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Abstract. A quadratic form f: S™ — S™ between spheres is separable if, up to isometries on the
source and the range, the components of f are pure or mixed quadratic polynomials. The space
parametrizing the separated quadratic eigenmaps f is shown here to fiber over a semi-algebraic set
with each fiber a finite-dimensional compact convex body. For m = 3, this gives a new description
of the parameter space of all quadratic eigenmaps f: S — 8™ as a fibration over an ‘inflated
tetrahedron’ and generic hexagonal fibres.
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1. Introduction

A map f: R™*! — Rt is a k-form if the components of f are homogeneous
polynomials of degree k. f is spherical if it maps the unit sphere to the unit sphere.
In this case, we say that (the restriction) f: S™ — S™isalso a k-form. If, in addition,
the components of f:R™*! — R™*! are harmonic, or equivalently, the components
of f: §™ — §™ C R™t! are spherical harmonics of order , i.. eigenfunctions of
the spherical Laplacian on 5™ with eigenvalue A = k(k + m — 1), then we say
that f: ™ — S§™ is an eigenmap with eigenvalue A;. Eigenmaps are harmonic
in the sense of Eells and Sampson [3], in fact, an eigenmap with eigenvalue A is
nothing but a harmonic map with constant energy density Ax/2.

A k-form f: ™ — S™ is full if its image is not contained in any proper great
sphere. Two k-forms fi, f,: §™ — S™ are equivalent if there exists an isometry
Ue€O(n+1)suchthat f, = U - fi.

For fixed m and k, the equivalence classes of full eigenmaps f: S™ — S™
with eigenvalue A, can be parametrized by a compact convex body £% in a finite
dimensional representation space of O(m + 1) (cf. [10] or Section 2). L% is called
the standard moduli space.

Many examples of quadratic (k£ = 2) eigenmaps are known, in fact, in the first
nonrigid range m = 3, a full classification, i.e. a geometric description of the 10-
dimensional standard moduli space E%, is given in [9]. For fixed m, the complexity
of ,Cﬁz increases very fast with k. In [11], [12], however, we defined degree-
raising and -lowering operators which associate to an eigenmap with eigenvalue
Ak, eigenmaps with eigenvalue Ar+1. We proved that the degree-raising operator
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gives rise to an (equivariant) imbedding £X, — £5+1 whose cokernel is annihilated
by the degree-lowering operator.

In view of this, the classification of all quadratic eigenmaps f: Sm — 5™ can
be singled out as an important part of the whole classification problem. This is still
formidable as it contains, via the Hopf—~Whitehead construction (cf. [2] or Section
6), the problem of classifying orthogonal multiplications posed and studied by
Hurwitz and Radon nearly a hundred years ago (cf. [5], [6], [7]).

The purpose of this paper is to introduce a natural class of quadratic forms between
spheres, called separable, which comprise most of the known examples and give a
geometric description of their moduli space.

Let pbe a quadratic polynomial in zg,..., %,,. We say that p is pure (resp.
mixed) if p(z) = Tgo;z? (resp. p(z) = Logicj<m ijTiT;). A quadratic form
f: 8™ — S™ is separated if f is equivalent to a quadratic form such that each
component is pure or mixed. A quadratic form f: S™ — S™ is separable if there
exists an isometry a € O(m + 1) such that f o a is separated.

Using moduli space techniques, in Section 2 we prove the following:
THEOREM 1. Every quadratic eigenmap f: S* — S is separable.

In Section 3 we construct a space Sy, (resp. S?n) that parametrizes the equivalence
classes of full separated forms f: ™ — S™ (resp. eigenmaps). Sy,, resp. SO,
fibers over a semi-algebraic set X, resp. £0,, in R™™+1/2 and each fiber is a
compact convex body in a finite-dimensional vector space. We determine dim S,,,
and dim S2,, in particular, we have dim S, ~ dim £2, as m — oco. In contrast to
Theorem 1, however, we have:

THEOREM 2. Form > 4, there exist nonseparable quadratic eigenmaps f: S™ —
S

In Section 4, we show that E?n 41 can be imbedded into X, as a codimension
1 slice (i.e. the intersection of X, with an affine hyperplane). As a byproduct,
we obtain a source dimension-raising operator which associates to a quadratic
eigenmap f: S™ — S™ a quadratic eigenmap f: S™+! — §7+m+1 This gives
rise to an imbedding between the respective standard moduli spaces.

