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Abstract. A quadratic form f: S m --~ S n between spheres is separable if, up to isometries on the 
source and the range, the components of f are pure or mixed quadratic polynomials. The space 
parametrizing the separated quadratic eigenmaps f is shown here to fiber over a semi-algebraic set 
with each fiber a finite-dimensional compact convex body. For m -- 3, this gives a new description 
of the parameter space of all quadratic eigenmaps f: S 3 ~ S m as a fibration over an 'inflated 
tetrahedron' and generic hexagonal fibres. 
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I. In troduct ion  

A map f :  R m+l ~ R n+l is a k - fo rm  if the components of f are homogeneous 
polynomials of  degree k. f is spher ical  if it maps the unit sphere to the unit sphere. 
In this case, we say that (the restriction) f :  S m ~ S '~ is also a k-form.  If, in addition, 
the components of f :  R m+l ~ R~+I are harmonic, or equivalently, the components 
of f :  S m ~ S '~ C R r~+l are spherical harmonics of order k, i.e. eigenfunctions of 
the spherical Laplacian on S ~ with eigenvalue Ak = k ( k  + m - 1), then we say 
that f :  S ~ ~ S '~ is an e igenmap  with eigenvalue )~k. Eigenmaps are harmonic 
in the sense of Eells and Sampson [3], in fact, an eigenmap with eigenvalue )~k is 
nothing but a harmonic map with constant energy density ~k/2. 

A k-form f :  S m --~ S ~ is f u l l  if its image is not contained in any proper great 
sphere. Two k-forms f l ,  f2: S ~ ~ S '~ are equivalent  if there exists an isometry 
U C O(n + 1) such that f2 = U-  f l .  

For fixed m and k, the equivalence classes of full eigenmaps f :  S m ~ S ~ 

with eigenvalue ),k can be parametrized by a compact convex body L~  in a finite 
dimensional representation space of O(m + 1) (cf. [10] or Section 2). £ ~  is called 
the s tandard  modu l i  space.  

Many examples of quadratic (k = 2) eigenmaps are known, in fact, in the first 
nonrigid range m = 3, a full classification, i.e. a geometric description of the 10- 
dimensional standard moduli space £2, is given in [9]. For fixed m, the complexity 
of £ ~  increases very fast with k. In [11], [12], however, we defined degree- 
raising and -lowering operators which associate to an eigenmap with eigenvalue 
)~k, eigenmaps with eigenvalue )~k+l. We proved that the degree-raising operator 
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gives rise to an (equivariant) imbedding £ k  __+/~kh- 1 whose cokemel is annihilated 
by the degree-lowering operator. 

In view of this, the classification of all quadratic eigenmaps f :  S m --+ S n can 
be singled out as an important part of the whole classification problem. This is still 
formidable as it contains, via the Hopf-Whitehead construction (cf. [2] or Section 
6), the problem of classifying orthogonal multiplications posed and studied by 
Hurwitz and Radon nearly a hundred years ago (cf. [5], [6], [7]). 

The purpose of this paper is to introduce a natural class of quadratic forms between 
spheres, called separable, which comprise most of the known examples and give a 
geometric description of their moduli space. 

Let p be a quadratic polynomial in x0 , . . . ,  xm. We say that p is pure (resp. 
mixed) i f p (x )  = ~=0t~xim . 2 (resp. p(x )  = ~o<i<j<mai jx ix j ) .  A quadratic form 
f :  S m ~ S '~ is separated if f is equivalent to a quadratic form such that each 
component is pure or mixed. A quadratic form f :  S m ~ S n is separable if there 
exists an isometry a E O(m + 1) such that f o a is separated. 

Using moduli  space techniques, in Section 2 we prove the following: 

THEOREM 1. Every quadratic eigenmap f :  S 3 ~ S n is separable. 

In Section 3 we construct a space S,~ (resp. S ° )  that parametrizes the equivalence 
classes of full separated forms f :  S m --+ S n (resp. eigenmaps). Sin, resp. S ° ,  
fibers over a semi-algebraic set Era, resp. 2 ° ,  in R re(m+1)/2 and each fiber is a 
compact convex body in a finite-dimensional vector space. We determine dim S~  
and dim S ° ,  in particular, we have dim S ° ___ dim £ 2  as m ~ c¢. In contrast to 
Theorem 1, however, we have: 

THEOREM 2. For ra >_ 4, there exist nonseparable quadratic eigenmaps f :  S m 
5"n. 

0 In Section 4, we show that Era+ 1 can be imbedded into Em as a codimension 
1 slice (i.e. the intersection of 2,~ with an affine hyperplane). As a byproduct, 
we obtain a source dimension-raising operator which associates to a quadratic 
eigenmap f :  S m ~ S n a quadratic eigenmap ] :  S m+l ~ S n+m+l. This gives 
rise to an imbedding between the respective standard moduli spaces. 

These imbeddings are used in Section 5, for m = 3, to give a new and very 
explicit description of (separable and hence all) quadratic eigenmaps f :  5 '3 
5'n. 

