ON THE NUMBER OF RIGID MINIMAL IMMERSIONS BETWEEN SPHERES #### GABOR TOTH Department of Mathematics, Rutgers University Camden, New Jersey, 08102 U.S.A. #### Abstract We show, by a Baire Category argument applied to the parameter space of all minimal immersions between spheres, that linearly rigid minimal immersions abound for sufficiently high degree. ### 1 Introduction and Preliminaries It is well known that a (full) homothetic immersion $f: S^m \to S^n$ between Euclidean spheres is minimal iff the components of f are (linearly independent) spherical harmonics on S^m of a fixed order k, or equivalently, $$\Delta f = \lambda_k f,$$ where $\lambda_k = k(k+m-1)$ is the kth eigenvalue of the Laplace-Beltrami operator Δ on S^m . In this case, k is said to be the (algebraic) degree of f. The metric induced by f on S^m then has (constant) curvature m/λ_k . The universal example is given by the standard minimal immersion $$f_{\lambda_k}: S^m \to S^{n(\lambda_k)}$$ whose components comprise an orthonormal basis $\{f_{\lambda_k}^i\}_{i=0}^{n(\lambda_k)}$ in the space $\mathcal{H}_{S^m}^k$ of spherical harmonics on S^m of order k endowed with the normalized L^2 -scalar product $\langle \mu, \mu' \rangle = \frac{n(\lambda_k) + 1}{\operatorname{vol}(S^m)} \int_{S^m} \mu \mu' \cdot v_{S^m}, \ \mu, \mu' \in \mathcal{H}^k_{S^m},$ where $$n(\lambda_k) + 1 = \dim \mathcal{H}_{S^m}^k = (m+2k-1)\frac{(m+k-2)!}{k!(m-1)!}.$$ Here f_{λ_k} is universal in the sense that, for any full minimal immersion $f: S^m \to S^n$ of degree k, we have $$f = A \cdot f_{\lambda_k}$$ for some (uniquely determined) $(n+1) \times (n(\lambda_k)+1)$ -matrix of maximal rank. The Do Carmo-Wallach parametrization associates to f the symmetric matrix $$\langle f \rangle_{\lambda_k} = A^{\mathsf{T}} A - I \in S^2(\mathbf{R}^{n(\lambda_k)+1}),$$ where I is the identity. Two full minimal immersions $f': S^m \to S^n$ and $f'': S^m \to S^n$ of degree k are said to be range (resp. domain) equivalent if there exists $U \in O(n+1)$ (resp. $a \in SO(m+1)$) such that $f'' = U \cdot f'$ (resp. $f'' = f' \circ a$). If $f'' = U \cdot f'$ o a for some $U \in O(n+1)$ and $a \in SO(m+1)$ then f' and f'' are said to be equivalent. Clealy, $\langle f \rangle_{\lambda_k}$ depends only on the range equivalence class of f. As in [2,6], we obtain that the space of range equivalence classes of full minimal immersions $f: S^m \to S^n$, of degree k, (hence $n \leq n(\lambda_k)$), is parametrized by the compact convex body $$\mathcal{L}_{\lambda_k} = \{ C \in \mathcal{F}_{\lambda_k} | C + I \ge 0 \}, \tag{1}$$ where the linear subspace $\mathcal{F}_{\lambda_k} \subset S^2(\mathbb{R}^{n(\lambda_k)+1})$ is the orthogonal complement of the set of all projections $$\operatorname{proj} [(f_{\lambda_k})_*(X)] = (f_{\lambda_k})_*(X) \cdot (f_{\lambda_k})_*(X) \in S^2(\mathbf{R}^{n(\lambda_k)+1}), \ X \in T(S^m).$$ (2) (Here, $(f_{\lambda_k})_*(X)$ is shifted to the origin of $\mathbf{R}^{n(\lambda_k)+1}$ and stands for the symmetric tensor product.) By birth, $f_{\lambda_k}: S^m \to S^{n(\lambda_k)}$ is equivariant with respect to the homomorphism $\rho_{\lambda_k}: SO(m+1) \to SO(n(\lambda_k)+1)$ that is just the orthogonal SO(m+1)-module structure on $\mathcal{H}_{S^m}^k \cong \mathbf{R}^{n(\lambda_k)+1}$, where the isomorphism is given by the orthonormal basis chosen for f_{λ_k} . Taking the symmetric square of the representation given by ρ_{λ_k} , we obtain that \mathcal{F}_{λ_k} is an SO(m+1)-submodule of $S^2(\mathbf{R}^{n(\lambda_k)+1})$ with $\mathcal{L}_{\lambda_k} \subset \mathcal{F}_{\lambda_k}$ an SO(m+1)-invariant subspace. In fact, $$a \cdot \langle f \rangle_{\lambda_k} = \langle f \circ a^{-1} \rangle_{\lambda_k}, \ a \in SO(m+1).