These imbeddings are used in Section 5, for m = 3, to give a new and very
explicit description of (separable and hence all) quadratic eigenmaps f: §3 —
S,

In Section 6, we give a sharp lower bound for the range dimension of a separable
eigenmap. As a corollary, we obtain that any quadratic eigenmap f: §* — §*
is nonseparable. Finally we show that the Hopf-~Whitehead construction is just
a special (rank 1) case of a more general construction of quadratic eigenmaps
f: 8™ — 8™ and derive an explicit description of the rank 2 case.
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2. Proof of Theorem 1

We begin by recalling some facts about the standard moduli spaces. Let H* = H¥,

denote the space of spherical harmonics of order k on §™. Let { f/{k };?L’z} C H* be
an orthonormal basis with respect to the normalized L,-scalar product

n(k) + 1

(h, h’> = VOl(Sm) om

hh"t)gm,

where vgm is the volume form on S™, vol(S™) = [gm vgm is the volume of S™
and

— 23
n(k) + 1 = dim H":(m+2k—1)(m+k 2)!

Fim = 1) M

We now define the standard minimal immersion f),: S™ — S™K) a5 a map with

components ( fgk yenes ff}fk)) (cf. [1], [14]). f», is clearly full and different choices
of the orthonormal basis give equivalent eigenmaps.

f», isuniversal in the sense that, for any eigenmap f: §™ — 5™ with eigenvalue
Ak, there exists a linear map A: H* — R™! such that f = A - f,,. Note that, A
is surjective iff f is full.

Associating to f the symmetric linear endomorphism

(fy=ATA-Te€ S M), (I = identity)

establishes a parametrization of the space of equivalence classes of full eigenmaps
f: 8™ — 8™ with eigenvalue A, by the compact convex body

Lk ={Cce&k|lCc+1>0}
in the linear subspace
Er, = span{f3,(2) © fr,(2)|z € S} C S*(H).

Here ‘>’ stands for positive semidefinite, ‘®’ is the symmetric tensor product and
the orthogonal complement is taken with respect to the standard scalar product
(C, C"y = trace((C")T - C), C, C" € S*(H*). Lk, is said to be the standard
moduli space of eigenmaps with eigenvalue Ar. (For more details as well as for the
general theory of moduli spaces, cf. [10].)

f», is equivariant with respect to the homomorphism pz: SO(m+1) — SO(H*)
that is just the orthogonal (SO(m + 1)-)module structure on H* defined by a - h =
hoa™!, a € SO(m+ 1) and h € H*. Equivariance is given explicitly by

freoa=pr(a): fr,, a € SO(m + 1).
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&k is asubmodule of S2(HF), where the latter is endowed with the module structure
induced from that of H*. Moreover, £E, C £F is an invariant subset. Explicitly,
for a full eigenmap f: §™ — 5™ with eigenvalue A\, we have

a-(fy={(foa”l), aeSO(m+1).

We now specialize to k = 2. For the standard minimal immersion f),: 5™ —
§(m(m+3)/2)-1 we take

m 41 2
Pa(@) =1/ —— ((mf - mp+ 1) , (\/ixixj)OSKjSm) ,
1=0,...m

m

where p? = 23 + ---z2,. Note that the first m + 1 components add up to zero
so that the image is contained in the corresponding hypersphere of §™(m+3)/2 1n
particular, fy, is separated. Now let f: S™ — S™ be a full separated quadratic
eigenmap. Up to equivalence, we may assume that f has only pure and mixed
components with the former preceding the latter. Setting f = A - f),, the matrix A
consists of two rectangular blocks. Thus, we have

(f)y = ATA—T € S{R™) @ SAR™™+1/2),

We obtain that the space of equivalence classes of full separated eigenmaps
f: 8™ — 8™ can be parametrized by the compact convex slice

L2 N SHR™) @ SHR™M™HD/2y ¢ 2

Its orbit space under O(m + 1) in £2, parametrizes the space of equivalence classes
of full separable eigenmaps.

We now set m = 3 and summarize the following facts on the standard moduli
space E%. (The proofs are given in [9]; cf. also [10].) Using complex coordinates
(z, w) € C* = R*, we first define the quadratic eigenmaps H,: 5> — 52, a € R,
and V: §3 — $° as

Ho(z, w) = (622 + @2, 23(e'*2w)) 2
and
V(z, w) = (%, V2 2w, w?). 3

Then H,, and H,, are inequivalent iff a; £ oy (mod 7); {(Ha)|a € R} is the
boundary of a (flat) 2-disk D on AL} with center (V). The diagonal subgroup
I = {diag (¢", ¢¥)|0 € R} rotates D by

diag(ei07 ew) ~(Hy) = (Hoy26)
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and the antidiagonal subgroup IV = {diag(e'’, e=%%)|6 € R} leaves D pointwise
fixed. Replacing w by its conjugate w in (2)~3), we obtain the quadratic eigenmaps
H! and V' and the disk D’ which is rotated by I" and left fixed by I'. Finally, the
convex hull E of D and D’ consists of segments with endpoints in D and D’ and

