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1. Introduction and preliminaries.

Let #?=4%~ denote the vector space of spherical harmonics of order p=1
on the Euclidean m-sphere S™, m=2. We think of a spherical harmonic as a
degree p homogeneous harmonic polynomial in m+1 variables or as an eigen-
function of the Laplace-Beltrami operator AS™ with eigenvalue A,=p(p+m—1)
(obtained from the polynomial by restriction to S™). A map f:S™—Sy into
the unit sphere of a Euclidean vector space V' is said to be a A,-eigenmap if all
components of f belong to 47, i.e., for y=V*, we have p-f=4?. (Note that
a Ap-eigenmap is nothing but a harmonic map with energy density 4,/2 [2].)
f:S8™>Sy is full if the image of f in V spans V. In general, restricting to
span im fN\Sy, f gives rise to a full A,-eigenmap that we will denote by the
same symbol. Two A,-eigenmaps f,: S™—Sy, and f,:S™—Sy, are equivalent
if there exists an isometry U : V,—V, such that f,=U-f,.

The universal example of a A,-eigenmap is given by the standard minimal
immersion f; ot S™—S4» defined by

n(a 5

Fr )= 3 fi(0f,,
i=0

where { ﬁp}}‘éép’Cﬂ{p is an orthonormal basis with respect to the normalized
L,-scalar product

’ _ n(lp)—iﬂl 7 m
Chy By = s | b vsm. W

Here vgm is the volume form on S™, vol(Sm)zgsmvsm is the volume of S™ and

—1!
n(A,)+1 = dim 47 = (2P+m_1)@%?m_l—z.1—)!° @

fa 0 is clearly full and does not depend on the orthonormal basis.

fa » is universal in the sense that, for any A,-eigenmap f:S™—Sy, there
exists a linear map A: 47—V such that f=A-f; » Clearly, A is surjective
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iff f is full.
Associating to f the symmetric linear endomorphism

(o1, = ATA—IeSHa?),  (I=identity)

establishes a parametrization of the space of equivalence classes of full A,-
eigenmaps f: S™—Sy by the compact convex body

L, =1{C€&;,1C+I120} (3)
in the linear subspace

&:, = spanif 1 (x)Of 1 (x)| x €S} CSAHP). 0

Here ‘=’ stands for positive semidefinite, ‘®’ for the symmetric tensor product

and the orthogonal complement is taken with respect to the standard scalar
product

n(dp)
(C, €= 3T<Cf, C' e, C, CraS ). (5)

Lz, is said to be the (standard) moduli space of A,-eigenmaps. (For more details
as well as for the general theory of moduli spaces, cf. [6].) The classification
of A,-eigenmaps raised in [2] as a fundamental problem in harmonic map theory
is thereby equivalent to describing .L; o

fa » is equivariant with respect to the homomorphism p; pt SO(m+1)—
SO(47?) that is just the orthogonal (SO(m+1)-)module structure on 4* defined
by a-h=hea™?, a=SO(m+1) and h=4P?. Equivariance is given explicitly by

fazca=paa)fi,, asSO(m+1). (6)

&, is a submodule of S%«?), where the latter is endowed with the module
structure induced from that of 4?. Moreover, .[; €1, is an invariant subset.
Explicitly, for a full Rp-eigenmap f:58™>S,, we have

a{for,=<fea"D2,, asSO(m+1).

The work of DoCarmo-Wallach gives the decomposition of S H?®xC)
into irreducible components. We have, for m=3:

S(APQrC) = _ 573 S @)

(a,b)elAP; a,beven

Here A*PC R? denotes the closed convex triangle with vertices (0, 0), (2p, 0) and
(p, p)and V1 ev, [=[|(m+1)/2|], stands for the complex irreducible SO(m-+1)-
module with highest weight vector (a,, -:-, a;) whose components are with
respect to the standard maximal torus in SO(m+1). (Note that, for m=3,
V2,009 means V{*PPHV> ) Moreover, 8;p®RC is nontrivial iff m=3 and
p=2 and, in this case, it consists of those components of the symmetric square
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that are not class 1 with respect to (SO(m-+1), SO(m)). Hence the decomposi-
tion of &; p®RC is obtained by restricting the summations above to the sub-
triangle A°PCAP whose vertices are (2, 2), (2p—2, 2) and (p, p).

