Real Orthogonal Multiplications
in Codimension Two

HILLEL GAUCHMAN
University of Illinois, Urbana-Champaign, IL 61920

GABOR TOTH
Rutgers University, Camden, NJ 08102

Abstract

A codimension ¢(> 0) orthogonal multiplication of type (lymym+c¢c)is a
normed bilinear map F : R! x R™ — R™*¢, | < m. Between 1898-1923, Hur-
witz and Radon gave a complete classification of all codimension zero orthogo-
nal multiplications. In 1980, Adem showed that, for ¢ = 1, F (up to isometries
on the source and the range) extends to an orthogonal multiplication of type
(I, m+1,m+1) if mis odd, and restricts to an orthogonal multiplication of type
(I,m,m) if m is even. The resulting types are covered by the Hurwitz-Radon
classification. The main result of this paper is to show that, for c = 2 and m
even, a full orthogonal multiplication F of type (I,m, m + 2) extends similarly
to an orthogonal multiplication of type (I,m + 2,m + 2). We also prove that,
for ¢ = 2 with m odd, the only possible dimensions are ! = 3 and m = 4r +1
for some r > 1 and (up to isometries again) F can be given explicitly in terms
of (the restriction of) an orthogonal multiplication R4 x R4 — R4" given by
quaternionic vector space multiplication. These give a complete description of
all orthogonal multiplications of codimension < 2.

1 Introduction and Statement of Results

An orthogonal multiplication of type (I,m,n) is a bilinear map

F:R'xR™ - R" (1)



that satisfies
IF(z,9) = s lyl?, = €R',yeR™ 2)
F' is said to be full if the image of F spans R".

It is a classical problem to give a complete list of all orthogonal multiplications of
type (I,m,n). Note that the concept of orthogonal multiplication can be generalized

over any field (of characteristic # 2). (Actually the very first classification theorem
due-to-Hurwits as-proved-over—€-)—Neverthele aiT ifiterest here is
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to classify real orthogonal multiplications so that we refer to the general algebraic
results only briefly. For the relevant results as well as the many connections of or-
thogonal multiplications with other branches of mathematics we refer to the survey
article of Shapiro [16] (cf. also the forthcoming book (18)]).

For m = n, Hurwitz [11,12] and Radon [15] gave a complete solution to this problem
that can be concisely stated as follows:

Decomposing m as
m = 2P*49(2r 1), 0<p<3, q,r>0,
a full orthogonal multiplication F : R! x R™ — R™ exists iff
1< p(m), (3)

where the Hurwitz-Radon function p is given by
p(m) = 2P 4 8q.

(Note that p = 0,1,2,3 correspond to the real, complex, quaternion and Cayley
multiplications.)

We briefly recall a proof (based on Clifford modules) since it will play an important
part in the sequel. Let F : R' x R™ — R” be an orthogonal multiplication and
denote by {e,}{-, C R’ and {f;}, C R™ the standard orthonormal bases. For
fixed @ = 1,...,1, (2) implies that {uZ = F(ea, fi)}~, is orthonormal in R". For
m = n, and this is what we assume now, it is then an orthonormal basis in R™.
Hence, for a, 8 = 1,...,1, there exists an orthogonal m x m-matrix PP = pﬁ“){';=1
such that .
?:Zp?f’uj‘, i=1...,m. (4)
i=1
Moreover, polarization of (2) gives

(u,uf) + (u2,uf) =0,  a#4. (5)
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Substituting (4) into (5), we obtain that PP is skew symmetric, i.e.

(PP)T=—PP,  a#p (6)
In particular, P?*, being orthogonal, is a complex structure on R™:
(Pﬂa)2 = —Iv a # ﬂ (7)

We can further exploit (5) by substituting (4) into the first term of (5) and then
switching a and # in (4) and substituting it into the second term in (5). We obtain

PP — _pob a#p. (8)
Finally, iterating (4), we arrive at
Pprepha — _p#, a, B,v distinct .

Setting Uy = P, a = 1,...,1 — 1, we obtain that {Ua}l is an anticommuting
family of skew symmetric complex structures on R™. {U.}7Y determines F up to
normalization. More precisely, an orthogonal multiplication F' : R x R™ — R™ is

said to be normalized if F(e;, X) = X for all X € R™. Summarizing;:

The set of normalized orthogonal multiplications F : R! x R™ — R™ is in bijective
correspondence with the set of anticommuting skew symmetric complez structures
{Ua}Z4 and the correspondence is given by U, X = F(e,, X).

Two orthogonal multiplications F,F’ : R' x R™ — R" are said to be equivalent
if there exist orthogonal matrices A € O(l), B € O(m) and C € O(n) such that

F'= CoFo(AxB). Clearly, for m = n, any orthogonal multiplication is equivalent
to a normalized one.

An anticommuting family {U,}';} of skew symmetric complex structures on R™
gives rise to what is called a Clifford module structure on R™ over the Clifford
algebra C¢,_,. Now, the classification of Clifford modules gives (3).

It is also a classical observation that a Clifford module structure on R™ over Cl_,
gives rise to I —1 (pointwise) orthonormal vector fields vy, . . ., v;_; on the unit sphere
S™=1. A celebrated result of Adams [1,2] in 1962 states that the maximum number
of (pointwise) linearly independent vector fields on spheres can be obtained through
orthogonal multiplications, in particular, the only parallelizable spheres are S?, S°

and S7.

In 1964, when the concept of harmonic maps between Riemannian manifolds has
been introduced by Eells-Sampson (8], orthogonal multiplications gained consider-
able importance since they provide examples of harmonic polynomial maps between
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spheres. In fact, restriction of F in (1) to the product of the unit spheres is a har-
monic map §'~! x $™-1 — §"~1, Also, for | = m, the Hopf-Whitehead construction
associates to an orthogonal multiplication

F:R'xR™ 5 R"

the map
fo . gm1_, o
given by

fr(z,y) = (2" = v]*,2F(z,y)), =z €R,yeR™ |z + |y =1.

The components of fr are (restrictions of) quadratic polynomials. For ! = m, they
are also harmonic so that fr is a quadratic harmonic eigenmap, or equivalently, a
harmonic map of constant energy density in the sense of Eells-Sampson [8]. Again
the complex, quaternion and Cayley multiplications give rise to the various classical
Hopf maps between spheres. Note that the real tensor product ® : R! x R™ — R/m
provides a further example (with maximal n = Im) to this situation.