SO(4)- E = 8L3. 4@

We now turn to the proof of Theorem 1. Let f: §> — S™ be a full quadratic
eigenmap and set C = (f) € L£2,. Since the standard minimal immersion is
separated and corresponds to the origin in £2, we may assume that C' # 0.
Consider the radial segment through C and let C’ denote its intersection with oL3.
By (4), performing an isometry on S° if necessary, we may assume that C’ € E.
By the above, there exists a segment S in E with endpoints in D and D' such
that C' € S. We now use the subgroups I' and I" to rotate D and D' such that
the endpoints of S get to the radial segments connecting V and Ho in D and V'
and H{ in D'. These are separated so that the endpoints of the rotated .5’ are also
separated. Thus, by convexity, the rotated C" is also separated. The rotated C is on
the radial segment between 0 and C’ so it is also separated. Hence f is separable
and the proof is complete.

3. Moduli Spaces of Separable Quadratic Forms
Let f: §™ — S™ be a quadratic form. Using coordinates, f can be written as
m
f(z) = Zaizf + Z ai;T;%;,
=0 0<i<j<m

where a;, a;; € R™1, i =0,..., mand0 < i < j < m. Tosimplify the notation,
we set a;; = aj;, so that a;; is defined for all distinct indices 0 < ¢, 7 < m. The
condition that f is spherical is equivalent to the following:

la;] =1, (5)

(a;, a;;) =0, i, g distinct (6)

’aijlz + 2(a;, a]-) =12, 1, j distinct (7)

(ai, ajr) + (aij, aix) =0, i, j, k distinct ™ (8)

(aij, ar) + (@i, a;1) + (@i, ajk) =0, 1, 7, k, { distinct. (9)

We say that a system of vectors {a;, a;j} C R™*! is feasible if it satisfies (5)—(9).
Note that f is harmonic, i.e. an eigenmap, iff

m

2 i =0. (10)
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We introduce the rank of the quadratic form f: 5™ — S as
rank f = dim span {a;|i = 0,..., m}. @an

As an example, we see that the standard minimal immersion f,: S™ —
§(m(m+3)/2)=1 can be characterized by saying that it is separated, (a;, a;) =
—~1/m, i # j, and {a;;} is orthogonal with |a;;|*> = 2(m + 1)/m. Clearly,
rank f)‘ y — M.

Given a quadratic form f: 5™ — S™ with associated feasible system of vectors
{a;, a;;}, for U € O(n + 1), the equivalent quadratic form U - f has {Uaq;, Ua;;}
as the associated feasible system of vectors. Hence, f is separated iff

(a,-, a]-k) =0, foralli, j, k:O,..., m, ]#k

In this case, we will always take f (in its equivalence class) such that {a;} C
R?, p = rank f, where R? C R"™"! is the linear subspace spanned by the first p
coordinates, and {a;;} C R?*!| p + ¢ = n, where R?t! = (RP)*.

Given a full separated form f: S™ — 5™ with associated feasible system of
vectors {a;, ai;}, we let F: R™*! — R7*! denote the full quadratic map defined
by

F(a:) = Z Q52T 5.

0<i<i<m

The orthogonality relations (7)—(9) translate into

]F(m)]z-_— Z uijm,zz?, (12)
0<igj<m

where p;; = |a~i]’|2. We call ¢t = (pi;)o<ici<m € R™(m+1)/2 the signature of F.
We will also think of the signature ; as a symmetric matrix in $2(R™*!) with zero
diagonal entries, i.e. we put p;; = uji, ¢ # j, and p;; = 0.

