Quadratic Eigenmaps between Spheres

GABOR TOTH
Rutgers University, Camden, N.J. 08102, U.S.A.

(Received: 8 February 1994)

Abstract

A quadratic form $f: S^{m} \rightarrow S^{n}$ between spheres is separable if, up to isometries on the source and the range, the components of f are pure or mixed quadratic polynomials. The space parametrizing the separated quadratic eigenmaps f is shown here to fiber over a semi-algebraic set with each fiber a finite-dimensional compact convex body. For $m=3$, this gives a new description of the parameter space of all quadratic eigenmaps $f: S^{3} \rightarrow S^{m}$ as a fibration over an 'inflated tetrahedron' and generic hexagonal fibres.

Mathematics Subject Classification (1991): 54-xx.

1. Introduction

A map $f: \mathbf{R}^{m+1} \rightarrow \mathbf{R}^{n+1}$ is a k-form if the components of f are homogeneous polynomials of degree $k . f$ is spherical if it maps the unit sphere to the unit sphere. In this case, we say that (the restriction) $f: S^{m} \rightarrow S^{n}$ is also a k-form. If, in addition, the components of $f: \mathbf{R}^{m+1} \rightarrow \mathbf{R}^{n+1}$ are harmonic, or equivalently, the components of $f: S^{m} \rightarrow S^{n} \subset \mathbf{R}^{n+1}$ are spherical harmonics of order k, i.e. eigenfunctions of the spherical Laplacian on S^{m} with eigenvalue $\lambda_{k}=k(k+m-1)$, then we say that $f: S^{m} \rightarrow S^{n}$ is an eigenmap with eigenvalue λ_{k}. Eigenmaps are harmonic in the sense of Eells and Sampson [3], in fact, an eigenmap with eigenvalue λ_{k} is nothing but a harmonic map with constant energy density $\lambda_{k} / 2$.

A k-form $f: S^{m} \rightarrow S^{n}$ is full if its image is not contained in any proper great sphere. Two k-forms $f_{1}, f_{2}: S^{m} \rightarrow S^{n}$ are equivalent if there exists an isometry $U \in \mathrm{O}(n+1)$ such that $f_{2}=U \cdot f_{1}$.

For fixed m and k, the equivalence classes of full eigenmaps $f: S^{m} \rightarrow S^{n}$ with eigenvalue λ_{k} can be parametrized by a compact convex body \mathcal{L}_{m}^{k} in a finite dimensional representation space of $\mathrm{O}(m+1)$ (cf. [10] or Section 2). \mathcal{L}_{m}^{k} is called the standard moduli space.

Many examples of quadratic ($k=2$) eigenmaps are known, in fact, in the first nonrigid range $m=3$, a full classification, i.e. a geometric description of the $10-$ dimensional standard moduli space \mathcal{L}_{3}^{2}, is given in [9]. For fixed m, the complexity of \mathcal{L}_{m}^{k} increases very fast with k. In [11], [12], however, we defined degreeraising and -lowering operators which associate to an eigenmap with eigenvalue λ_{k}, eigenmaps with eigenvalue $\lambda_{k \pm 1}$. We proved that the degree-raising operator
gives rise to an (equivariant) imbedding $\mathcal{L}_{m}^{k} \rightarrow \mathcal{L}_{m}^{k+1}$ whose cokernel is annihilated by the degree-lowering operator.

In view of this, the classification of all quadratic eigenmaps $f: S^{m} \rightarrow S^{n}$ can be singled out as an important part of the whole classification problem. This is still formidable as it contains, via the Hopf-Whitehead construction (cf. [2] or Section 6), the problem of classifying orthogonal multiplications posed and studied by Hurwitz and Radon nearly a hundred years ago (cf. [5], [6], [7]).

The purpose of this paper is to introduce a natural class of quadratic forms between spheres, called separable, which comprise most of the known examples and give a geometric description of their moduli space.

Let p be a quadratic polynomial in x_{0}, \ldots, x_{m}. We say that p is pure (resp. mixed) if $p(x)=\Sigma_{i=0}^{m} \alpha_{i} x_{i}^{2}$ (resp. $p(x)=\Sigma_{0 \leq i<j \leq m} \alpha_{i j} x_{i} x_{j}$). A quadratic form $f: S^{m} \rightarrow S^{n}$ is separated if f is equivalent to a quadratic form such that each component is pure or mixed. A quadratic form $f: S^{m} \rightarrow S^{n}$ is separable if there exists an isometry $a \in \mathrm{O}(m+1)$ such that $f \circ a$ is separated.

Using moduli space techniques, in Section 2 we prove the following:
THEOREM 1. Every quadratic eigenmap $f: S^{3} \rightarrow S^{n}$ is separable.
In Section 3 we construct a space \mathcal{S}_{m} (resp. \mathcal{S}_{m}^{0}) that parametrizes the equivalence classes of full separated forms $f: S^{m} \rightarrow S^{n}$ (resp. eigenmaps). \mathcal{S}_{m}, resp. \mathcal{S}_{m}^{0}, fibers over a semi-algebraic set Σ_{m}, resp. Σ_{m}^{0}, in $\mathbf{R}^{m(m+1) / 2}$ and each fiber is a compact convex body in a finite-dimensional vector space. We determine $\operatorname{dim} \mathcal{S}_{m}$ and $\operatorname{dim} \mathcal{S}_{m}^{0}$, in particular, we have $\operatorname{dim} \mathcal{S}_{m}^{0} \simeq \operatorname{dim} \mathcal{L}_{m}^{2}$ as $m \rightarrow \infty$. In contrast to Theorem 1, however, we have:
THEOREM 2. For $m \geq 4$, there exist nonseparable quadratic eigenmaps $f: S^{m} \rightarrow$ S^{n}.

In Section 4, we show that Σ_{m+1}^{0} can be imbedded into Σ_{m} as a codimension 1 slice (i.e. the intersection of Σ_{m} with an affine hyperplane). As a byproduct, we obtain a source dimension-raising operator which associates to a quadratic eigenmap $f: S^{m} \rightarrow S^{n}$ a quadratic eigenmap $\tilde{f}: S^{m+1} \rightarrow S^{n+m+1}$. This gives rise to an imbedding between the respective standard moduli spaces.

These imbeddings are used in Section 5, for $m=3$, to give a new and very explicit description of (separable and hence all) quadratic eigenmaps $f: S^{3} \rightarrow$ S^{n}.

In Section 6, we give a sharp lower bound for the range dimension of a separable eigenmap. As a corollary, we obtain that any quadratic eigenmap $f: S^{4} \rightarrow S^{4}$ is nonseparable. Finally we show that the Hopf-Whitehead construction is just a special (rank 1) case of a more general construction of quadratic eigenmaps $f: S^{m} \rightarrow S^{n}$ and derive an explicit description of the rank 2 case.

2. Proof of Theorem 1

We begin by recalling some facts about the standard moduli spaces. Let $\mathcal{H}^{k}=\mathcal{H}_{m}^{k}$ denote the space of spherical harmonics of order k on S^{m}. Let $\left\{f_{\lambda_{k}}^{j}\right\}_{j=0}^{n(k)} \subset \mathcal{H}^{k}$ be an orthonormal basis with respect to the normalized L_{2}-scalar product

$$
\left\langle h, h^{\prime}\right\rangle=\frac{n(k)+1}{\operatorname{vol}\left(S^{m}\right)} \int_{S^{m}} h h^{\prime} v_{S^{m}}
$$

where $v_{S^{m}}$ is the volume form on $S^{m}, \operatorname{vol}\left(S^{m}\right)=\int_{S^{m}} v_{S^{m}}$ is the volume of S^{m} and

$$
\begin{equation*}
n(k)+1=\operatorname{dim} \mathcal{H}^{k}=(m+2 k-1) \frac{(m+k-2)!}{k!(m-1)!} . \tag{1}
\end{equation*}
$$

We now define the standard minimal immersion $f_{\lambda_{k}}: S^{m} \rightarrow S^{n(k)}$ as a map with components $\left(f_{\lambda_{k}}^{0}, \ldots, f_{\lambda_{k}}^{n(k)}\right)$ (cf. [1], [14]). $f_{\lambda_{k}}$ is clearly full and different choices of the orthonormal basis give equivalent eigenmaps.
$f_{\lambda_{k}}$ is universal in the sense that, for any eigenmap $f: S^{m} \rightarrow S^{n}$ with eigenvalue λ_{k}, there exists a linear map $A: \mathcal{H}^{k} \rightarrow \mathbf{R}^{n+1}$ such that $f=A \cdot f_{\lambda_{k}}$. Note that, A is surjective iff f is full.