In 1987, the second author showed in [20] that, for fixed ! and m, the space of equiv-
alence classes of full orthogonal multiplications of type (I,m,n) can be parametrized
by the orbit space of an invariant compact convex body £ in s0(k)®so(l) under the
action of Ad® Ad. This however gives a little clue to the possible range dimensions
max(l,m) < n < Im. The range dimension stratifies £, in particular, the minimum
range dimension stratum (corresponding to the Hurwitz-Radon range) is a compact
(algebraic) submanifold in the boundary of £. This has been studied by Bier and
Schwardman [7] and Shapiro [18] (Chapter 7). For | = m = 2, the determination of
L is simple and the parameter space is a segment in R with interior points corre-
sponding to n = 4 and the boundary vertices to n = 2. For | =m = 3, £ has been
determined by Parker [14] in 1983. She obtained that the possible range dimensions
aren =4,7,8,9.

According to a recent rigidity result of Gauchman and Toth [10], a quadratic har-
monic polynomial map f : S™ — S? is the Hopf map (up to isometries of the
source and the range), in particular m = 3. Moreover [20], there is no full quadratic
harmonic map f : §2 — $3, where fullness means that the image of f spans R*.
Since these correspond to the lowest possible range dimensions, in view of the link
between quadratic harmonic polynomial maps between spheres and orthogonal mul-
tiplications, it is natural to ask whether there exist orthogonal multiplications

F:R'xR™ - R"



with small codimension ¢ = n — max(l,m). To state the first result for codimension
one, due to Adem [3,4], we first introduce the following definition:

Let F: R*x R™ — R" and Fp : R® x R™ — R™ be orthogonal multiplications
with Iy < | and mg < m. We say that Fy is a restriction of F if there exist linear
isometries ¢ : R — R/ and 4 : R™ — R™ such that Fo(X,Y) = F(¢X,vY).

Th », LoiTn. Tl

theoremI—rletF-R-xR™=R"+bea fall oTthogonal mulliplication. Then m
18 odd, | < p(m +1) and there ezists an orthagonal multiplication F : R' x R™+1 —
R™?! such that F is equivalent to a restriction of F.

Note that Theorem 1 states, in particular, that, for m even, an orthogonal multipli-
cation of type (I, m,m+1) is not full, i.e. it restricts (on the range) to an orthogonal
multiplication of type (I,m,m). Along with the extension for m odd, this is the
original formulation of Adem’s theorem.

Since the codimension two case will be modeled on the Adem’s extension argument,
we give a proof of Theorem 1 in Section 2. Note also that an instructive proof of
the codimension one case (over arbitrary fields) was given by Shapiro in [17].

Theorem 2 Let m be even and F : R! x R™ — R™2 4 full orthogonal mult:-

plication. Then | < p(m + 2) and there ezists an orthogonal multiplication F :
R! x R™*? — R™*? sych that F is equivalent to a restriction of F.

The proof of Theorem 2 is the main (rather technical) result of the paper and is
accomplished in Section 3.

To state the corresponding result for ¢ = 2 and m odd, we first introduce the follow-
ing example. Let Fp : R x R — R¥, r > 1, be a full orthogonal multiplication
that exists by the Hurwitz theorem since p(4r) = 4 (or, more explicitly, by a restric-

tion of the quaternionic multiplication on a quaternionic vector space of dimension
r). We now define F, : R® x R¥+! _, R#+3 by

32 Flearf) ifi=1,...,4r,
Fr(ea,fi)_{ f4r+a ifz=47'+1,

where {e,} C R® and {f;} C R**® denote the standard orthonormal bases with
canonical inclusion R*+! C R*+2 onto the span of the first 4r + 1 basis vectors.
F, is clearly a full orthogonal multiplication and is uniquely determined by the
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requirements that it is an extension of F and F.(-, far+1) is the canonical inclusion
R? — R*+3 onto the span of the last three basis vectors. We say that F, is induced
by Fp. We now state the following:

Theorem 3 Let m be odd and F: R' x R™ — R™+2 ¢ Jull orthogonal multiplica-
tion. Then, | =3 and m =4r + 1, for somer > 1, and F is equivalent to F, (that
13 induced by an orthogonal multiplication Fy : R3 x R.“’ — RY¥),

The (less technical) proof of Theorem 3 is contained in Section 4. Note that The-
orem 3 can be thought of as a weak dual of Theorem 2 since F, is inextendible
to an orthogonal multiplication of type (3,4r + 3,4r + 3) but actually restricts
to an orthogonal multiplication of type (3,4r,4r) covered by the Hurwitz-Radon
classification.

Theorems 2-3 give a complete and explicit classification of all full codimension two
orthogonal multiplications over R. We now digress here and recall the known results
for the codimension two case and relate them to Theorems 2-3.

First, in 1940-41, Hopf and Stiefel [9,19] showed that the existence of a nonsingular
bilinear pairing R' x R™ — R™*¢ (such as an orthogonal multiplication) implies
that ("‘: °) is even for m + ¢ — 1 < k < m. This, applied to ¢ = 2 immediately
gives the nonexistence of orthogonal multiplications of type (I,mym+2)form=1
(mod 4) and ! > 4. This is a particular case of Theorem 3. (For further results using
topological K-theory, ¢f. [16] along with the references there.) Over arbitrary fields,
Adem (3] showed the nonexistence of orthogonal multiplications of type (4,5,7).
This has been generalized by Yuzvinsky [21] to nonexistence of types (4, m, m + 2),

provided again that m =1 (mod 4). (For a simpler proof of Yuzvinsky’s result,
cf. [5].)

Second, Berger and Friedland [6] (over R) and K.Y.Lam and Yiu [13] (over arbitrary
fields) considered the (closely related) problem of finding, for given m and c, the
largest ! such that a (not necessarily full) orthogonal multiplication of type (I, m, m+
c) exists. They found a solution for ¢ < 5 (with the exception of ¢ = 5 with m = 27
(mod 32)). The special case ¢ = 2 of their result follows from Theorems 2-3. Indeed,
if an orthogonal multiplication of type (I, m,m + 2) exists then it is either full or
it restricts (up to an isometry on the range) to a full orthogonal multiplication of
type either (I,m,m + 1) or (I,m,m). Hence, by Theorems 1-2, the maximal value [
for which the type (I,m,m + 2) exists is max {p(m),p(m + 1),p(m +2)} if m £ 1
(mod 4) and, by Theorem 3, it is 3if m =1 (mod 4). This is exactly what they
obtained. As an example, let m = 4. The value of the maximal ! is 4 and the
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corresponding orthogonal multiplication of type (4,4, 6) is clearly not full but (up
to isometries) corresponds to quaternionic multiplication followed by the inclusion
R* C RS. For full orthogonal multiplications, the value of the maximal [ is 2, so
that we get the existence of the type (2,4, 6) that is not present in their list. For
another example, let m = 11. The value of the maximal [ is 4 which corresponds
to the nonfull type (4,11,13) that can be derived from quaternionic vector space
multiplication. In contrast, full orthogonal multi

€Xl18 14 NE TIOLE L [-0C

he-m -

necessarily full and full orthona.l mult

In Theorems 2-3, we can also specialize to ! = m and apply the result of Hurwitz-
Radon to obtain the following:

Corollary 1 Let F : R™ x R™ — R™*! be a full orthogonal multiplication. Then
m =3 or m =T and F is equivalent to a restriction of the quaternion or Cayley
maultiplications, respectively.