F determines f up to equivalence. In fact, y determines the Gram matrix G(u)
of the system of vectors {a;} via (7) since

|ai;|? i
(a:, aj)=1~——i7——=l——2—'7—. (13)
We have rank G(p) = rank f = p and G(u) determines {a;} within span {a;} =
RP up to isometry. By birth, G(u) is positive semidefinite.
Conversely, let F: R™t! — R+l be a quadratic map satisfying (12), and
assume that

pii \™
G(M)=<1—'2—J>__ 020, Bij = piiy  pii = 0.
i,j=
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Then, up to isometry, there exists {a;} C RP, p = rank G(p) satisfying (13).
Putting these vectors together in RP @ R?t!, we arrive at a separated form f: §™ —
S™, n = p + q. Finally, f is an eigenmap iff the entries of each row in G(u) add
up to zero, i.e. iff

m
Spi;=2m+1) forallj=0,..., m.
1=0

The discussion above warrant to introduce the signature space
S = {1 = () € PG

_ i \™ > 0. i = i e =0
={1-= 2 Uy Hig = Hjiy Big = .
1,7=0

By the above, to each full separated form f: 5™ — S™ there corresponds a full
quadratic map F*: R™*! — RI*! of signature i1 € %, and this correspondence is
one-to-one.

For eigenmaps, we have to restrict ourselves to the slice

m
20 - {uezm Y ij =2(m+ 1) forall j = 0,..., m}
o

of the signature space X,,.
Let it € £,,,. We define F,: R™ — RUWFL g(u) + 1 = §{p;; #0[0< i <
j < m}, by

F,(z) = (\/Ihij 2i%j)0<i<i<m»

where we discard the zero components on the right-hand side. F), is a full quadratic
map with signature p. Moreover, F), is universal in the sense that, for any full
quadratic map F: R™t! — R?*! with signature u, we have F = A - F,,, where A
is a (uniquely determined) (m + 1) x (¢(u) + 1)-matrix. As usual, we set

(F)=ATA~I e SARIWHY),
and

L,={Ce€&,C+1I2>0},
where

&, = span {F,(z) ® F,(z)|]z € R™'}* ¢ SZ(RQ(!L)H).
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By the usual DoCarmo and Wallach argument (cf. [1], [14]), we find that the
correspondence F' — (F’) parametrizes the equivalence classes of full quadratic
maps F: R™*! — R?*! with signature p by the compact convex body £, of

Eu
We conclude that
Sm={J Lu (reSp. s= U ﬁ,i)
£ETm ueX?

parametrizes the equivalence classes of full separated forms f: 5™ — S™ (resp.
full separated eigenmaps f: 5™ — §™).

Given p € %,,, we now describe £,,. Assume first that y;; # 0, for all ¢ 76 J.
Writing out the condition C € £, in coordmates, we obtain

Z Vi Bk Cij 1T iTrz; = 0

ikl

so that if ¢, 7, k, [ are not distinct then ¢;; x; vanishes and if ¢, j, k, [ are all
distinct then

Vi HRIC kL A Mk /BG1Ck 51+ A/ Mty /HikCa, 5k = 0. (14)

In particular, if u;; # 0, for ¢ # j, we have
1
dimﬁﬂr-Z(m: ) .

If p1;; = O for some ¢ # j then c¢;; 57 (and, by symmetry, cx;,;;) do not exist for all
k, I and they are missing from these relations (14). Thus, in general,

. m++1
d1m£M§2< 4 )

(Alternatively, all the previous relations remain in effect if we assume that, when-
CVEr ptj; = 0 then Cijkl = Cklij = 0,forall &, l.)

(14) actually gives somewhat more about the geometry of £,,. For simplicity,
assume that all p’s occurring in (14) are nonzero. Let Py C S2(R™m+1)/2)
be the 3-dimensional linear subspace given by setting all ¢’s other than c;; i,
cik,51 and ¢; jx equal to zero. In Py, the set of points (e;;k1, Cik,ji, citjk) for
which C 4+ I > 0 holds is the cube [—1, 1]>. To get Pju; N L, by (14), this
cube has to be intersected with the plane through the origin with normal vector
(Vi Bkl s /TEkHGTs A/l 7i;% ). The intersection is a hexagon or a quadrangle. We
will exploit this argument in a more concrete setting for m = 3 in Section 5.
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By definition, we have dim X,,, = m(m+1)/2anddim X2, = (m—2)(m+1)/2
so that the dimension of the space of equivalence classes of full separable eigenmaps
m+1

4 ) + m? — 1. On the other hand, we have

is at most 2 (

dim £2, = 1/2(n(2)+ 1)(n(2) + 2) — (n(0) + 1)
=(r(2) +1) = (n(4) + 1),

where n(k) is given in (1) (cf. [10, p. 91]). Comparing these dimensions, we arrive
at

(m —3)m(m+ 1)

dim £2, — dim 8, > >

and Theorem 2 follows. Note also that both dimensions on the left-hand side are
degree 4 polynomials in m with equal leading coefficients so that the asymptotic
formula of Section 1 is valid.