Associating to f the symmetric linear endomorphism

$$
\langle f\rangle=A^{\top} A-I \in S^{2}\left(\mathcal{H}^{k}\right), \quad(I=\text { identity })
$$

establishes a parametrization of the space of equivalence classes of full eigenmaps $f: S^{m} \rightarrow S^{n}$ with eigenvalue λ_{k} by the compact convex body

$$
\mathcal{L}_{m}^{k}=\left\{C \in \mathcal{E}_{m}^{k} \mid C+I \geq 0\right\}
$$

in the linear subspace

$$
\mathcal{E}_{m}^{k}=\operatorname{span}\left\{f_{\lambda_{k}}(x) \odot f_{\lambda_{k}}(x) \mid x \in S^{m}\right\}^{\perp} \subset S^{2}\left(\mathcal{H}^{k}\right) .
$$

Here ' \geq ' stands for positive semidefinite, ' \odot ' is the symmetric tensor product and the orthogonal complement is taken with respect to the standard scalar product $\left\langle C, C^{\prime}\right\rangle=\operatorname{trace}\left(\left(C^{\prime}\right)^{\top} \cdot C\right), C, C^{\prime} \in S^{2}\left(\mathcal{H}^{k}\right) . \mathcal{L}_{m}^{k}$ is said to be the standard moduli space of eigenmaps with eigenvalue λ_{k}. (For more details as well as for the general theory of moduli spaces, cf. [10].)
$f_{\lambda_{k}}$ is equivariant with respect to the homomorphism $\rho_{k}: \mathrm{SO}(m+1) \rightarrow \mathrm{SO}\left(\mathcal{H}^{k}\right)$ that is just the orthogonal ($\mathrm{SO}(m+1)$-)module structure on \mathcal{H}^{k} defined by $a \cdot h=$ $h \circ a^{-1}, a \in \mathrm{SO}(m+1)$ and $h \in \mathcal{H}^{k}$. Equivariance is given explicitly by

$$
f_{\lambda_{k}} \circ a=\rho_{k}(a) \cdot f_{\lambda_{k}}, \quad a \in \operatorname{SO}(m+1)
$$

\mathcal{E}_{m}^{k} is a submodule of $S^{2}\left(\mathcal{H}^{k}\right)$, where the latter is endowed with the module structure induced from that of \mathcal{H}^{k}. Moreover, $\mathcal{L}_{m}^{k} \subset \mathcal{E}_{m}^{k}$ is an invariant subset. Explicitly, for a full eigenmap $f: S^{m} \rightarrow S^{n}$ with eigenvalue λ_{k}, we have

$$
a \cdot\langle f\rangle=\left\langle f \circ a^{-1}\right\rangle, \quad a \in \mathrm{SO}(m+1)
$$

We now specialize to $k=2$. For the standard minimal immersion $f_{\lambda_{2}}: S^{m} \rightarrow$ $S^{(m(m+3) / 2)-1}$, we take

$$
f_{\lambda_{2}}(x)=\sqrt{\frac{m+1}{m}}\left(\left(x_{i}^{2}-\frac{\rho^{2}}{m+1}\right)_{i=0, \ldots, m} \quad,\left(\sqrt{2} x_{i} x_{j}\right)_{0 \leq i<j \leq m}\right)
$$

where $\rho^{2}=x_{0}^{2}+\cdots x_{m}^{2}$. Note that the first $m+1$ components add up to zero so that the image is contained in the corresponding hypersphere of $S^{m(m+3) / 2}$. In particular, $f_{\lambda_{2}}$ is separated. Now let $f: S^{m} \rightarrow S^{n}$ be a full separated quadratic eigenmap. Up to equivalence, we may assume that f has only pure and mixed components with the former preceding the latter. Setting $f=A \cdot f_{\lambda_{2}}$, the matrix A consists of two rectangular blocks. Thus, we have

$$
\langle f\rangle=A^{\top} A-I \in S^{2}\left(\mathbf{R}^{m}\right) \oplus S^{2}\left(\mathbf{R}^{m(m+1) / 2}\right)
$$

We obtain that the space of equivalence classes of full separated eigenmaps $f: S^{m} \rightarrow S^{n}$ can be parametrized by the compact convex slice

$$
\mathcal{L}_{m}^{2} \cap S^{2}\left(\mathbf{R}^{m}\right) \oplus S^{2}\left(\mathbf{R}^{m(m+1) / 2}\right) \subset \mathcal{L}_{m}^{2}
$$

Its orbit space under $\dot{\mathrm{O}}(m+1)$ in \mathcal{L}_{m}^{2} parametrizes the space of equivalence classes of full separable eigenmaps.

We now set $m=3$ and summarize the following facts on the standard moduli space \mathcal{L}_{3}^{2}. (The proofs are given in [9]; cf. also [10].) Using complex coordinates $(z, w) \in \mathbf{C}^{2}=\mathbf{R}^{4}$, we first define the quadratic eigenmaps $H_{\alpha}: S^{3} \rightarrow S^{2}, \alpha \in \mathbf{R}$, and $V: S^{3} \rightarrow S^{5}$ as

$$
\begin{equation*}
H_{\alpha}(z, w)=\left(\mathrm{e}^{2 i \alpha} z^{2}+\bar{w}^{2}, 2 \mathfrak{J}\left(\mathrm{e}^{i \alpha} z w\right)\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
V(z, w)=\left(z^{2}, \sqrt{2} z w, w^{2}\right) \tag{3}
\end{equation*}
$$

Then $H_{\alpha_{1}}$ and $H_{\alpha_{2}}$ are inequivalent iff $\alpha_{1} \not \equiv \alpha_{2}(\bmod \pi) ;\left\{\left\langle H_{\alpha}\right\rangle \mid \alpha \in \mathbf{R}\right\}$ is the boundary of a (flat) 2-disk D on $\partial \mathcal{L}_{3}^{2}$ with center $\langle V\rangle$. The diagonal subgroup $\Gamma=\left\{\operatorname{diag}\left(\mathrm{e}^{i \theta}, \mathrm{e}^{i \theta}\right) \mid \theta \in \mathbf{R}\right\}$ rotates D by

$$
\operatorname{diag}\left(\mathrm{e}^{i \theta}, \mathrm{e}^{i \theta}\right) \cdot\left\langle H_{\alpha}\right\rangle=\left\langle H_{a+2 \theta}\right\rangle
$$

and the antidiagonal subgroup $\Gamma^{\prime}=\left\{\operatorname{diag}\left(\mathrm{e}^{i \theta}, \mathrm{e}^{-i \theta}\right) \mid \theta \in \mathbf{R}\right\}$ leaves D pointwise fixed. Replacing w by its conjugate \bar{w} in (2)-(3), we obtain the quadratic eigenmaps H_{α}^{\prime} and V^{\prime} and the disk D^{\prime} which is rotated by Γ^{\prime} and left fixed by Γ. Finally, the convex hull E of D and D^{\prime} consists of segments with endpoints in D and D^{\prime} and

$$
\begin{equation*}
\mathrm{SO}(4) \cdot E=\partial \mathcal{L}_{3}^{2} \tag{4}
\end{equation*}
$$