Since A?CA?* we may think of 83p®RC as a submodule of 81p+1®RC. In
view of this, it is natural to ask whether .£ 1, can be equivariantly imbedded
into .[; pt1’ One objective of this paper is to give an affirmative answer to
this question. The importance of this imbedding is twofold. First, as ex-
plained in [5], the complexity of (the -boundary of) £, » increases rapidly with
p so that knowing the moduli space for low values of p (e.g., for m=3 and
p=2, cf. [4]) we gain an insight as to what happens in the moduli space for
higher values of p. Second, our explicit construction of the equivariant im-
bedding that we are about to describe gives a whole new series of concrete
examples for A,-eigenmaps for higher values of p.

A homothetic immersion f:S™—S, is minimal iff it is a (harmonic) eigen-
map [2] For minimal 1,-eigenmaps the homothety constant is 1,/m. Thus
adding the condition

FuXO1 =221 %, ®

for any vector field X on S™, to those of £ 1, defines the subset
ﬂhp C .f]p

that parametrizes the equivalence classes of full minimal A,-eigenmaps. More
precisely, we have [5]:
M, = L2,NFz,,
where
F;, = span{f«(X) Of (X)7| XeT(S™)}+

is a submodule of 81pCSQ(JI{P). Here™ : T(R™*)—»R™* is the canonical map
that translates tangent vectors to the origin. It follows that the moduli space
M2, for minimal immersions is also a compact convex body. DoCarmo and
Wallach [1][8] showed that &, is nontrivial iff m=3 and p=4 and, in this case,
we have
F,Q:CD 3 (o000, ©)
(a,b)EAg;a,beven

where A?CA? is the subtriangle with vertices (4, 4), (2p—4, 4) and (p, p). They
conjectured that the lower bound in (9) is actually sharp, i.e. that the modules

Vabpomo, =1, ., p—-1, (10)

corresponding to the base of A? are not components of &F; p®RC'
In the second part of the paper we show that the construction for eigen-
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maps preserves minimality and thereby gives an equivariant imbedding of
Ma, into M, P Using the adjoint (of the module extension of this imbedding),
we prove that, for m=3 and for any p=4, the first three in the sequence in
(10)

ViZ.r2)’ V‘§4,12) and Viﬁ.tZ)

are not components of ¢ 1P®RC which is a step towards the positive resolution
of the conjecture.

2. Raising and lowering the degree.

Let H denote the harmonic projection operator [7]. H is the orthogonal
projection from the vector space of homogeneous polynomials in m+41 variables
of a given degree onto the linear subspace of harmonic polynomials.

Let f:S™—S, be a 1,-eigenmap. We define

. PM+1 (M+1¥(n+1)
fF:R™ —s R

as follows. The components of f* are given in double indices /=0, ---, m and
].:O) N by
. . s _of’
(F*Y=ctH(x:f7) and (f7)= Coa (11)
where
2p+m—1 1
+ — i —
cy = prm—1 and ¢3 VP Fm=D " (12)

PRrROPOSITION 1. We have
ft(Sm) C SemEn(ntd-1
so that the restrictions f*:S™—SMD®LL gpg 2. -eigenmaps.

Proor. By the harmonic projection formula (or elementary computa-
tion), we have

N . i P af7
H(xifj)_xzf] maxi,

where p?’=2X7%,x;. Homogeneity of the components f’ has two consequences.
First, we have
m afJ )
s == J
i§0 xzax,; pf )
Second, since f(S™)CS", we have X7.f7)*=p®” as polynomials. Applying the
Laplacian A=AF""'=31" 5%/0x% to both sides and restricting to S™, we obtain
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m n s0f7
3 B = res+m-n) 13)
and the statement for f~ follows. Using these, we compute (on S™):

m n e m n - 1 asz
E)EH(xff) = E’g]o(xif’ 2wp+m—15xi)

. 2 ™ af’ 1 m o gf7
=1- 2p+m— lEfjg' (2p+m 1) %E(ax>
—1— 2p T p _ ptm—1

2p+m—1"2p+m—1" 2p+m—1
and the proposition follows.

REMARK. f* are not full even if f is. As in Section 1 we will also

denote by f* the full 4,.,-eigenmap derived from f* by restriction.
We now define

d)*—“:‘flp'—>“£1pt1
by

0. ({f52,) = Dapurr (14)

where f:S™—Sy is a full 1,-eigenmap. (Note that the definition makes sense
since f, is equivalent with f, implies that f% is equivalent with f3.)

