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1. Introduction and Preliminaries 

It is well known that a spherical harmonic of order q, i.e. an eigenfunction of the 
Laplace-Beltrami operator A sm with eigenvalue S Aq = q(q + m - 1), is the 
restriction (to S m) of a homogeneous harmonic polynomial of degree q in m + 1 
variables. A map f :  S m --+ S v  into the unit sphere of a Euclidean vector space 
V is said to be a Aq-e igenmap  if all components of f are spherical harmonics 
of order q. A Aq-eigenmap is a harmonic map with constant energy density Aq/2 
[1] and their 'classification' is a fundamental problem raised in [1]. Apart from 
the classical examples such as the Hopf map and the Veronese surfaces (or more 
generally, the standard minimal immersions), only a few explicit examples are 
known. The objective of this paper is to give various new constructions that give 
rise to a variety of new examples of eigenmaps between spheres. In Section 2 we 
define the degree raising operator that associates to a Aq-eigenmap f :  S m --+ S n 
a Aq+l-eigenmap f+ :  S m --+ S( m+0(~+t)-l .  By iteration, this is then generalized 
to raising the degree by an arbitrary positive integer. In Section 3, we introduce the 
source dimension raising operator that associates to a A2-eigenmap f :  S ra -+ S n 

a A2-eigenmap f :  S ~+1 --+ 5 '~+'~+2. We obtain, as a corollary, ten new range 
dimensions for full A2-eigenmaps for m >_ 5. The main result here (for the lowest 
range dimension) asserts rigidity of the Hopf map among A2-eigenmaps f :  S m --+ 
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S 2, m >_ 2. In Section 4 we define the harmonic product of two eigenmaps and 
show that this includes the degree raising operator discussed in Section 2. The 
main result of this section is a general existence theorem of the harmonic product 
for A2-eigenmaps. Finally, in Section 5, this result is used to give examples and 
nonexamples for the harmonic product. 

2. Raising the Degree 

Let H denote the harmonic projection operator [6]. H is the orthogonal projection 
from the vector space ~q of homogeneous polynomials in m + 1 variables of 
degree q onto the linear subspace of harmonic polynomials of the same degree (cf. 
Vilenkin [6]). 

Let f: S m ---+ Sv be a Aq-eigenmap. We define 

f+:  Rm+ 1 _, R(m+l)(n+ 1) 

as follows. The components of f+  are given in double indices i = 0 , . . . ,  m and 
j = 0 , . . . ,  n b y  

( f+  )i=J c+H(x i f f )  

where 

/2q + ra - 1 
= i 

Our first result (proved in [5]) asserts that f+  is a Aq+l-eigenmap. Since the 
developments of the rest of this section depend on this claim, for completeness, we 
give here the details. 

LEMMA 1. f+ maps the unit sphere to the unit sphere so that the restriction 
f+:  S m ~ S (m+l)(n+l)- I  is a Aq+l-eigenmap. 

Proof. By the harmonic projection formula [6] (or elementary computation), 
and harmonicity of the components i f ,  we have 

p2 Off 
H ( x i f J ) = x i f J  2 q + m - 1 0 x i '  

where p2 m 2 f j  = ~i=oXi. Homogeneity of has two consequences. First, we have 

o f f  
i=o Xi Oxi = qfj" 

Second, since f maps the unit sphere to the unit sphere, we have  ~ = o ( f J )  2 -- p2q 
as polynomials. Applying the Laplacian A m Rm+l m 2 2 = = ~i=o 0 /Ox i to both sides 
and restricting to S m, we obtain 

~_, 2.., \ -~x i ]  = q ( 2 q + m - 1 ) .  
i=0 j=O 
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Thus  

H ( x i f J )  2 = x i :  j 
i=0 j=O i=0 j=O 

1 Of j ~ 2 
2q + r n - 1 0 x i  ) 

= 1  
2q + m - 1 Oxl 

j=O i=0 

+ (2q + 1)2 i=0 j=0 

2q q 
= 1  2 q + r a _ l  + 2 q + m _ ~  

q + m - 1  

2 q + m -  1 

and the lemma follows. 
A map between spheres is said to be f u l l  if the image is not contained in any 

proper great sphere. Restricting the range to the least great sphere it is contained 
in, a nonfull map can always be made full. Notice that f+  is not full even if f is. In 
what follows we will denote a map and its full restriction by the same letter. Two 
maps f l :  S m ---+ Sv1 and f2: S m ---+ Sv2 are said to be equivalent if there exists an 
isometry A: V1 --+ V2 such that f2 = A o fl.  After having f+  made full it is clear 
that fl and f2 equivalent implies that f+  and f+  are also equivalent. The converse, 
though much deeper, is also true and is proved in [5], namely, that the + operation 
is injective on the set of equivalence classes of ,~q-eigenmaps. 

