The Bogoliubov Inner Product in Quantum Statistics*

Dedicated to J. Merza on his 60th birthday

DÉNES PETZ
Department of Mathematics, Faculty of Chemical Engineering, Technical University Budapest, Sztoczek u. 2. H ép. II. 25, H-1521 Budapest XI, Hungary

and
GABOR TOTH
Department of Mathematical Sciences, Rutgers University, Campus at Camden, Camden, NJ 0812, U.S.A.
(Received: 28 September 1992; revised: 25 January 1993)

Abstract

A natural Riemannian geometry is defined on the state space of a finite quantum system by means of the Bogoliubov scalar product which is infinitesimally induced by the (nonsymmetric) relative entropy functional. The basic geometrical quantities, including sectional curvatures, are computed for a two-level quantum system. It is found that the real density matrices form a totally geodesic submanifold and the von Neumann entropy is a monotone function of the scalar curvature. Furthermore, we establish information inequalities extending the Cramér-Rao inequality of classical statistics. These are based on a very general new form of the logarithmic derivative.

Mathematics Subject Classification (1991). 82B10.

0. Introduction

Let us consider a density matrix $D \equiv \mathrm{e}^{H}$ of a finite quantum system \mathscr{A}. Then the Bogoliubov inner product is defined for the observables, $A, B \in \mathscr{A}^{\text {sa }}$ by the formula

$$
\begin{equation*}
《 A, B\rangle_{D}=\int_{0}^{1} \operatorname{Tr} \mathrm{e}^{u H} A \mathrm{e}^{(1-u) H} B \mathrm{~d} u . \tag{1}
\end{equation*}
$$

This quantity appears in the second-order term of a perturbation expansion of the partition function,

$$
\begin{equation*}
《 A, B\rangle_{D}=\frac{\partial^{2}}{\partial t \partial s} \operatorname{Tr} \mathrm{e}^{H+t A+s B} . \tag{2}
\end{equation*}
$$

In quantum statistical mechanics, the definition of the Bogoliubov inner product involves the inverse temperature β which is chosen to be 1 in this Letter. The term

[^0]Kubo-Mori scalar product is also used [2,13]. This scalar product is important in linear response theory [15] and it was generalized to KMS states of arbitrary quantum systems. In fact, the KMS property may be characterized by auto-correlation upper bounds which seem to be informational inequalities (see [2, 4, 5]).

In this Letter, we restrict our treatment to finite quantum systems. We argue that the Bogoliubov scalar product defines a natural Riemannian geometry on the state space. (This was previously proposed in [11].) The basic geomerical quantities, including sectional curvatures, are computed for a two-level quantum system. It is found that the real density matrices form a totally geodesic submanifold and the von Neumann entropy is a monotone function of the scalar curvature. (Differential geometrical methods in classical statistics have a huge literature, we mention only the books [1] and [3] but in the quantum case there are many things to be done.) Furthermore, we establish information inequalities extending the Cramér-Rao inequality of classical statistics. These are based on a new form of logarithmic derivative and show that the quantity

$$
\begin{equation*}
\sqrt{《 A-I \operatorname{Tr} D A, A-I \operatorname{Tr} D A\rangle_{D}} \tag{3}
\end{equation*}
$$

is more appropriate for being the dispersion of the observable A in the state D than the popular variance

$$
\begin{equation*}
\sqrt{\operatorname{Tr} D(A-I \operatorname{Tr} A)^{2}} \tag{4}
\end{equation*}
$$

Concerning information inequalities in the quantum setting, we refer to the book [10].

1. Parameter Estimation

In the parametric problem of quantum statistics, a family $\left(\varphi_{\theta}\right)$ of states of a system is given and one has to decide among several alternative values of the parameter by using measurements. The set of outcomes of the applied measurements is the parameter set Θ and we assume that it is a region in \mathbb{R}^{n}. So an estimator measurement M is a positive-operator-valued measure on the Borel sets of Θ and its values are observables of the given quantum system [7,9,14]. The probability measure

$$
B \mapsto \mu_{\theta}(B)=\varphi_{\theta}(M(B))(B \subset \Theta)
$$

represents the result of the measurement M when the 'true' state is φ_{θ}. The choice of the estimators has to be made by taking into account the expected errors.

First we concentrate on the one-dimensional case and follow the Cramér-Rao pattern of mathematical statistics. Let $\left(\varphi_{\theta}\right)$ be a family of states of the quantum system \mathscr{M} and let the parameter set Θ be an interval in \mathbb{R} with $0 \in \Theta$. For the sake of simplicity, let the estimator be an observable M of the finite quantum system $M_{n}(\mathbb{C})$ and let the family $\left(\varphi_{\theta}\right)$ be given by density matrices $D_{\theta} \in M_{n}(\mathbb{C})$. We assume that $\theta \mapsto D_{\theta}$ is sufficiently differentiable. The estimator M is called unbiased if

$$
\begin{equation*}
\operatorname{Tr} D_{\theta} M=\theta \tag{1.1}
\end{equation*}
$$