$$ (3) In particular, the SO(m+1)-orbit of $\langle f \rangle_{\lambda_k}$ corresponds to those full minimal immersions that are (domain) equivalent to f. A full (minimal) immersion $f: S^m \to S^n$ of degree k is said to be linearly rigid [2,6] if whenever A is an $(n+1)\times (n+1)$ -matrix that satisfies $A(f(S^m))\subset S^n$ and $A\cdot f: S^m \to S^n$ is a homothetic (minimal) immersion (of degree k) then $A\in O(n+1)$. Linear rigidity, when applied to f_{λ_k} , is clearly equivalent to $\mathcal{L}_{\lambda_k} = \mathcal{F}_{\lambda_k} = \{0\}$. For m=2, linear rigidity of f_{λ_k} was proved by Calabi in [1]. Do Carmo and Wallach [2,6] showed that f_{λ_k} is linearly rigid for $k\leq 3$. Finally, they also proved that, for $m\geq 3$ and $k\geq 4$, f_{λ_k} is not linearly rigid. More precisely, for $m\geq 3$, we have $$\mathcal{F}_{\lambda_k} \otimes_{\mathbf{R}} \mathbf{C} \supset S^2(\mathcal{H}^k_{S^m}) / \{ \sum_{j=0}^k \mathcal{H}^{2j}_{S^m} \oplus \sum_{j=1}^{k-1} V^{(2j,2,0,\dots,0)}_{SO(m+1)} \} = \sum_{(a,b) \in \Delta, \ a,b \text{ even}} V^{(a,b,0,\dots,0)}_{SO(m+1)}$$ as SO(m+1)-modules, where $\Delta \subset \mathbb{R}^2$ is the closed triangular domain with vertices (4,4), (k,k) and (2k-4,4). In these formulas we use standard terminology in representation theory, namely, $V_{SO(m+1)}^{\rho}$ is the complex irreducible SO(m+1)-module with highest weight ρ (whose components are with respect to the standard maximal torus) and, for the moment, the spherical harmonics are complex valued. In particular, by the Weyl dimension formula, we obtain $$\dim \mathcal{L}_{\lambda_k} = \dim \mathcal{F}_{\lambda_k} \ge \frac{1}{2} (n(\lambda_k) + 1)(n(\lambda_k) + 2) - \sum_{j=0}^k (n(\lambda_{2j}) + 1)$$ $$- \frac{1}{2} (m+1)(m-2) \sum_{j=1}^{k-1} \frac{2j-1}{2j+1} \frac{2j+m}{2j+m-2} (n(\lambda_{2j}) + 1). \tag{4}$$ **Remark** As shown by Muto [4] the lower estimate is sharp for m = 3 and k = 4, i.e., in this case, dim $\mathcal{L}_{\lambda_2} = 18$. The purpose of this paper is to show that linearly rigid minimal immersions abound. Theorem 1 Let $m \ge 3$ and $k \ge 4$ and assume that $$(n(\lambda_k)+1)(n(\lambda_k)+2) > (n(\lambda_k)-m)(m(m+1)+2)+2\sum_{j=0}^k (n(\lambda_{2j})+1)$$ $$+ (m+1)(m-2)\sum_{j=1}^{k-1} \frac{2j-1}{2j+1} \frac{2j+m}{2j+m-2} (n(\lambda_{2j})+1)$$ Then there exist \aleph_1 mutually inequivalent full linearly rigid minimal immersions $f: S^m \to S^n$ of degree k. Moreover, for each $m \ge 3$, there exists $k(m) \ge 4$ such that (5) holds for $k \ge k(m)$. **Remarks** 1. The last assertion of Theorem 1 is clear. If fact, for fixed $m \ge 3$, all the terms in (5) are polynomials in k with positive coefficients. The left hand side of (5) is of degree 2(m-1) and, on the right hand side, the first term is of degree m-1 while the second and third are of degree m. In particular, as easy computation shows, k(3) = 7. - 2. Similar result can be obtained for harmonic λ_k -eigenmaps $f: S^m \to S^n$ (omitting the condition that the maps are homothetic immersions [3]). By contrast, note that, for m=3 and k=2, up to equivalence, the only full