We now turn to the proof of Theorem 1. Let $f: S^{3} \rightarrow S^{n}$ be a full quadratic eigenmap and set $C=\langle f\rangle \in \mathcal{L}_{m}^{2}$. Since the standard minimal immersion is separated and corresponds to the origin in \mathcal{L}_{3}^{2}, we may assume that $C \neq 0$. Consider the radial segment through C and let C^{\prime} denote its intersection with $\partial \mathcal{L}_{3}^{2}$. By (4), performing an isometry on S^{3} if necessary, we may assume that $C^{\prime} \in E$. By the above, there exists a segment S in E with endpoints in D and D^{\prime} such that $C^{\prime} \in S$. We now use the subgroups Γ and Γ^{\prime} to rotate D and D^{\prime} such that the endpoints of S get to the radial segments connecting V and H_{0} in D and V^{\prime} and H_{0}^{\prime} in D^{\prime}. These are separated so that the endpoints of the rotated S are also separated. Thus, by convexity, the rotated C^{\prime} is also separated. The rotated C is on the radial segment between 0 and C^{\prime} so it is also separated. Hence f is separable and the proof is complete.

3. Moduli Spaces of Separable Quadratic Forms

Let $f: S^{m} \rightarrow S^{n}$ be a quadratic form. Using coordinates, f can be written as

$$
f(x)=\sum_{i=0}^{m} a_{i} x_{i}^{2}+\sum_{0 \leq i<j \leq m} a_{i j} x_{i} x_{j},
$$

where $a_{i}, a_{i j} \in \mathbf{R}^{n+1}, i=0, \ldots, m$ and $0 \leq i<j \leq m$. To simplify the notation, we set $a_{i j}=a_{j i}$, so that $a_{i j}$ is defined for all distinct indices $0 \leq i, j \leq m$. The condition that f is spherical is equivalent to the following:

$$
\begin{align*}
\left|a_{i}\right| & =1, & & \tag{5}\\
\left\langle a_{i}, a_{i j}\right\rangle & =0, & & i, j \text { distinct } \tag{6}\\
\left|a_{i j}\right|^{2}+2\left\langle a_{i}, a_{j}\right\rangle & =2, & & i, j \text { distinct } \tag{7}\\
\left\langle a_{i}, a_{j k}\right\rangle+\left\langle a_{i j}, a_{i k}\right\rangle & =0, & & i, j, k \text { distinct } \tag{8}\\
\left\langle a_{i j}, a_{k l}\right\rangle+\left\langle a_{i k}, a_{j l}\right\rangle+\left\langle a_{i l}, a_{j k}\right\rangle & =0, & & i, j, k, l \text { distinct. } \tag{9}
\end{align*}
$$

We say that a system of vectors $\left\{a_{i}, a_{i j}\right\} \subset \mathbf{R}^{n+1}$ is feasible if it satisfies (5)-(9). Note that f is harmonic, i.e. an eigenmap, iff

$$
\begin{equation*}
\sum_{i=0}^{m} a_{i}=0 \tag{10}
\end{equation*}
$$

We introduce the rank of the quadratic form $f: S^{m} \rightarrow S^{n}$ as

$$
\begin{equation*}
\operatorname{rank} f=\operatorname{dim} \operatorname{span}\left\{a_{i} \mid i=0, \ldots, m\right\} \tag{11}
\end{equation*}
$$

As an example, we see that the standard minimal immersion $f_{\lambda_{2}}: S^{m} \rightarrow$ $S^{(m(m+3) / 2)-1}$ can be characterized by saying that it is separated, $\left\langle a_{i}, a_{j}\right\rangle=$ $-1 / m, i \neq j$, and $\left\{a_{i j}\right\}$ is orthogonal with $\left|a_{i j}\right|^{2}=2(m+1) / m$. Clearly, $\operatorname{rank} f_{\lambda_{k}}=m$.

Given a quadratic form $f: S^{m} \rightarrow S^{n}$ with associated feasible system of vectors $\left\{a_{i}, a_{i j}\right\}$, for $U \in \mathrm{O}(n+1)$, the equivalent quadratic form $U \cdot f$ has $\left\{U a_{i}, U a_{i j}\right\}$ as the associated feasible system of vectors. Hence, f is separated iff

$$
\left\langle a_{i}, a_{j k}\right\rangle=0, \quad \text { for all } i, j, k=0, \ldots, m, j \neq k
$$

In this case, we will always take f (in its equivalence class) such that $\left\{a_{i}\right\} \subset$ $\mathbf{R}^{p}, p=\operatorname{rank} f$, where $\mathbf{R}^{p} \subset \mathbf{R}^{n+1}$ is the linear subspace spanned by the first p coordinates, and $\left\{a_{i j}\right\} \subset \mathbf{R}^{q+1}, p+q=n$, where $\mathbf{R}^{q+1}=\left(\mathbf{R}^{p}\right)^{\perp}$.

Given a full separated form $f: S^{m} \rightarrow S^{n}$ with associated feasible system of vectors $\left\{a_{i}, a_{i j}\right\}$, we let $F: \mathbf{R}^{m+1} \rightarrow \mathbf{R}^{q+1}$ denote the full quadratic map defined by

$$
F(x)=\sum_{0 \leq i<j \leq m} a_{i j} x_{i} x_{j}
$$

The orthogonality relations (7)-(9) translate into

$$
\begin{equation*}
|F(x)|^{2}=\sum_{0 \leq i<j \leq m} \mu_{i j} x_{i}^{2} x_{j}^{2} \tag{12}
\end{equation*}
$$

where $\mu_{i j}=\left|a_{i j}\right|^{2}$. We call $\mu=\left(\mu_{i j}\right)_{0 \leq i<j \leq m} \in \mathbf{R}^{m(m+1) / 2}$ the signature of F. We will also think of the signature μ as a symmetric matrix in $S^{2}\left(\mathbf{R}^{m+1}\right)$ with zero diagonal entries, i.e. we put $\mu_{i j}=\mu_{j i}, i \neq j$, and $\mu_{i i}=0$.
F determines f up to equivalence. In fact, μ determines the Gram matrix $G(\mu)$ of the system of vectors $\left\{a_{i}\right\}$ via (7) since

$$
\begin{equation*}
\left\langle a_{i}, a_{j}\right\rangle=1-\frac{\left|a_{i j}\right|^{2}}{2}=1-\frac{\mu_{i j}}{2} \tag{13}
\end{equation*}
$$

We have rank $G(\mu)=\operatorname{rank} f=p$ and $G(\mu)$ determines $\left\{a_{i}\right\}$ within span $\left\{a_{i}\right\}=$ \mathbf{R}^{p} up to isometry. By birth, $G(\mu)$ is positive semidefinite.