4. Hierarchy between the Signature Spaces

We first define an imbedding ¢: X2, | — Z,, with image

{ﬂGEm

a codimension 1 slice of X,,. Given z € X9, ,, we define g € R™mF1D/2 a5
i€ R(m+D(m+2)/2 with the components PBim+1, ¢ = 0,..., m deleted. If &z is
considered as a matrix, p corresponds to iz with the last row and column deleted. In
each row of the Gram-matrix G(jz) the entries add up to zero, so that we have

> = mim+ 2>} s)

0<i<j<m

m

Bimtt = 2(m+2) = jlij. (16)
7=0

In particular, the determinant of G(jz) vanishes. Hence, G(fi) > 0iff G(p) > 0.
Thus, 1 € X,,. Moreover, p1 completely determines ji by (16), since the bar on the
right-hand side can be deleted. Finally, in the last row of G(fz) the entries add up
to zero and since these are also the entries of the last column, using (16), we arrive
at

> pip =m(m+2). a7
0<i<j<m

It follows that, ¢: fi — p is a bijection between %0, 41 and the slice in (15).
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Letfi € EY,,, withu € T, satisfying (17). Given a quadratic map F: R™+2 —
R"*! with signature jz, restriction to 2,41 = O is a quadratic map F: R™*!
R™*! with signature y. Conversely, given a quadratic map F: R™*' — Rt with
signature y, we define /': R™+2 — RM+n+2 by

F(w) = (F(2), (/Fomt1 2i%mi1) o, m) (18)

where fi; y,+1 is given in (16). Clearly, Fisa quadratic map with signature 4.

We now use this to define a map #: £0 — zgm. Let p € X0 Since the
entries in each row of G{) add up to zero, we have L ;= 2(m + 1), for all
¢ = 0,..., m. Summing up with respect to ¢, we get

>, = (mt 1)

0<igj<m
The normalized signature

m(m + 2)
(m+ 1"

belongs to X,, since the coefficient is in (0, 1) and ¥,, is convex. Moreover, the
way we normalized, it satisfies (17). Thus, there is a unique g € 29,1 +1 Whose
¢-image is (19). Now, associating f to p defines the map 1 £2, — £0 vy

Let f: §™ — S™ be a full separated form and #: R™*! — RY*! the associated
quadratic map with signature ¢z € £2 . Then

(19)

m(m +2)

m 1 F

has signature {19). Using the extension above, we arrive at

F(;};) = MF(Z), ( 2m + 2$i$m+l) ’
1=0,...,m

m+1 m+ 1

where F: R™+2 o Rrtm42 is a quadratic map with signature fi. To F there corre-
sponds a separated eigenmap f: §™+! — §7+m+1 determined up to equivalence.
In coordinates, we have

\/mim+25 m+2(2 p2 )

m+ 1 f(z),m-l-l Im+1"'m+2

m+ 2
2m T 1 ZiTm+1
i=0,...m

F(z) = (
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e

Fig. 1.

In fact, this formula now works without the assumption of f being separated.
Associating f to f is the source dimension-raising operator that has been found in
[4]. The corresponding map between the standard moduli spaces is injective.

5. The Parameter Space for Low Source Dimensions

We first let m = 1. The signature space £; = [0, 4] C R with £ = {4}. Setting
i = p1a = 4 sin®(a/2), 0 < o < 7, we obtain the quadratic forms f,: St 52,
where

e = (oo (2) 6459, s (2) - 9, 26 (2) ).

Clearly, f, wraps S ! twice around the intersection circle of the 2-sphere and the
cone with z-axis as the axis of symmetry and opening half-angle «./2 at the origin,
the vertex. ;1 = 4 corresponds to the complex multiplication z — 22 restricted to
S, Finally, for each u € ¥4, £,, consists of a single point.

Next, let m = 2. Setting 4 = (a, b, ¢), we have

¥ = {(a, b, ¢) € [0, 4|a® + b* + ¢* — 2(ab + bc + ca) + abe < 0}.

The tetrahedron spanned by the vectors (4, 4, 0), (4, 0, 4) and (0, 4, 4) is con-
tained in X; in fact, its edges are the intersections of X, with the faces of the
cube [0, 4]3. 9 = {(3, 3, 3)} corresponds to the standard minimal immersion
Fr,: §%2 — §4. (The signature space X, looks like an ‘inflated tetrahedron’, cf. the
top view computer image in Figure 1.)