linearly rigid λ_2 -eigenmap is the Hopf map $f: S^3 \to S^2$ (and its 'dual') [5]. - 3. For further explicit examples of λ_2 -eigenmaps consider the case m=4 and k=2. Let S^4 be the unit sphere in $\mathbb{C}^2 \times \mathbb{R}$ with coordinates $z,w \in \mathbb{C}$ and $t \in \mathbb{R}$. Define $f: S^4 \to S^7$ and $g: S^4 \to S^4$ by $$f(z,w,t)=(\frac{1}{4}(|z|^2+|w|^2)-t^2,\frac{\sqrt{15}}{4}(|z|^2-|w|^2),\frac{\sqrt{15}}{2}zw,\sqrt{\frac{5}{2}}zt,\sqrt{\frac{5}{2}}wt)$$ and $$g(z,w,t)=(\frac{1}{2}|z|^2-|w|^2+t^2,\frac{\sqrt{3}}{2}z^2-2wt,\sqrt{3}\bar{z}w+zt).$$ Computation shows that f and g are both linearly rigid. (Note that g is the gradient of a cubic isoparametric function on S^4 [3].) To prove Theorem 1, in §2, we introduce an SO(m+1)-saturation on \mathcal{L}_{λ_k} with the property that the one point cells correspond to the linearly rigid immersions. In §3 we then use an inductive argument with respect to the dimension of the cells of the saturation of \mathcal{L}_{λ_k} to get an upper bound for $\dim \mathcal{L}_{\lambda_k}$ provided that the cardinality of the saturation modulo SO(m+1) is $\leq \aleph_0$. This, for k large, will contradict to the lower estimate of $\dim \mathcal{L}_{\lambda_k}$ given in (4). ## 2 The fine structure of the parameter space Let $f: S^m \to S^n$ and $f': S^m \to S^{n'}$ be full minimal immersions of degree k and k', respectively. f' is said to be derived from f, written as $f' \leftarrow f$, if there exists an $(n'+1) \times (n+1)$ -matrix A such that $f' = A \cdot f$. In this case k = k'. Given a full minimal immersion $f: S^m \to S^n$ of degree k, we define $$\mathcal{L}_f = \{C' \in \mathcal{F}_f | C' + I \ge 0\},\tag{6}$$ where the linear subspace $\mathcal{F}_f \subset S^2(\mathbb{R}^{n+1})$ is the orthogonal complement of the set of all projections $$\text{proj}[f_*(X)] \in S^2(\mathbb{R}^{n+1}), X \in T(S^m).$$ Clearly, we have $\mathcal{L}_{f_{\lambda_k}} = \mathcal{L}_{\lambda_k}$ and $\mathcal{F}_{f_{\lambda_k}} = \mathcal{F}_{\lambda_k}$ and the argument of Do Carmo and Wallach applies yielding that $\mathcal{L}_f \subset \mathcal{F}_f$ is a compact convex body that parametrizes the range equivalence classes of full minimal immersions $f': S^m \to S^{n'}$ that are derived from f. Let $$\iota: S^2(\mathbf{R}^{n+1}) \to S^2(\mathbf{R}^{n(\lambda_k)+1})$$ be the affine map defined by $$\iota(C') = A^{\mathsf{T}}C'A + \langle f \rangle_{\lambda_k} = A^{\mathsf{T}}(C' + I)A - I, \ C' \in S^2(\mathbb{R}^{n+1}), \tag{7}$$ where $f = A \cdot f_{\lambda_k}$. Proposition 1 ι is injective and maps \mathcal{F}_f into \mathcal{F}_{λ_k} . Moreover, we have $$\iota(\mathcal{L}_f) = \iota(\mathcal{F}_f) \cap \mathcal{L}_{\lambda_h}.$$ **Proof.** f is full so that A is of maximal rank. Hence A^{T} has zero kernel and injectivity of ι follows. Given $C' \in \mathcal{F}_f$, for $X \in T(S^m)$, we have $$\begin{aligned} \langle \iota(C'), \operatorname{proj} [(f_{\lambda_k})_{\bullet}(X)] \rangle &= \langle \iota(C')(f_{\lambda_k})_{\bullet}(X), (f_{\lambda_k})_{\bullet}(X) \rangle \\ &= \langle (C'+I)f_{\bullet}(X), f_{\bullet}(X) \rangle - \langle (f_{\lambda_k})_{\bullet}(X), (f_{\lambda_k})_{\bullet}(X) \rangle \\ &= \langle C', \operatorname{proj} [f_{\bullet}(X)] \rangle, \end{aligned}$$ where the last equality is because f and f_{λ_k} have the same homothety constant. The second assertion follows. Finally, the third is