Since we are interested in the local behaviour of the estimation，the less restrictive condition

$$
\begin{equation*}
\left.\frac{\partial \operatorname{Tr} D_{\theta} M}{\partial \theta}\right|_{\theta=0}=1 \tag{1.2}
\end{equation*}
$$

will also work．If M satisfies（1．2），then it is called locally unbiased at 0 （being unbiased means locally unbiased at each point）．

Our approach，will be closely related to the so－called Bogoliubov inner product． （Note that Kubo－Mori scalar product and Duhamel two－point function are also frequently used terms．）For $A, B, H \in M_{n}(\mathbb{C})^{\text {sa }}$ ，we set

$$
\begin{equation*}
《 A, B\rangle \exp H=\int_{0}^{1} \operatorname{Tr} \mathrm{e}^{u H} A \mathrm{e}^{(1-u) H} B \mathrm{~d} u \tag{1.3}
\end{equation*}
$$

It is known that

$$
\operatorname{Tr} X Y X^{*} f(Y) \leqslant \operatorname{Tr} X X^{*} Y f(Y)
$$

holds provided that $Y=Y^{*}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing function［12］．In particular，

$$
\begin{equation*}
\operatorname{Tr}^{u H} A \mathrm{e}^{(1-u) H} A \leqslant \operatorname{Tr}^{H} A^{2} \tag{1.4}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
《 A, A\rangle_{\exp H} \leqslant \operatorname{Tr} \mathrm{e}^{H} A^{2} \quad \text { for every } A \in M_{n}(\mathbb{C})^{\mathrm{sa}} \tag{1.5}
\end{equation*}
$$

（This inequality is a very special case of the Bogoliubov inequality but we prefer the above elementary proof，see also［2］and［5］．）To make clear the relevance of the Bogoliubov inner product to the parameter estimation problem，we choose two differentiable curves of density matrices

$$
D_{t}^{1}=\exp \left(H+t A+O\left(t^{2}\right)\right) \quad \text { and } \quad D_{t}^{2}=\exp \left(H+t B+O\left(t^{2}\right)\right)
$$

（Note that the condition $\operatorname{Tr} D_{t}^{\mathrm{t}}=1$ implies $\operatorname{Tr} \mathrm{e}^{H} A=0$ and，similarly， $\operatorname{Tr} \mathrm{e}^{H} B=0$ ．）Recall that the relative entropy

$$
S\left(D_{1}, D_{2}\right) \equiv \operatorname{Tr} D_{1}\left(\log D_{1}-\log D_{2}\right)
$$

of the densities D_{1} and D_{2} measures the information between the corresponding states（see［16，18，19］）．Using the perturbation series for the exponential function we arrive at

$$
\begin{equation*}
\left.\frac{\partial^{2}}{\partial t \partial S}\right|_{t=s=0} S\left(D_{t}^{1}, D_{s}^{2}\right)=-《\langle A, B 》 \exp H \tag{1.6}
\end{equation*}
$$

Hence，the Bogoliubov norm in quantum statistics can take the role of the Fischer information from classical statistics．

The Cramér－Rao pattern consists of finding a lower bound for $\operatorname{Tr} D_{\theta}(M-\theta)^{2}$ ， which is the variance of the estimator．To state our version of the Cramér－Rao
inequality, we introduce the concept of a logarithmic derivative (see also Section 3). If $\theta \mapsto \varphi_{\theta}$ is a differentiable family of states, then its logarithmic derivative (with respect to the Bogoliubov inner product and taken at 0) is an operator $L \in \mathscr{M}$ which is characterized by the condition

$$
\begin{equation*}
\left.\left.\frac{\partial}{\partial \theta}\right|_{\theta=0} \varphi_{\theta}(A)=\left\langle<L^{*}, A\right\rangle\right\rangle_{\varphi_{0}} \quad \text { for every } A \in \mathscr{M} \tag{1.7}
\end{equation*}
$$

PROPOSITION 1.1. Let the observable $M \in M_{n}(\mathbb{C})$ be a locally unbiased estimator for the differentiable family $\left(D_{\theta}\right)$ of the density matrices at $\theta=0$. Then

$$
\left.\varphi_{0}\left(M^{2}\right) \geqslant 《<L^{*}, L^{*}\right\rangle_{\varphi_{0}}^{-1}
$$

where L is the logarithmic derivative of the states $\varphi_{\theta}(\cdot) \equiv \operatorname{Tr}\left(\cdot D_{\theta}\right)$.
Proof. As a direct consequence of (1.2) and (1.7) we have $1=\left\langle\left\langle L^{*}, M\right\rangle_{\varphi_{0}}\right.$. Now applying first the Schwarz inequality and then (1.5), we infer

$$
\left.1=\left\langle\left\langle L^{*}, M\right\rangle\right\rangle_{\varphi_{0}}^{2} \leqslant\left\langle\left\langle L^{*}, L^{*}\right\rangle\right\rangle_{\varphi_{0}} \times\langle M, M\rangle\right\rangle_{\varphi_{0}} \leqslant\left\langle\left\langle L^{*}, L^{*}\right\rangle_{\varphi_{0}} \times \varphi_{0}\left(M^{2}\right),\right.
$$

which is equivalent to the stated inequality.
This proposition and formula (1.6) suggest that Bogoliubov inner product may be used to define a statistically relevant Riemannian metric on the state space of a quantum system, as was proposed in [11]. The definition and the detailed study of the geometry obtained for a 2 -level (or spin $\frac{1}{2}$) quantum system is the content of the next section.