@, is the equivariant imbedding mentioned in Section 1. To show injec-
tivity of @, it is, however, more convenient to change the setting and define
®. in terms of the moduli space only. This we will do in the next section.
In the end of Section 3 we will show that the two definitions agree.

We finish this section with the following proposition that will be a useful
computational tool in the sequel.

PROPOSITION 2. For he4P* and h'= HP, we have

oh
<ax1 h > = pplh, H(x:h' Y pir,
where

2p+m 1

= (+D

PROOF. Homogeneous harmonic polynomials of different degree are L.-
orthogonal. Using this, the harmonic projection formula and (1) we compute:

<37hz h'>p - %gsmg%

n(lpH—l
~ vol(S™)

h’vsm

LG_h Tyem
ol(STy P )Ssm2p+m—18x,-h vs
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— "%Z?;; (21)+m—l)gsm(xih——H(xih))h’vsm
_ %%(Zp—l—m—l)gsmhxih'vsm

- %(2p+m—l)ssth(xih’)vsm

- %(2p+m—l)<h, H(x " por.

Using (2) the constant becomes p, as above.

3. Realization in the tensor product 4'®.4*.

A convenient SO(m+1)-module in which we encode all the data of both
moduli spaces .£; pe1 (in terms of the degree raising and lowering operators) is
J1RIP. Indeed, JHP=' are both submodules of H'RHP?. To see this, let

[ HPE —> j[l@j{p
be defined by
_om oh o
5+(/’l)—— Eyigahx;, hed
and
()= R y@Hk),  hEHT

Simple computation shows that ¢, are module monomorphisms with respect to
the tensor product module structure on J'QHP.

PROPOSITION 3. On 4P*', we have

tlet. = d3l,
where

v = (H2\ S
dpm(c;) and dp = (ycs

PROOF. Let he 4P+ and %oy:Qh; = H*QIHP. Using [Proposition 2, we

have

(em, By@n) = B W) =y Bk, Hxehdre

i=0

1

= (, s B Hxeh )

D+l
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so that
(2 5:®he) = o 2 H(xiho). (15)
Combining this with ¢,, we obtain
m oh m oh
To == T . —_— = y —
Geel) = (55, ) = m S H(xg))
=pp(p+1H(R)=p,(p+1)h .
Comparing the constants in (12) and in [Proposition 2, we get

polp+1) = <1>+1)2?3f—’"——1 (L2)

+
-1 7

which completes the proof for ¢,. The verification for ¢_ is similar. For future
reference we note that

T m . 1 m ahl
“'( Eoyi@ht) T oo 1§) 0x; (16)

We now turn to the standard minimal immersion f; ot S™—S4r and define

m a(dp ) .
fr0 =t 3 BG4 X @, (17)
and |
m ndp)g f %

fix)=¢e3 2 2 (x)yz®fx,, (18)

By [Proposition 1, f%,: S™—S4leu? are A,.;-eigenmaps.

PROPOSITION 4. ffp are standard, i.e. equivalent to f,

px1’

ProoOF. Since ¢. is an isometry up to a constant multiple, it is enough to
show that

([ 2,.,(%)) = N/Effp(X) , xreS™. (19)
Using again [Proposition 2 and [(18) for x=S™, we have
n(R -

¢(fap-,(x) = 2 ffz,, ()e(fhyy)

n(lp 1)

= 2 fzp 1(?6)2 yt®H(xiflp 1

=0

n(dp-1] m n(
= 37,03 S Hxafs D99 ®F4,

i=0 Jj=0



186 G. TotH

ln(Z_) mn(l)af ]
= 3 S0 B (52 ), yOF,

mn(l)
=L 3T e, = o,

ﬂpl"’f— p-1Cp

The computation for ¢, is similar and hence is omitted.