obtained by comparing (1) and (6) via (7). For a full minimal immersion $f: S^m \to S^n$, we define $$I_f = \iota(\mathcal{L}_f^\circ) \subset \mathcal{L}_{\lambda_k},$$ where the circle stands for the interior. Clearly, I_f is convex and open in $\iota(\mathcal{F}_f)$ and contains $\langle f \rangle_{\lambda_k}$. Then I_f is said to be the cell associated to f. Its points correspond to those full minimal immersions $f': S^m \to S^n$ of degree k that are derived from f, i.e. $f' = A \cdot f$ with A invertible. The cells I_f , for the various f, give rise to a decomposition of \mathcal{L}_{λ_k} into mutually disjoint convex sets that comprise the natural saturation $\mathcal{I}_{\lambda_k} = \{I_f | f \leftarrow f_{\lambda_k}\}$ of \mathcal{L}_{λ_k} . One of the most important property of \mathcal{I}_{λ_k} is that when passing to the boundary of a cell the dimension of the range of the corresponding minimal immersions strictly decreases. In particular, $I_{f_{\lambda_k}} = \mathcal{L}_{\lambda_k}^o$ so that the natural saturation is of interest only on the boundary $\partial \mathcal{L}_{\lambda_k}$. The action of SO(m+1) respects \mathcal{I}_{λ_k} , in fact, by (3), we have $$a \cdot I_f = I_{f \circ a^{-1}}, \ a \in SO(m+1).$$ We obtain that \mathcal{I}_{λ_k} is an SO(m+1)-saturation of \mathcal{L}_{λ_k} . By construction, a full minimal immersion $f: S^m \to S^n$ of degree k is linearly rigid iff I_f is a one point cell. Two full minimal immersions $f': S^m \to S^{n'}$ and $f'': S^m \to S^{n''}$ of degree k are said to be geometrically distinct if, for each $U' \in O(n'+1)$, $U'' \in O(n''+1)$ and $a', a'' \in SO(m+1)$, none of the minimal immersions $$U' \cdot f' \circ a'$$ and $U'' \cdot f'' \circ a''$ can be derived from each other. In terms of \mathcal{I}_{λ_k} , this holds iff none of the orbits $$SO(m+1) \cdot I_{f'}$$ and $SO(m+1) \cdot I_{f''}$ is contained in the other. In the special case when f' and f'' are both linearly rigid, f' and f'' are geometrically distinct iff they are inequivalent. Theorem 1 will therefore be proved if we show the following: Theorem 2 Assume that $$\dim \mathcal{L}_{\lambda_k} > (n(\lambda_k) - m)(\dim SO(m+1) + 1). \tag{8}$$ Then the cardinality of the orbit space $\mathcal{I}_{\lambda_k}/SO(m+1)$ is \aleph_1 . In particular there exist \aleph_1 geometrically distinct full minimal immersions $f:S^m\to S^n$ of degree k. Moreover, there exist \aleph_1 inequivalent full linearly rigid minimal immersions $f:S^m\to S^n$ of degree k. ### 3 Proof of Theorem 2 Assume that $\mathcal{I}_{\lambda_k}/SO(m+1)$ is countable. Since the interior of \mathcal{L}_{λ_k} is a cell the set of SO(m+1)-orbits of cells on $\partial \mathcal{L}_{\lambda_k}$ is also countable. By the Baire Category Theorem, at least one SO(m+1)-orbit of a cell has nonempty interior. Let $\langle f_1 \rangle_{\lambda_k}$ be an interior point. Then $f_1: S^m \to S^{n_1}$ is a full minimal immersion of degree k with $n_1 \leq n(\lambda_k) - 1$. Moreover, we have $$\dim \mathcal{L}_{\lambda_k} = \dim(SO(m+1) \cdot I_{f_1}) + 1 \le \dim SO(m+1) + 1 + \dim I_{f_1}.