Conversely, let $F: \mathbf{R}^{m+1} \rightarrow \mathbf{R}^{q+1}$ be a quadratic map satisfying (12), and assume that

$$
G(\mu)=\left(1-\frac{\mu_{i j}}{2}\right)_{i, j=0}^{m} \geq 0, \quad \mu_{i j}=\mu_{j i}, \quad \mu_{i i}=0
$$

Then, up to isometry, there exists $\left\{a_{i}\right\} \subset \mathbf{R}^{p}, p=\operatorname{rank} G(\mu)$ satisfying (13). Putting these vectors together in $\mathbf{R}^{p} \oplus \mathbf{R}^{q+1}$, we arrive at a separated form $f: S^{m} \rightarrow$ $S^{n}, n=p+q$. Finally, f is an eigenmap iff the entries of each row in $G(\mu)$ add up to zero, i.e. iff

$$
\sum_{i=0}^{m} \mu_{i j}=2(m+1) \quad \text { for all } j=0, \ldots, m
$$

The discussion above warrant to introduce the signature space

$$
\begin{aligned}
\Sigma_{m} & =\left\{\mu=\left(\mu_{i j}\right) \in \mathbf{R}^{m(m+1) / 2} \mid G(\mu)\right. \\
& \left.=\left(1-\frac{\mu_{i j}}{2}\right)_{i, j=0}^{m} \geq 0, \mu_{i j}=\mu_{j i}, \mu_{i i}=0\right\} .
\end{aligned}
$$

By the above, to each full separated form $f: S^{m} \rightarrow S^{n}$ there corresponds a full quadratic map $F: \mathbf{R}^{m+1} \rightarrow \mathbf{R}^{q+1}$ of signature $\mu \in \Sigma_{m}$ and this correspondence is one-to-one.

For eigenmaps, we have to restrict ourselves to the slice

$$
\Sigma_{m}^{0}=\left\{\mu \in \Sigma_{m} \mid \sum_{i=0}^{m} \mu_{i j}=2(m+1) \text { for all } j=0, \ldots, m\right\}
$$

of the signature space Σ_{m}.
Let $\mu \in \Sigma_{m}$. We define $F_{\mu}: \mathbf{R}^{m} \rightarrow \mathbf{R}^{q(\mu)+1}, q(\mu)+1=\sharp\left\{\mu_{i j} \neq 0 \mid 0 \leq i<\right.$ $j \leq m\}$, by

$$
F_{\mu}(x)=\left(\sqrt{\mu_{i j}} x_{i} x_{j}\right)_{0 \leq i<j \leq m},
$$

where we discard the zero components on the right-hand side. F_{μ} is a full quadratic map with signature μ. Moreover, F_{μ} is universal in the sense that, for any full quadratic map $F: \mathbf{R}^{m+1} \rightarrow \mathbf{R}^{q+1}$ with signature μ, we have $F=A \cdot F_{\mu}$, where A is a (uniquely determined) $(m+1) \times(q(\mu)+1)$-matrix. As usual, we set

$$
\langle F\rangle=A^{\top} A-I \in S^{2}\left(\mathbf{R}^{q(\mu)+1}\right),
$$

and

$$
\mathcal{L}_{\mu}=\left\{C \in \mathcal{E}_{\mu} \mid C+I \geq 0\right\},
$$

where

$$
\mathcal{E}_{\mu}=\operatorname{span}\left\{F_{\mu}(x) \odot F_{\mu}(x) \mid x \in \mathbf{R}^{m+1}\right\}^{\perp} \subset S^{2}\left(\mathbf{R}^{q(\mu)+1}\right)
$$

By the usual DoCarmo and Wallach argument (cf. [1], [14]), we find that the correspondence $F \rightarrow\langle F\rangle$ parametrizes the equivalence classes of full quadratic maps $F: \mathbf{R}^{m+1} \rightarrow \mathbf{R}^{q+1}$ with signature μ by the compact convex body \mathcal{L}_{μ} of \mathcal{E}_{μ}.

We conclude that

$$
\mathcal{S}_{m}=\bigcup_{\mu \in \Sigma_{m}} \mathcal{L}_{\mu}\left(\text { resp. } \mathcal{S}_{m}^{0}=\bigcup_{\mu \in \Sigma_{m}^{0}} \mathcal{L}_{\mu}\right)
$$

parametrizes the equivalence classes of full separated forms $f: S^{m} \rightarrow S^{n}$ (resp. full separated eigenmaps $f: S^{m} \rightarrow S^{n}$).

Given $\mu \in \Sigma_{m}$, we now describe \mathcal{L}_{μ}. Assume first that $\mu_{i j} \neq 0$, for all $i \neq j$. Writing out the condition $C \in \mathcal{E}_{\mu}$ in coordinates, we obtain

$$
\sum_{i, j, k, l} \sqrt{\mu_{i j}} \sqrt{\mu_{k l}} c_{i j, k l} x_{i} x_{j} x_{k} x_{l}=0
$$

so that if i, j, k, l are not distinct then $c_{i j, k l}$ vanishes and if i, j, k, l are all distinct then

$$
\begin{equation*}
\sqrt{\mu_{i j}} \sqrt{\mu_{k l}} c_{i j, k l}+\sqrt{\mu_{i k}} \sqrt{\mu_{j l}} c_{i k, j l}+\sqrt{\mu_{i l}} \sqrt{\mu_{j k}} c_{i l, j k}=0 \tag{14}
\end{equation*}
$$

In particular, if $\mu_{i j} \neq 0$, for $i \neq j$, we have

$$
\operatorname{dim} \mathcal{L}_{\mu}=2\binom{m+1}{4}
$$

If $\mu_{i j}=0$ for some $i \neq j$ then $c_{i j, k l}$ (and, by symmetry, $c_{k l, i j}$) do not exist for all k, l and they are missing from these relations (14). Thus, in general,

$$
\operatorname{dim} \mathcal{L}_{\mu} \leq 2\binom{m+1}{4}
$$

(Alternatively, all the previous relations remain in effect if we assume that, whenever $\mu_{i j}=0$ then $c_{i j, k l}=c_{k l, i j}=0$, for all k, l.)
(14) actually gives somewhat more about the geometry of \mathcal{L}_{μ}. For simplicity, assume that all μ 's occurring in (14) are nonzero. Let $P_{i j k l} \subset S^{2}\left(\mathbf{R}^{m(m+1) / 2}\right)$ be the 3-dimensional linear subspace given by setting all \boldsymbol{c} 's other than $c_{i j, k l}$, $c_{i k, j l}$ and $c_{i l, j k}$ equal to zero. In $P_{i j k l}$, the set of points $\left(c_{i j, k l}, c_{i k, j l}, c_{i l, j k}\right)$ for which $C+I \geq 0$ holds is the cube $[-1,1]^{3}$. To get $P_{i j k l} \cap \mathcal{L}_{\mu}$, by (14), this cube has to be intersected with the plane through the origin with normal vector $\left(\sqrt{\mu_{i j} \mu_{k l}}, \sqrt{\mu_{i k} \mu_{j l}}, \sqrt{\mu_{i l} \mu_{j k}}\right)$. The intersection is a hexagon or a quadrangle. We will exploit this argument in a more concrete setting for $m=3$ in Section 5 .

By definition, we have $\operatorname{dim} \Sigma_{m}=m(m+1) / 2$ and $\operatorname{dim} \Sigma_{m}^{0}=(m-2)(m+1) / 2$ so that the dimension of the space of equivalence classes of full separable eigenmaps is at most $2\binom{m+1}{4}+m^{2}-1$. On the other hand, we have

$$
\begin{aligned}
\operatorname{dim} \mathcal{L}_{m}^{2}= & 1 / 2(n(2)+1)(n(2)+2)-(n(0)+1) \\
& -(n(2)+1)-(n(4)+1),
\end{aligned}
$$

where $n(k)$ is given in (1) (cf. [10, p. 91]). Comparing these dimensions, we arrive at

$$
\operatorname{dim} \mathcal{L}_{m}^{2}-\operatorname{dim} \mathcal{S}_{m}^{0} \geq \frac{(m-3) m(m+1)}{2}
$$

and Theorem 2 follows. Note also that both dimensions on the left-hand side are degree 4 polynomials in m with equal leading coefficients so that the asymptotic formula of Section 1 is valid.