Corollary 2 Let F: R™ x R™ — R™*? be a full orthogonal multiplication. Then
m =2 or m = 6 and F is equivalent to a restriction of the quaternion or Cayley
maultiplication, respectively.

Remark. For ¢ < 2, the constraint

2<1<p(m+c) (9)

is also sufficient for the existence of a full orthogonal multiplication F : R! x R™ —
R™*¢, This can be seen as follows. By Hurwitz-Radon, we certainly have a full
orthogonal multiplication F' : R' x R™¢ — R™*, in particular, m + ¢ is even.
We obtain, by restriction, an orthogonal multiplication F : R} x R™ — R™+c,
Composing F' with an isometry on the range, we may assume that the image of F'is
R™¢ c R™*, 0 < ¢’ < ¢, with the canonical inclusion. Clearly, ¢ = ¢’ iff F is full.
In general, restricting to the image, we arrive at a full orthogonal multiplication
F':R'xR™ — R™. Now, for c = 1, we get ¢ = 1 since otherwise ¢ = 0 and this
contradicts to m being odd. Finally, let ¢ = 2, in particular, m is even. If ¢/ = 2
then we are done. If ¢ = 1 then we apply Theorem 1 to F*: R! x R™ — R™*! and
obtain a full extension R/ x R™*! — R™*! which is impossible since m + 1 is odd.
Finally, let ¢’ = 0, in particular, I < p(m). This, combined with (9) and ¢ = 2 gives
[ = 2 since, for | > 3, these inequalities translate into divisibility of m and m + 2 by
4 that is clearly impossible. It remains to show the existence of a full orthogonal
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multiplication F' : R? x R™ — R™*? for m even. To prove this we restart with
F:R? x R™*? - R™? which we assume to be normalized so that it is equivalent
to a single skew symmetric complex structure U on R™*2 given by U = F(ey,).
Now let L be a codimension 2 linear subspace in R™*2 such that L and U (L) span
R™*2. The restriction F|R? x L — R™*? is clearly full and (identifying L with a
copy of R™) we are done.

Acknowledgement. The autho is

comments and pointing out various related results.

2 Codimension One Orthogonal Multiplications;
Proof of Theorem 1

Let F : R'XR™ — R" be a full orthogonal multiplication. We also let {ea} =1 C R/
and {f;}7, C R™ denote the standard orthonormal bases and define

u? = F(emfi) € R",

and agree that, unless stated otherwise, Greek indices «, # and Yrunonl,...,l]
while Latin indices 4, j and k take their values in 1,...,m. As in Section 1, (2)
implies that, for fixed a, the vectors ug, ..., ug, are orthonormal in R" and satisfy

().

We now specialize to n = m 4 1 for the rest of this section. For each a, let
E~ € R™* be the (uniquely determined) vector such that {u, ... ,ud , B} is an
oriented orthonormal basis in R™*!. In analogy with (4), we now write

uf = Y Ul + ¢ E°, (10)

J

where p%, ¢¢ € R. The same argument as in Section 1 then leads to (6) and (8)
which we state here as

(PP*)T = —phe = pobh (11)

where the matrix P?* has entries pf;.
Finally, substituting (10) into the orthonormality condition (u?, uf ) = &;;, we obtain
(PP)? = ~I +¢°(¢™)T, (12)

where ¢°* stands for the vector with coordinates ¢°* (cf. again (7)).
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Lemma 1 Let P be a skew symmetric m x m-matriz and ¢ € R™ such that
P'=_I+4q-q". (13)

Then q is nonzero iff m is odd. In this case q is a unit vector in the kernel of P.

Proof. Applying ¢ to both sides of (13), we see that ¢ is an eigenvector of P2
with eigenvalue {g{* — 1. Restricting (I3) to the orthogonal complement ¢* of ¢ in
R™, we obtain that P?|¢g* = —I, in particular, each (nonzero) vector in ¢* is an
eigenvector of P? with eigenvalue —1. We now use the elementary but crucial fact
that the nonzero eigenvalues of the square of a skew symmetric matrix have even
multiplicities. Hence, if ¢ # 0 then |g|* — 1 # —1 so that m is odd. Conversely, if
m is odd then zero is an eigenvalue of P? so that |g|? = 1. Moreover, in either case,
Pq =0 and the lemma follows.

We now return to the original setting and observe that fullness of the orthogonal
multiplication F : R! x R™ — R™*! implies that gP> # 0 for at least one choice of

a # B. By Lemma 1, m is odd. Again by (the converse statement in) Lemma 1,
for all a # 3, we obtain

l¢°*|=1 and  PPegfe =, (14)

Lemma 2 We have

- _qaﬁ’ a # ﬂ (15)

Proof. Consider the vector 3_; q? “uf € R™*!, By the first formula in (14), it is a
unit vector and, by the second and (10), it is orthogonal to uf for all j. We conclude
that it is £ E®. We now claim that actually

B = -3 ¢f*up. (16)
To prove this we work out the Gram determinant of the bases {ug,...,u2,E*} and
(... Jub -3, q,-p’au?'}. Using (10), we arrive at

P,Ga qﬁa
—(¢)T o0

which is certainly positive since the corresponding matrix is skew. Thus (16) follows.



On the other hand, by (10) and (14), we have

2 afuy = g (pr}”uf + qf"’E")
1 3 J

2 pY el + 3 (aF ) E” = BP.
1,7 i

Combining this with (16), the lemma follows.