REMARK. A different (and somewhat less explicit) proof can be given by
using the fact that equivariant eigenmaps are standard. (In fact, an eigenmap
is equivariant iff the corresponding point in the moduli space is left fixed by
SO(m+1). However, &; » has no trivial component.) To check equivariance,
for a=SO(m+1), we compute (using (6) and [17):

m n(i,)
fifan =3 B HoxfiXan)» @74,

m 7CA g 2

=c E P p (ax):f? Sax)— Z—j_)Tpm—l anp(ax))y ®fxp
m nQp ) )

= CZi Eo 3 aiH (x4 f7,°aXx)y:Qr%,

nlyp
AE 2 (G)sz(xkfﬁp)(x)(a_ly)k@)ffp

0

»°

m n(a
=3 _2 H(xa f3, XxXa 9 @(fL,0a™)
= a-f1(x).
We have concluded above that 4P*! are components of H'QH?. To com-
plete the picture, we claim that

IRHP = HPHPHPIDA, (20)
where

={5y@pddca? and gt 3 Augi=0,i=0, -, m}

is an irreducible submodule. Here
0 0

Ay = Xpn——Xin—

ik X kaxi X axk
is the infinitesimal rotation in the (x;, x;)-plane. That X is an SO(m-+1)-
module is a straightforward computation. (In fact, using the commutation

relations of the infinitesimal rotations, so(m-1)-invariance follows easily.) To
show that X is nontrivial, let ¢,=%?, i=0, -, m, be such that 27 ,0¢;/0x;=0
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Then

3¢ 517 5

is a (typical) element of X. (Note that this is nothing but the projection of
20y QPiEc (HP71)* onto K.)
X is orthogonal to 4P*!. Indeed, for X7%,y:X¢;= K, we have
m 6¢i . 3

i= Oaxi 1,

so that 372,0¢;/0x;=0. Similarly:

3@ S Hexgn)

~ 3 s (Aagn=p+m-1 5 32

éH(x@i) = - ZIE:OH(xiAki¢k) = —PgH(xiqSi)

and hence X%, H(x;¢;)=0. Now orthogonality is a simple application of Pro-
position 2.

Finally irreducibility of X can also be obtained by elementary computation.
Note however that using the DoCarmo-Wallach decomposition of the tensor
product [I], we have

1,0, 0 L0 e 0) A 1,0, 0 —1,0,+,0 ,1,0,:,0
VS ORV RO = VR OBV P 0@ By 00

Comparing this with we see that XQpC=V #1109,
We now define
D.: SH(HP) —> SHHP*)
by

P.(C) = —elo-(IQC)et. . (21)

Clearly, @. are module homomorphisms.

THEOREM 1. We have
D.(E1,)C &y,

and
@:(-L'Zp) cC "L’Zp:tl .

ProoOF. Using [17) [(19) and (21), we compute
S Z(ON ST O) FINED ERL NI FINEINN FINNKE e
= }g«I@cmnw(x», (1
= URCI 1,(x), f1,(xDp
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m  nldpd

=(c3) = Z H(xzfz )H(xkfz

1, k=0 j

X<URC)y® [, yk@fzp
m BCdp

= (e 3 3 Hx fi) Hx 3 XC T, £

m n(dy)

- (C+)2 Z C]lH(xzflp)H(xifl

m n(lp) ) 1 af.}
_ 2 ) ) - = 7P
=(cr 3,2 en(xefd, w195

1 of}
L __ - 7
X(xif’zp 2p+m—1 axi>

m nlip) ) 2 af

= g |2, (el gy onfhrigy”

1 of4 afz)
<2p+m 12" 5%, 0x:

. +\2 Zp
= (cp(<CFa,(x), Fa = gy

1
mA<Cf1p, f1p>(x))-

Assuming Ceé&; » by (4), this is zero so that @,(C)e&;, e The computation
for @_ is simpler and hence is omitted.

XLCFa,(x), fa (x)>+

To prove the second statement, we first note that, by (3), Ce.ﬁ;p iff
Ceé,;, and C+I1=0. Assuming this and using for heyrt, we
have

(DACY+Dh, hypey = 55 (USCHDealh), elh)
»

= - UG(CHDea(h), ()20
»

REMARK. Using an easy computation shows that, for x=S™,
we have

0.(f1,()Of 1,060 = (¢ 33 Hxef 1, NWIOH xef 3,)x)

and
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9f p(x) .

013,01 1,00) = (5 5 L2 ()0
We now show that @. are adjoints of each other (up to a constant multiple).

THEOREM 2. For C&S*J4(P) and C'&S¥HP*), we have

21)+m -1
p+m

ProoOF. Using (5), [Proposition 2 and [(16), we compute

P.(0O), C") = <G D_(C').