4. Hierarchy between the Signature Spaces

We first define an imbedding $\phi: \Sigma_{m+1}^{0} \rightarrow \Sigma_{m}$ with image

$$
\begin{equation*}
\left\{\mu \in \Sigma_{m} \mid \sum_{0 \leq i<j \leq m} \mu_{i j}=m(m+2)\right\} \tag{15}
\end{equation*}
$$

a codimension 1 slice of Σ_{m}. Given $\bar{\mu} \in \Sigma_{m+1}^{0}$, we define $\mu \in \mathbf{R}^{m(m+1) / 2}$ as $\bar{\mu} \in \mathbf{R}^{(m+1)(m+2) / 2}$ with the components $\bar{\mu}_{i, m+1}, i=0, \ldots, m$ deleted. If $\bar{\mu}$ is considered as a matrix, μ corresponds to $\bar{\mu}$ with the last row and column deleted. In each row of the Gram-matrix $G(\bar{\mu})$ the entries add up to zero, so that we have

$$
\begin{equation*}
\bar{\mu}_{i, m+1}=2(m+2)-\sum_{j=0}^{m} \bar{\mu}_{i j} . \tag{16}
\end{equation*}
$$

In particular, the determinant of $G(\bar{\mu})$ vanishes. Hence, $G(\bar{\mu}) \geq 0$ iff $G(\mu) \geq 0$. Thus, $\mu \in \Sigma_{m}$. Moreover, μ completely determines $\bar{\mu}$ by (16), since the bar on the right-hand side can be deleted. Finally, in the last row of $G(\bar{\mu})$ the entries add up to zero and since these are also the entries of the last column, using (16), we arrive at

$$
\begin{equation*}
\sum_{0 \leq i<j \leq m} \mu_{i j}=m(m+2) . \tag{17}
\end{equation*}
$$

It follows that, $\phi: \bar{\mu} \mapsto \mu$ is a bijection between Σ_{m+1}^{0} and the slice in (15).

Let $\bar{\mu} \in \Sigma_{m+1}^{0}$ with $\mu \in \Sigma_{m}$ satisfying (17). Given a quadratic map $\bar{F}: \mathbf{R}^{m+2} \rightarrow$ \mathbf{R}^{n+1} with signature $\bar{\mu}$, restriction to $x_{m+1}=0$ is a quadratic map $F: \mathbf{R}^{m+1} \rightarrow$ \mathbf{R}^{n+1} with signature μ. Conversely, given a quadratic map $F: \mathbf{R}^{m+1} \rightarrow \mathbf{R}^{n+1}$ with signature μ, we define $\bar{F}: \mathbf{R}^{m+2} \rightarrow \mathbf{R}^{m+n+2}$ by

$$
\begin{equation*}
\bar{F}(x)=\left(F(x),\left(\sqrt{\mu_{i, m+1}} x_{i} x_{m+1}\right)_{i=0, \ldots, m}\right) \tag{18}
\end{equation*}
$$

where $\bar{\mu}_{i, m+1}$ is given in (16). Clearly, \bar{F} is a quadratic map with signature $\bar{\mu}$.
We now use this to define a map $\psi: \Sigma_{m}^{0} \rightarrow \Sigma_{m+1}^{0}$. Let $\mu \in \Sigma_{m}^{0}$. Since the entries in each row of $G(\mu)$ add up to zero, we have $\Sigma_{j=0}^{m} \mu_{i j}=2(m+1)$, for all $i=0, \ldots, m$. Summing up with respect to i, we get

$$
\sum_{0 \leq i<j \leq m} \mu_{i j}=(m+1)^{2}
$$

The normalized signature

$$
\begin{equation*}
\frac{m(m+2)}{(m+1)^{2}} \mu \tag{19}
\end{equation*}
$$

belongs to Σ_{m} since the coefficient is in $(0,1)$ and Σ_{m} is convex. Moreover, the way we normalized, it satisfies (17). Thus, there is a unique $\tilde{\mu} \in \Sigma_{m+1}^{0}$ whose ϕ-image is (19). Now, associating $\tilde{\mu}$ to μ defines the map $\psi: \Sigma_{m}^{0} \rightarrow \Sigma_{m+1}^{0}$.

Let $f: S^{m} \rightarrow S^{n}$ be a full separated form and $F: \mathbf{R}^{m+1} \rightarrow \mathbf{R}^{q+1}$ the associated quadratic map with signature $\mu \in \Sigma_{m}^{0}$. Then

$$
\frac{\sqrt{m(m+2)}}{m+1} F
$$

has signature (19). Using the extension above, we arrive at

$$
\tilde{F}(x)=\left(\frac{\sqrt{m(m+2)}}{m+1} F(x),\left(\sqrt{2 \frac{m+2}{m+1}} x_{i} x_{m+1}\right)_{i=0, \ldots, m}\right)
$$

where $\tilde{F}: \mathbf{R}^{m+2} \rightarrow \mathbf{R}^{n+m+2}$ is a quadratic map with signature $\tilde{\mu}$. To \tilde{F} there corresponds a separated eigenmap $\tilde{f}: S^{m+1} \rightarrow S^{n+m+1}$ determined up to equivalence. In coordinates, we have

$$
\begin{aligned}
\tilde{F}(x)= & \left(\frac{\sqrt{m(m+2)}}{m+1} f(x), \frac{m+2}{m+1}\left(x_{m+1}^{2}-\frac{\rho^{2}}{m+2}\right)\right. \\
& \left.\left(\sqrt{2 \frac{m+2}{m+1}} x_{i} x_{m+1}\right)_{i=0, \ldots, m}\right)
\end{aligned}
$$

Fig. 1.

In fact, this formula now works without the assumption of f being separated. Associating \tilde{f} to f is the source dimension-raising operator that has been found in [4]. The corresponding map between the standard moduli spaces is injective.

5. The Parameter Space for Low Source Dimensions

We first let $m=1$. The signature space $\Sigma_{1}=[0,4] \subset \mathbf{R}$ with $\Sigma_{1}^{0}=\{4\}$. Setting $\mu=\mu_{12}=4 \sin ^{2}(\alpha / 2), 0 \leq \alpha \leq \pi$, we obtain the quadratic forms $f_{\mu}: S^{1} \rightarrow S^{2}$, where

$$
f_{\mu}(x, y)=\left(\cos \left(\frac{\alpha}{2}\right)\left(x^{2}+y^{2}\right), \sin \left(\frac{\alpha}{2}\right)\left(x^{2}-y^{2}\right), 2 \sin \left(\frac{\alpha}{2}\right) x y\right) .
$$

Clearly, f_{μ} wraps S^{1} twice around the intersection circle of the 2 -sphere and the cone with x-axis as the axis of symmetry and opening half-angle $\alpha / 2$ at the origin, the vertex. $\mu=4$ corresponds to the complex multiplication $z \rightarrow z^{2}$ restricted to S^{1}. Finally, for each $\mu \in \Sigma_{1}, \mathcal{L}_{\mu}$ consists of a single point.

Next, let $m=2$. Setting $\mu=(a, b, c)$, we have

$$
\Sigma_{2}=\left\{(a, b, c) \in[0,4]^{3} \mid a^{2}+b^{2}+c^{2}-2(a b+b c+c a)+a b c \leq 0\right\} .
$$

The tetrahedron spanned by the vectors $(4,4,0),(4,0,4)$ and $(0,4,4)$ is contained in Σ_{2}; in fact, its edges are the intersections of Σ_{2} with the faces of the cube $[0,4]^{3} . \Sigma_{2}^{0}=\{(3,3,3)\}$ corresponds to the standard minimal immersion $f_{\lambda_{2}}: S^{2} \rightarrow S^{4}$. (The signature space Σ_{2} looks like an 'inflated tetrahedron', cf. the top view computer image in Figure 1.)

