, ] by

(ES,BP) = —)gqcos P,
(E3,E5) = Mggsin 6P, (30)
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Then, by (29),

(E2,E?) = (—1)%\gqcos 6P,
E EPY = (=1)%)g, sin 68, 31
1 B

Substituting (30) and (31) into (23), we obtain (i). Inverting (i) we arrive at (ii).

In the following lemmas the three-index formulas are analogous to those in Lemma 5 in [5]
and they can be proved in the same way.

Lemma 18 For a, 8 and v distinct, we have

(1)

(i)

(iii)

P‘yapﬂa - _P'yﬂ 1 q-ya(qﬂa)T + r-ya(,rﬁa)T;

P'raqﬁa = (_1)q+1/\aﬂr‘va + cos gaﬂq—yp —fim 0"”1'“"9,
PrepPe = (—1)9(Aapq™™ + sin 6°Pq™ 4 cos §°Pr7P);
(@,4°%) = (=1)TAaprya — (—1)%Aygsin(67 + 6P — 6P7),

(q'va,,,.ﬁa) - ( 1)q+1/\ » cos(ﬂ“" + gba _ oﬂ-y)
(172, 7P%) = (=1)TAaghya — Aypsin(8°7 + 652 4 657),

Lemma 19 We have

(1) q is even;

()

(iii)

(iv)

(v)

cos 8PP — sin PP

rha sin §°Bq*# 4 cos §2Pr2B,

g8 = —6°F.

’\ﬁa = _/\aﬁ;

sin(B"ﬁ + 687 4 0") = AapAsyAyas
cos(8°f + 6P 4 g7y = 1.
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(vi)

IPe cos §*PEP — sin §*PE?
LPe = sin0°PEP 4 cos9°PEP.

Proof. By the orthogonality relations in Lemma 16, the first and third equations in (iii) of
Lemma 18 reduce to

§in(6°7 + 692 — 687) = Aupdradys = (—1)Aapreaes (32)

and (i) follows. Now (i) and (ii) in Lemma 17 and (28) imply (ii), (iii) and (iv), respectively,
and (32) reduces to (v). Substituting (ii) into the formula in Lemma 15 (ii), we get (vi).

We now specify the vectors EZ and EZ. Let E} and E] arbitrary (subject to the orientability
constraint). For a # 1, we set

Ef =I{! and Eg = I,
We note that the orientability constraint is preserved.

For the rest of this section the indices a, 3, v and § take their values in 2,...,k, and, for
simplicity, we set Ay = Aa1, P® = AaP?Y, ¢® = Aaq®?, 7 = Aor®! and 4 = 41,

By the switching formulas in Lemma 19 (vi)

g = 0,
dag® = ¢°
Aa'® = 79,
sin 2 = —AaAgAag,
cosf*f = 0,

where the last two equations are obtained by taking ¥ = 1 in (vi) of Lemma 19. Now we
will use the following equation:

g™ = Agy + Aap(sin 87°¢P7 — cos §70787). (33)

This equation is contained in the proof of Lemma 9 in [5]. In our situation the proof
is completely analogous. (Note that the conditions of Lemma 9 in [5] are automatically
satisfied.) Setting B = 1 and then v = 1 in (33), we obtain

g —Aarsr® — Aapg®,

/\a /\pqﬁ — /\ap‘l‘a .

rof

We now assume that k£ > 3 and get a contradiction. This means that there exist a # B with

Aap = Aag
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{cf. (i1) of Lemma 32). We can now rewrite the three index formulas in terms of single index

vectors as follows:

(P)* = —I+¢%(q®)" +7°(r)T,
(PP)? = —I+4(P)" +°(*)T;

PP + PPP* = ¢*(¢)T + ¢(¢°)" + 7°(rP)T +7P(r*)T;

Paqa - ,ra’

P%r® — _qa,

Paqﬁ - _qa+rcx_7ﬁ’
Parﬁ - _qa + qﬁ _ ru;

and

PP = e e,
PPre = g* —gf 41,
PP = P,
PPrf = _gf

and all scalar products of ¢%, ¢°, %, r? vanish.
Lemma 20 We have
¢*(¢*)" + (") = ()T + ()T,

Proof. We use (34)-(37) in the identity
— (PP)*P* + PP(P*PP 4 PPP®) = — P*(PP)? 4 (P°P* 4+ PP P*)P?

(34)

(35)

(36)

(37)

(38)

and obtain an equation for ¢%, ¢, 7*, 8. Switching o and 8 in (38) and comparing the two

equations thus obtained the lemma follows.
Lemma 21 ¢%, ¢?, 7 and r? are linearly independent.

Proof. Assume that
aq® +bf +er®+drf =0

with a® + ¢, b% + d* > 0. Applying P* to both sides and eliminating r# from the two

equations, we get

¢® = A¢® + Br®.
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We now apply P® and P? to this and obtain
B —Ar®+(A-B)¢?+(A+B+1)r =0
and
= (B-1)¢" - (A-1)r".
Putting all these together, we get
(A2+B*-A+B-1)¢"— (A*+B*+A-B-1)r* =0

so that
A=B=1+v2/2.

Hence

¢ = £V2/2(¢" +7°),
P o= (£V2/2-1)(¢" - 7).

Finally, taking P? of both sides of these equations we get a contradiction to the linear
independence of ¢® and 7°.

Finally, let z ¢ W2, Applying Lemma 20, we get
(g%, z)g™ + (r%, z)r™ — (P,z)g® — (v, z)rP = 0.

By Lemma 21, all scalar products vanish. On the other hand, by the very definition of Wes
this means that £ € W8. This is a contradiction and so k < 2 follows.

By fullness of F, actually k = 2. To prove that F extends to an orthogonal multiplication
F:R? x R™*?  R™*? we use the same argument as in (the end of) subcase 1 with

i P gqr
U=|-¢" 0 X},
—T =X 0
where g=¢*, r =7 and A = ;.
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