2. Riemannian Geometry of the State Space

The observables of a 2-level quantum system are the 2×2 complex self-adjoint matrices; their space is denoted by $M_{2}(\mathbb{C})^{\text {sa }}$. The real linear space $M_{2}(\mathbb{C})^{\text {sa }}$ is conveniently parametrized by the Pauli matrices:

$$
\begin{array}{ll}
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), & \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \tag{2.1}\\
\sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), & \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{array}
$$

Any element of $M_{2}(\mathbb{C})^{\text {sa }}$ is of the form

$$
\left(\begin{array}{cc}
t+x_{3} & x_{1}-x_{2} i \tag{2.2}\\
x_{1}+x_{2} i & t-x_{3}
\end{array}\right)=t s_{0}+x_{1} \sigma_{1}+x_{2} \sigma_{2}+x_{3} \sigma_{3} \equiv(t, x) \cdot \sigma .
$$

In fact, $\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ is an orthonormal basis for the Hilbert-Schmidt inner product

$$
(A, B) \mapsto \frac{1}{2} \operatorname{Tr} A B \quad\left(A, B \in M_{2}(\mathbb{C})^{\mathrm{sa}}\right)
$$

The inverse of the mapping

$$
\begin{equation*}
\left(t, x_{1}, x_{2}, x_{3}\right) \mapsto\left(t, x_{1}, x_{2}, x_{3}\right) \cdot \sigma \tag{2.3}
\end{equation*}
$$

gives the affine (or Stokes) coordinates on $M_{2}(\mathbb{C})^{\text {sa }}$. The affine coordinate system establishes an isometry between the Euclidean 4 -space \mathbb{R}^{4} and $M_{2}(\mathbb{C})^{\text {sa }}$ endowed with the Hilbert-Schmidt scalar product. It is useful to write elements of \mathbb{R}^{4} as (t, x) with $t \in \mathbb{R}$ and $x \in \mathbb{R}^{3}$ because of the following formulas:

$$
\begin{align*}
& \operatorname{Tr}(t, x) \cdot \sigma=t \\
& \operatorname{Det}(t, x) \cdot \sigma=t^{2}-|x|^{2}, \quad \text { where }|x|^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \tag{2.4}
\end{align*}
$$

Hence

$$
\begin{equation*}
M_{2}(\mathbb{C})^{+}=\left\{(t, x) \cdot \sigma \in M_{2}(\mathbb{C})^{\text {sa }}:|x|^{2}<t^{2}\right\} \tag{2.5}
\end{equation*}
$$

is the set of all positive definite matrices of $M_{2}(\mathbb{C})^{\text {sa }}$. Geometrically, $M_{2}(\mathbb{C})^{+}$is a circular cone of opening half-angle $\pi / 4$. (Actually, this is nothing but the positive light cone in \mathbb{R}^{4} considered as the Minkowski 4 -space.) The slice

$$
S=\left\{D \in M_{2}(\mathbb{C})^{+}: \operatorname{Tr} D=1, D \text { is invertible }\right\}
$$

is a ball with center $\sigma_{0} / 2$ and radius $1 / 2$.
In the customary formalism of quantum mechanics, the states of the 2 -level system correspond to density matrices and the closure of S is identified with the state space. The extremal (surface) points are the pure states and S is the set of mixed states.

The exponential map is a diffeomorphism of $M_{2}(\mathbb{C})^{\text {sa }}$ to $M_{2}(\mathbb{C})^{+}$, so that any $p \in M_{2}(\mathbb{C})^{+}$may be represented as $\mathrm{e}^{H}, H \in M_{2}(\mathbb{C})^{\text {sa }}$. Explicitly,

$$
\begin{equation*}
\exp ((t, x) \cdot \sigma)=\left(\mathrm{e}^{t} \cosh |x|, \frac{\mathrm{e}^{t} \sinh |x|}{|x|} x\right) \cdot \sigma \tag{2.6}
\end{equation*}
$$

The inverse of the mapping

$$
(t, x) \mapsto \exp ((t, x) \cdot \sigma)
$$

gives the logarithmic coordinate system on $M_{2}(\mathbb{C})^{+}$. At each $p=\mathrm{e}^{H} \in M_{2}(\mathbb{C})^{+}$, the tangent space $\mathbf{T}_{p}\left(M_{2}(\mathbb{C})^{+}\right)$is identified with \mathbb{R}^{4} by translating the tangent vectors to the origin. Hence, $\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}$ can be thought of as globally defined vector fields on $M_{2}(\mathbb{C})^{+}$. Another possibility is to regard $\mathrm{T}_{p}\left(M_{2}(\mathbb{C})^{+}\right)$as $M_{2}(\mathbb{C})^{\text {sa }}$. For example,

$$
\begin{equation*}
s \mapsto \exp (H+(s t, s x) \cdot \sigma) \tag{2.7}
\end{equation*}
$$

is an integral curve of the vector field to $t \sigma_{0}+x_{1} \sigma_{1}+x_{2} \sigma_{2}+x_{3} \sigma_{3}$. However, this curve does not remain in S, even if $\operatorname{Tr}^{H}=1$. To get around this, we introduce three vector fields $\Sigma^{i}, 1 \leqslant i \leqslant 3$ on the state space S by

$$
\begin{equation*}
\left(\Sigma^{i}\right)_{\rho} \equiv \sigma_{i}-\left(\operatorname{Tr} \sigma_{i} \rho\right) \sigma_{0} \quad(1 \leqslant i \leqslant 3) \tag{2.8}
\end{equation*}
$$