We now return to the main line and iterate (10) on (pairwise) distinct a, 8 and 7.
Using (15) and (16), we hav®

ul = Y piuf + ¢ E*
k
= Y ¥ (E pivufl + qi’”E”> +¢7°Y " o
k 7 3

= L (S airf + @)l + T pr e B
i vk k
In terms of matrices, this translates into

Prepie = _ P 4 gro(ghe)T (17)
and

p‘vaqaﬁ — q’rﬁ_ (18)
In particular, using (14)’, (18) and Lemma 2, we compute
(@) = —(¢"*,q™)

—(g%, PP gP)
- _(Pﬁaqﬁa,qﬁ‘v) = 0. (19)

Finally, for a = 1,...,1~ 1, we define the skew symmetric (m+1) x (m+1)-matrix

U, as

. = Pal ol

Ua = [ (qal)T (q) ] e
Direct calculation shows that (17)-(19) translate into the single fact that {U,}isan
anticommuting family of skew symmetric complex structures on R™*!, To finish
the proof of Theorem 1 we now consider the normalized orthogonal multiplication
F:R'x R™! - R™ that corresponds to {Ua}. We claim that F is equivalent

10



to the restriction F|R' x R™, with R™ C R™*! being the canonical inclusion (to
the linear subspace f ., spanned by fy,..., f,,). We first normalize F (by passing
to an equivalent orthogonal multiplication) and retain all the previous notations for
the normalized F. By (10), for a = 1,...,1 — 1, we have

Flea fi) = uf =) pijul + ¢'E'
j
= Z'P%!fa“’i‘qglfmn
j
= F’(ea,f;).

Finally, because of the normalizations we made

Fle, f;) =u{ = fi = F(e,, f;)
which completes the proof of Theorem 1.

We close this section by showing how Corollary 1 is derived from Theorem 1. Let
F:R™ x R™ — R™*! be a full orthogonal multiplication. By Theorem 1, m <
p(m+1). Setting, as usual, m+1 = 2P+4(2r+1),0 < p < 3, q,r > 0, this inequality
translates into 2°+4%(2r + 1) < 27 + 8¢ + 1. It is now easy to see that this holds iff
p=0,1,2,3 and ¢,r = 0. Since F'is full, p # 0,1. The remaining cases p = 2, 3
correspond to m = 3, 7.

First, let m = 3. By Theorem 1, F : R® x R® — R* is equivalent to a restriction of
F:R®x R* — R*. Again by Theorem 1 applied to F with the arguments switched
(or by Hurwitz-Radon) F is further equivalent to a restriction of an orthogonal
multiplication R* x R* — R* that is well-known to be equivalent to quaternionic
multiplication. For m = 7, the argument is similar.

3 Orthogonal Multiplications F : R' x R™ — R™+2
with m even; Proof of Theorem 2

We retain the notations introduced at the beginning of Section 2 and set n = m +2.
For each , we let Ef and ES be orthonormal in R™*2 such that {ug,...,us, E E2}
is an oriented orthonormal basis in R™*2. In analogy with (10), we write

=Y pfus + o Ef + 1B, a#p, (20)

J
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where p;?, q?", r? * € R. In what follows, due to its frequent use, instead of refering

to this formula explicitly, in computations we will only indicate that we ‘switch the

bases’. As usual, we introduce the m X m-matrix P?* with entries pﬁ-‘" and the

vectors ¢°* and r#* in R™ with coordinates ¢ and r#°, respectively. By the same
proof as that of (11) and (12), for & # B, we then obtain

(PP)T = _pPa = pab (21)
and '
(PAoY = L4 ()T + ()T, (22

From now on we assume that m is even.

Lemma 3 For a # 3, we have
lg°°| = %] and (¢*,r"*) =0.

Moreover, setting
poa = 9°°| = |rP*|,
for pgs #0, we have
Pﬁaqﬁa Y ﬁarﬂa’
PPerfe = _Agag™, (23)
where A\ga € R such that
)‘%a =1- I“za' (24)

Proof. In the following proof, for simplicity, we suppress B« in the upper and lower
indices. Evaluating (22) on ¢ and r, we obtain

Pq = (lq* - 1)g + (g,r)r,
P'r = (gr)g+(Ir]* - 1)r. (25)

In particular, V' = span{q,r} is invariant under P?. Sois W = V<, in fact, by
(22),

P} W = —I. (26)
We first claim that dimV # 1. Indeed, otherwise P? = —I on R™ since m is
even. In particular, P2 = —q and P?r = —r. Comparing this with (25) we obtain

¢ =r = 0 and this is a contradiction. Hence dimV =0, 2.
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If dimV = 0 then ¢ = r = 0 and we are done. Hence we may assume that
dimV = 2, i.e. q and r are linearly independent. By (25), the characteristic
equation for P?|V takes the form

t* = (lg* +Irl” = 2)t + (IgI* = )(Ir* ~ 1)~ (g,7)* = 0. (27)

Just as in the the proof of Lemma 1, here we use again the fact that the nonzero
eigenvalues of P? have even multiplicities. Since dim W = m — 2 is even, by (26),

the-only-possibility-is-that-P2}~has-one-eigenvatue-of-mmuttiplicity-two—Tierefore

the discriminant of (27) is zero and we obtain
(lgf* ~ Ir*)* + 4(g,r)* = 0

and the first statement of the lemma follows. We now turn to the proof of the
second. By (25), V and W are eigenspaces of P? with eigenvalues u? — 1(# —1)
and —1, respectively. Thus, V and W are also invariant under P. In terms of the
orthogonal basis {g,7} C V, the skew symmetric P acts on V as

Pgq = Jr
Pr = —)\¢q

for some A € R. Applying P to both sides of, say, the first of these equations and
comparing it with (25) we arrive at A\? =1 — |¢|* and the proof is complete.

We now recall that in the codimension one case the crucial fact was the antisym-
metry of ¢°* given in Lemma 2. The proof depended essentially on formula (16).
Though here the main technical difficulty is the nonuniqueness of Ef and EY, for
a # B, it is nevertheless useful to introduce, for a # B,

" = Y gf"uf — AguES
I

B = Yorfeug 4 g, EC. (28)

We now observe that the contents of Lemma 3 translate into the single fact that

{102, 12*} is an orthonormal basis in span {E?, Ef}.

Lemma 4 For a # 3, we have
span {¢*,7%*} = span {¢*,r*/},
and

HBa = Hag-
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Proof. We claim that
L + " = o Ef +17°Ef. (29)

Switching the bases and using (21)-(24) and (28), we compute
Soltud = Sl (Selyeg + o7 +l0Es)
k

Z(—&,-j +q;%¢7" + rp"rﬁ")u + Agar P ES — Apad?® ES
i

= —uf + ¢ 1" + r."“Ié"'.
Comparing this with (20) the claim follows.