We now generalize this to raising the degree by an arbitrary positive integer 
p by iteration. In what follows, we use standard multiindex notation, namely 
a multiindex oe = ( ao , . . . ,  am) always has nonnegative integer components, 

= m . ce! m = 1-Ii=o Let E PP, I a I = p, bethe [c~ I Ei=0c~,, = 1-I/=0 ai  and x ~' m xi~,. e,~ 
homogeneous polynomial of degree p given by 

e'~(x) = ~ x~  

and define the scalar product in 7 )p such that {e~}l~l=p is an orthonormal basis. 
Given a Aq-eigenmap f: S m ~ S n, we define 

f+,p: R m +  1 __.+ p P  ® R n+l  

by 

(f+'P)~=Cp,qH(e a . f j ) ,  [ a l = p , j = O , . . . ,  n,  
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where 

/ (2q+ m -  1)(2q+ m + 1) . . . (2q  + m +  2 p -  3) 

~" '~:  V ~q¥ ~-1--~ ~ ~)_:7(q-~-~;--~-) 
THEOREM 1. f +'P maps the unit sphere to the unit sphere so that it restricts to a 
Ap+q-eigenmap f+'P: S m ~ Sr, p®R,+~. 

Proof. We use induction with respect to p to show that 

n 

2 ~_~ ~ H(e,~fj)2 = p2(p+q) (1) ep,q 

I~l=p j=O 

Forp  = 1, this is the statement of the lemma above noting that Cl,q : Ct" Assum- 
ing that (1) is true for all Aq-eigenmaps, we compute 

n n 

E E/~(~°s~) ~ ~ E E × = Cp÷l ,  q Cp÷ 1 ,q 

Io4=p+, j=o M=p+I j=0 

> ( p + l ) !  H(x~O...x~mfj) 2 
ao{. . ,  a~{ 

m rb 

: c~,,,q E E z~(X~o...x~mS~) 2 
io,...,ir,=O j=O 

m n m 

= CpT , ,  q ' '  
i=O j=O il,...,ip=O 

771 n 

2 Y~ E E H(xiH( e'~fj))2" : Cp÷l, q 
i=0 j=0 I~l=p 

By the induction hypothesis, c,,qH(eC~f j) are components of a Ap+q-eigenmap. 
Hence, by Lemma 1, 

m ?'~ 

(C++q)2 ~ ~ ~ H(xiCp,qH(e~,ff))2= p2(,+q). 
i=0 j=o I~l=p 

Combining this with the result above and noting that Cp+l,q = Cp,qC++q the theorem 
follows. 

3. Raising the Source Dimension 

To manufacture new Aq-eigenmaps out of old ones, the degree raising operation 
discussed in the previous section allows us to restrict ourselves to q = 2. As, for 
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m = 3, a complete  classification of  ~2-eigenmaps is known (cf. [3]), we now 
describe an operation on )~2-eigenmaps that raises the source dimension. In fact, 
given a )~2-eigenmap f :  5"m __+ Sn, we define 

f :  R m+2 ___+ Rn+m+3 

by 

f ( x )  = 1+ r e ( m + 2 )  f (x ) ,  m+l m + 2 ' 

X O X m + I ~  • . .  ~ ~- - -  X m X m +  I 
m 

x = ( x 0 , . . ,  

PROPOSITION 1. Given a A2-eigenmap f: S m --+ S n, the induced map f 
maps the unit sphere to the unit sphere so that it restricts to a A2-eigenmap 
f :  5'm+1 ~ S~+m+2. Moreover, f full implies that f is full. 

Proof. Simple computation. 

The maximum range dimension for a full A2-eigenmap f :  S TM --+ 5'~ is 

m ( m  + 3) 1 
2 

that is the multiplicity of  the eigenvalue )~2 minus one. For m = 3, the possible 
range dimensions of  full ,~2-eigenmaps f :  5'3 ~ 5',~ are n = 2, 4, 5, 6, 7, 8. 
Combining these with Proposition 1, we obtain the following: 

C O R O L L A R Y  1. For m >_ 3, there exist full )~2-eigenmaps 

f :  s m  --+ 5 " ( m ( r a + 3 ) / 2 ) - r  

where 

r =  1 , 2 , 3 , 4 , 5 , 7 .  

For example,  it fol lows that, for m = 4, full ),2-eigenmaps f :  S 4 --+ S '~ exist 
for n = 7, 9, 10, 11, 12, 13. Moreover, n = 4 can be added to this list since the 
gradient o f  an isoparametric function gives a full )~2-eigenmap. Note also that, by 
a result o f  R. Wood (el. [7]), there is no full polynomial  map f :  5 '4 --+ S 3 so that 
n = 3 does not arise as a range dimension. 

Remark. Precomposing these with the Hopf  map h: S 7 ~ 5 '4, we obtain )~4- 
eigenmaps f :  S 7 ~ 5'~, where n = 4, 7, 9, 10, 11, 12, 13. 

Let F :  R m × R TM ~ R n be an orthogonal multiplication, i.e. F is bilinear and 
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[ F ( z ,  y) [ = I z I I Y l, z, y E R m. The Hopf-Whitehead construction associates 
to F the )~2-eigenmap 

f F  : S 2ra- 1 ----r ~n  

defined by 

f F ( z ,  y) = (I x 12 -- l Y 12 , 2F(x ,  y)). 