Now

$$
\begin{equation*}
s \mapsto \frac{\exp \left(H+s \sigma_{i}\right)}{\operatorname{Tr}\left(\exp \left(H+s \sigma_{i}\right)\right)} \tag{2.9}
\end{equation*}
$$

is an integral curve of $\Sigma^{i}(1 \leqslant i \leqslant 3)$ and belongs to S for all value of the real parameter s ．Hence，$\Sigma^{i}, i=1,2,3$ give a parallelization of S and，at each point $\rho \in S$ ，the tangent space $\mathbf{T}_{\rho}(S)$ can be identified with

$$
\left\{A \in M_{2}(\mathbb{C})^{\mathrm{sa}}: \operatorname{Tr} \rho A=0\right\} .
$$

The inverse of the mapping

$$
\begin{equation*}
\left(y_{1}, y_{2}, y_{3}\right) \mapsto \exp ((t, y) \cdot \sigma) \quad \text { with } t=-\log (\exp (|y|)+\exp (-|y|)) \tag{2.10}
\end{equation*}
$$

will be called the logarithmic coordinate system on S ．In these coordinates，the vector field Σ^{i} is nothing but the differentiation with respect to $y_{i}(1 \leqslant i \leqslant 3)$ ．

As suggested by（1．6），the Bogoliubov inner product gives rise to a Riemannian metric on S ．Explicitly，for $A, B \in \mathbf{T}_{\rho}(S)$ we define the scalar product of the tangent vectors A and B as $\langle A, B\rangle{ }_{\exp H}$ given in（1．3）．（Note that this definition may be extended to the whole $M_{2}(\mathbb{C})^{+}$but we are mainly interested in the geometry of the state space．）

The Riemannian metric is invariant under rotations．We let $\mathrm{SO}(3)$ act on $M_{2}(\mathbb{C})^{\text {sa }}$ by rotation around the σ_{0}－axis：

$$
\begin{equation*}
U((t, x) \cdot \sigma)=(t, U x) \cdot \sigma \tag{2.11}
\end{equation*}
$$

where $U x$ is the ordinary action of $\operatorname{SO}(3)$ on \mathbb{R}^{3} ．Note that this is nothing but the action of $S U(2)$ on $M_{2}(\mathbb{C})^{\text {sa }}$ by conjugation after we factored out the kernel of the canonical epimorphism $S U(2) \rightarrow S O(3)$ ．Hence，we have the following properties．
（i） $\operatorname{Tr} U(A) U(B)=\operatorname{Tr} A B$ for $A, B \in M_{2}(\mathbb{C})^{\text {sa }}$ ，in particular $\operatorname{Tr} U(A)=\operatorname{Tr} A$ ．
（ii）$U(\exp H)=\exp U$ for $H \in M_{2}(\mathbb{C})^{\text {sa }}$ ．
LEMMA 2．1．For $A, B \in M_{2}(\mathbb{C})^{\text {sa }}$ the invariance property

$$
\begin{equation*}
《 U(A), U(B)\rangle \exp U(H)=《 A, B\rangle \exp H \tag{2.12}
\end{equation*}
$$

holds for any $U \in \mathrm{SO}(3)$ ．
The proof follows from the invariance properties（i）and（ii）through（2）．
Let $A, B \in \mathbf{T}_{\rho}(S)$ be given by Stokes coordinates

$$
A=\left(t_{A}, a\right) \cdot \sigma \quad \text { and } \quad B=\left(t_{B}, b\right) \cdot \sigma
$$

and let $\rho \in S$ be given by logarithmic coordinates as

$$
\rho=\exp ((t, y) \cdot \sigma)
$$

Then we have the following convenient formula for the Riemannian metric

$$
\begin{equation*}
《 A, B\rangle_{\rho}=\frac{\tanh r}{r}\langle a, b\rangle+\frac{r-\tanh r-r \tanh ^{2} r}{r} \cdot \frac{\langle a, y\rangle\langle b, y\rangle}{r^{2}}, \tag{2.13}
\end{equation*}
$$

where $r=\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)^{1 / 2}$ is the length of y ．To prove this，we first observe that the right－hand side of（2．13）is invariant under the action of $\mathrm{SO}(3)$ ，while invariance
of the left－hand side is guaranteed by Lemma 2．1．Hence，we may assume that ρ is diagonal，that is，$y_{1}=y_{2}=0$ and $r=\left|y_{3}\right|$ ．On the other hand，as easy computation shows，at a diagonal point ρ with $r>0$ ，the Riemannian metric in logarithmic coordinates takes the form

$$
\left(\begin{array}{ccc}
r^{-1} \tanh r & 0 & 0 \tag{2.14}\\
0 & r^{-1} \tanh r & 0 \\
0 & 0 & \cosh ^{-2} r
\end{array}\right)
$$