Using the orthogonality relations between the various vectors involved, (29) implies
¢** = (B}, I*)q* + (Ef, I}*)r*®
and
= (E{, I;")q™ + (Bf, I§*)r*
so that the first statement of the lemma follows.

Taking norm square of both sides of (29) and summing up with respect to i we
obtain

|7 + P22 = g + [rofP?

and the second also follows. The lemma is proved.

We now show that, without loss of generality, we may assume that either

0 < pga <1, for all a#p,
or
Moo =1, for all a # B.

We do this by precomposing F' with a suitable isometry on R/, or, what is the
same, by changing {e,} to a new orthonormal basis in R’ in finitely many steps
each corresponding to a pair of indices in 1,...,1.

To describe one reduction step, let By # 7o be fixed and define the new orthonormal
basis {€,} as obtained from {e,} by rotation in the Syyo-plane by angle -7 <t < =
to be specified later. Equivalently, we set

€sp = costeg, —sinte,,
€y = sinteg, + cost e,

14



and €, = e,, for a # By, 0. Then, with obvious notations, we have

ah = costu® —sintul,
i = sintu® 4+ costul,

and 4§ = uf, for a # Bo, Yo.
We now claim that, for a # By, vo:

§* = costg®* —sint q",
oo = cogtrfor — gingrme,
(Similar formulas can be obtained for §®* and #°.) Indeed, using the formula for

changing the bases, we compute

PooBy + Eg =i - Y (P, uf)ug
b

= cost(u — Zpﬁ""u;’) —sint (u® — Zp’,-’,‘-’“u;’)
i i
= cost (¢ Ef +r#°Bp) - sint (7B +rP7E),
and the claim follows. In particular, by continuity, for sufficiently small ¢, ug, # 0, 1
implies fig, # 0, 1.

Assume now that 13, = 0 for some a # B. Since F is full, there exists v such that
Bya # 0. Setting Bp = B and v = v, we have

figa = 18] = |sint | |g7] = |sint | s #0

for t ¢ nZ. Taking ¢ sufficiently small, we see that the number of vanishing u’s
decreased. Hence, after finitely many steps, retaining the earlier notations, we
arrive at an orthogonal multiplication F for which s, # 0 for all a # B.

Assume now that pg, # 1 for some a # B. Let v # a, 8 and take B, = vand yo = 8
in the reduction step above. We obtain

. 1 1
B = 3(1+cos 20, + 51— cos(2t)p,
— sin(2t)(g™, ¢*).

If pye = 1 then the right hand side, as a function of ¢, is nonconstant. Hence we
may pick ¢ (sufficiently small) such that fi,, # 1. Retaining once again the original
notations, we may therefore assume that p,, # 1 for all v # a.

15



We now restart with p,q = pay # 0. Repeating the procedure once again (with
changed indices), we conclude that we may assume s, # 1 for all 7 # 6.

Summarizing, from now on, we assume that

/‘30#01 fora.lla-,ﬁﬂ,

and either

Apar 7 0y—for-all a8,
or

Asa = 0, for all a # B.
Lemma 5 For a # 3, we have

Aga = —Agp.

Proof. We first note that, according to (24) and Lemma 4, A% = )2 ap SO that it is
enough to prove that /\g,,,)\,,p < 0. The first part of Lemma 4 sta.tes that ¢*? and

r®? are expressible as a linear combinations of ¢?* and r?*. We first make this more
precise by showing the following

dagr®® = (E{ EP)¢P* + (EP, ES)rP
—Xapg®® = (E5 E?)¢P* + (Ef, E2)rPe. (30)

We begin with the expansions
By = Y di°uf +(E;, ED)Ef + (Eg, Ef)Ef,
2

Ey = Zré’"ué’ + (E3, EP\E? + (Eg, ES)ES, (31)

that hold smce, in the switching formula for the bases, the coefficient of E{ (resp.
E$)is ¢?® (resp. r®). Using these, we compute

W = 2: ul + g E} + rf°E;
— ZP!J (Z p)k uk + q] ﬁEp + raﬂEﬁ)
. (S dioud + (Br, BB + (B, ) BY)
k

+ ofo(Criul + (B3, BO) B + (B3, B ES ).
k

16



Taking the E? and Ef components, (30) follows.

We now derive two groups of formulas from (30). First, using the orthogonality of
¢”* and 1, we obtain

Mapla®,07) = —pls(EY, EY)

Map(q®,rP%) = —p},(E3, EX)

Xapro gy = ma (B BY)

Map(rof,rP%) = pag(Es, EY).

Eliminating u3; = p3,, we obtain

Aapla®,0%%) + Apa(r Py =0
Aaplg?,m%) = Aga(r®f,qP%) = 0
Aas(BSL EY) + MalES,Ef) =0
Aap(ES, E5) — Apa(ES,Ef) = 0. (32)

Second, by working out the entries of the Gram matrix of both sides of the equations
in (30}, we obtain

(E{I’Elpy + (E;, Elﬁ)2 = ’\c2:ﬁ

(B}, E5) + (B, Ef)'=)%

(BY, BYWET, B) + (Eg, E{)(E5, Ef) = 0. (33)
From now on we assume that \,s # 0 since otherwise the lemma clearly holds. The
Gram determinant D of the bases {u?, B¢, ES} and {u?, E?, E?} is positive (since
the bases have the same orientation) and, using (20), it turns out to be
peoB qaﬁ roB

()T (Ep,Ey) (Ef,Ej)
(rﬂa)T (E2a’ El ) (Egv E2)

D=

We now perform row operations on D corresponding the elementary matrix

I 0 0
0 ~(Bp,E;) —(Ef,Ey)
0 (B}E)) (B Ef)

17



and the effect is, in view of (30) and (32), the following

S R
—(@®T 0 Mg
—(Taﬂ)T —/\aﬂ 0

—(Eg,Ef) —(E3,EP)

.D=x
(E2,EY) (Eg,Ef) &

The determinant on the right hand side is nonnegative since its matrix is skew
symmetric. Thus

(Ef,E?)(E3, Ef) - (E2, E§)(E3, EP) > 0.

Combining this with the last two equations of (32), we obtain

AO' o a
- 32 (tEr, B + (B B 2 0,

The proof is complete.