Clearly, fF  is full iff F is onto. Note that, leaving harmonicity, a general result of  
R. Wood in [7] asserts that any quadratic polynomial map f between spheres 
is homotopic to an f r  associated to an orthogonal multiplication F:  R z × R TM --+ 
R n. Returning to the harmonic case (l = m) above, for m = 2, the possible range 
dimensions are n -- 2 and 4 corresponding to the complex multiplication and the 
real tensor product (cf. [4] for further details). By [2], for m = 3, the possible 
range dimensions are n - 4, 7, 8 and 9 (the first corresponding to quaternionic 
multiplication). Combining these range dimensions with the ones obtained from 
Corollary 1 (for m = 5), it follows that there exist full )~2-eigenmaps f:  S 5 
S n for n = 4, 7, 8, 9, 13, 15, 16, 17, 18, 19. For example, in contrast to the 
nonexistence of full )~2-eigenmaps f :  S 4 ---+ S 3, the lowest range dimension here 
gives a full )~2-eigenmap f :  S 5 ~ S 4. In fact, restricting the quaternionic multi- 
plication to a pair of  three-dimensional subspaces gives a full orthogonal multipli- 
cation F:  R 3 × R 3 --+ R 4 and the Hopf-Whitehead construction provides a full 
A2-eigenmap fF: S 5 --+ S 4. Raising the source dimension as above, we obtain the 
following: 

COROLLARY 2. For m >_ 5, there exist fuU )~2-eigenmaps 

f:  S TM -.+ s(m(m+3)/z)-r, 

where 

r = 1, 2, 3, 4, 5, 7, 11, 12, 13, 16. 

Finally, note that there is no orthogonal multiplication F: R 3 × R 3 --+ R 3 so that 
the Hopf-Whitehead construction does not give any ,~z-eigenmaps f :  S 5 ~ S 3. 

As for the minimum range dimension, we have the following rigidity result: 

THEOREM 2. Let f:  S m ~ S z be a fuU )~2-eigenmap. Then m = 3 and, up to 
isometries on the source and the range, f is the Hopf map. 

Remarks. 1. Hence the only unsettled range dimensions of a full )~z-eigenmap 
f :  S 4 ---+ S n are n = 5, 6 and 8. 

2. For any degree q, we can define 

N(q)  -- min{n I there exists afull )~q-eigenmap 

f :  S TM --+ S ~ for some ra > 2} 
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Clearly, N(q) <_ 2q, for any q (because of the Veronese map f :  S 2 ---+ S 2q) but, for 
q even, N(q) <_ q as composition of the Hopf map and the Veronese map shows. 

PROOF OF THEOREM 2. Let f:  S m ~ S n be a Az-eigenmap. Using coordinates, 
we write 

m 

f ( x )  = E aix2 + E 
i=0 O<i<j<m 

a i j x i x j ,  

whereai ,  aij E R n+l, i = 0 , . . . ,  m a n d 0  _< i < j _< m.To simplify the notation, 
we set aij = aft, so that aij is defined for all distinct indices 0 _< i, j _< m. 
Harmonicity is equivalent to 

m 

E ai=O. 
i=0 

(2) 

Writing out the condition that f maps the unit sphere into the unit sphere, we obtain 
the following: 

l ai I = 1, (3) 

(ai, aij) = O, i, j distinct, (4) 

[ aij ] 2 -t- 2(ai, aj) = 2, i, j distinct, (5) 

(ai, ajk) + (aij, aik) = O, i, j, k distinct, (6) 

(aij ,  akl) + (aik, aft) + (air, ajk} = O, i, j, k, I distinct. (7) 

We say that a system of vectors {ai, aij} C R n+l is feasible if it satisfies (2)-(7). 
A feasible system is generic if ai ~ q-aj for all i, j distinct. We first show that 
by precomposing f with a suitable isometry on the source, the associated feasible 
system of vectors can be mad e generic (provided that m _> 2). 

Let 0 <_ r < s < rn and consider the rotation in the xTx,-plane by angle 4. 
Denoting the new coordinates by the superscript 4, we obtain 

x~ = x~ cos 4 + xs sin4,  

x ¢ = -x~  sin 4 +  xs cos 4, 

and the rest of the coordinates are unchanged. For the new system of vectors {a/~ } 
we have 

ar  ~ = ar  COS2 4 -~- as s in2 ¢ - a~, sin 4 cos 4, 

a~ = a~ sin e 4 + as cos 2 4 -~- ars sin 4 cos 4, 
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with the rest of  the vectors unchanged. Clearly, ar + as = ar + as. Since the ai's 
are unit vectors, we have the following three cases: 

Case 1: ar and as are linearly independent. By (3)-(5), at ,  as and ars span a 
three-dimensional subspace in which we have rotation around the axis a~ + as by 
angle 2¢. 

Case 2: a~ q- as. Everything stays fixed. 
Case 3: ar = - a s .  By (5), [ars  [ = 2 and so ar and ars/2 is an orthonormal 

basis in the plane they span. The opposite pair of vectors ar c and a~ is obtained 
from a~ and as by rotation with angle 2¢ in this plane. 

We now prove the claim about making a system of feasible vectors generic. 
Given a feasible system of vectors, assume that ai = aj, for some i ~ j .  By 
(2), there exists ak that is different from these. We can now rotate ai and ak 
corresponding to Case 1 or Case 3 to get three vectors such that each two are 
linearly independent. In this way we can decrease the number of identical vectors 
without increasing the number of opposite pairs. Since the number of vectors 
is finite we arrive at a feasible system of vectors in which the vectors ai are 
all distinct. Assume now that ai = - a j .  Since m _> 2 there exists ak that is 
linearly independent from these. We now rotate ai and ak as in Case 1 to get all 
three linearly independent without creating new identical pairs. After finitely many 
steps, we arrive at a generic system. 