In Section 6, we give a sharp lower bound for the range dimension of a separable 
eigenmap. As a corollary, we obtain that any quadratic eigenmap f :  5'4 ~ 5'4 
is nonseparable. Finally we show that the Hopf-Whitehead construction is just 
a special (rank 1) case of a more general construction of quadratic eigenmaps 
f :  5"m ~ 5'n and derive an explicit description of the rank 2 case. 
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2. Proof of Theorem 1 

We begin by recalling some facts about the standard moduli spaces. Let 7-/k = 7-/~ 

denote the space of spherical harmonics of order k on Sin" ~T~t tJ ~ Cj~k sj=O~n(k) C 7"/k be 
an orthonormal basis with respect to the normalized La-SCalar product 

n(k) + 1 
(h, h') - vol(Sm ) m hh'vs~,  

where vs m is the volume form on S m, vol(S ~)  = fsm vs m is the volume of S ~ 
and 

(m + k - 2)! 
n(k) + 1 = dim 7-/k = (m + 2 k -  1) k.---~(m- ~ i ~  " (1) 

We now define the standard minimal immersion fak: S ~  ~ S~(k) as a map with 

components ( f°  k cn(k) ~ (cf. [1], [141). f~k is clearly full and different choices ~ ' ' ' ~  J ~ k  I 

of the orthonorrnal basis give equivalent eigenmaps. 
f;~k is universal in the sense that, for any eigenmap f:  S m ~ S ~ with eigenvalue 

Ak, there exists a linear map A: 7@ ~ R n+l such that f = A .  f~k" Note that, A 
is surjective iff f is full. 

Associating to f the symmetric linear endomorphism 

(f)  = A-rA - I C $2(7-/k), ( I  = identity) 

establishes a parametrization of the space of equivalence classes of full eigenmaps 
f:  S m --. S ~ with eigenvalue Ak by the compact convex body 

£ ~  = {C c g~[C + I >_ O} 

in the linear subspace 

sL = span{A (x) o z c s2( k). 

Here ' _ '  stands for positive semidefinite, '®' is the symmetric tensor product and 
the orthogonal complement is taken with respect to the standard scalar product 
(C, C') = trace((C') T .  C),  C, C'  C $2(7-/k). £km is said to be the standard 
moduli space of eigenmaps with eigenvalue Ak. (For more details as well as for the 
general theory of moduli spaces, cf. [10].) 

f:~k is equivariant with respect to the homomorphism Pk: SO(m+ 1) ~ SO(7-/k) 
that is just the orthogonal (SO(m + 1)-)module structure on 7-/k defined by a .  h = 
h o a -1 , a C SO(m + 1) and h E 7-/k. Equivariance is given explicitly by 

o a = E s o ( m  + 1). 
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C~ is a submodule of $2(7-/k ), where the latter is endowed with the module structure 
induced from that of 7-/k. Moreover, £ ~  C C~ is an invariant subset. Explicitly, 
for a full eigenmap f :  S ~ ---', S n with eigenvalue Ak, we have 

a . ( f ) = ( f o a - 1 ) ,  a E S O ( m +  1). 

We now specialize to k = 2. For the standard minimal immersion f~2: Sm 
S (~(m+3)/2)-1, we take 

(v~zixs)o<_i<j<_,~ f~2(z)  = z'2 m + 1 i=o,...,m' ' 

2 Note that the first m + 1 components add up to zero where p2 = z02 + . . . z m .  

so that the image is contained in the corresponding hypersphere of S m(m+3)/2. In 
particular, fA2 is separated. Now let f :  S r'z ~ S n be a full separated quadratic 
eigenmap. Up to equivalence, we may assume that f has only pure and mixed 
components with the former preceding the latter. Setting f = A.  f ~ ,  the matrix A 
consists of two rectangular blocks. Thus, we have 

( f )  = A T A  - I ~ S2(R m) @ S2(Rm(m+l)/2). 

We obtain that the space of equivalence classes of full separated eigenmaps 
f :  S m --+ S n can be parametrized by the compact convex slice 

c~ n S2(R m) ~ S2(R ~(~+1)') c eL. 

Its orbit space under O(m + 1) in £ 2  parametrizes the space of equivalence classes 
of full separable eigenmaps. 