Lemma 6 If a # ( then there ezists an angle °°, —7 < 0*F < x, such that we
have the following:

()
¢®* = cos§*P¢*P — sin §*PraP X
rP* = s§in0%¢°® 4 cos §*ProP N

(i)
oaB = _oﬁa’
(iif)

I’* = cos6°PEP — sin6°PE?,
1 1 2
I = sin6*"EP + cos6*PEf,

(iv)

o
=%
I

3" q5Pu — Aap(sin8°P EX — cos 6°PE2),
J

E} o riuf — Aag(cos 8P Ef + sin §°P EY),
7
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Remark. We will refer to these as the ‘angular switching formulas’.

Proof. By Lemmas 3 and 4, the orthogonal pairs {¢?*,r%*} and {¢®#, r*#} span
the same subspace so that we have

¢** = cos8*P¢°P — sin §°ProP (34)
rf = +(sin8°°¢°® + cos §*Prap), (35)

for some angle —7 < 8*? < . In particular,
5,05) = ipeont®,

(r°0,¢%) = —plsiné™. (36)

Case I: A,p # 0. By Lemma 5, the first two equations in (32) reduce to

(g°f,¢%%) = (r*f,rfe),
(qaﬁ,rﬁa) = _(raﬂ’ qﬂa). (37)
Combining these, we have
rﬁix == #:;(7' a,q?ﬁ')qaﬁ +#;g(rﬁa,raﬁ)raﬁ

= sin#*q°f + cos §°ProP,
so that (35) has positive sign and the first angular switching formulas follow.
Inverting (i) we also obtain (ii).
Next, we use the crucial relations (29) in the proof of Lemma 4, to obtain

piIt® = (¢*P,¢°)Ef + (P, ¢P*) X,
pials® = (¢*°, 1) Ef 4 (r°°,rP)EL.

Now the angular switching formulas (iii) for the normal vectors follow from (36)-
(37).

Finally, we turn to (iv). We first compare (30) and (33) to obtain

(Ef,Ef) = (E$,Ef)=—).psin6,
(BT BY) = —(E§,Ef) = —)opcos6™.

Substituting these into (31), we obtain (iv).
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Case II: \,5 = 0. If positive sign holds in (35) then we proceed exactly the same
way as in Case I above. To complete the proof we finally show that in (35) negative
sign is impossible. According to the Joroof of Lemma 5, the Gram determinant D
of the bases {u#, EZ, ES} and {uf, B, E®} reduces to

Pef qaﬁ rof
D=| (¢ 0 0 |,

(rPeyr 0 0

since, by (30), we have
(Ef,Ef) = (Ef,Eg) = (Eg’ Ef) = (EZQ’ Eg) =0.

By (34) and (35) with negative sign, D rewrites as

pob P 7ol

cos 8%7(q®P)T —sin@*P(r*A)T 0 0
—s5in 6°P(g*P)T — cos 8°P(r*%)T 0 0

—cos6°? sin §°F Pag T 95
sin@*?  cos§°? ‘ AU
(AT 0 o
PoB qaﬁ rof
== —(¢*)T 0 0 <0
(AT 0 0

since the matrix of the last determinant is skew. This is a contradiction and the
lemma follows.

Up to this point we discussed relations between two orthonormal sets of vectors
{ug} and {u?} so that most of the formulas involved only two indices @ and 8. We
now bring in a third set of orthonormal vectors, say {u]}, and obtain equations for
three indices.

Lemma 7 Let a, § and v be distinct. We have
(i)
P‘yaPﬂa = __Pfyﬁ + qqa(qﬂa)T + r‘ya(rﬁa)T’
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(ii)
P = g 4 Ago(—sin 8°P g7 + cos §°° %),
Pyl — g8 Aga(cos §# q"® + sin 0”"7"7‘”),

(iii)
PgPe = X\gor™ + cos P q"° — sin §°Pr8,
PerPe = _Apaq™ +sin6°Pq" + cos 92818,
(iv)
(@*,¢%) = (r™",r*)
= —Xg,sin 6% + Ag A\, cos(8%F + 67%),
(ch’ raﬂ) == _(qaﬂ’ ra‘y)

= Mg, 0887 — Agohar sin(6°f + 67°),

(v)

(q‘Ya, qﬁa> = (.,.’ra’rﬁa’,,ﬁa) . Aﬁa/\m i /\ﬁ—y sin(0°’" + 9P + 9‘70{),
(qva’rﬁa) = _(qﬂa’rva) = Ag, cos(oaﬁ + 6% + g7),

(vi)
("%, qaﬁ) = (", raﬁ)
—Agy Sin(6%7 + 67%) + Ag Aoy cOS 877,
~(*,¢")
= Mgy cos(68%7 + 67) — Agada, sin 6,

i

(g™, )

Remark. We will refer to (i)-(vi) as the three-index formulas.

Proof. As in the codimension one case, we switch the bases twice and use the
angular switching formulas for the normal vectors to obtain

W = EFu +a E + 1B
2
= LA (Trful + B0 419
J k
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+ a7 (X afouf = Apalsin 0B ~ cos 6 E) )
7

+ (Z rouf — Aga(cos 8°°Ef 4 sin eﬂaEf))'
7

Comparing this with the expansion
u] =3 pfful + ¢°E} + r}°Ef,
Jj
we arrive at (i) and (ii). Using the switching formula in (ii) we easily get (iii). To
get further, we now work out both sides of
(PPYPY) g% = PPY(P*gP), (38)
For the left hand side, by (i) and (ii), we obtain

(PPTP™)g™ = (PP — PY(g™)T — rP7(ro7)T g8
- _,\aﬁraﬁ - (qa'r’ qaﬁ)qﬂw — (,.a'v’ qaﬁ)rﬂﬂ_

On the other hand, using (ii) repeatedly, we compute

Pﬁ‘l( Pe qaﬁ)

PPY(g" 4 \go(sin 0P 4 cos §7%r7%))

~267 " + Ao 5in 0P%(qP* + Aoy (3in 8°7¢P7 + cos 6°775))
Ago €08 8P (rPe 4 ) (~ cos 8°7¢P7 + sin 6°7rPY))

= —Xp(sin 6%7¢P 4 cos 097rP7) 4 Ag,r®P

= Agaday €08(8%% 4 07*)¢PY — Agaday sin(8° + 67%)rP7,

+

Substituting these back to (38) and comparing coefficients we arrive at two of the
equations in (iv). The rest of (iv) can be obtained in a similar way. By making
use of the switching formula as above, we can recover (v) and (vi) from (iv). The
lemma follows.