Formula（2．13）now follows for $r>0$ by noting that the logarithmic coordinate fields are $\Sigma^{i}, 1 \leqslant i \leqslant 3$ ．At the center $r=0$ ，we take the limit $r \rightarrow 0$ and observe that the Riemannian metric becomes Euclidean，i．e．

$$
\begin{equation*}
\langle A, B\rangle_{I}=\langle a, b\rangle \tag{2.15}
\end{equation*}
$$

Introducing the projection operator $\operatorname{Proj}_{[y]}$ that projects the whole space ortho－ gonally to the line spanned by y ，i．e． $\operatorname{Proj}_{[y]}(b)=\langle b, y\rangle r^{-2} y$ ，the matrix of the Riemannian metric（2．13）can be conveniently written

$$
\begin{equation*}
\mathbf{G}=\frac{\tanh r}{r} \operatorname{Proj}_{[y]}^{\perp}+\frac{1}{\cosh ^{2} r} \operatorname{Proj}_{[y]} . \tag{2.16}
\end{equation*}
$$

Now we are going to compute some basic geometrical quantities for the geometry of S ．Our basic reference on Riemannian geometry is［8］．We start with the covariant derivation ∇ induced by the metric and use the Kostant formula

$$
\begin{aligned}
X \cdot & 《 Y, Z 》+Z \cdot 《 X, Y 》-Y \cdot\langle\langle X, Z 》 \\
& =\left\langle[X, Y], Z 》+《[Z, Y], X 》+《[X, Z], Y 》+2 《 Y, \nabla_{Z} X 》\right.
\end{aligned}
$$

Setting

$$
X=\Sigma^{j}, \quad Y=\Sigma^{k}, \quad \text { and } \quad Z=\Sigma^{i}
$$

we have

$$
\begin{equation*}
\left.2\left\langle\nabla_{\Sigma^{i}} \Sigma^{j}, \Sigma^{k}\right\rangle\right\rangle=\Sigma^{j} \cdot\left\langle\left\langle\Sigma^{i}, \Sigma^{k}\right\rangle+\Sigma^{i} \cdot\left\langle\Sigma^{j}, \Sigma^{k}\right\rangle-\Sigma^{k}\left\langle\left\langle\Sigma^{i}, \Sigma^{j}\right\rangle,\right.\right. \tag{2.17}
\end{equation*}
$$

since the Lie brackets vanish．Let us recall briefly that the right－hand side terms have the following meaning．$\left\langle\Sigma^{j}, \Sigma^{k}\right\rangle$ is a function on S ，that is，a function of the coordinates $\left(y_{1}, y_{2}, y_{3}\right)$ and the vector field Σ^{i} acts on this function as derivation with respect to y_{i} ．Using this，we compute

$$
\begin{array}{rl}
\Sigma^{k} & 《 \Sigma^{i}, \Sigma^{j} 》 \\
= & \left(\frac{1}{\cosh ^{2} r}-\frac{\tanh r}{r}\right) \times \\
& \quad \times\left(\frac{\delta_{i j} y_{k}}{r^{2}}+\frac{\delta_{k i} y_{j}}{r^{2}}+\frac{\delta_{j k} y_{i}}{r^{2}}-\frac{y_{k} y_{i} y_{j}}{r^{4}}\right)-\frac{2 \tanh r}{r^{3} \cosh ^{2} r} y_{i} y_{j} y_{k} \tag{2.18}
\end{array}
$$

and we observe that this expression is symmetric in all indices．Therefore，

$$
2\left\langle\left\langle\nabla_{\Sigma^{i}} \Sigma^{j}, \Sigma^{k}\right\rangle=\Sigma^{i} \cdot\left\langle\left\langle\Sigma^{j}, \Sigma^{k}\right\rangle\right.\right.
$$

from（2．17）．We now expand

$$
\nabla_{\Sigma^{i}} \Sigma^{j}=\Gamma_{i j}^{1} \Sigma^{1}+\Gamma_{i j}^{2} \Sigma^{2}+\Gamma_{i j}^{3} \Sigma^{3},
$$

with coefficients $\Gamma_{i j}^{k}$ being the Christoffel symbols relative to the parallelization $\Sigma^{i}, 1 \leqslant i \leqslant 3$ ．Equivalently，

$$
\left(\begin{array}{l}
\Gamma_{i j}^{1} \tag{2.19}\\
\Gamma_{i j}^{2} \\
\Gamma_{i j}^{3}
\end{array}\right)=\mathbf{G}^{-1}\left(\begin{array}{l}
\left.\| \nabla_{\Sigma^{i}} \Sigma^{j}, \Sigma^{1}\right\rangle \\
\left\langle\nabla_{\Sigma^{i}} \Sigma^{j}, \Sigma^{2}\right\rangle \\
\left\langle\nabla_{\Sigma^{i}} \Sigma^{j}, \Sigma^{3}\right\rangle
\end{array}\right)
$$