Finally, let $m=3$. We will only work out Σ_{3}^{0}. The imbedding $\phi: \Sigma_{3}^{0} \rightarrow \Sigma_{2}$, defined in Section 4, associates to (a, b, c, c, b, a) with $a+b+c=8$ the point (a, b, c). Hence, identifying Σ_{3}^{0} with its image, we see that Σ_{3}^{0} is the triangle Δ with vertices $(4,4,0),(4,0,4)$ and $(0,4,4)$. The center $(8 / 3,8 / 3,8 / 3)$ of Δ corresponds
to the standard minimal immersion $f_{\lambda_{2}}: S^{3} \rightarrow S^{8}$. Let $\mu=(a, b, c, c, b, a) \in \Sigma_{3}^{0}$ and determine \mathcal{L}_{μ}. Using coordinates $x=(x, y, u, v) \in \mathbf{R}^{4}$, we have

$$
F_{\mu}(x)=(\sqrt{a} x y, \sqrt{b} x u, \sqrt{c} x v, \sqrt{c} y u, \sqrt{b} y v, \sqrt{a} u v)
$$

Assume first that μ has no zero components, i.e. the corresponding point in Δ is not a vertex. Evaluating

$$
\begin{equation*}
\left\langle C, F_{\mu}(x) \odot F_{\mu}(x)\right\rangle=0 \tag{20}
\end{equation*}
$$

for $C \in S^{2}\left(\mathbf{R}^{6}\right)$, we find that C has antidiagonal entries $\alpha, \beta, \gamma, \gamma, \beta$ and α with $a \alpha+b \beta+c \gamma=0$ and all other entries are zero. $C+I \geq 0$ translates into $(\alpha, \beta, \gamma) \in[-1,1]^{3} \subset \mathbf{R}^{3}$. Thus \mathcal{L}_{μ} can be visualized as the intersection of the cube $[-1,1]^{3}$ with the plane through the origin with normal vector $(a, b, c) \in \Delta$. If (a, b, c) is in the interior of the triangle Δ then the intersection is a hexagon. If (a, b, c) is on an edge of Δ but is not a vertex then the intersection is a quadrangle. Finally, if (a, b, c) is one of the vertices of Δ then, evaluating (20), we find that C has antidiagonal entries $\alpha,-\alpha,-\alpha, \alpha$ and all other entries are zero. Thus $\mathcal{L}_{\mu}=[-1,1]$.

We can also determine the corresponding eigenmaps, or what is the same, the quadratic maps $F: \mathbf{R}^{4} \rightarrow \mathbf{R}^{q+1}$ via $F=A \cdot F_{\mu}$, where $A=\sqrt{C+I}$. (Note that, F, obtained this way is, in general, not full.) Using that, for $|x| \leq 1$

$$
\left[\begin{array}{ll}
1 & x \\
x & 1
\end{array}\right]^{1 / 2}=\left[\begin{array}{ll}
\sqrt{1+x}+\sqrt{1-x} \sqrt{1+x}-\sqrt{1-x} \\
\sqrt{1+x}-\sqrt{1-x} \sqrt{1+x}+\sqrt{1-x}
\end{array}\right]
$$

and taking an appropriate representative in the equivalence class of F, we arrive at

$$
\begin{aligned}
F(x)= & \left(\sqrt{\frac{a(1+\alpha)}{2}}(x y+u v), \sqrt{\frac{a(1-\alpha)}{2}}(x y-u v)\right. \\
& \sqrt{\frac{b(1+\beta)}{2}}(x u+y v), \sqrt{\frac{b(1-\beta)}{2}}(x u-y v) \\
& \left.\sqrt{\frac{c(1+\gamma)}{2}}(x v+y u), \sqrt{\frac{c(1-\gamma)}{2}}(x v-y u)\right)
\end{aligned}
$$

The corresponding full separated eigenmaps $f: S^{3} \rightarrow S^{n}$ can be written down explicitly. For brevity, we mention here only the range dimensions n. The interior of the hexagon corresponds to eigenmaps with $n=8$, the edges (without the vertices) to $n=7$ and the vertices to $n=6$. The interior of the quadrangle corresponds to
$n=7$, the edges to $n=6$ and two pairs of opposite vertices to $n=5$ and $n=4$. Finally, the interior of the segment $[-1,1]$ belongs to the range dimension $n=4$ and the vertices to $n=2$. Finally, note that, by Theorem 1, precomposing these by isometries on S^{3} we obtain all full quadratic eigenmaps $f: S^{3} \rightarrow S^{n}$. (Note also that, by fullness, $n=3$ does not occur as a range dimension.)

Remark. Using the notations of the proof of Theorem 1, we see that \mathcal{S}_{3}^{0} can be identified with the 4 -dimensional slice cut out from \mathcal{L}_{3}^{2} by the linear subspace spanned by the four (linearly independent) vectors $\left\langle H_{0}\right\rangle,\left\langle H_{0}^{\prime}\right\rangle,\langle V\rangle$ and $\left\langle V^{\prime}\right\rangle$. Using the geometric description of \mathcal{L}_{3}^{2}, it is easy to see how the fiber structure fits in the slice. For example, the opposite of $\langle V\rangle$ in $\partial \mathcal{L}_{3}^{2}$ is $\langle H\rangle$ (cf. [10, p. 97]), where $H: S^{3} \rightarrow S^{2}$ is the Hopf map. Similarly, the opposite of $\left\langle V^{\prime}\right\rangle$ is the 'conjugate' $\left\langle H^{\prime}\right\rangle$ and the three segments connecting $\left\langle H_{0}\right\rangle,\left\langle H_{\pi / 2}\right\rangle$ and $\langle H\rangle$ with their conjugates correspond to the three fibers \mathcal{L}_{μ} at the three vertices μ of the triangle Δ. The interior of the segment with endpoints $\left\langle H_{0}\right\rangle$ and $\left\langle H_{\pi / 2}^{\prime}\right\rangle$ corresponds to the trace of a vertex of the quadrangle \mathcal{L}_{μ} as μ slides along an edge of Δ.

6. Orthogonal Multiplications and Quadratic Forms of Low Rank

An orthogonal multiplication of type (p, q, n) is a bilinear map $F: \mathbf{R}^{p} \times \mathbf{R}^{q} \rightarrow \mathbf{R}^{n}$, which satisfies

$$
\begin{equation*}
|F(x, y)|^{2}=|x|^{2}|y|^{2}, \quad x \in \mathbf{R}^{p}, \quad y \in \mathbf{R}^{q} . \tag{21}
\end{equation*}
$$

Orthogonal multiplications (or more generally, nonsingular bilinear pairings, cf. [8]) of type (p, n, n) exist iff $p \leq \rho(n)$, where the Hurwitz-Radon function ρ is defined by setting $\rho(n)=8 a+2^{\bar{b}}$ with $n=2^{4 a+b} c, 0 \leq b \leq 3$ and c is odd.

The Hopf-Whitehead construction associates to an orthogonal multiplication F of type (p, p, n) the quadratic eigenmap $f_{F}: S^{2 p-1} \rightarrow S^{n}$ by

$$
f_{F}(x, y)=\left(|x|^{2}-|y|^{2}, 2 F(x, y)\right) .
$$

(For more details, cf. [2] and [10].)
For the next theorem, recall that the rank of a separated form $f: S^{m} \rightarrow S^{n}$ is the dimension of the linear span of the vectors $a_{i}, i=0, \ldots, m$.

PROPOSITION 1. Up to equivalence, the rank-1 separated eigenmaps are obtained from an orthogonal multiplication by the Hopf-Whitehead construction.

Proof. Consider the set of feasible vectors $\left\{a_{i}, a_{i j}\right\}$ associated to a full separated eigenmap $f: S^{m} \rightarrow S^{n}$. Rank-1 signifies that all $a_{i}, i=0, \ldots, m$, are collinear. Since their sum is zero, $m+1$ is even, say $m+1=2 p$, and we may assume that $a_{0}=\cdots=a_{p-1}=-a_{p}=\cdots=-a_{2 p-1}$. Since they are unit vectors, for $i \neq j, \mu_{i j}=2\left(1-\left\langle a_{i}, a_{j}\right\rangle\right)$ is 4 if $|i-j| \leq p$ and zero otherwise. Thus, (12) reduces to (21) (with a factor of 4) and the proposition follows.