Lemma 8 If a, B and v are distinct and cos 3(8°° + 6°7 + 67) # 0 then

S cos %(9“’ 4657 4 67) — Ao sin %(aaﬁ O L 6y =0, (39)

Proof. Here we use skew symmetry of P" and work out the left hand side of the
equality

(P™¢*%, %) + (¢°%, P"*g°) = 0.
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By (ii) and (iii) of Lemma 7, we have

(@ + Aga(—sin 6°Pq"™ + cos §°Frre), ¢*)
+(g°?, Aga™™™ + c0os 8°Pg"P —sin §°PrP) = 0
so that we arrive at
€08 6% (A SIn(8° + 097 + 7%) + ApaAgs(1 + cos(6%F + 657 + 67))) = 0.
Using 41 . btain (30)-multiplied. 98 _ Girmilarly. using skew
symmetry of P on ¢°# and r?*, we arrive at (39) multiplied by sin §*? and this
completes the proof.

Lemma 9 If a, B and v are distinct and cos %(9“‘B + 6P7 + %) # 0 then

Mgt Ny + Xy = 1= 403, Mg cost (66 4 697 1 7%) =0, (40)

Proof. We first symmetrize (i) of Lemma T7:
P'yaPﬂa + PﬁaP'ya
= g"(¢")T +¢"(q")T + ()T + P ()T (41)

We now apply ¢°* to both sides of this equation. Using Lemmas 3 and 5 along with
the three-index formulas in Lemma 7, a tedious but elementary computation leads
to

cos %(Oaﬁ 4+ 6% 4+ )™ — sin %(0"“@ + 6°7 4 )
o -;-(o"ﬁ 1687 £ 67)gP — Mg cos %(oaﬂ + 657 4 grypbe
+ g sin -;-(Oaﬁ + 677 —6")¢? 4+ MA,pcos _;_(gaﬂ + 6P — g7)rP7 = 0.
In a similar vein, applying both sides of (41) to r°*, we arrive at
—sin %(0"’” + 087 + )™ — cos %(0“" + 677 4 7)1
v b %(0“" 1657 £ 0P 4 g sin -;-(oaf’ + 057 4 grype
+Aqp cOS %(0"” + 657 —7)¢? — Agsin -;—(9“" + 687 — g )rPr = 0,
Eliminating " from the last two equations, we obtain

4" = Mg, P + Aop(sin 67°¢P7 — cos 67rP).
Taking norm square of both sides and using (iv) of Lemma 7, (40) follows.
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Lemma 10 If a, 8 and v are distinct then esther

cos %(0“‘G +677 1+ 6)=0

or
Aag = Ay = Aya =0

- Proof. We-assume-that-both-are-false,—in-particular;-by—the-second—all-X'sare
nonzero (cf. the discussion before Lemma 5). By cyclic permuation of the indices
in (40) of Lemma 9, we obtain

Alg =5, =2, =), (say)
and so (40) implies

32-1
421 -3\+1°

On the other hand, (39) of Lemma 8 reduces to

t2 -;-(0""’ + 67 4 67) =

1

3

Comparing the two values of the cotangent we obtain A= 1,ie. pop = gy = flya =
0 which is a contradiction. The lemma follows.

cot? —;—(0"‘” + 6P + %) =

Until now the normal vectors E and E$ were subject to the only condition that
the orthonormal basis {u$, E¢, EZ} is oriented. We now specify a unique choice for
these vectors. First, for a = I, we take E{ and E} arbitrary (but fixed). Then, for
each B # I, we define

Ef = -P'= Z Pul + AaEL,
E? = —I? = —erlu_’,- ~ AgEL.
i
The angular switching formula (iii) of Lemma 6 has two implications. First, {u?, E?, Ef}

has the same orientation as {ul, E{, E}} so that the definition above Ealies) sense)
Second, we actually have

cos6? = -1 and sin6# = 0, B#L

so that
F' =xx, B#£L (42)

24



It now follows from the angular switching formula (ii) of Lemma 6 that
® =~¢® and rfl'=-rf pB£I

This is a special case of the following crucial lemma:

Lemma 11 For 8 # v, we have
qﬁ‘v - _q'vﬁ and " = _,.‘vﬁ’ (43)
or equivalently,

07 = +n. (44)

Proof. The second statement is clearly equivalent to the first by the angular
switching formula (ii) of Lemma 6. By (42), we may assume that 8,7 # I. By
Lemma 10, we have to consider only two cases.

Case I. cos (6 + 6°7 + 6"') = 0. Here (44) clearly follows from (42).

Case II. \g, = 0 for all @ # B. In this case (ii) of Lemma 7 reduces greatly, in
particular, it gives P"¢/? = ¢"? and this is what allows to pass information from
g'® to ¢". More precisely, using (i) of Lemma 7 and (42), we compute

(@, ¢") = (P"q",PPlg") = (¢, P P¥q")
= (¢°,(P? - (") = r(r*)T))
(g, PPq") = (¢®,¢'")? — (¢, r"")(rP, ).
By (ii) of Lemma 7, the first term equals (¢"?,¢?') = —|¢"’|* = —u}; = —1 and, by
(vi), the second and the third vanish. Thus the first part of (43) follows. The proof
of the second part is similar.

We finally turn to the proof of Theorem 2. For @ =1,...,1—1, we define the skew
symmetric (m + 2) x (m + 2)-matrix U, as

. Pal . qal _,'.al
U= (qal)T 0 —du|.
(ral)T Aai 0
Calculation shows that (22)-(24) translate into

0?2 = -1,
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while the three-index formulas (i) and (iii) of Lemma 7 along with Lemma 11 imply
I7°I7p+l7,;l7.,=0, a;éﬂ

We now consider the normalized orthogonal multiplication F : R! x R™+? — R™+2
that corresponds to the family {U,} of skew symmetric anticommuting complex
structures on R™*2, It remains to prove that F is equivalent to the restriction
F|R! x R™, with R™ C R™*2 being the canonical inclusion (to {f™*!, fm+2}+
spanned by fi,..., fn). We may assume that F' is normalized. (Note that nor-
malization does not change the coefficients in (20).) The proof (of Theorem 2 and
Corollary 2) is now an exact analogue of that of the codimension one case.

4 Orthogonal multiplications F : R! x R™ — R™+2
with m odd; Proof of Theorem 3

We now set n = m + 2 with m odd and retain the notations introduced at the
beginning of Section 3. In particular, we have formula (20) for switching the bases
along with (21) and (22).