We now set m - 3 and summarize the following facts on the standard moduli 
space £2. (The proofs are given in [9]; cf. also [10].) Using complex coordinates 
(z, w) C C 2 = R 4, we first define the quadratic e igenmaps/ /~:  S 3 ~ S 2, a E R, 
and V: S 3 ---+ S 5 as 

as(z, w) = (e2¢~z 2 + ~2, 2~(e~.zw)) (2) 

and 

v(~, ~ ) =  (z 2, v5 ;~, w2). (3) 

Then /-gOe 1 and //~2 are inequivalent iff a l  ~ a2 (mod 70; { ( f /a ) la  E R} is the 
boundary of a (fiat) 2-disk D on 0£32 with center (V). The diagonal subgroup 
F = {diag (e ¢°, ei°)10 E R} rotates D by 

diag(e I°, e~°) • (H~) = (Ha+2o) 
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and the antidiagonal subgroup I" = {diag(e i°, e-i°)lO ~ R} leaves D pointwise 
fixed. Replacing w by its conjugate ~ in (2)(3) ,  we obtain the quadratic eigenmaps 
H~ and V ~ and the disk D ~ which is rotated by r ~ and left fixed by I'. Finally, the 
convex hull E of D and D ~ consists of  segments with endpoints in D and D ~ and 

SO(4).  E = 0122. (4) 

We now turn to the proof of Theorem 1. Let f :  S 3 ~ S n be a full quadratic 
eigenmap and set C = ( f )  E / :2 .  Since the standard minimal immersion is 
separated and corresponds to the origin in l; 2, we may assume that C ¢ 0. 
Consider the radial segment through C and let C ~ denote its intersection with 0122. 
By (4), performing an isometry on S 3 if necessary, we may assume that C ~ E E.  
By the above, there exists a segment S in E with endpoints in D and D ~ such 
that C ~ E S. We now use the subgroups F and r ~ to rotate D and D ~ such that 
the endpoints of S get to the radial segments connecting V and/ /0  in D and V ~ 
and / /~  in Dq These are separated so that the endpoints of the rotated S are also 
separated. Thus, by convexity, the rotated C ~ is also separated. The rotated C is on 
the radial segment between 0 and C ~ so it is also separated. Hence f is separable 
and the proof is complete. 

3. Moduli Spaces of Separable Quadratic Forms 

Let f :  S m ~ S n be a quadratic form. Using coordinates, f can be written as 

m 

f (x )  = E aix~ + E aijxixj, 
i=0  O<_i<j<_m 

where ai, aij E R n+l, i = 0,. . . ,  m a n d 0  _< i < j _< m. To simplify the notation, 
we set aij = aft, SO that aij is defined for all distinct indices 0 _< i, j _< m. The 
condition that f is spherical is equivalent to the following: 

lad = 1,  (5) 
(ai, alj) = 0, i, j distinct (6) 

la jl 2 + 2(ai, aj) = 2, i, j distinct (7) 

(ai, ajk ) q- (aij , aik ) = 0 ,  i, j ,  k distinct "~ (8) 

(aij, akl) + (aik, aft) + (alt, ajk) = O, i, j, k, l distinct. (9) 

We say that a system of vectors {ai, aij} C R n+~ is feasible if it satisfies (5)-(9). 
Note that f is harmonic, i.e. an eigenmap, iff 

m 

al = O. (10) 
i=0  
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We introduce the rank of the quadratic form f:  S m --, S '~ as 

rank f = dim span {aili = 0 , . . . ,  m}.  (11) 

As an example, we see that the standard minimal immersion f~2: Sm --+ 
S (re(m+3)~2)-1 can be characterized by saying that it is separated, (ai, aj)  = 
- l / m ,  i ~ j,  and {aij} is orthogonal with la jl 2 = 2 (m + 1)/m. Clearly, 
rank f:~k = m. 

Given a quadratic form f :  S m ~ S '~ with associated feasible system of vectors 
{ai, aij}, for U E O(n + 1), the equivalent quadratic form U.  f has {Uai, Uaq} 
as the associated feasible system of vectors. Hence, f is separated iff 

(ai, ajk) = O, for all i, j ,  k = 0 , . . . ,  m,  j ¢ k. 

In this case, we will always take f (in its equivalence class) such that {ai} C 
R p, p = rank f ,  where R p C R '~+I is the linear subspace spanned by the first p 
coordinates, and {aij} C R q+l, p + q = n, where R q+l = (liP) -t. 

Given a full separated form f :  S m ~ S n with associated feasible system of 
vectors {ai, aij}, we let F:  R m+l ~ R q+l denote the full quadratic map defined 
by 

F ( x ) =  ~ aijxixj.  
O<_i<j<_m 

The orthogonality relations (7)-(9) translate into 

]F(x)12 ~ 2 2 (12) IdijX i Xj 
O<_i<j<_m 

where #ij  = laijl 2. We call # = (/zij)0_<i<j<,~ E R m(m+l)/2 the signature of F.  
We will also think of the signature # as a symmetric matrix in S2(R re+l) with zero 
diagonal entries, i.e. we put #ij  = #ji ,  i y~ j ,  and #ii = O. 

F determines f up to equivalence. In fact, # determines the Gram matrix G(#)  
of the system of vectors {ai} via (7) since 

(ai, aj) = 1 2 1  I 'aiJ '  _ 1 - #i--Lj (13) 
2 2 

We have rank G(#)  = rank f = p and G(#)  determines {ai} within span {al} = 
R p up to isometry. By birth, G(#)  is positive semidefinite. 