We now assume that n = 2 and denote the vector cross product in R 3 by x. By 
(3)-(5), we have 

aij = eij l + (al, aj) ai X aj, i • j ,  (8) 

where eij = + 1 is antisymmetric in i j .  We now claim that any three distinct vectors 
ai, aj and ak span R 3. This is clear, since otherwise aij, ajk and aki were parallel, 
contradicting (5) and (6). 

We claim that, for any distinct indices i, j and k, we have 

(ai, aj) + (aj,  ak) + (ak, ai) = --1. (9) 

Letting 

#ij = (ai, aj) ,  

we substitute (8) into (6) and obtain 

2 X ak) + (a. 
ejk 1 + #j-------7 

aj 

2 
(ai x aj,  ai x ak) = O. + eijeik 

~/(1 + Ply)(1 + #ik) 
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On the other hand, we have 

(ai X aj ,  ai X ak) = (aj ,  ak) - (ai, ak)(ai ,  aj) 

= #jk -- #i j#ik  

so that 

i 1 + #jk 
(a~, aj x ak) = *qcjkCk~v~ (1 + Vq)(1 + ~k)  ( , jk  - ~ , ~ k ) ,  (10) 

where we used antisymmetry of the E's. The left-hand side is the (signed) volume 
of the parallelepiped spanned by ai, aj and ak. We now take a cyclic permutation 
of i, j and k and note that Eijedkeki does not change. We obtain 

(1 + #jk)(#jk - V;j~k~) = (1 + #kd(Vk; - ~;j~jk), 

or equivalently 

( l  + #ij  + # j k )# j k  = (1 + #ij  + #ki)#ki .  (11) 

Taking a cyclic permutation of i, j and k and subtracting it from (11), we arrive at 

(1 + #~j + #jk + #kd(mj  - #k~) = 0. 

Thus either (9) holds or #ij  = #ik. Taking a cyclic permutation again and noting 
that (9) remains invariant, it remains to study the case when 

(ai, a j ) =  (aj ,  ak) = (al~, ai). (12) 

To finish the proof of the claim, we now show that this implies (ai, a j) = - 1 / 3 .  
For this, we compute the volume of the parallelepiped spanned by ai, aj and ak. 
We obtain that the volume is (1 - #)2(1 + 2#), where # is the common value of 
(12). Substituting this into (10), we arrive at 1 + 3# = 0 and (9) follows. 

Finally, we add a new vector at to ai, aj and ak. (Note that at exists since 
m _> 3.) By the above, (9) is valid with i, j or k replaced by I. Using these four 
equations, we obtain that 

(a i + aj + ak + al, ai + aj) = 0 .  

Similarly 

(ai + aj + ak + al, ak + at) = O. 

Adding these, we obtain 

ai + aj + ak + al = O. 

Thus, at is uniquely determined by ai, aj and ak and using that the system is 
genetic we get m = 4. By [3], any )~2-eigenmap f :  S 3 ~ S 2 is, up to isometries 
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on the source and the range, the Hopf map and the proof is complete. 

Remark. Given an orthogonal multiplication F:  R m x R m ~ R n, setting 
x = ( x l , . . . ,  Xm) and y = (Xm+l , . . . ,  X2m), we can write 

rn 2m 

F(x, y)= E E aijxixj. 
i=O j=mT1 

The vectors a i j  C R n satisfy the relations 

[ aij [ = 2, 

(aij,  aik) = 0, i, j ,  kdistinct, 

and (7), ,#here we assume that aij : aji and that aij is zero if 1 _< i, j _< ra 
or m + 1 _< i, j _< 2ra. Hence fF corresponds to the feasible system of vectors 
{ai, aij} C R n+l, where al = . . .  = am = - a m + l  = " ' - =  -a2m being 
orthogonal to all aij's. 

4. The Harmonic Product 

We first reformulate Theorem 1 in a more convenient setting. Let 

f)~v: R m + l  "-+ 73v 

be the harmonic polynomial map given by 

A.(x) : cp,0 H(e )(x)e 
[~[=p 

where the constant is given before Theorem 1. The proof of Theorem 1 shows that 
f~v maps the unit sphere into the unit sphere so that it restricts to a Ap-eigenmap 
f;~v: Sm --+ Spy. 

Let 7-/p denote the space of  spherical harmonics of order p on Sm. We endow 
7~ p with the normalized scalar product 

n(A.) + 1 /8  'v 
(g' g ' ) -  vol(S ) m g 9  s 

where 

n(Ap) + 1 = dim 7-/p 

and vsm is the volume form on S '~ with total volume vol(Sm). Given an orthonor- 

mal basis {f~p} C 7-/p, we define the standard minimal immersion [4] 

fay: S m __+ Sn(;~p) 



HARMONIC POLYNOMIAL MAPS 67 

by 

n(~p) 
A , ( x )  = 5 . ( x ) S p ,  x c s m 

j=O 

THEOREM 3. f;~,, when made full, is equivalent to the standard minimal immersion 

f~,.  
Proof. This is a simple consequence of the fact that an equivariant eigenmap 

is standard. Equivariance of f;~v can be seen easily since the harmonic projection 
operator commutes with the actions of SO(m + 1) on 7 )p and on 7-/p given by 
precomposition with the inverse. This latter is because H is built from the powers 
of the Laplace-Beltrami operator. 