Lemma 12 For a # B, the kernel of PP* is one dimensional. Moreover, there
ezists a unit vector EP* in the orthogonal complement of {ug,...,u%} C R™+?
such that '
uf =Y prus + B, (45)
j

where s7* € R™ is a unit vector in the kernel of PP* that satisfies

(PPey? = —I 4 sP%(sP)T. (46)

Proof. We first observe that (25)-(26) in the proof of Lemma 3 are valid since, in
deriving them, we have not used the parity of m. Suppressing the indices fa again,
next we note that dim ker P > 1 since P is a skew symmetric m x m-matrix and
m is odd. Using once again the fact that the nonzero eigenvalues of P? have even
multiplicities, (26) implies that V = ker P is one dimensional. Setting ¢ = £ -t and
r =1n-t, where t € V is a unit vector, we define

s=/E+n?-t.
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Replacing ¢ and r in (22) with s, (46) follows. We are now in the position to apply
Lemma 1 and conclude that s is a unit vector in the kernel of P, in particular,
€2 +1? = 1. Returning to the indices, we now define

EP* = £ EY + npa B3 (47)

Clearly, {u¢,...,uS, EP*} is orthonormal in R™+? and (20) for the change of bases
reduces to (45). The lemma follows.

Lemma 13 For a # 8, we have .

P = 4498,

Proof. We first note that, formula (45) for switching the bases implies
Efe =Y gl (48)
since s7* is a unit vector. Using this and switching the bases twice, we compute
w o= 3 piu+ o B
k
P AOM A
k i

+ s?az.s?“ufl
i

Taking the normal (E*#-)components of both sides, it follows that s*A is in the kernel
of PPe, The kernel is, however, one dimensional so that the statement follows from
Lemma 12.
We now let a, 8 and « distinct. Switching bases twice and, using (48), we obtain
W = Lk +aE"
k
= ;p;’f(z PPl + sgP E°P)
+ 7Y s;;"'u;-’.
]
Taking the uf -components of both sides, we arrive at
P = prapeb 4 g1o(57)T pP (49)
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and this is the analogue of (17). We now apply both sides of (49) to s and conclude
that

Prepefgif — g,
The kernel of P is, however, spanned by s so that we obtain
PP =g.37% os€eR.
To determine o, using (46), we compute
o? = |PPg
o ——(s"p, (paﬁ)2svﬁ)
= 1-—(s°?,57P)2,

Summarizing, we have

PP = /1 — (508, 578)2 . 52, (50)
We now use the fact that P°? is skew along with Lemma 13 and obtain

(1= (s7,8))(s77,5™) = 0,

(1 = (P, 57)2)(s7,s%F) = 0O,

(1- (s—ya,saﬁ)2)<saﬂ,8ﬂ‘y) = 0,

where the last two equations are obtained by cyclic permutations. All vectors in
this system are of unit length so that we conclude:

For a, B and v distinct, the set {s®P,sP7,57*} either consists of parallel vectors
or i3 orthonormal.

Now let a, B8, v and é be four distinct indices. Applying the conclusion above to

each triple, the possible configurations A,B,C,D and E can be put into the following
table:

A|B|C|D|E
o, B, v |14
a, B, 6 1L
a, v, 6 1LlLlL
B, 7,0 I

Here, e.g. L in the first (o, 3,7-)row and last (E-)column means that s°#, s%
and s are orthonormal.
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We now claim that Cases B,C and D are impossible.
Cases B-C. We have s°?||s#7 Ls#||s*# and this is a contradiction.

Case D. By (50), we have

PP = 1\[1- (o8, 50)2. 57 = g7
PpiBgef im- 8% = 43,

On the other hand, s7%||s*# while 57 Ls*5 which is a contradiction.

We are left with Cases A and E. In fact, it readily follows from these that the whole
set {sP* | a # B} either consists of parallel vectors or is orthonormal.

(Extended) Case A. All s5*, o # B are parallel. By (45), E°* switches sign with
sP* so that we may assume that

=5, a#,

where s € R™ is a unit vector. In (48), we can write E? = EP* since it no longer
depends on the second index. Again by (48), the set {EP} is orthonormal since

Ef = Zs,-u? = z‘: s;F(eg, fi) = F(eg, ). (51)

On the other hand, by (47), all E? = EP*, B # a, are contained in a 2-dimensional
linear subspace so that I < 3. Note that [ = 1 cannot happen because F' is full. For
| = 2, we have span im F' = span {u},u?, E', E?} = span {u}, E?}, where we used
(45) and (48). The latter is of dimension < m + 1 and this again contradicts to
fullness. Thus ! = 3.

Setting W = st c R™, we now consider the restriction
Fob=FIR*xW :R?®x W — R™Z,
By the very definition of the normal vector, for a # 3, we have
(F(ea, fi), E®) = 0,

in particular,
(F(ea, X), EP) =0, XeWw

On the other hand, by (51), we have
(F(eﬁ’X)’Eﬁ) s (F(eﬁ’x)sF(eﬁ73)> o (X,S)
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and this vanishes iff X € W. Hence the image of F, is contained in Z = {E!, E?, E3}+
R™+2, The latter is of dimension m — 1 so that

FoRxW-2Z

is onto and dimW = dim Z and Hurwitz-Radon classification applies to Fy. In
particular, m = 4r + 1 for some r > 1. Looking back to the way Fj is derived from
F, we see that F' is equivalent to F, induced by F, as defined in the introduction.

Theorem 3 follows in this case.

(Extended) Case E. {s’*|a # B} is orthonormal. To complete the proof of
Theorem 3, we show that this is impossible. Let a, 8 and v be distinct and a, b, c,d €
R arbitrary. Using orthonormality, Lemma 12 and (50) (with ¢ = +1), we compute

(a® + ) +d?) = |F(aes + be.,,cs® + ds™|?
= | 2(cs?™ + ds]")(auf + bu])[?

= | 22(es® + ds7™)(apf + bp])
ij
acEP* 4 bdE™?
By, o o a
|(ad £ bc)z 3;7u$ + acEP* + bdE™|?
i

+

= a®d® 4+ b’c® £ 2abed + a’c? + b2d® + 2abed(EP®, E™°).
Thus, we have
(EPe,E"®) = +1,
or equivalently,
EP| B,

The formula for the change of bases then implies that the image of F is contained
in the linear span of {uf, E?*} for fized a # B. The dimension of this spanis m+1
and this contradicts to fullness of F. The proof of Theorem 3 is complete.

Finally, the proof of Corollary 2 goes along the same lines as that of Corollary 1.
(Note that, by Theorem 3, m is even.)
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