Conversely, let F:  R m+l ~ R q+l be a quadratic map satisfying (12), and 
assume that 

( G ( t , )  = 1 - >_ o ,  
i,j=O 

#ij = tzji, #ii =O. 
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Then, up to isometry, there exists {ai )  C R p, p = rank G(#) satisfying (13). 
Putting these vectors together in R p @ R q+l, we arrive at a separated form f :  S m --+ 
S n, n = p + q. Finally, f is an eigenmap iff the entries of each row in G(#) add 
up to zero, i.e. iff 

m 

~'~tzij  = 2(m + 1) 
i=0 

for a l l j  = 0 , . . . ,  m. 

The discussion above warrant to introduce the signature space 

f 
E Rm(m+l)/2[G(tz ) 

By the above, to each full separated form f :  S m ~ S n there corresponds a full 
quadratic map F: R "~+1 ~ R q+l of signature # E Em and this correspondence is 
one-to-one. 

For eigenmaps, we have to restrict ourselves to the slice 

{ I } ~o= #E Em ~ - ~ , # i j = 2 ( m +  l ) f o r a l l j = O , . . . ,  m 
i=0 

of the signature space Era. 
Let # E Era. We define Fu: R m ~ R q(u)+l, q(#) + 1 = ~{#ij # 010 _< i < 

j _< m}, by 

where we discard the zero components on the right-hand side. F u is a full quadratic 
map with signature/z. Moreover, F u is universal in the sense that, for any full 
quadratic map F: R m+l ~ R q+l with signature/z, we have F = A.  F u, where A 
is a (uniquely determined) (m + 1) × (q(#) + 1)-matrix. As usual, we set 

(F) = A T A  - I E S2(Rq(~)+I), 

and 

= { c  E E, lC + i _ o}, 

where 
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By the usual DoCarmo and Wallach argument (cf. [1], [14]), we find that the 
correspondence F ~ (F) parametrizes the equivalence classes of full quadratic 
maps F: R "~+1 --+ R q+l with signature # by the compact convex body Eu of 
&. 

We conclude that 

Sm=ue~mU £u ( r e s p ' S ° = u e ~  °U £ u )  

parametrizes the equivalence classes of full separated forms f:  S m --+ S '~ (resp. 
full separated eigenmaps f:  S m --+ Sn ). 

Given # E E,~, we now describe £u. Assume first that #id ¢ 0, for all i # j .  
Writing out the condition C E g~, in coordinates, we obtain 

c j,klx zjzkzl = 0 

i,j,k,l 

so that if i, j ,  k, l are not distinct then cid,kt vanishes and if i, j ,  k, l are all 
distinct then 

v v C j,k  + v/ v/- cik,J  + = 0. (14) 

In particular, if #ij ~ 0, for i ¢ j ,  we have 

dim £'u = 2 4 " 

If #ij = 0 for some i ¢ j then cij,kl (and, by symmetry, Ckl,ij) do not exist for all 
k, I and they are missing from these relations (14). Thus, in general, 

d i m £ ~ < 2 ( m + l )  
- 4 " 

(Altematively, all the previous relations remain in effect if we assume that, when- 
ever #ij = 0 then cij,kt = ckI,ij = 0, for all k, l.) 

(14) actually gives somewhat more about the geometry of £u.  For simplicity, 
assume that all #'s occurring in (14) are nonzero. Let Pijkt C S2(R m(m+W2) 
be the 3-dimensional linear subspace given by setting all c's other than cij,kt, 
cik,jl and cil,jk equal to zero. In Pijkt, the set of points (cld,m, clk,fl, Cil,jk) for 
which C -t- I >__ 0 holds is the cube [ -1 ,  1] 3. To get Pidm f3 £u,  by (14), this 
cube has to be intersected with the plane through the origin with normal vector 
(v/#ij #kt, v/Plk#fl, ~ ) .  The intersection is a hexagon or a quadrangle. We 
will exploit this argument in a more concrete setting for m = 3 in Section 5. 
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By definition, wehaved im Era = re(m+ 1) /2andd im E ° = ( m - 2 ) ( m +  1)/2 
so that the dimension of the space of equivalence classes of full separable eigenmaps 

i s a t m ° s t 2 (  m + l ) 4  + m Z - l ' O n t h e ° t h e r h a n d ' w e h a v e  

d i m £  2 = 1 / 2 ( n ( 2 ) + l ) ( n ( 2 ) + 2 ) - ( n ( 0 ) + l )  

- ( n ( 2 )  + 1) - (n(4) + 1), 

where n(k) is given in (1) (cf. [10, p. 911). Comparing these dimensions, we arrive 
at 

t , 2  _ dim ¢ o  > (m - 3 ) m ( m  + 1) dim ~ m  - 2 

and Theorem 2 follows. Note also that both dimensions on the left-hand side are 
degree 4 polynomials in m with equal leading coefficients so that the asymptotic 
formula of Section 1 is valid. 

