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Abstract

We show, by a Baire Category argument applied to the parameter space of all
minimal immersions between spheres, that linearly rigid minimal immersions
abound for sufficiently high degree.

1 Introduction and Preliminaries

It is well known that a (full) homothetic immersion f : ™ — S™ between
Euclidean spheres is minimal iff the components of f are (linearly independent)
spherical harmonics on S™ of a fixed order k, or equivalently,

Af = Mf,

where A = k(k+m—1) is the kth eigenvalue of the Laplace-Beltrami operator
A on S™. In this case, k is said to be the (algebraic) degree of f. The metric
induced by f on S™ then has (constant) curvature m/A;.

The universal example is given by the standard minimal immersion
f/\k 15" = 57 *a)

whose components comprise an orthonormal basis {f} N :'=(?,") in the space Him
of spherical harmonics on ™ of order k endowed with the normalized L?-scalar
product
no_ n(A) +1 ', ' k
(1, b} = vol (™) ./sm py' - vem, pypp € Hgm,




where (m+k—2)!
= dim Mk, = _\mrE—4f
n(A) +1=dimHgm = (m +2k - 1) e
Here f», is universal in the sense that, for any full minimal immersion f :
S™ — 8™ of degree k, we have

N f=A'ka

for some (uniguely determined) (n+ 1) x (n(As) + 1)-matrix of maximal rank.
The Do Carmo-Wallach parametrization associates to f the symmetric matrix

(Fa, = ATA — I € SHRONHY),

where I is the identity. Two full minimal immersions f' : S™ — S" and
f" : 8™ — 8" of degree k are said to be range (resp. domain) equivalent if
there exists U € O(n + 1) (resp. a € SO(m + 1)) such that " =U - f' (resp.
f'=foa). Hf'=U-f oafor some U € O(n +1) and a € SO(m + 1)
then f' and f” are said to be equivalent. Clealy, (f)a, depends only on the
range equivalence class of f. As in [2,6], we obtain that the space of range
equivalence classes of full minimal immersions f: 8™ — S of degree k,
(hence n < n())), is parametrized by the compact convex body

LA,‘={CE.F.A*|C+IZO}, (1)

where the linear subspace F), C S?(R"*)+?) is the orthogonal complement
of the set of all projections

proj [(fn)(X)] = (Fn)e(X) - (fr)e(X) € SR W), X € T(S™).  (2)

(Here, (fx,)=(X) is shifted to the origin of R+ and . stands for the sym-
metric tensor product.) By birth, fy, : §™ — S*M) is equivariant with
respect to the homomorphism py, : SO(m + 1) = SO(n(\) + 1) that is just
the orthogonal SO(m + 1)-module structure on Him & R(*)+1 where the
isomorphism is given by the orthonormal basis chosen for fy,. Taking the
symmetric square of the representation given by p,,, we obtain that F), is an
SO(m+1)-submodule of S(R™*)*1) with L, C Fj, an SO(m +1)-invariant
subspace. In fact,

a- (f)kh = (f oa—l)kn a€ SO(m-l- 1)' (3)

In particular, the SO(m + 1)-orbit of (f),, corresponds to those full minimal
immersions that are (domain) equivalent to f. A full (minimal) immersion




f: 8™ — S™ of degree k is said to be linearly rigid [2,6) if whenever A is an
(n+1) x (n + 1)-matrix that satisfies A(f(S™))C S"and A- f: 5™ — S"is
a homothetic (minimal) immersion (of degree k) then A € O(n +1). Linear
rigidity, when applied to f),, is clearly equivalent to £, = F», = {0}. For
m = 2, linear rigidity of f, was proved by Calabi in [1}. Do Carmo and
Wallach [2,6] showed that f, is linearly rigid for k < 3. Finally, they also
proved that, form > 3 and k 2 4, £, is not linearly rigid. More precisely, for
m‘_>_ 3, we have

k k=1
Fy, ®r C D S(Ha) (L Hen 0 Y Vit = X Vi
j=1

j=0 (a,b)€d, abeven

as SO(m + 1)-modules, where A C R2 is the closed triangular domain with
vertices (4,4), (k, k) and (2k —4,4). In these formulas we use standard termi-
nology in representation theory, namely, V.;O(m +1) is the complex irreducible
SO(m + 1)-module with highest weight p (whose components are with respect
to the standard maximal torus) and, for the moment, the spherical harmonics
are complex valued. In particular, by the Weyl dimension formula, we obtain

Ly = dimPy > Ln(h)+ 10W +2) ~ 33(a0x) + 1)
j=0

k19j—-1 2j4m

— S(m+1)(m—2) n(h) +1).  (4)

Remark As shown by Muto [4] the lower estimate is sharp for m = 3 and
k = 4, i.e., in this case, dim £), = 18.