We now introduce a law of composition for eigenmaps. Let f :  S m ~ Sv be a 
Ap-eigenmap and g: S ra ~ S w  a Aq-eigenmap. Their tensor product f ® g: 
S ~ x S ~ ~ Sv®w is a Ap+q-eigenmap. (For the general properties of the ten- 
sor product of eigenmaps, cf. [4].) Restricting to the diagonal S ~ C S m x S ~ 
is, in general, not an eigenmap and so, instead, we think of f @ g as a har- 
monic polynomial map of R m+l x R m+l to V @ W and restrict to the dia- 
g o n a l R  m+l C R ra+l × R m+l to get a polynomial map ( f@g) [Rm+l :  R m+l 
V ® W. Finally we take the harmonic part of each component with respect 
to an(y) orthonormal basis to get a harmonic polynomial map I I ( ( f  ® 
g) [R-~+I): Rm+l  --+ V @ W. If it maps the unit sphere into the unit sphere 
(up to a constant multiple) then its restriction is called the harmonic product of 
f and g denoted by f 0 9 :  S m ~ Sv®w. We now show that Theorem 1 can be 
reinterpreted in terms of the harmonic product as follows: 

THEOREM 4. For any Aq-eigenmap f: S ra ~ S n the harmonic product f~v <) f 
exists. 

For the proof, we need the following: 

LEMMA 2. For g E 7-{ p+I and9 ~ E 7{ p, we have 

Og 
g '}  = #p(g, H(xig'))p+l, 

where 

2 p + m -  1 
#p = ( p +  1) p ~ - ~ -  1 

Proof. Simple computation (cf. also [5]). 

PROOF OF THEOREM 4. Choosing an orthonormal basis in "~{P for the compo- 
nents of the standard minimal immersion f~v: S m --+ S ~(;~p) and using Lemma 2, 
we compute 
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j=O /=0 
E ~ g ~ OXil .OXip Xil'''Xip fl 
j=O l=O ih...,ip=O " " 

x H ( f~ . f ' )  

X 

_ 1 p !  
- p ~  ~ ~ ~_~ ~ H(x~ ' f ' )  × 

j=o l=o I~l=v 

( ) x H  ~,E~-'--~,, ,m f~pfl  
v , , o  0 • • • v t o  m 

#o , . . tzp - l 
p! 

~(.~p) ,~ p! 

EEE × 
j=o l=0 I~l=p 

X H(xC'fZ)H((fJ~p, H(xC~))fJ~pf t) 

2 '~ P! = 

t=0 I~l=v 

Cp, 0 
t=0 I•l=p 

The proof of Theorem 1, however, shows that this is equal to 

a 
Cp,O p2(p+q) 
C2 q 

which completes the proof. 

The harmonic product is clearly commutative and associative, i.e. with obvious 
notations, we have 

f O(gOh)  = ( f O g ) O h ,  

provided that f 0g ,  g (> h and either side exist. In particular, by Theorem 4, 

( f O g )  + = y+ Og = f Og + , 

where the equalities mean equivalence. Therefore to study the existence of the 
harmonic product we may assume that the factors are ),2-eigenmaps. 

The rest of  this section is devoted to the proof of a useful criterion for the 
existence of the harmonic product of  ~2-eigenmaps. Let f :  S "~ --+ S u and g: S m 
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j u  l v  (g)l=o' In 5 'v be •2-eigenmaps with components ( f ) j=0  and what follows, the 
indices i, k, r, s will mn on 0 , . . . ,  m while j (resp. l) will take values on 0 , . . . ,  u 
(resp. 0 , . . . ,  v). We now set 

u 'o 

fik = ~_, fJ 02fj j=o Oxi Oxk and gik = Z gl 02g l 
l=o Oxi OXk" 

(Note that the partial derivatives are actually constants.) 

THEOREM 5. Given )~2-eigenmaps f: S m ~ S ~ and g: S m -+ S ~, the harmonic 
product f 0 g exists iff 

m 
fikgik = C" p4, C = constant. (13) 

i,k=O 

Proof. The harmonic projection of a degree 4 polynomial ¢ C p4 is given by 

p2 p4 

H ( ¢ ) = ¢  2 ( m + 5 )  A ¢ + s ( m + 3 ) ( m + 5 )  A2¢ 

(cf. Vilenkin [6]). In particular, we have 

, °2 ~ Of j Og l 
H(fJg l) f i g  I + 

2 ( m + 5 )  z~. Oxi Oxi 

p4 ~-~ 02fJ 02gl 
+ 

2(m + 3)(m + 5) ~ Oxi Oxk Oxi Oxk" 

Up to a constant multiple, this is the jl-component of the harmonic product. We 
claim that the norm square of the corresponding vector is 

j,l +5 + c(f' g) p8 + 2 ( m + 3 ) ( m + 5 )  2 x 

X ( 4 ( m T 4 ) ~ f i k g i k - - p 2 A ( ~ i , k  (14) 

where the constant c(f, g) is given by 

c(f~ g) 
4(m + 3)2(m + 5) 2 j,l 

To show this, we first decompose 

02fJ 02g ! 