4. Hierarchy between the Signature Spaces 

We first define an imbedding ¢: Era+ l 0  --~ Era with image 

{ # E Em O<_i<j<_m~-~" #ij = m(m + 2) } (15) 

o a codimension 1 slice of Era. Given/2 E Era+l, we define # E R ra(ra+l)/z as 

/2 E R (ra+l)(m+2)/2 with the components/2i,ra+l, i = 0,..., m deleted. If/2 is 
considered as a matrix, # corresponds to/2 with the last row and column deleted. In 
each row of the Gram-matrix G(/2) the entries add up to zero, so that we have 

ra  

= 2 ( m  + 2)  - 
j=0 

(16) 

In particular, the determinant of G(#)  vanishes. Hence, G(#) ___ 0 i f fG(#)  >__ 0. 
Thus, # C Era. Moreover, # completely determines/2 by (16), since the bar on the 
right-hand side can be deleted. Finally, in the last row of G(/2) the entries add up 
to zero and since these are also the entries of the last column, using (16), we arrive 
at 

#ij = ra(ra + 2). (17) 
O<i<j<_m 

0 It follows that, ¢:/2 ~ # is a bijection between 2m+ 1 and the slice in (15). 
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0 ----+ Let # E ~m+l with # E E,~ satisfying (17). Given a quadratic map F:  R '~+2 

R n+l with signature/2, restriction to Xm+l = 0 is a quadratie map F: R m+l 
R '~+1 with signature #. Conversely, given a quadratic map F: R '~+1 ~ R n+l with 
signature #, we define _P: R m+2 ~ R re+n+2 by 

where #i,m+l is given in (16). Clearly,/~ is a quadratic map with signature/2. 
0 0 We now use this to define a map ~6: E ° ~ Era+ 1. Let # E ~,~. Since the 

entries in each row of G(#)  add up to zero, we have E,nj=0#~s.. = 2(m + 1), for all 
i = 0 , . . . ,  m. Summing up with respect to i, we get 

belongs to ~m since the coefficient is in (0, 1) and Er~ is convex. Moreover, the 
0 way we normalized, it satisfies (17). Thus, there is a unique ~ E Era+ 1 whose 

~b-image is (19). Now, associating/~ to # defines the map ~b: E° m 0 -'-+ ~ m + l '  
Let f :  S m ~ S '~ be a full separated form and F: R ~+1 --, R q+l the associated 

quadratic map with signature # E E ° .  Then 

has signature (19). Using the extension above, we arrive at 

where _P: R m+2 ~ R n+m+2 is a quadratic map with signature/2. To/~ there corre- 
sponds a separated eigenmap f :  S m+l ~ S '~+m+l determined up to equivalence. 
In coordinates, we have 
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Fig. 1. 

In fact, this formula now works without the assumption of f being separated. 
Associating ] to f is the source dimension-raising operator that has been found in 
[4]. The corresponding map between the standard moduli spaces is injective. 

5. The Parameter Space for Low Source Dimensions 

We first let m = 1. The signature space E 1 m [0, 4] C R with E0 = {4}. Setting 
# = #12 = 4 sin2(~/2), 0 _< ~ < 7r, we obtain the quadratic forms fu: 5'1 __+ 5'2, 
where 

f u ( x ,  y ) =  (cos ( 2 )  ( z 2 +  y2), sin ( 2 )  ( z 2 -  Y2)' 2 sin ( 2 ) z y ) .  

Clearly, fu wraps 5'1 twice around the intersection circle of the 2-sphere and the 
cone with z-axis as the axis of symmetry and opening half-angle a / 2  at the origin, 
the vertex. # = 4 corresponds to the complex multiplication z ~ z 2 restricted to 
S 1. Finally, for each # E ~1, £u consists of a single point. 

Next, let m = 2. Setting # = (a, b, c), we have 

Ez = {(a, b, c) e [0, 4131a 2 + b 2 + c 2 - 2(ab + bc + ca) + abc <_ 0}. 

The tetrahedron spanned by the vectors (4, 4, 0), (4, 0, 4) and (0, 4, 4) is con- 
tained in ~2; in fact, its edges are the intersections of ~2 with the faces of the 
cube [0, 4] 3. X ° = {(3, 3, 3)} corresponds to the standard minimal immersion 
f~2:5'2 --+ 5'4. (The signature space E2 looks like an 'inflated tetrahedron', cf. the 
top view computer image in Figure 1.) 

Finally, let m = 3. We will only work out ~0. The imbedding ¢: E~ ~ E2, 
defined in Section 4, associates to (a, b, c, c, b, a) with a + b + c = 8 the point 
(a, b, c). Hence, identifying E ° with its image, we see that E ° is the triangle A with 
vertices (4, 4, 0), (4, 0, 4) and (0, 4, 4). The center (8/3, 8/3, 8/3) of A corresponds 
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to the standard minimal immersion f;~2:$3 ---~ S 8. L e t #  = (a, b, c, c, b, a) C E ° 
and determine/ :u.  Using coordinates x = (x, y, u, v) E R 4, we have 

&(,) = (va,y, vg, , v yu, vgy , v uv). 