(D,(C), C’> = 7}?«10(1@@% cry

1 n(a p+1?

= @ ; (IoURC)t)f b iy C' Flprrdpn

= —C—il%'n(:é:‘) é)<(1®c)(yi® g;l’:l)’ (+(c'f5p+1)>

B 1 nlp41) o 3f§p+1 0 r £l
SRR (c(F522), gtCrshn),

1 *@p+p "lp) m aff1 g ] ) L
S S5 ) (CFi 3 (C1),

d}y =0 j=o i=o

1l
=
M
1Ma
S

p+1? H(xiflp)>p+l

m n(ip)
= #r 5 2=J <Cf1p, Py (C’H(xzfﬁ,,))>

Ay

3 (Cfl,, CoU@C2(4,0

P+1

and the statement follows.
THEOREM 3. @, is injective (and hence @ _ is surjective).

ProOF. By it is enough to show that @_ is onto. We begin
by considering the differential operator

D=3

p+1 P+l b4 b2
axiayi S HPHRQHPH ——> PRI
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defined by
, oh _ohn'
Dr@h) = & < oay,®axi'
Write C=S*(4?+) as
n(lp.,.l)
i 20 cjlflp+1®f1p+1 j[p+l®’-4[p+1

Applying D to this we obtain
é n(2p+y1) af2p+1 ®af5p+1

0 ji1=0 0x;

= 5’3"(.251’ é’c@%— i) <af e g ) fL@,

t=0 j,l=0 r,8=0

ﬂ(3p+1) n(dp)

#fa i > 2 Cﬂ(fpo, H(x; fzp)>p+1<fzp+p H(xtf2p>>p+1f.2 Kf.

=0 j,l1=0 r7,8=

m "2y

13 3 CHGS) Hxf 4D 5,015,

i=0 r,8=0

Il

m

n(lp) a .
=13 B (o CHG S, 13,) 1,83,
Rewriting this as an element of S%4?) it follows that
m g
D(CYR) = pp 33 5= CH(xih)),  heai®.
i=00X;

On the other hand, using and (21), for h=.4?, we have

1 (IR Ce-(h)

p+1

P_(C)(h) =

= —=—(IQC) E 3. @H(x:h)

dpﬂ

= = ( 2 9 @CH )

p+1

1
- ,;,,d;m oa G Cxch).

Combining these with [Proposition 3, we obtain

1
(cpei)?

According to a result of DoCarmo-Wallach [1], D is onto and this finishes the

D(C) = _d_(0).
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proof.

Finally, to complete the circle, we show that the definitions of @. given in
Sections 2 and 3 ((14) and (21)) are the same on .[; >

THEOREM 4. Let f:S™—>Sy be a full Ap-eigenmap. Then @. defined by
(21) satisfies (14).

PROOF. Write f=A-f 2, Where A: 4P—V is a linear map. Choosing an
orthonormal basis {e;}7,CV, we have

n(2 5

fj': 12 aﬂfip-
=0

Applying the raising and lowering operators *, we obtain

n(A )

(= B anfi)

Viewing f* as maps f*: S™—S gy (cf. and [18)) and using this latter
equality translates into

72 = URA1, = i IQAuT1,.).
y

Finally, by the definition of parametrization of the moduli space, we have

{f*par= %cI(I(X)A)T(I@A)zi—]
p

= 1 IURATA~ Dy
dz

- (D:(<f>p) ’
where we used and (21). The proof is complete.

4. Minimal immersions.
Our main objective in this section is to show that
O.(H1)C I, (22)
By we can use the definition of @. given in [14).

THEOREM 5. Let f:S™>S™ be a full (homothetic) minimal Ap-eigenmap.
Then f*: S™—Sm+M+D-1 gien by (11) and (12) are (homothetic) minimal Ap..-
eigenmaps. In particular, (22) holds.