Finally, let m = 3. We will only work out £J. The imbedding ¢: £ — %,
defined in Section 4, associates to (a, b, c, ¢, b, a) with a + b + ¢ = 8 the point
(a, b, c). Hence, identifying £ with its image, we see that ©J is the triangle A with
vertices (4, 4, 0), (4, 0, 4) and (0, 4, 4). The center (8/3, 8/3, 8/3) of A corresponds
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to the standard minimal immersion f,: $* — S® Lety = (a, b, ¢, ¢, b, a) € XY
and determine £,,. Using coordinates z = (z, y, u, v) € R*, we have

Fu(2) = (Vazy, Vbau, Veov, Veyu, Vbyv, vauw).

Assume first that ¢ has no zero components, i.e. the corresponding point in A is
not a vertex. Evaluating

(C, Fu(z) © Fu(e)) = 0, (20)

for C € §?(R®), we find that C has antidiagonal entries o, 3, 7, v, 8 and «
with aa + b5 + ¢y = 0 and all other entries are zero. C + I > 0 translates into
(e, B, 7) € [-1, 1> C R3. Thus £, can be visualized as the intersection of the
cube [—1, 1]* with the plane through the origin with normal vector (a, b, ¢) € A.
If (a, b, c) is in the interior of the triangle A then the intersection is a hexagon. If
(a, b, ¢)is on an edge of A but is not a vertex then the intersection is a quadrangle.
Finally, if (a, b, c) is one of the vertices of A then, evaluating (20), we find that
C has antidiagonal entries &, —«, —a, « and all other entries are zero. Thus
L,=1-1,1].

We can also determine the corresponding eigenmaps, or what is the same, the
quadratic maps F: R* — R?t!via F = A F,, where A = +/C + I. (Note that,
F, obtained this way is, in general, not full.) Using that, for |z| < 1

1 =z 1/2_ Vitz+V1l-z Vi+z-V1-z
z 1 | Vitz—-Vi—z Jitz+V1-2

and taking an appropriate representative in the equivalence class of F’, we arrive

at
F(z)= (\/E(—l%gl(my + uv), \/2—(—12;&—)(3:1; - uv),

\/ é-(—1;_—ﬁ-l(a:u + yv), 1 g’(i-z——ﬂ)(xu — yv),
c—(l;r—ﬂ(fvv +yu), |/ ‘:(—12“_7_)(931; - yU)) :

The corresponding full separated eigenmaps f: S> — S™ can be written down
explicitly. For brevity, we mention here only the range dimensions n. The interior of
the hexagon corresponds to eigenmaps with » = 8, the edges (without the vertices)
to n = 7 and the vertices to n = 6. The interior of the quadrangle corresponds to
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n = 7, the edges to n = 6 and two pairs of opposite vertices to n = 5 and n = 4.
Finally, the interior of the segment [—1, 1] belongs to the range dimension n = 4
and the vertices to n = 2. Finally, note that, by Theorem 1, precomposing these by
isometries on S3 we obtain all full quadratic eigenmaps f: §3 — S™. (Note also
that, by fullness, n = 3 does not occur as a range dimension.)

Remark. Using the notations of the proof of Theorem 1, we see that sg can
be identified with the 4-dimensional slice cut out from ,C% by the linear subspace
spanned by the four (linearly independent) vectors (Ho), (Hg), (V) and {V’).
Using the geometric description of £, it is easy to see how the fiber structure fits
in the slice. For example, the opposite of (V') in L3 is (H ) (cf. [10, p. 97]), where
H: 8% — $?isthe Hopf map. Similarly, the opposite of (V') is the ‘conjugate’ (H')
and the three segments connecting (Ho), (H, ;) and (H) with their conjugates
correspond to the three fibers £, at the three vertices i of the triangle A. The
interior of the segment with endpoints (Ho) and (H; /) corresponds to the trace
of a vertex of the quadrangle £, as p slides along an edge of A.

6. Orthogonal Multiplications and Quadratic Forms of Low Rank

An orthogonal multiplication of type (p, ¢, n) is abilinear map F: R xR? — R",
which satisfies

|F(z, y))* = |e*|y]>, z€RP, yeRL 1)

Orthogonal multiplications (or more generally, nonsingular bilinear pairings, cf.
[8]) of type (p, n, n) exist iff p < p(n), where the Hurwitz-Radon function p is
defined by setting p(n) = 8a + 2° with n = 2%+, 0 < b < 3 and ¢ is odd.

The Hopf-Whitehead construction associates to an orthogonal multiplication '
of type (p, p, n) the quadratic eigenmap fr: §2~! — ™ by

fr(z, y) = (l=I* - 9|, 2F (=, y)).

(For more details, cf. [2] and [10].)