Assume first that # has no zero components, i.e. the corresponding point in A is 
not a vertex. Evaluating 

(c, & ( . )  e = o, (20) 

for C E $2(R6), we find that C has antidiagonal entries a ,  /3, 7, 7, fl and t~ 
with aa + b/5 + c7 = 0 and all other entries are zero. C + I >__ 0 translates into 
(a ,  /3, 7) E [ -1 ,  1] 3 C R 3. Thus £u can be visualized as the intersection of the 
cube [ -  1, 1] 3 with the plane through the origin with normal vector (a, b, e) E A. 
If (a, b, c) is in the interior of the triangle A then the intersection is a hexagon. If 
(a, b, c) is on an edge of A but is not a vertex then the intersection is a quadrangle. 
Finally, if (a, b, c) is one of the vertices of A then, evaluating (20), we find that 
C has antidiagonal entries a ,  - a ,  - a ,  a and all other entries are zero. Thus 
£ ,  = [ -1 ,  1]. 

We can also determine the corresponding eigenmaps, or what is the same, the 
quadratic maps F:  R 4 --+ R q+l via F = A • Fu, where A = v ~  + I .  (Note that, 
F ,  obtained this way is, in general, not full.) Using that, for I x ] _< 1 

[ :  ~]1/2 [ %/1 _~_ X _1_ 1vfi----~_ ~ %/~- + X _ 1%/-i--7~_ X 1 
= x / l + x _  lx/]-7~_z v / ' i - + x +  lx/i-7-~-x] 

and taking an appropriate representative in the equivalence class of F,  we arrive 
at 

2 2 a)(xy- uv), 

Ib(l  + fl) , + yv), Ib (1 -  fl) (xu- 

Ic(l+7)(xv+yu) '  i c(1-7)(xv ) 
2 ~ - yu) . 

The corresponding full separated eigenmaps f :  S 3 ~ S '~ can be written down 
explicitly. For brevity, we mention here only the range dimensions n. The interior of 
the hexagon corresponds to eigenmaps with n = 8, the edges (without the vertices) 
to n = 7 and the vertices to n = 6. The interior of the quadrangle corresponds to 
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n = 7, the edges to n = 6 and two pairs of opposite vertices to n = 5 and n = 4. 
Finally, the interior of the segment [ -  1, 1] belongs to the range dimension n = 4 
and the vertices to n = 2. Finally, note that, by Theorem 1, precomposing these by 
isometrics on S 3 we obtain all full quadratic eigenmaps f :  S 3 --+ S '~. (Note also 
that, by fullness, n = 3 does not occur as a range dimension.) 

Remark. Using the notations of the proof of Theorem 1, we see that S o can 
be identified with the 4-dimensional slice cut out from/:~ by the linear subspace 
spanned by the four (linearly independent) vectors (Ho), (H~), (V) and (V'). 
Using the geometric description of £2, it is easy to see how the fiber structure fits 
in the slice. For example, the opposite of (V) in 0£32 is (H) (cf. [10, p. 97]), where 
H: S 3 --+ S 2 is the Hopfmap. Similarly, the opposite of (W) is the 'conjugate' (H' )  
and the three segments connecting (//0), (11~r/2) and (H) with their conjugates 
correspond to the three fibers £u at the three vertices # of the triangle A. The 
interior of the segment with endpoints (Ho) and (tt~/2) corresponds to the trace 
of a vertex of the quadrangle £u as # slides along an edge of A. 

6. Orthogonal Multiplications and Quadratic Forms of Low Rank 

An orthogonal multiplication of type (p, q, n) is a bilinear map F: R p × R q ~ R n, 
which satisfies 

IF(x, ff)l 2 = IxlZlYl 2, x ~ RP, y e Rq. (21) 

Orthogonal multiplications (or more generally, nonsingular bilinear pairings, cf. 
[8]) of type (p, n, n) exist i f fp  _< p(n), where the Hurwitz-Radon function p is 
defined by setting p(n) = 8a + 2 b with n = 24a+bc, 0 < b < 3 and c is odd. 

The Hopf-Whitehead construction associates to an orthogonal multiplication F 
of type (p, p, n) the quadratic eigenmap fv: S 2p-1 -'+ S n by 

fF (x ,  y) = (Ixl 2 -  lYl 2, 2 F ( x ,  y)).  

(For more details, cf. [2] and [10].) 

For the next theorem, recall that the rank of a separated form f :  5: m --+ S n is the 
dimension of the linear span of the vectors ai, i = 0 , . . . ,  ra. 

PROPOSITION 1. Up to equivalence, the rank-1 separated eigenmaps are obtained 
from an orthogonal multiplication by the Hopf-Whitehead construction. 