Fortunately， \mathbf{G}^{-1} is easy to obtain from（2．16）and we have

$$
\begin{equation*}
\mathbf{G}^{-1}=\frac{r}{\tanh r} \operatorname{Proj}_{[y]}^{\perp}+\cosh ^{2} r \operatorname{Proj}_{[y]} \tag{2.20}
\end{equation*}
$$

After a lengthy but elementary computation，we obtain

$$
\begin{align*}
2 \Gamma_{i j}^{k}= & \frac{1}{r^{2}}\left(\frac{r}{\sinh r \cosh r}-1\right)\left(y_{i} \delta_{j k}+y_{j} \delta_{i k}-\frac{2 y_{i} y_{j} y_{k}}{r^{2}}\right)+ \\
& +\frac{1}{r^{2}}\left(1-\frac{\sinh r \cosh r}{r}\right)\left(y_{k} \delta_{i j}-\frac{y_{i} y_{j} y_{k}}{r^{2}}\right)-2 \frac{\tanh r}{r} \frac{y_{i} y_{j} y_{k}}{r^{2}} . \tag{2.21}
\end{align*}
$$

We now determine the sectional curvatures．By the very definition of Riemannian curvature R ，we have

$$
\left.\left.\left\langle R\left(\Sigma^{i}, \Sigma^{j}\right) \Sigma^{j}, \Sigma^{j}\right\rangle=\left\langle\left\langle\nabla_{\Sigma^{i}} \Sigma^{j}, \nabla_{\Sigma^{i}} \Sigma^{j}\right\rangle\right\rangle-《 \nabla_{\Sigma^{i}} \Sigma_{\Sigma^{j}} \Sigma^{j}\right\rangle\right\rangle .
$$

Here，we used that

$$
\Sigma^{i}\left\langle\left\langle\nabla_{\Sigma^{j}} \Sigma^{j}, \Sigma^{i}\right\rangle=\Sigma^{j}\left\langle\left\langle\nabla_{\Sigma^{i}} \Sigma^{i}, \Sigma^{j}\right\rangle,\right.\right.
$$

which follows from the full symmetry of（2．18）．Taking expansions with respect to the coordinate fields，we arrive at

$$
\left.《 R\left(\Sigma^{i}, \Sigma^{j}\right) \Sigma^{j}, \Sigma^{i} 》\right\rangle=\sum_{k, l=1}^{3}\left(\Gamma_{i j}^{k} \Gamma_{i j}^{l}-\Gamma_{i i}^{k} \Gamma_{j j}^{l}\right)\left\langle\Sigma^{k}, \Sigma^{\prime} 》\right\rangle
$$

Due to rotation invariance we may assume that $y_{1}=y_{2}=0$ and $y_{3}=r$ ．Then

$$
\begin{equation*}
\left\langle R\left(\Sigma^{i}, \Sigma^{j}\right) \Sigma^{j}, \Sigma^{i}\right\rangle=\sum_{k=1}^{3}\left(\left(\Gamma_{i j}^{k}\right)^{2}-\Gamma_{i i}^{k} \Gamma_{j j}^{k}\right)\left\langle\Sigma^{k}, \Sigma^{k}\right\rangle . \tag{2.22}
\end{equation*}
$$

For $i \neq j$ ，we denote by

$$
K\left(\Sigma^{i}, \Sigma^{j}\right)=\frac{\left.《 R\left(\Sigma^{i}, \Sigma^{j}\right) \Sigma^{j}, \Sigma^{i}\right\rangle}{\left\langle\Sigma^{i}, \Sigma^{i}\right\rangle\left\langle\left\langle\Sigma^{j}, \Sigma^{j}\right\rangle-\left\langle\left\langle\Sigma^{i}, \Sigma^{j}\right\rangle\right\rangle^{2}\right.}
$$

the sectional curvature with respect to the plane spanned by Σ^{i} and Σ^{j}. Substituting (2.21) into (2.22) we obtain

$$
\begin{equation*}
K\left(\Sigma^{1}, \Sigma^{2}\right)=-\frac{1}{4 \tanh ^{2} r}\left(\frac{1}{\cosh r}-\frac{\sinh r}{r}\right)^{2} \tag{2.23}
\end{equation*}
$$

and

$$
\begin{align*}
K\left(\Sigma^{1}, \Sigma^{3}\right) & =K\left(\Sigma^{2}, \Sigma^{3}\right) \\
& =\frac{1}{4}\left(1-\frac{\sinh r \cosh r}{r}\right)\left(1+\operatorname{coth} 2 r-\frac{\operatorname{coth} r}{r}\right) . \tag{2.24}
\end{align*}
$$

These are zero at $r=0$ and strictly decreasing to $-\infty$ as $r \rightarrow \infty$. It follows that the scalar curvature is a strictly decreasing function of r. Similarly to the curvature, the von Neumann entropy is rotation invariant as well. We have

$$
S(r)=\log \left(\mathrm{e}^{r}+\mathrm{e}^{-r}\right)-r \tanh r
$$

and observe that scalar curvature and entropy are a monotone function of each other.