For the next theorem, recall that the rank of a separated form f: 5™ — S™ is the
dimension of the linear span of the vectors a;, i = 0,..., m.

PROPOSITION 1. Up to equivalence, the rank-1 separated eigenmaps are obtained
from an orthogonal multiplication by the Hopf-Whitehead construction.

Proof. Consider the set of feasible vectors {a;, a;;} associated to a full separated
eigenmap f: 5™ — S5™. Rank-1 signifies that all a;, ¢ = 0,..., m, are collinear.
Since their sum is zero, m 4+ 1 is even, say m + 1 = 2p, and we may assume
that ag = -+ = a,_1 = —ap = -+ = —agp—1. Since they are unit vectors, for
¢ # 7, pij = 2(1 = (as, a;j)) is 4if |i — j| < p and zero otherwise. Thus, (12)
reduces to (21) (with a factor of 4) and the proposition follows.
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THEOREM 3. Let f: S™ — S™ be a separated eigenmap of rank p. Then, we
have

m-+ 1
p+1

p(1+ )§n+1. 22)

Moreover, if equality holds then p + 1|m + 1 and p|n + 1 and

m+1 < ( m -+ 1)

p+1 ~ PP p+1/°
(In particular, if p is not a multiple of 4 then (m + 1)/(p+ 1) =1, 2, 4, 8.)
COROLLARY. The gradient of an isoparametric function on 5* is a nonseparable
quadratic eigenmap f: §% — §4.

PROOF OF THE COROLLARY. Assume that f: §* — S§* is separable. Precom-
posing f by an isometry, we may assume that f is separated. By the inequality
of Theorem 3, p = 1. Now Proposition 1 contradicts to the fact that the source
dimension is even.

PROOF OF THEOREM 3. We first note that, by the orthogonality relations (5)
and (7), a;; = 0iff a; = a;. Hence, the relation ~ on {0, ..., m} defined by i ~ j
if a;; = Ois an equivalence. Let Cy, ..., C, denote the equivalence classes and set
z1 = 4C1, 1 = 1,..., s. By the definition of ~, there are exactly s distinct vectors
in {ag,..., a,} and, by (10), they are linearly dependent. Hence

p+1<s. (23)
On the other hand, Xj_,2 = m + 1 so that

szp=smin{z|l=1,..., s} <m+1, 24
where we assumed that the minimum is attained at zy. Let¢; € Cp, [ = 1,..., s,and
consider the system of vectors {a;,; }}“,_.0 C R9*!, By (8), this system is orthogonal
so that its nonzero vectors, of which we have m + 1 — z; in number, form a linearly
independent system. Thus

m+1—-z<q+1. (25)

Combining this, for [ = 1, with (24), we obtain

(m—l»l)(l—-]s—) <g+1.

Adding p to both sides and using (23) and p + ¢ = n, (22) follows.
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Assume now that equality holds in (22). Equivalently

m+ 1
— =g +1 26
Poy1 =1 (26)
so that p + 1 divides m + 1 and p divides ¢ + 1 and hence n + 1. Combining (25)
and (26), we obtain

m+1

p—+1—SZ[, l=1,...,8.
Summing up with respect to [, we get s < p + 1 so that, by (23), s = p+ 1.
Retracing the steps 2y = - - - = z; = (m+1)/(p+ 1) follows. Thus, in {a;} C R?,
we have exactly p + 1 distinct vectors (whose sum is zero by harmonicity). Setting
r=(m+1)/(p+ 1),by (7), F can be thought of as a map

F:R"x--- xR — R
with the domain consisting of p + 1 components of R" such that

|F(£I)0,..., mp)lzz Z /llij|$,;12|wj|2, z; €R", 1=0,...,p.
0<i<i<p

Differentiating both sides at (0, 1, ..., z,) in the direction 2 twice, we obtain

P
IFl(x()v £ PRI xp)lz = I:EOIZ (Zy’ojlelz) ’
i=1

where

0
F'(zo, z1y..., Tp) = o3

En F(tzo, z1,..., .’L'p).

t=0

This means that
F:R" x RP" = R’

is a nonsingular bilinear pairing. By classical result, r < p(pr) (cf. [8]).

Remark. The inequality is sharp for the Hopf maps. Note also that for F: R* —
R* defined by

F(z, y, u, v) = <%(wy - uv), %(mu - yv), zv + yu)
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gives a rank 3 quadratic form f: §° — S° for which equality holds in (22). (The
assumption that f is an eigenmap was used only to derive (23) and can be replaced
by saying that the distinct vectors in {¢;} form a linearly dependent set.)