THEOREM 3. Let $f: S^{m} \rightarrow S^{n}$ be a separated eigenmap of rank p. Then, we have

$$
\begin{equation*}
p\left(1+\frac{m+1}{p+1}\right) \leq n+1 \tag{22}
\end{equation*}
$$

Moreover, if equality holds then $p+1 \mid m+1$ and $p \mid n+1$ and

$$
\frac{m+1}{p+1} \leq \rho\left(p \frac{m+1}{p+1}\right)
$$

(In particular, if p is not a multiple of 4 then $(m+1) /(p+1)=1,2,4,8$.)
COROLLARY. The gradient of an isoparametricfunction on S^{4} is a nonseparable quadratic eigenmap $f: S^{4} \rightarrow S^{4}$.
PROOF OF THE COROLLARY. Assume that $f: S^{4} \rightarrow S^{4}$ is separable. Precomposing f by an isometry, we may assume that f is separated. By the inequality of Theorem 3, $p=1$. Now Proposition 1 contradicts to the fact that the source dimension is even.

PROOF OF THEOREM 3. We first note that, by the orthogonality relations (5) and (7), $a_{i j}=0$ iff $a_{i}=a_{j}$. Hence, the relation \sim on $\{0, \ldots, m\}$ defined by $i \sim j$ if $a_{i j}=0$ is an equivalence. Let C_{1}, \ldots, C_{s} denote the equivalence classes and set $z_{l}=\sharp C_{l}, l=1, \ldots, s$. By the definition of \sim, there are exactly s distinct vectors in $\left\{a_{0}, \ldots, a_{m}\right\}$ and, by (10), they are linearly dependent. Hence

$$
\begin{equation*}
p+1 \leq s \tag{23}
\end{equation*}
$$

On the other hand, $\Sigma_{l=1}^{s} z_{l}=m+1$ so that

$$
\begin{equation*}
s z_{1}=s \min \left\{z_{l} \mid l=1, \ldots, s\right\} \leq m+1 \tag{24}
\end{equation*}
$$

where we assumed that the minimum is attained at z_{1}. Let $i_{l} \in C_{l}, l=1, \ldots, s$, and consider the system of vectors $\left\{a_{i_{j}}\right\}_{j=0}^{m} \subset \mathbf{R}^{q+1}$. By (8), this system is orthogonal so that its nonzero vectors, of which we have $m+1-z_{l}$ in number, form a linearly independent system. Thus

$$
\begin{equation*}
m+1-z_{l} \leq q+1 \tag{25}
\end{equation*}
$$

Combining this, for $l=1$, with (24), we obtain

$$
(m+1)\left(1-\frac{1}{s}\right) \leq q+1
$$

Adding p to both sides and using (23) and $p+q=n$, (22) follows.

Assume now that equality holds in (22). Equivalently

$$
\begin{equation*}
p \frac{m+1}{p+1}=q+1 \tag{26}
\end{equation*}
$$

so that $p+1$ divides $m+1$ and p divides $q+1$ and hence $n+1$. Combining (25) and (26), we obtain

$$
\frac{m+1}{p+1} \leq z_{l}, \quad l=1, \ldots, s
$$

Summing up with respect to l, we get $s \leq p+1$ so that, by (23), $s=p+1$. Retracing the steps $z_{1}=\cdots=z_{s}=(m+1) /(p+1)$ follows. Thus, in $\left\{a_{i}\right\} \subset \mathbf{R}^{p}$, we have exactly $p+1$ distinct vectors (whose sum is zero by harmonicity). Setting $r=(m+1) /(p+1)$, by (7), F can be thought of as a map

$$
F: \mathbf{R}^{r} \times \cdots \times \mathbf{R}^{r} \rightarrow \mathbf{R}^{p r}
$$

with the domain consisting of $p+1$ components of \mathbf{R}^{r} such that

$$
\left|F\left(x_{0}, \ldots, x_{p}\right)\right|^{2}=\sum_{0 \leq i<j \leq p} \mu_{i j}\left|x_{i}\right|^{2}\left|x_{j}\right|^{2}, \quad x_{i} \in \mathbf{R}^{r}, \quad i=0, \ldots, p .
$$

Differentiating both sides at $\left(0, x_{1}, \ldots, x_{p}\right)$ in the direction x_{0} twice, we obtain

$$
\left|F^{\prime}\left(x_{0}, x_{1}, \ldots, x_{p}\right)\right|^{2}=\left|x_{0}\right|^{2}\left(\sum_{j=1}^{p} \mu_{0 j}\left|x_{j}\right|^{2}\right)
$$

where

$$
F^{\prime}\left(x_{0}, x_{1}, \ldots, x_{p}\right)=\left.\frac{\partial}{\partial t}\right|_{t=0} F\left(t x_{0}, x_{1}, \ldots, x_{p}\right) .
$$

This means that

$$
F^{\prime}: \mathbf{R}^{r} \times \mathbf{R}^{p r} \rightarrow \mathbf{R}^{p r}
$$

is a nonsingular bilinear pairing. By classical result, $r \leq \rho(p r)$ (cf. [8]).
Remark. The inequality is sharp for the Hopf maps. Note also that for $F: \mathbf{R}^{4} \rightarrow$ \mathbf{R}^{4} defined by

$$
F(x, y, u, v)=\left(\frac{1}{\sqrt{2}}(x y-u v), \frac{1}{\sqrt{2}}(x u-y v), x v+y u\right)
$$

gives a rank 3 quadratic form $f: S^{3} \rightarrow S^{5}$ for which equality holds in (22). (The assumption that f is an eigenmap was used only to derive (23) and can be replaced by saying that the distinct vectors in $\left\{a_{i}\right\}$ form a linearly dependent set.)

Now let $f: S^{m} \rightarrow S^{n}$ be a rank-2 full separated form with associated feasible system $\left\{a_{i}, a_{i j}\right\}$. Up to equivalence, we may assume that the vectors a_{i} are contained in the plane \mathbf{R}^{2} spanned by the first two coordinate axes in \mathbf{R}^{n+1} and that

$$
a_{0}=(1,0), \quad a_{i}=\left(\cos \theta_{i}, \sin \theta_{i}\right), \quad i=1, \ldots, m
$$

We find that, up to equivalence, $f=f_{\theta}$, where

$$
f_{\theta}(x)=\left(x_{0}^{2}+\sum_{i=1}^{m} \cos \theta_{i} x_{i}^{2}, \sum_{i=1}^{m} \sin \theta_{i} x_{i}^{2}, 2 F_{\theta}(x)\right)
$$

where $F_{\theta}: \mathbf{R}^{m+1} \rightarrow \mathbf{R}^{n-1}$ is a full quadratic map with signature

$$
\mu=\left(\sin ^{2}\left(\frac{\theta_{i}-\theta_{j}}{2}\right)\right)_{0 \leq i<j \leq m}
$$

(Here, we set $\theta_{0}=0$.)
Finally, f_{θ} is an eigenmap iff

$$
1+\sum_{i=1}^{m} \cos \theta_{i}=0 \quad \text { and } \quad \sum_{i=1}^{m} \sin \theta_{i}=0
$$