We claim that the submanifold $S_{r}\left(\left\{\left(y_{1}, y_{2}, y_{3}\right): y_{2}=0\right\}\right.$ in logarithmic coordinates) of real density matrices is totally geodesic. In fact, (2.21) implies

$$
\left.\left\langle\nabla_{\Sigma^{1}} \Sigma^{2}, \Sigma^{2}\right\rangle\right\rangle=\left\langle\left\langle\nabla_{\Sigma^{2}} \Sigma^{2}, \Sigma^{2}\right\rangle=\left\langle\left\langle\nabla_{\Sigma^{3}} \Sigma^{2}, \Sigma^{2}\right\rangle\right\rangle=0\right.
$$

and the claim follows.
The study of the geometry of higher spin systems is in progress [17].

3. Logarithmic Derivatives

Let $\left(\varphi_{\theta}\right)$ be a family of states of the quantum system \mathscr{M} and let the parameter set Θ be an interval in \mathbb{R}. We assume that $\theta \mapsto \varphi_{\theta}$ is differentiable in a certain sense and give a very general definition of the logarithmic derivative with respect to a real or complex inner product $\alpha(\cdot, \cdot)$ on \mathscr{M}. We define the operator $L \in \mathscr{M}$ to be the logarithmic derivative of the family $\left(\varphi_{\theta}\right)$ at a fixed point θ if

$$
\begin{equation*}
\frac{\partial}{\partial \theta} \varphi_{\theta}(a)=\alpha\left(L^{*}, a\right) \tag{3.1}
\end{equation*}
$$

for every $a \in \mathscr{M}$. The derivation is understood at a fixed point $\theta \in \Theta$ and the form α may depend on this point. To show some very concrete examples of logarithmic derivatives, let v be a measure on $[0,1]$ and set

$$
\begin{equation*}
\alpha_{v}(a, b)=\int_{0}^{1} \operatorname{Tr} D_{\theta}^{t} a^{*} D_{\theta}^{1-t} b \mathrm{~d} v(t) \tag{3.2}
\end{equation*}
$$

if the state φ_{θ} is given by a density D_{θ} (on a finite quantum system, for example). When $v=\left(\delta_{0}+\delta_{1}\right) / 2$ is a convex combination of two Dirac measures, the corre-
sponding symmetric logarithmic derivative was considered by Helstrom ([6], see also [7]) and it is given by the equation

$$
\begin{equation*}
\frac{\partial}{\partial \theta} \operatorname{Tr}\left(D_{\theta} a\right)=\frac{1}{2} \operatorname{Tr} D_{\theta}\left(L_{s} a+a L_{s}\right) \tag{3.3}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
2 \frac{\partial}{\partial \theta} D_{\theta}=D_{\theta} L_{s}+L_{s} D_{\theta} \tag{3.4}
\end{equation*}
$$

In a similar way, the right logarithmic derivative L_{r} is the solution of the equation

$$
\begin{equation*}
\frac{\partial D_{\theta}}{\partial \theta}=D_{\theta} L_{r} \tag{3.5}
\end{equation*}
$$

and it appeared in [20]. While L_{s} is self-adjoint, in general L_{r} is not. The Lebesgue measure in place of v supplies us with the Bogoliubov inner product (1). The Bogoliubov logarithmic derivative L_{B} is the solution of the equation

$$
\begin{equation*}
\frac{\partial}{\partial \theta} \operatorname{Tr}\left(D_{\theta} a\right)=\int_{0}^{1} \operatorname{Tr} D_{\theta}^{t} L_{B} D_{\theta}^{1-t} b \mathrm{~d} t \tag{3.6}
\end{equation*}
$$

and it may be written in an integral form:

$$
\begin{equation*}
L_{B}=\int_{0}^{\infty}\left(t+D_{\theta}\right)^{-1} \frac{\partial D_{\theta}}{\partial \theta}\left(t+D_{\theta}\right)^{-1} \mathrm{~d} t \tag{3.7}
\end{equation*}
$$

PROPOSITION 3.1. Let the observable $M \in M_{n}(\mathbb{C})$ be a locally unbiased estimator for the differentiable family $\left(D_{\theta}\right)$ of the density matrices at $\theta=0$. Then

$$
\varphi_{0}\left(M^{2}\right) \geqslant \alpha_{v}\left(L_{v}, L_{v}\right)_{\varphi_{0}}^{-1}
$$

where L_{v} is the logarithmic derivative of the states $\varphi_{\theta}(\cdot) \equiv \operatorname{Tr}\left(\cdot D_{\theta}\right)$ with respect to the inner product

$$
\alpha_{v}(a, b)_{\varphi_{0}}=\int_{0}^{1} \operatorname{Tr} D_{0}^{t} a^{*} D_{0}^{1-t} b \mathrm{~d} v(t)
$$