The purpose of this paper is to show that linearly rigid minimal immersions
abound.

Theorem 1 Let m > 3 and k > 4 and assume that

A .
(n(M) + D)(n(M)+2) > (n(M) —m)m(m+1) + 2) + 22(11(/\2,') +1)

§=0
Aloj-1 25+m
J.=,2j+12j+m--2‘

+ (m+1)(m-2) n(Az;) + ()
Then there ezist R, mutually inequivalent full linearly rigid minimal immer-

sions f : S™ — S™ of degree k. Moreover, for each m > 3, there ezists
k(m) > 4 such that (5) holds for k > k(m).




Remarks 1. The last assertion of Theorem 1 is clear. If fact, for fixed m > 3,
all the terms in (5) are polynomials in k with positive coefficients. The left
hand side of (5) is of degree 2(m—1) and, on the right hand side, the first term
is of degree m — 1 while the second and third are of degree m. In particular,
as easy computation shows, k(3) = 7.

9. Similar result can be obtained for harmonic As-eigenmaps f : S™ — S
(dmitting the condition that the maps are homothetic immersions [3]). By
contrast, note that, for m = 8 and k = 2, up to equivalence, the only full
linearly rigid Ax-eigenmap is the Hopf map f : $* — 5? (and its ‘dual’) [5])-

3. For further explicit examples of A3-eigenmaps consider the case m = 4 and
k = 2. Let S* be the unit sphere in C? x R with coordinates z,w € C and
te€R. Define f: 54— S"and g: S* —» S* by

1 " V15 2 V15 5 [5
f(z,w,t) = (Z(Izl2 + |wl*) -, _4—(|Z|2 - |w*), —2—2“” \/;Zts \/;“’t)

and

V3
—2—z
Computation shows that f and g are both linearly rigid. (Note that g is the
gradient of a cubic isoparametric function on S* [3].)

B (%Izl’ — qwft + 2, X222 — 2ut, VB5w + 2t).

To prove Theorem 1, in §2, we introduce an SO(m + 1)-saturation on L),
with the property that the one point cells correspond to the linearly rigid
immersions. In §3 we then use an inductive argument with respect to the
dimension of the cells of the saturation of £, to get an upper bound for
dim £, provided that the cardinality of the saturation modulo SO(m + 1) is
< Ro. This, for k large, will contradict to the lower estimate of dim £, given
in (4).

2 The fine structure of the parameter space

Let f: S™ — S"and f': S™ — S™ be full minimal immersions of degree k
and k', respectively. f' is said to be derived from f, written as f' — f, if there
exists an (n' + 1) X (n + 1)-matrix A such that f'=A-f. In this case k = k.




b <)
Given a full minimal immersion f : S™ — S™ of degree k, we define
Ly={C' e FlC'+I2>0}, (6)

where the linear subs;iace Fy € S*(R"*") is the orthogonal complement of
the set of all projections

proj [£.(X)] € S*(R™), X € T(S™).

d
Clearly, we have £y, = £,, and Fy,, = Fa, and the argument of Do Carmo
and Wallach applies yielding that £; C F; is a compact convex body that
parametrizes the range equivalence classes of full minimal immersions S
5™ — §™ that are derived from f. Let

¢: SHR™1) — SHRWH)
be the affine map defined by
(C)=ATC'A+(f)r,=AT(C'+DA-1,C ¢ S*H(R"HY), (D
where f = A f,,.

Proposition 1 . is injective and maps F; into F,,. Moreover, we have

ULy) = UFy) N Ly,

Proof. f is full so that A is of maximal rank. Hence AT has zero kernel and
injectivity of ¢ follows. Given C' € Fy, for X € T(S™), we have

((C), Proj [(fn)u(X)]) = (UC)(Fr)o(X), (Fra)o(X)

((C"+ DSF(X), £ X)) = ((Frn)o(X)s (Fr)o(X))
= (C’, proj [f.(X)]),

where the last equality is because f and £, have the same homothety constant.

The second assertion follows. Finally, the third is obtained by comparing (1)
and (6) via (7).