H(fJgl) 2 = A1 + A2 + A3 + B12 + B13 + B23, 
j,l 

(~5) 
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where 

A1 = 

j,l 

A2 (m + 5) 2 ~ O~c i Oz i ' 

_ 

A3 - 4( ra+3)2(m+ 5) 2 j~t 

2P 2 fjgl Off Og t 
B12 = m + 5 ~ ~z/ Oxi' i,j,l 

2 
02fJ 02g l 

O i-Sxk J 

B13 
p4 02fj 02gl 

(m + 3)(m + 5) ~ fJgtoxi Ox-~k  Oxi Oxk' i,j,k,l 

B23 = 
p6 02gl 

( m + 3 ) ( m + 5 )  ~ Off Og t 02ff 
i,j,t,r,s Oxi Ox~ Ox~. Oxs OxT Ox," 

We now simplify each term in a tedious but straightforward manner. It is clear that 
A1 = p8 since f and g are both )~2-eigenmaps between spheres. As for A2, we 
compute 

02p 4 Op 4 

We now make use of the fact that 
02p 4 

-- 4~ikp 2 q- 8XiX k 
Ox~ Oxk 

gik) • 

along with (harmonicity and) homogeneity of the components of f and g: 

02 fJ 02g l 
Ei,k xiXk Oxi Oxk -- 2fj and Ei,k xiXk Oxi Oxk - 2gl 

to arrive at 
_ _ _  p4 

A2 4p8 -1- E fikgik. 
m + 5  ( m + 5 )  2 i,k 

(16) 
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We now notice that A3 is a constant multiple of p8; in fact 

A3 = c(f ,  g)p8 

where c(f ,  g) is given in (14). Turning to the mixed terms, we compute 

BI2 - m + 5 G G ]  

= - 2 ( m + 5 )  

8p 8 

m + 5 "  

By the very definition of fik and gik, we have 

/94 

B13 = (rn + 3)(m + 5) ~ fikgik. 
i,k 

Finally, we have 

(17) 

(18) 

(19) 

(m + 1 2c ) pS. 
H(fjgl)2---- \ m  + 5 + ( m +  3 ) (m+  5) 2 + c ( f ,  g) (21) 

j,l 

Conversely, assume that the harmonic product exists, i.e. Pq,ltt(fJgt) 2 is a constant 
multiple of pS. By (14), this means that # = Ei,kfikgik satisfies the equation 

4(m + 4)# - p2 A #  = ctp 4, c t = constant. (22) 

Taking A of both sides and using homogeneity of A#, we obtain that 

A# = c" p2~ 

so that 

and this can be seen by working out the right-hand side (and using harmonicity of 
fJ and gl once again). Putting (16)-(20) together, (14) follows. 

We now turn to the proof of the theorem. First, assuming (13), we have 

B23 = 2(m + 3)(m + 5) 2 A fikgik (20) 
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where 

c" = A2# + 4(m + 3)d 
m + 3  

Finally, substituting this back to (22), we get 

c t + c" p4 
# - 4(m + 4) 

and the proof is complete. 

The normalizing constant for the harmonic product can be determined explicitly in 
terms of c in (13) by the following: 

COROLLARY 3. Assume that (13) holds. Then 

j,t + 5 + 2(m + 3)(m + 5) pS. (23) 

Proof. Taking A 2 of both sides of (13), we obtain 

02fik 02gik -- 2c(m + 1)(m + 3). 
Ox~ Ox~ Oz~ Ox~ i,k,r,s 

Using this, we compute 

02fJ 02g l 02ff 02g z 02fJ 02g l 

Oxi Oxk Oxi Ozk = ~ Oxi Ozk Ozi Ozk Ox~ Ox~ Ox~ Ox~ j,l i,j,k,l,r,s 

= E  
i,k,r,s 

OZ fik OZgik 
Ox~ Oxs Ox~ Oxs 

= 2c(m + 1)(m + 3). 

Comparing this with the formula for A3, we obtain 

(m + 1)~ 
c(f, g) = 2(m + 3)(m + 5) 2. 

Substituting this into (21) we arrive at (23). 
We now specialize to the case when f = g that is we turn to the existence of 

the harmonic square f (> f. Let f: S m ~ S ~ be a full A2-eigenmap and assume 
that the harmonic square f ~ f exists. By Theorem 5, we then have Ei,kf2k = cp 2 
so that (by restriction) 

]:  S ~ __+ S~(~+2) 
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defined by 

1 
f = - ~  (fik)i,~=O 

is clearly a A2-eigenmap. 

THEOREM 6. ], when rnade full, is equivalent to f . 

Before the proof we need the following: 

LEMMA 3. span{fik}~,k=O = span{fJ}~= 0. 

Proof. Since the fik are linear combinations of i f ,  we have span{fik} C 
span{if}.  Assuming that the inclusion is proper, let a: span{if} --* R be a 
nonzero linear functional that vanishes on span{f/k}. Setting c d = a(fJ), we have 

Ozi Oxk = ~" cj Oxi Oxk" 
J 

Hence 

cj 02 f j  
~,j,~ Ox~ Oz-------~k z~xk = 2 ~j cjfJ = o 

that is a contradiction since f is full and not all the cj are zero. 