To prove this statement, we can proceed as in the proof of Proposition 1.1 but we have to use the inequality

$$
\alpha_{v}(a, a)_{\varphi_{0}} \leqslant \varphi_{0}\left(a^{2}\right)
$$

which is a consequence of (1.4). Next, we compare the lower bounds in the previous proposition when the right, the symmetric, and the Bogoliubov logarithmic derivatives are used. Denote by C_{r}, C_{s}, and C_{B} the corresponding bounds, respectively. Let $\left(D_{\theta}\right)$ be a family of the densities such that

$$
\left.\frac{\partial}{\partial \theta} D_{\theta}\right|_{\theta=0}=R
$$

and let $\Sigma_{i} \lambda_{i} p_{i}$ be the spectral decomposition of D_{0}. We have

$$
\begin{aligned}
C_{r}^{-1} & =\operatorname{Tr} D_{0} L_{r} L_{r}^{*}=\operatorname{Tr} R^{2} D_{0}^{-1}=\sum_{i} \lambda_{i}^{-1} \operatorname{Tr} R^{2} p_{i}=\sum_{i, j} \lambda_{i}^{-1} \operatorname{Tr} R p_{j} R p_{i} \\
& =\frac{1}{2} \sum_{i, j}\left(\lambda_{i}^{-1}+\lambda_{j}^{-1}\right) \operatorname{Tr} R p_{j} R p_{i}
\end{aligned}
$$

in the first case. L_{s} is the solution of (3.4), hence,

$$
L_{s}=2 \sum_{i, j} \frac{1}{\lambda_{i}+\lambda_{j}} p_{i} R p_{j}
$$

and

$$
C_{s}^{-1}=2 \sum_{i, j} \frac{1}{\lambda_{i}+\lambda_{j}} \operatorname{Tr} R p_{j} R p_{i}
$$

Finally, one obtains from (3.7) that

$$
C_{B}^{-1}=\sum_{i, j} \frac{\log \lambda_{i}-\log \lambda_{j}}{\lambda_{i}-\lambda_{j}} \operatorname{Tr} R p_{j} R p_{i},
$$

and elementary inequalities give that

$$
C_{r} \leqslant C_{B} \leqslant C_{s} .
$$

As far as estimation of $\varphi_{0}\left(M^{2}\right)$ is concerned, the bound C_{B} is less informative than C_{s} and it is more informative than C_{r}. By means of the Bogoliubov inner product, the following Cramér-Rao-type inequality may be stated:

$$
\begin{equation*}
《 M, M\rangle_{\varphi_{0}} \geqslant \frac{1}{\left\langle\left\langle L_{B}, L_{B}\right\rangle_{\varphi_{0}}\right.} \tag{3.8}
\end{equation*}
$$

under the conditions of Proposition 3.1. Here the left-hand side is a natural noncommutative analogue of the standard deviation and L_{B} is the logarithmic derivative with respect to the Bogoliubov inner product.

References

I. Amari, S., Differential-Geometrical Methods in Statistics, Lecture Notes in Stat. 28, Springer, Berlin, Heidelberg, New York, 1985.
2. Bratteli, O. and Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics II, Springer, New York, Berlin, Heidelberg, 1981.
3. Cencov, N. N., Statistical Decision Rules and Optimal Inferences, Amer. Math. Soc., Providence, 1982.
4. Fannes, M. and Verbeure, A., Correlation inequalities and equilibrium states, Comm. Math. Phys. 55, 125-131 (1977).
5. Garrison, J. C. and Wong, J., Bogoliubov inequalities for infinite systems, Comm. Math. Phys. 26, 1-5 (1970).
6. Helstrom, C. W., Minimum mean-square error of estimates in quantum statistics, Phys. Lett. 25, 101-102 (1967).
7. Helstrom, C. W., Quantum Detection and Estimation Theory, Academic Press, New York, 1976.
8. Hicks, N. J., Notes on Differential Geometry, Van Nostrand, Princeton, 1965.
9. Holevo, A. S., An analogue of the theory of statistical decisions in non-commutative probability theory, Trans. Moscow Math. Soc. 26, 133-149 (1972).
10. Holevo, A. S., Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam, 1982.
11. Ingarden, R. S., Janyszek, H., Kossakowski, A., and Kawaguchi, T., Information geometry of quantum statistical systems, Tensor 37, 105-111 (1982).
12. Marshall, A. W. and Olkin, I., Inequalities for the trace function, Aequationes Math. 29, 36-39 (1985).
13. Mori, H., Transport, collective motion and Brownian motion, Progr. Theoret. Phys. 33, 423-455 (1965).
14. Nagaoka, H., A new approach to Cramér-Rao bounds for quantum state estimation, IEICE Technical Report, 89, No. 228, IT89-42, pp. 9-14.
15. Naudts, J., Verbeure, A., and Weder, R., Linear response theory and the KMS condition, Comm. Math. Phys. 44, 87-99 (1975).
16. Petz, D., Entropy in quantum probability I, Quantum Probability and Related Topics VII, World Scientific, Singapore, pp. 275-297.
17. Petz, D. and Toth, G.: work in progress.
18. Umegaki, H., Conditional expectations in an operator algebra IV (entropy and information), Kodai Math. Sem. Rep. 14, 59-85 (1962).
19. Wehrl, A., General properties of entropy, Rev. Modern Phys. 50, 221-260 (1978).
20. Yuen, H. P. and Lax, M., Multiple-parameter quantum estimation and measurement of nonselfadjoint observables, Trans. IEEE IT-19, 740-750 (1973).

[^0]: * This work was supported by the Hungarian National Foundation for Scientific Research, grant No. 1900. Authors’ e-mail addresses are: H1128PET@ella.hu and TOTH@zodiac.rutgers.edu.