For a full minimal immersion f : S™ — S™, we define

If = L([.;) C £,\,,




where the circle stands for the interior. Clearly, I; is convex and open in «(Fy)
and contains (f)»,. Then I; is said to be the cell associated to f. Its points
correspond to those full minimal immersions f' : S™ — S™ of degree k that
are derived from f, i.e. f' = A- f with A invertible. The cells Iy, for the
various f, give rise to a decomposition of £,, into mutually disjoint convex
sets that comprise the natural saturation I, = {I;|f — f,} of £),. One
, of the most important property of 7, is that when passing to the boundary
. of a cell the dimension of the range of the corresponding minimal immersions
strictly decreases. In particular, Iy, = L3, so that the natural saturation is
of interest only on the boundary 8&\,

The action of SO(m + 1) respects Z,,, in fact, by (3), we have
a-Iy =TI, a € SO(m+1).
We obtain that T, is an SO(m + 1)-saturation of £,,. By construction, a full

minimal immersion f : S™ — S™ of degree k is linearly rigid iff I is a one
point cell.

Two full minimal immersions f’ : S™ — S™ and f” : §™ — S™ of degree k
are said to be geometrically distinct if, for each U’ € O(n’+1), U” € O(n"+1)
and a',a"” € SO(m + 1), none of the minimal immersions

U'-flod’ and U f'od"

can be derived from each other. In terms of Z,,, this holds iff none of the
orbits
SO(m+1)-Ip and SO(m +1)- I

is contained in the other. In the special case when f’ and f” are both linearl;
rigid, f and f” are geometrically distinct iff they are inequivalent. Theoren
1 will therefore be proved if we show the following: :

Theorem 2 Assume that
dim £, > (n(A) — m)(dim SO(m + 1) +1). (8

Then the cardinality of the orbit space Iy, /SO(m + 1) is R;. In particular
there ezist R, geometrically distinct full minimal immersions f : S™ — S
of degree k. Moreover, there ezist R, inequivalent full linearly rigid minime
tmmersions f : S™ — S™ of degree k.




3 Proof of Theorem 2

Assume that Z,,/SO(m + 1) is countable. Since the interior of £,, is a cell
the set of SO(m + 1)-orbits of cells on AL,, is also countable. By the Baire
Category Theorem, at least one SO(m + 1)-orbit of a cell has nonempty in-
terior. Let (f1), be an interior point. Then f, : S™ — S™ is a full minimal
immersion of degree k¥ with n; < n(Ax) — 1. Moreover, we have

L3

dim £,, =dim(SO(m +1)-I;,)+1 < dimSO(m + 1)+ 1+ dimI;. (9)

We now take the set of SO(m + 1)-orbits of cells which lie on the boundary
0I;, = I, \ I;,. The intersections of these SO(m + 1)-orbits with dI,, give a
partition of 8Ij, into countably many subsets. Again by the Baire Category
Theorem at least one SO(m + 1)-orbit of a cell intersects 81y, in a set with
nonempty interior in 8Iy,. Let (f2), be an interior point. Then f; : S™ — S™
is a full minimal immersion of degree k with n; < n;—1 < n(Ax)—2. Moreover,
Iy, is contained in this intersection so that we have

dim I, dim(SO(m +1) - I, NI,)+1
dim(SO(m +1)- 1) +1
dim SO(m + 1) + 1 + dim I,.

INIA

Combining this with (8), we obtain
dim £, < 2(dimSO(m + 1) +1) + dim I,

and
n2 < n(l) — 2.

Repeating this, in the £th step we obtain

dim£,, < £(dim SO(m + 1) + 1) + dim I},

and
ng S n()\;,) - £

The procedure clearly stops in n(\;) — m steps yielding
dim £,, < (n(\:) — m)(dim SO(m + 1) +1)
which contradicts to (8).




To prove the second statement, choose geometrically distinct full minimal
immersions f, : S™ — S", ¢ € I, where T is of cardinality R,. For 0 € %,
choose a finite set A, C Iy, (C L»,) consisting of points that correspond to
linearly rigid full minimal immersions such that the affine span of A; is equal
to that of Iy,. The existence of A, follows easily by induction with respect to
the dimension of the cells comprising Iy, .

‘We pow claim that, for 7,0’ € T, o # o', we have A, # Ao, In fact, A, = A,
iff Iy, = Iy, so that fo and f,» are not geometrically distinct; a contradiction.
We obtain that the set {A,|o € £} has cardinality ;. Since the set of all
finite subsets of a countable set is countable, Usez A, has cardinality R;. The
proof of Theorem 2 is complete. i

Remark. The action of SO(m + 1) on £, has further interesting properties
that are related to the ones used in the proof above. It can be shown, e.g.
that the principal isotropy type is finite provided that £, is nontrivial. Fur-
thermore, it can be proved that the orbit of the center of mass of any cell Iy
is always transversal (in the weak sense) to I;. In particular, equality holds
in (9), provided that the orbit of the center of mass is principal. For m =3
this is actually the case for the top (5-)dimensional cell on the boundary of
the parameter space for A;-eigenmaps [5].
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