$$ (9) We now take the set of SO(m+1)-orbits of cells which lie on the boundary $\partial I_{f_1} = \overline{I}_{f_1} \setminus I_{f_1}$. The intersections of these SO(m+1)-orbits with ∂I_{f_1} give a partition of ∂I_{f_1} into countably many subsets. Again by the Baire Category Theorem at least one SO(m+1)-orbit of a cell intersects ∂I_{f_1} in a set with nonempty interior in ∂I_{f_1} . Let $\langle f_2 \rangle_{\lambda_k}$ be an interior point. Then $f_2: S^m \to S^{n_2}$ is a full minimal immersion of degree k with $n_2 \leq n_1 - 1 \leq n(\lambda_k) - 2$. Moreover, I_{f_2} is contained in this intersection so that we have $$\dim I_{f_1} = \dim(SO(m+1) \cdot I_{f_2} \cap I_{f_1}) + 1$$ $$\leq \dim(SO(m+1) \cdot I_{f_2}) + 1$$ $$\leq \dim SO(m+1) + 1 + \dim I_{f_2}.$$ Combining this with (8), we obtain $$\dim \mathcal{L}_{\lambda_k} \leq 2(\dim SO(m+1)+1)+\dim I_{f_2}$$ and $$n_2 \leq n(\lambda_k) - 2.$$ Repeating this, in the lth step we obtain $$\dim \mathcal{L}_{\lambda_k} \leq \ell(\dim SO(m+1)+1)+\dim I_{f_\ell}$$ and $$n_{\ell} \leq n(\lambda_k) - \ell$$. The procedure clearly stops in $n(\lambda_k) - m$ steps yielding $$\dim \mathcal{L}_{\lambda_k} \leq (n(\lambda_k) - m)(\dim SO(m+1) + 1)$$ which contradicts to (8). To prove the second statement, choose geometrically distinct full minimal immersions $f_{\sigma}: S^m \to S^{n_{\sigma}}, \ \sigma \in \Sigma$, where Σ is of cardinality \aleph_1 . For $\sigma \in \Sigma$, choose a finite set $\Lambda_{\sigma} \subset \bar{I}_{f_{\sigma}}(\subset \mathcal{L}_{\lambda_k})$ consisting of points that correspond to linearly rigid full minimal immersions such that the affine span of Λ_k is equal to that of $\bar{I}_{f_{\sigma}}$. The existence of Λ_{σ} follows easily by induction with respect to the dimension of the cells comprising $\bar{I}_{f_{\sigma}}$. We now claim that, for $\sigma, \sigma' \in \Sigma$, $\sigma \neq \sigma'$, we have $\Lambda_{\sigma} \neq \Lambda_{\sigma'}$. In fact, $\Lambda_{\sigma} = \Lambda_{\sigma'}$ iff $I_{f_{\sigma}} = I_{f_{\sigma'}}$ so that f_{σ} and $f_{\sigma'}$ are not geometrically distinct; a contradiction. We obtain that the set $\{\Lambda_{\sigma} | \sigma \in \Sigma\}$ has cardinality \aleph_1 . Since the set of all finite subsets of a countable set is countable, $\bigcup_{\sigma \in \Sigma} \Lambda_{\sigma}$ has cardinality \aleph_1 . The proof of Theorem 2 is complete. Remark. The action of SO(m+1) on \mathcal{L}_{λ_k} has further interesting properties that are related to the ones used in the proof above. It can be shown, e.g. that the principal isotropy type is finite provided that \mathcal{L}_{λ_k} is nontrivial. Furthermore, it can be proved that the orbit of the center of mass of any cell I_f is always transversal (in the weak sense) to I_f . In particular, equality holds in (9), provided that the orbit of the center of mass is principal. For m=3 this is actually the case for the top (5-)dimensional cell on the boundary of the parameter space for λ_2 -eigenmaps [5]. ### References - Calabi E., Minimal immersions of surfaces in Euclidean spheres, J. Diff. Geom., 1 (1967) 111-125. - 2. Do Carmo M. and Wallach N., Minimal immersions of spheres into spheres, Ann. of Math., 93 (1971) 43-62. - 3. Eells J. and Lemaire L., A report on harmonic maps, Bull. London Math. Soc., 10 (1978) 1-68. - 4. Muto Y., The space W_2 of isometric minimal immersions of the three-dimensional sphere into spheres, Tokyo J. Math., Vol.7, No.2 (1984) 337-358 - 5. Toth G., Classification of quadratic harmonic maps of S^3 into spheres Indiana Univ. Math. J., Vol.36, No.2 (1987) 231-239. 6. Wallach N., Minimal immersions of symmetric spaces into spheres, in 'Symmetric Spaces', Dekker, New York (1972) 1-40.