Now let f: §™ — S™ be a rank-2 full separated form with associated feasible
system {a;, ai;}. Up to equivalence, we may assume that the vectors a; are
contained in the plane R? spanned by the first two coordinate axes in R™! and
that

ag = (1, 0), a; = (cos 6;, sin 6;), i=1,..., m.

We find that, up to equivalence, f = f, where

fo(z) = (ac% +)_cos 6;z?, Y _sin f;z?, 2F9(m)> ,

=1 =1

where Fp: R™*! — R™! is a full quadratic map with signature

b= (Sin2 (M)) .
2 0<i<j<m

(Here, we set 8y = 0.)
Finally, fy is an eigenmap iff

1+Zcos 0; =0 and Esin 0; = 0.

i=1 =1

We now work out a concrete example (which is a rank-2 analogue of the Hopf-
Whitehead construction). Let m + 1 = 3p and assume that g = -+ = ap_| =

0, 1), ap = =+ = agp—1 = (-1/2, V3/2) and agp = -+ = azp =
(=1/2, —/3/2). By (12), up to a contant factor, the quadratic map F: RP x
R? x R? — R" satisfies

F(z, y, 2 = |=Plyl® + [y Pl + |2Plel?, @, y, 2 €R? @7
and the associated separated eigenmap f: S°P~! — §"*1 has the form
1 V3
Flo, v, ) = <lw12 2P+ 122), YR - |2, V3 F(z, v, z>) .
Given two orthogonal multiplications G;, Gy: R™ x R™ — R", we say that

(G1, G3) has a common exteénsion if there exists an orthogonal multiplication
G:R™ x R?™ — R™ such that (with obvious notations) we have

G(x7 Y, O) - Gl(y? L"*') and G(:L‘, 07 Z) = G2(£L', Z),
z,y, z€R™, (y, 2) eR?™.
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(Note the switched argument in the first relation.) A necessary and sufficient con-
dition for the existence of (i is that

(G1(y, z), Ga(z, 2)) =0, =z, y, z€R™.
Indeed, if (7 exists, we have

G(z, y, 2)I* = |Gi(y, 2) + Ga(=, 2)I
= z*(lyl* + 121*) + (Gi(y, 2), Ga(z, 2)).

On the other hand, |G(z, y, 2)|* = |z|*(|y|* + |2|*) and (27) follows. For the
converse, we set

G(.’L‘, Y, Z) = Gl(ya w) +G2($7 Z).

Given three orthogonal multiplications G, G3, G3: R™ X R™ — R", we say
that (G, G2, G3) has a cyclic extension if each pair (G, G2), (G2, G3) and
(G3, G1) has a common extension.

PROPOSITION 2. There is a one-to-one correspondence between the set of
quadratic maps F: R™ x R™ x R™ — R" satisfying (27) and the set of triples
(G1, G2, G3) of orthogonal multiplications which have cyclic extensions. The
correspondence is given by setting G1(y, z) = F(0, y, 2), G2(z, z) = F(z, 0, z)
and G3(z, y) = F(z, y, 0).

Proof. We use the idea in the proof of Theorem 3. Taking 9?/8t%|;¢ of both
sides of the equation

|F(te, y, 2)* = a1y + 12°) + |y PP,
we obtain

[F' (2, y, 2)I* = |eP(ly? + |2, (28)
where F'(z, y, 2) = 0/0tF(tz, y, 2)|t=0. (28) says that F” is an orthogonal
multiplication as a quadratic map F’: R™ x R¥™ - R”, in particular, it is bilinear.
We therefore have

F'(z, y, z) = F'(z, y, 0) + F'(z, 0, ).
On the other hand, F'(z, y, 0) = 8/t F(iz, 0, 2)|t=0 = F(z, 0, 2) since, by
(27), the latter is also an orthogonal multiplication and hence bilinear. We obtain

that

F'(z,y, z) = F(z, y, 0) + F(z, 0, 2),
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where we used the same argument for the second term. Combining this with the
Taylor formula:

F(z,y, z) = F(0, y, 2) + F'(x, y, 2)
= F(0, y, )+ F(z, 0, 2) + F(z, y, 0).

Taking the norm square of both sides we obtain

(F(0, y, 2), F(z, 0, 2)) + (F(z, 0, z), F(z, y, 0))
+(F(z, y, 0), F(0, y, 2)) = 0.

The terms on the right-hand side vanish separately since they correspond to poly-
nomials with different homogeneity. We now define (G, G, G3) as in the propo-
sition above and conclude that this triple has a cyclic extension. The converse is
clear.
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