We now work out a concrete example (which is a rank-2 analogue of the HopfWhitehead construction). Let $m+1=3 p$ and assume that $a_{0}=\cdots=a_{p-1}=$ $(0,1), a_{p}=\cdots=a_{2 p-1}=(-1 / 2, \sqrt{3} / 2)$ and $a_{2 p}=\cdots=a_{3 p-1}=$ $(-1 / 2,-\sqrt{3} / 2)$. By (12), up to a contant factor, the quadratic map $F: \mathbf{R}^{p} \times$ $\mathbf{R}^{p} \times \mathbf{R}^{p} \rightarrow \mathbf{R}^{n}$ satisfies

$$
\begin{equation*}
|F(x, y, z)|^{2}=|x|^{2}|y|^{2}+|y|^{2}|z|^{2}+|z|^{2}|x|^{2}, \quad x, y, z \in \mathbf{R}^{p} \tag{27}
\end{equation*}
$$

and the associated separated eigenmap $f: S^{3 p-1} \rightarrow S^{n+1}$ has the form

$$
f(x, y, z)=\left(|x|^{2}-\frac{1}{2}\left(|y|^{2}+|z|^{2}\right), \frac{\sqrt{3}}{2}\left(|y|^{2}-|z|^{2}\right), \sqrt{3} F(x, y, z)\right)
$$

Given two orthogonal multiplications $G_{1}, G_{2}: \mathbf{R}^{m} \times \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$, we say that $\left(G_{1}, G_{2}\right)$ has a common extension if there exists an orthogonal multiplication $G: \mathbf{R}^{m} \times \mathbf{R}^{2 m} \rightarrow \mathbf{R}^{n}$ such that (with obvious notations) we have

$$
\begin{aligned}
& G(x, y, 0)=G_{1}(y, x) \text { and } G(x, 0, z)=G_{2}(x, z) \\
& x, y, z \in \mathbf{R}^{m}, \quad(y, z) \in \mathbf{R}^{2 m}
\end{aligned}
$$

(Note the switched argument in the first relation.) A necessary and sufficient condition for the existence of G is that

$$
\left\langle G_{1}(y, x), G_{2}(x, z)\right\rangle=0, \quad x, y, z \in \mathbf{R}^{m}
$$

Indeed, if G exists, we have

$$
\begin{aligned}
|G(x, y, z)|^{2} & =\left|G_{1}(y, x)+G_{2}(x, z)\right|^{2} \\
& =|x|^{2}\left(|y|^{2}+|z|^{2}\right)+\left\langle G_{1}(y, x), G_{2}(x, z)\right\rangle
\end{aligned}
$$

On the other hand, $|G(x, y, z)|^{2}=|x|^{2}\left(|y|^{2}+|z|^{2}\right)$ and (27) follows. For the converse, we set

$$
G(x, y, z)=G_{1}(y, x)+G_{2}(x, z)
$$

Given three orthogonal multiplications $G_{1}, G_{2}, G_{3}: \mathbf{R}^{m} \times \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$, we say that $\left(G_{1}, G_{2}, G_{3}\right)$ has a cyclic extension if each pair $\left(G_{1}, G_{2}\right),\left(G_{2}, G_{3}\right)$ and (G_{3}, G_{1}) has a common extension.

PROPOSITION 2. There is a one-to-one correspondence between the set of quadratic maps $F: \mathbf{R}^{m} \times \mathbf{R}^{m} \times \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ satisfying (27) and the set of triples $\left(G_{1}, G_{2}, G_{3}\right)$ of orthogonal multiplications which have cyclic extensions. The correspondence is given by setting $G_{1}(y, z)=F(0, y, z), G_{2}(z, x)=F(x, 0, z)$ and $G_{3}(x, y)=F(x, y, 0)$.

Proof. We use the idea in the proof of Theorem 3. Taking $\partial^{2} /\left.\partial t^{2}\right|_{t=0}$ of both sides of the equation

$$
|F(t x, y, z)|^{2}=t^{2}|x|^{2}\left(|y|^{2}+|z|^{2}\right)+|y|^{2}|z|^{2}
$$

we obtain

$$
\begin{equation*}
\left|F^{\prime}(x, y, z)\right|^{2}=|x|^{2}\left(|y|^{2}+|z|^{2}\right) \tag{28}
\end{equation*}
$$

where $F^{\prime}(x, y, z)=\partial /\left.\partial t F(t x, y, z)\right|_{t=0}$. (28) says that F^{\prime} is an orthogonal multiplication as a quadratic map $F^{\prime}: \mathbf{R}^{m} \times \mathbf{R}^{2 m} \rightarrow \mathbf{R}^{n}$, in particular, it is bilinear. We therefore have

$$
F^{\prime}(x, y, z)=F^{\prime}(x, y, 0)+F^{\prime}(x, 0, z)
$$

On the other hand, $F^{\prime}(x, y, 0)=\partial /\left.\partial t F(t x, 0, z)\right|_{t=0}=F(x, 0, z)$ since, by (27), the latter is also an orthogonal multiplication and hence bilinear. We obtain that

$$
F^{\prime}(x, y, z)=F(x, y, 0)+F(x, 0, z)
$$

where we used the same argument for the second term. Combining this with the Taylor formula:

$$
\begin{aligned}
F(x, y, z) & =F(0, y, z)+F^{\prime}(x, y, z) \\
& =F(0, y, z)+F(x, 0, z)+F(x, y, 0)
\end{aligned}
$$

Taking the norm square of both sides we obtain

$$
\begin{aligned}
& \langle F(0, y, z), F(x, 0, z)\rangle+\langle F(x, 0, z), F(x, y, 0)\rangle \\
& \quad+\langle F(x, y, 0), F(0, y, z)\rangle=0
\end{aligned}
$$

The terms on the right-hand side vanish separately since they correspond to polynomials with different homogeneity. We now define (G_{1}, G_{2}, G_{3}) as in the proposition above and conclude that this triple has a cyclic extension. The converse is clear.

Acknowledgement

The author is indebted to Darin Morley for providing a computer image of the signature space Σ_{2} of Section 5 .

References

1. DoCarmo, M. and Wallach, N.: Minimal immersions of spheres into spheres, Ann. Math. 93 (1971), 43-62.
2. Eells, J. and Ratto, A.: Harmonic maps and minimal immersions with symmetries, Ann. Math. Stud. 130, Princeton, N.J., 1993.
3. Eells, J. and Sampson, J. H.: Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
4. Gauchman, H. and Toth, G.: Constructions of harmonic polynomial maps between spheres, Geom. Dedicata (to appear).
5. Hurwitz, A.: Über die Komposition der quadratischen Formen von beliebig vielen Variabeln, Nach. Ges. Wiss., Göttingen, Math. Phys. Kl. (1898), 309-316. Reprinted in Math. Werke II, 565-571.
6. Hurwitz, A.: Über der Komposition der quadratischen Formen, Math. Ann. 88 (1923), 1-25.
7. Radon, J.: Lineare Scharen orthogonale matrizen, Abh. Math. Sem. Univ. Hamburg 1 (1922), 1-14.
8. Shapiro, D.: Products of sums of squares, Exposition. Math. 2 (1984), 235-261.
9. Toth, G.: Classification of quadratic harmonic maps of S^{3} into spheres, Indiana Univ. Math. J. 36 (2) (1987), 231-239.
10. Toth, G.: Harmonic Maps and Minimal Immersions through Representation Theory, Academic Press, Boston, 1990.
11. Toth, G.: Mappings of moduli spaces for harmonic eigenmaps and minimal immersions between spheres J. Math. Soc. Japan 44 (2) (1992), 179-198.
12. Toth, G.: Operators on eigenmaps between spheres, Compositio Math. 88 (1993), 317-332.
13. Vilenkin, N. I.: Special Functions and the Theory of Group Representations, AMS Trans. Math. Monographs, Vol. 22, 1968.
14. Wallach, N.: Minimal immersions of symmetric spaces into spheres, in Symmetric Spaces, Dekker, New York, 1972, pp. 1-40.