Proof Consider the set of feasible vectors {al, aij } associated to a full separated 
eigenmap f :  S ra --+ S ~. Rank-1 signifies that all a~, i = 0 , . . . ,  m, are collinear. 
Since their sum is zero, m + 1 is even, say m + 1 = 2p, and we may assume 
t h a t  a0 . . . . .  a p - 1  = - a p  - -  . . . . .  a 2 p - 1 .  Since they are unit vectors, for 
i ~ j, ~ij : 2(1 - (ai, aj)) is 4 if li - Jl < P and zero otherwise. Thus, (12) 
reduces to (21) (with a factor of 4) and the proposition follows. 
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THEOREM 3. Let f:  S m ~ S n be a separated eigenmap of  rank p. Then, we 
have 

( 1. p 1 +  p + l ]  - (22) 

Moreover, i f  equality holds then p + l ira + 1 and pln + 1 and 

f m+l~ ra +___21 < . t p ? - 4 - f  ) 
p + l  - 

(In particular, i fp  is not a multiple o f  4 then (m + 1) / (p + 1 ) = 1, 2, 4, 8.) 

COROLLARY. The gradient o f  an isoparametricfunction on S 4 is a nonseparable 
quadratic eigenmap f:  S 4 "+ ~4. 

PROOF OF THE COROLLARY. Assume that f :  S 4 ~ S 4 is separable. Precom- 
posing f by an isometry, we may assume that f is separated. By the inequality 
of Theorem 3, p = 1. Now Proposition 1 contradicts to the fact that the source 
dimension is even. 

PROOF OF THEOREM 3. We first note that, by the orthogonality relations (5) 
and (7), aij = 0 iff ai = aj. Hence, the relation ,,~ on { 0 , . . . ,  m} defined by i ,-~ j 
if aij = 0 is an equivalence. Let C 1 , . . . ,  Cs denote the equivalence classes and set 
zt = ~Ct, 1 = 1 , . . . ,  s. By the definition of ,,~, there are exactly s distinct vectors 
in {a0 , . . . ,  am} and, by (10), they are linearly dependent. Hence 

p + 1 _< s. (23) 

On the other hand, ~=lZl  = m + 1 so that 

SZl = s min {z![l = 1 , . . . ,  s} _< m +  1, (24) 

where we assumed that the minimum is attained at zl. Let il C Ct, 1 = 1 , . . . ,  s, and 
consider the system of vectors {aid )~=0 C R q+l. By (8), this system is orthogonal 
so that its nonzero vectors, of which we have m -t- 1 - zt in number, form a linearly 
independent system. Thus 

m + l - z t < q + l .  (25) 

Combining this, for I = 1, with (24), we obtain 

( r e + l ) ( 1  - 1 )  < q + l .  

Adding p to both sides and using (23) and p + q = n, (22) follows. 
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Assume now that equality holds in (22). Equivalently 

m + l  
p - -  - q + 1 (26) 

p + l  

so that p + 1 divides m + 1 and p divides q + 1 and hence n + 1. Combining (25) 

and (26), we obtain 

m + l  
<Zl, l = l , . . . ,  s. 

p + l  - 

Summing up with respect to l, we get s _< p + 1 so that, by (23), ~ = p 4- 1. 
Retracing the steps zl = . . . .  zs = ( m +  1 ) / ( p +  1)follows. Thus, in {ai} C R p, 
we have exactly p -t- 1 distinct vectors (whose sum is zero by harmonicity). Setting 
r = (m + 1) / (p  + 1), by (7), F can be thought of  as a map 

F:  R ~ x - . .  x R ~ --* R p~ 

with the domain consisting of  p + 1 components of R ~ such that 

Iff( x 0 ' ' ' ' '  XP) 12 = E #ijlxil2lxjl2, xi e R r, i = 0 , . . . ,  p. 
O<i<j<p 

Differentiating both sides at (0, x l , . . . ,  Xp) in the direction xo twice, we obtain 

I f ' ( z 0 ,  X l , . . . ,  xp)l 2= I~ol 2 ~o~l~jl 2 , 
\ j=l / 

where 

0 F(txo, Xl , . . .  , Xp). F'(x0, x l , . . . ,  x~)= ~ ~=o 

This means that 

F' :R  ~ × R  p ~ R  p~ 

is a nonsingular bilinear pairing. By classical result, r <_ p(pr) (cf. [8]). 

Remark. The inequality is sharp for the Hopf  maps. Note also that for F:  R 4 
R 4 defined by 

--~ ( xy 
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gives a rank 3 quadratic form f :  S 3 ~ S 5 for which equality holds in (22). (The 
assumption that f is an eigenmap was used only to derive (23) and can be replaced 
by saying that the distinct vectors in {ai} form a linearly dependent set.) 

Now let f :  S r" ~ S '~ be a rank-2 full separated form with associated feasible 
system {ai, aij}. Up to equivalence, we may assume that the vectors ai are 
contained in the plane R 2 spanned by the first two coordinate axes in R n+l and 
that 

a o = ( 1 ,  O), a ~ = ( c o s  Oi, sinOi), i = l , . . . ,  m. 