REMARK. For p=1, f~ is constant.
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PROOF OF THEOREM 5. We first claim that f* is homothetic with homo-
thety 4,41 /m iff f_ is homothetic with homothety A,_,/m. In fact we show

that, for any vector field X on S™, we have

(P+m—=DIfE1* = m—DI XI*+(m+3)| f(X1*+ 0| fR(X)]*. (23)

Comparing the homothety constants, the claim will then follow. Turning to the
proof of using the harmonic projection formula and X7,x;X*=0, we

compute
p+m—1 Cmoa s dHG) o,
33wt (RO = 5 B[ 52500
. m n m a ) ‘02 a_]fj
= 8 380 gitnmion)

¢ k=06xk

= % %[ff)‘{'i+x ﬁa_flj(k
1

m a2ff 5012
_2p+m——lk§0 axiaxk X ]

= |XI*+ 1 £ + g o)

p+m—1

2 omor L 0 Lo,
2p+m—1 i,%:o Jgof] 0x.0x, XX

2p+m—1i=0 j=o\r=0 0x,
m azfj < s
X(Eo’” 0x:0x5 X )
For the last but one term we have
Z Z azfj v iY k < ni a_fi ViYk
1§=0 E)fj axiaxk XiXE = tk2=0 Eax,<ﬂaxk>X X
— 5 5000 gug
i, k=0 j=0 axiaxk
—_ _1_ & o 2P\ VWi Xk
2 t.k2=o 0x:0% s (P XX
n m afJ v \2
-5(25:%)
= DX I f LD

For the last term we use homogeneity to obtain

p=1
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m n m of . m 0%fi 0
Z E(’r i XT)<2 xiaxi;xs ) (p= 1)2(1 oaf )
= (p—=DIf(X)]*.

Putting these together follows.
It remains to show that f~ is homothetic. To do this, without loss of

generality, we may assume that X is conformal. Using quadratic extension of
X to R™*!, this means that

X = p?A—<A, x)x, AcR™.
To simplify the notation, we introduce the gradient vectors (on BR™*!):
Fi=grad f/, 7=0, -, n
Using this, (12) and homogeneity, we have (on S™):

pepm-nir0r =5 5 |(0),
i=0 j=0
oo oFJ f
=8 2G40 050)
. m n -7 >2 ._1)2<A 2% n (afJ
_1=20 J§o<3xt +(p ’ x> =0 ; )
m n aFJ af]
—2p—1XA4, 2 3 355 A -
Using the last sum here rewrites as
m n [oF7 afJ m n aZfJ afJ
325G = B B on
m m afJ
; axk[g g:(ax)]
p2p+m—1) ﬁap e e
2 k=0 X o=1

= p(p—12p+m—1)XA, x> .
So that we obtain

pepEm=DIfFO = 5 B3 4V —pp-1r@pEm—14, Bt (20

It remains to evaluate the first term on the R.H.S. of (24). To do this we
write the homogeneous extension of (8) in coordinates as

>0

B, K> =207 R, (25)
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For the L.H.S. of this equation we have

2<Ff Xy = 2[p2<F’ A>—pLA, x>
= p4§<Fj, AYi+p20%P<A, x)°

—2p0*A, x> 3P, A)f.

For the last term here we have

f
6x1

p

? BxI
= pp*P VA, x> .

éo@v, A>ff: o i g

- 2

Combining these with we obtain

v

SYCFY, Xy = p* 1 CFY, A —pPp®P (A, 1)
j=0 J=0

= p_(____p—l-?;n—l) 0P (p*| AI*—<A4, x>%).
Rearranging we finally have
L i 2 p(p_l_m_l) 2(p-1) P) P(p—lxm_l) 2¢(p-2) 9
B, At = BT RS g A A B gt 4, e

We now take the Laplacian of both sides. Using the formula
A(P*P~2CA, x58)|p=1 = 2| AI*+2(p—2)2p+m—1){(A4, x)?,

we obtain

5 5

i=0 j=0

axi’ m

i p(p—1)Np—2)(m—1)2p+m—1)

m

(A, x)>2.

Combining this with (24), we get

pCp+m—1)| fx(X)|* = pCp+m— 1)2171

(1AIP—<A4, ©%).
which completes the proof.

REMARK. As H; p Sbans G, , it follows that
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(Dt(%p)c:%pﬂ.

COROLLARY 1. Assume that for fixed m=3 and p,=4, equality holds in (9).
Then, for p=po, the modules V@i &% 0CSY4?), =1, -, po—1, are not com-
ponents of F 1p0®RC.