PROOF OF THEOREM 5. Let 

A: R n+l --+ R (re+l)2 

be the linear map defined by 

1 Ouf j 
3 ( y )  = ~ 0x~ 0xk yj , y = (yJ)~=0 e rt n+l 

i,k=O 

Then, we have ] = A o f .  By Lemma 3, the image V of A is of dimension n + 1. 
Hence A is a linear isomorphism between R n+l and V and, by assumption on the 
existence of the harmonic square, it maps the unit sphere into the unit sphere. Thus, 
A is an isometry and the proof is complete. 

5. Existence and Nonexistence of the Harmonic  Product  

5.1. THE GENERALIZED HOPF MAP 

Using complex coordinates zo , . . . ,  Zm E C m+l, the generalized Hopf map 

h: S 2m+l -+ S (3ra(ra-1-1)/2)-I 
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is defined by 

h(zo,..., zm)= 

1 2 ( ~  1)~(z,~k)) o_<,<k_<,,, 

h is clearly a &2-eigenmap. For future reference, we note that, setting zi = xi + 
VcZ-f xT, i = 0 , . . . ,  ra and~ = r a +  1 , . . . ,  2 r a +  1, we have 

h. = h~ - 2(m + 1) ( d  + 4 )  2 m m + 3 p2, (24) 

hik = h;~ - 2(m + 1) (xixk + x?xk), i • k, (25) 
m 

hi ~ = _hlk  _ 2(m + 1) ( x i x i  - xkx;). (26) 
m 

Let f :  S 2m+1 --+ S'* be a ~2-eigenmap. We now recall that a real spherical 
harmonic ¢ of order 2 on S 2m+1 (such as fJ), written as a harmonic polynomial in 
the complex variables zi and ~i decomposes as 

,;b - ¢11 -I- ~ x ,  

where the 'pure part' ¢11 is the sum of those monomials in ¢ that are of degree 2 
in zi or degree 2 in 2i and the 'mixed part' 4)× contains those monomials in ¢ that 
are of degree 1 in zi and degree 1 in zi. (Note that ¢11 (resp. Cx) are often refered 
as the (2, 0) + (0, 2)-part (resp. the (1, 1)-part) of ¢.) Clearly, ¢11 and C× are both 
harmonic. 

We now view f as a vector-valued function whose components are spherical 
harmonics of order 2 and decompose accordingly: 

f : y, + f× 
into pure and mixed parts, where fll, fx :  S2m+] ~ t tn+l  are vector-valued 
functions. It is natural to ask when will these map into the unit sphere, i.e. when 
will the pure and mixed parts of a )~2-eigenmap be again ~2-eigenmaps. 

THEOREM 7. The harmonic product h 0 f o f  the generalized Hopf  map 
h: S 2 m + l  --'-> S (3m(m+l)/2)-I and a ~2-eigenmap f:  S 2m+1 ~ S ~ exists i f fboth 
the pure and mixed parts o f f  are ~2-eigenmaps. 

Proof. We use criterion (13) in Theorem 5 for the existence of h 0 f .  By (24)-- 
(26), we have 
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2m+l ( 2 ( m ~  1) 2 )  
ho~so~ = ~ - (x~ + x~) m +---5 / ( s .  + & )  + 

a,b=O i 

+ E (2( _m~ 1)(xixk + xTxT:)(fik + f;~)+ 
i¢k 

+ 2 ( ~  + 1) ( .~ .~  _ .kx~)k~ + 
m 

+ 2(ram Or 1) ( x k x ; -  zix~)f;k) 

2(m Or 1) 2m+l 2(m Or 1) 2m+l 
- m ~ Sobxox~ + ~ So,~yoyb, m a,b=O a,b=O 

where we set Yi = -x: ,  Y7 = xi (and the p2 term cancels because of harmonicity). 
For the two terms on the right-hand side, with obvious notations, we have 

E fabXaXb = E f j  02fj  a,b a,b,j OXa OXb XaXb = 2 Ej (fj)2 = 2p2, 

E fabyayb E fJ 02fj  = - - - 2 ~ f J ( x ) f J ( y ) .  
,,b a,b,j Oy,~ Oyb j 

Putting these together, we obtain 

2m+lE habfab-  4(m Or 1) p4 Or 4(m Or 1) ~ f j ( x ) f J (y  ) 
- -  m m a,b=O j 

_ 4(m Or 1) p4 Or 4(m Or 1) ~ fj(z)fj(~--£-- ~ z), 
m m m j 

where we used that yi Or v/:- f  YT, = - x ;  Or x/Z--1 xi = ~ zi and i f ( z )  means 
fJ written in the z-variables, etc. 

We now apply Theorem 5 to conclude that h 0 f exists iff 

fJ (z ) f f (x /Z- l  z) = 0a. p4, w = constant. (27) 
J 

Given a spherical harmonic ¢ of order 2 on S 2re+l, we have ¢× (v/-L-1 z) = 
¢ × ( z )  and ¢11(~/7T z)  = - e l l ( Z )  so that we have ¢(z)¢(v/-Z-1 - z)  = ( ¢ × ( z )  Or 
¢ll(Z))(¢x (z) - ¢11 (z)). Applying this to the left-hand side of (27), we obtain 

:J(~)fJ(v:: ~) = ~ (f{(~))~- ~ (:~(z)) ~. (28) 
J J J 
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On the other hand, we have 

Z + E = ½Z (:'x (.) + :i('): + 
J J J 

+½E(:{(z)-:i(z): 
J 

= 1F_, (:"(z)) 2 + ½ ~  (:"(V=-f z)) 2 
J J 

1 1 = ~Z ( fJ(x))  2 + ~ (fj(y))2 
J J 

1 4  1 4  p4. = ~p + ~-p = 

Combining this with (27)-(28), the theorem follows. 