We find that, up to equivalence, f = fo, where 

0 2 2Fo(x) so(x) = x,~ + Z cos o, xL ~,sin ,x,, 
i=1 i=1 

where Fo: R m+l ---+ R n-1 is a full quadratic map with signature 

(sin (0, 
# -2 / o<i<j<_m" 

(Here, we set/90 = 0.) 
Finally, fo is an eigenmap iff 

m m 

l + ~ c o s 0 ~ = 0  and ~ s i n 0 ~ = 0 .  
i=1 i=1 

We now work out a concrete example (which is a rank-2 analogue of the Hopf-  
Whitehead construction). Let m + 1 = 3p and assume that a0 . . . .  = ap_ 1 = 

(0, 1), ap . . . . .  a2p_ 1 : ( - 1 / 2 ,  x / '3 /2)and a2p : . . . .  a 3 p - 1  = 

( - 1 / 2 ,  - v ~ / 2 ) .  By (12), up to a contant factor, the quadratic map F: R p x 
R p × R p ---* R n satisfies 

IF(x, v, ~)12 = 1~121yl 2 + Ivl21zl 2 + Izl21z[ 2, x, v, z ~ Rp 

and the associated separated eigenmap f :  S 3p-1 ~ S '~+1 has the form 

( f (x ,  y, z) = Ixl 2 - (lyl 2 + Iz12), 5 - ( l y l  ~ -Iz12), v/g F(x,  

(27) 

v, , ) ) .  

Given two orthogonal multiplications G1, G2: R m x R m --. R n, we say that 
(G1, G2) has a common extension if there exists an orthogonal multiplication 
G: R m x R 2m --, R n such that (with obvious notations) we have 

G(x, y, O)=Gt(y ,  x) and G(x, O, z ) = G 2 ( x ,  z), 
x, y, z E R  m, (y, z) E R  2m. 
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(Note the switched argument in the first relation.) A necessary and sufficient con- 
dition for the existence of G is that 

( c l ( y ,  ~), c2(x,  z)) = 0, ~, y, z c R ~.  

Indeed, if G exists, we have 

IG(x, y, z)[ 2 = IGI(y, x ) +  G2(x, z)l 2 

= Ixl2(lyl 2 + Izl z) + (GI(y, x), G2(x, z)), 

On the other hand, IG(x, y, z)l 2 = Ixl2(ly] 2 + [Zl 2) and (27) follows. For the 
converse, we set 

G(x, y, z) = GI(y, x) -}- G2(x, z). 

Given three orthogonal multiplications GI, G2, G3: R TM × R m ~ R '~, we say 
that (G1, G2, G3) has a cyclic extension if each pair (G1, Gz), (G2, G3) and 
(G3, G1) has a common extension. 

PROPOSITION 2. There is a one-to-one correspondence between the set of 
quadratic maps F: R m × R TM × R m --+ R ~ satisfying (27) and the set of triples 
(G1, G2, G3) of orthogonal multiplications which have cyclic extensions. The 
correspondenceisgivenbysettingGl(y, z) = F(O, y, z), Gz(z, x) = F(x,  O, z) 
and G3(x, y)= F(x, y, o). 

Proof We use the idea in the proof of Theorem 3. Taking 02/Ot2]t= 0 of both 
sides of the equation 

IF(tx, y, z)l 2 = t21xl2(lyl 2 + Izl 2) + lyl21zl 2, 

we obtain 

IU(x,  y, z)l 2 = Ixl2(lyl 2 + Iz12), (28) 

where F'(x,  y, z) = O/cgtF(tx, y, z)lt= o. (28) says that F '  is an orthogonal 
multiplication as a quadratic map F' :  R m x R 2m --+ R n, in particular, it is bilinear. 
We therefore have 

~ ' ( z ,  y, z ) =  r ' ( x ,  y, o ) +  F'(x, O, z). 

On the other hand, F'(x,  y, O) = O/Ot F(tx,  O, z)]t=o = F(x,  O, z) since, by 
(27), the latter is also an orthogonal multiplication and hence bilinear. We obtain 
that 

F'(x ,  y, z ) =  F(x ,  y, O)+ F(x,  0, z), 
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where we used the same argument  for  the second term. Combin ing  this with the 

Taylor  formula:  

F ( x ,  y, z)  = F(O, y, z ) +  F ' ( x ,  y, z)  

= F(O, y, z ) +  F ( x ,  O, z ) +  F ( x ,  y, 0). 

Taking the norm square of  both sides we obtain 

(F(O, y, z), F(x, O, z)) + (F(x, O, z), F(x, y, 0)) 
y, 0), F(O, y, z ) )=  O. 

The terms on the right-hand side vanish separately since they correspond to poly-  

nomials  with different homogenei ty.  We now define (G1, G2, G3) as in the propo-  
sition above  and conclude that this triple has a cyclic extension. The converse  is 

clear. 
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