PRrROOF. By the homomorphism

p-Dp .
(@) P0: &5, —> 8,12,0
is surjective and hence the kernel of its complexification consists of the modules
V@800 with (a, b)cAP\NAP, a, b even. If, for some /=1, ---, pp—1, the
module VE4:2%% were a component of F; p®RC then, since (2/, 2, 0, ---, 0)

SAPo, (Q_)P-Poy ELE 0O/ (22040 and go it would also be a component of
F1, ®rC which is a contradiction.
0

Muto has shown that, for m=3 and p,=4, equality holds in (9) [3]. Hence
we obtain the following

COROLLARY 2. For m=3 and for any p=4, the modules
ViZ,tZ) V£4.t2) and ViG,iZ)

are not components of F; p®RC'

5. Range dimensions.

Returning to the general situation we now study the distribution of values
of the range dimension n of full i,-eigenmaps f:S™—S™. To emphasize the

dependence of n on f we put n=n(f)=n({f>, p). Since rank A=rank (ATA), for
any matrix A, we have

n({fr )+l =rank {f>i,+1).

PROPOSITION 5. The map @, : .L; oL 2 does not decrease the range di-
mension, or equivalently, for any full Ay-eigenmap f:S™—S", we have

n(f) = n(f*).
(Here f* is considered to be full).

ProoF. Since f is full its components f° ---, f” are linearly independent.
Thus it is enough to show that, for fixed £=0, ---, m, the polynomials

H(xef%), =5 H(xsf")
are also linearly independent. Assume that

é ciH(x:f7)=0, c¢;€R, j=0,-,n.
j=0
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Setting h=2)7_,¢;f’, we obtain

. O Oh
H(xkh)—xkh 2f)+m—]. axk =0. (26)
We write
h(xo, *++, Xn) = xFh' (X0, ===y Zry 5 Xm)FA"(Xo, s Xm),

where the monomials in 4” contain x, with degree <g¢. Substituting this into
and comparing the coefficients of x{*!, we obtain that A’=0. This means
that h does not depend on x, and so, again by it must vanish. Hence
¢;=0, j=0, ---, n, and the proof is complete.

The interior of the moduli space .£; p corresponds to those full 1,-eigenmaps
f:S™—=S™ for which n(f)=n(f1p)=n(2p). Hence the boundary of L2, can be
written as

8.£‘1p = {Ceé’;p[rank (CH+DH<n(Ap)+1}.

We now study the restriction of @, to 0.L; o Clearly, if f:S™—S" is a full
ip-eigenmap with (m+1)(n+1)<n(2p+1)+1 then @, maps <{f>;,€0L;, to a
boundary point in 0.L,,,. (Asanexample, take the Hopf map f:S*—S* which
is quadratic, i.e. p=2.) For higher range dimensions however @, can well
map boundary points of £; » into the interior of .L; o+ s the following result
shows.

THEOREM 6. For any full 2,-eigenmap

f:8™ — Sriédp-1 m=3,

we have
¢+(<f>1p) € int -Cxpﬂ .

PrROOF. If the statement were false then there would exist a nonzero
he 4P+ such that
<h, H(xifj)>p+1 =0

for all /=0, -, m and j=0, ---, n. By this is equivalent to
0h/0x;, =0, ---, m being orthogonal to span {f’|;j=0, .-, n}. By assumption
the latter is of codimension one in 4” so that we have

oh oh
T T= e == Ay
a°axo 0% m @7)
for some nonzero constants a;=R, :=0, ---, m. Taking partial derivatives, we
obtain
0%h 0°
03*672 = aﬁé-x—g, z, k=0, ,m
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By harmonicity of #, we then get

0h
a2 =0
for all :=0, ---, m. Equivalently, for fixed £2=0, ---, m, we can write
h(x(!) tty xm) = xkh,(x()y ttty -fk, Tty xm)+h”(x0) Tty xk’ Tty xm)-

Substituting this into the Euler equation (using [27)):

ah ah m Xi
Drg, =t B, =@+hh

and comparing the coefficients of x; we obtain h=0.

REMARK. According to a result in [6], for m=5 and p =2, full A,-eigenmaps
f:S™—SrAp-1 exist.

REMARK. The intersection of £; ,, with the cokernel of @, corresponds
to Apii-eigenmaps f:S™—S"™ with higher range dimension n. In fact, by
for such maps f, we have {f>;_ , Eker @_ and so

O rap) = F D2, =f1 .01, =0.

In particular, 0f7/dx;, =0, ---, m, =0, ---, n span 4?. A necessary condition
for this is

n(4p)+1

n(f)+1z= mrl
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