5.2. THE GENERALIZED COMPLEX VERONESE MAP 

Using the same notations as above, the generalized complex Veronese map 

V: S 2m+l ---+ S ( m + l ) ( m + 2 ) - I  

is defined by 

v(z0,..., z~)= (~(z~), ~(z~), v2~(z,z ,) ,  v~ ~(z,z,))o<_~<:;o<_,<s<:. 

It is clear that v is a ),2-eigenmap. The following result is the exact analogue of 
Theorem 7 and hence the proof is omitted. 

THEOREM 8. The harmonic product v 0 f of  the complex Veronese map v :  S 2m+1 ---+ 

S(m+l)(m+2) -1 and a A2-eigenmap f: S 2m+l ~ S n exists iffboth the pure and 
mixed parts o f  f are Az-eigenmaps. 

In particular, since h is mixed and v is pure, we obtain that h 0 h, h <) v and 
v 0 v exist. Note that, for ra = 1 the )~2-eigenmaps of S 3 have been classified (cf. 
[3]) and from that further examples can be easily obtained. 

5.3. THE o'-EXTENSION OF A ,~2-EIGENMAP 

To obtain examples for nonexistence of the harmonic product we first generalize 
the method of raising the source dimension of  Section 3. 

Let f :  S m --+ S n be a A2-eigenmap and define 

f :  R m+2 __+ RN+I  

by 
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( ( f ( z )  A f ( x ) ,  B 2 Cxixm+l ,  
= Xm+l ra + 2 ' 

D x~ m + 2  , Dx~xs , 
O<_i,r,s<_m;r#s 

2 and A, B, C, D are constants with A # 0. Simple where p2 = x02 + . . .  + Xm+l 

computation shows that f maps the unit sphere into the unit sphere iff there exists 
an angle cr satisfying 

m + l  
cos 2 a > - -  (29) 

m + 2  

such that 

A -  
(m + 2)v  m + 1 

m + 1 V ~°s 2 cr 2' m +  

m + 2  
B - - -  c o s  (7, 

m + l  

~/2(ra__+ 2) 
C = V  r a +  1 , 

r a + 2  
D = - -  sin or. 

+ 1 

Given cr satisfying (29), the restriction f °  = f:  S m+l --+ S u defined above is 
called the cr-extension o f f .  (Note that N = n + 2m + 3 + ra(ra + 1)/2.) Clearly, 
cr = 0 reduces to the case treated in Section 3. 

THEOREM 9. Let f :  S m --+ S u and g: S m --+ S v be Az-eigenmaps and cr and 
such that 

COS 20"~ COS 2 0 > - -  
r a + l  

r a + 2 '  

Assume that f ~ g exists. Then the harmonic product fa  0 9 o of  the extensions does 
not exist. 

Proof. Straightforward computation yields 
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f~ = A2 fii + 2D2x 2 _ _ _  
2A2 2 ( 2A2 
m Xm+l = ~m(--mT-k 2) 

f~  = A2fik + 2D2xiXk, i 5~ k, 

m + 2J p2, 

fr~+l,m+l "-- 2B2x2m+l 

= C2xix +i 

2B 2 
m +  2 p2' 

and similarly for g. In what follows we use (13) of Theorem 5 to conclude the 
nonexistence of f f  0 g °. By assumption, we certainly have (13). By elementary 
(but long) calculation, we obtain 

m+l 

E 
a,b=0 

a O 4 2 2 f~kgik = KP 4 + LXm+l + MXm+lP , 

where 

L 
2 2 (  4 ( m +  1)~ 4( ra+ 1) 2 2 2 2 

= A fAg \c + ] + (AfDa + AaDI) + 
m m 

2 2 4B}B 2 8 ( m + 2 )  2 
+ 4DIDa + (m + 1) 2 ' 

( 8 ( m +  1) ) 2 2  8 ( m +  1) 2 2 2  2 2  
M = -  2C+m2(m+2)  AIAa m ( m + 2 ) ( A I D g + A a D ] ) -  

8 2 2 8(m -~ 1) 2 2 8(m -1- 2) 2 
ra+2 BfBg r a + 2  DfDg+ ( r e + l )  2 '  

where the constants corresponding to f and g are indicated by subscripts. (The 
corresponding expression for K is irrelevant.) Assume now that f¢ 0 gO exists. 
Then, by Theorem 5, L = M = 0. In particular, we have 

0 = 2 L +  M = ( m D } + ( r a +  1)AEf)(mD 2 +(ra+ 1)32 ) + 

2 2 m2(m + 2)3 (30) 
+ m2(  + 1)BsB. (m + 1)2 

We now use the actual values of A, B, C, D to obtain mD 2 + (m + 1)A 2 = 
m(m + 2)/(m + 1). Substituting this into (30), we get B}B 2 = (m + 2)2/(m + 1) 2 
or, equivalently, cos 2 cr cos 2 0 = (m + 1)2/(m + 2) 2 which clearly contradicts the 
assumptions. 
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