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ABSTRACT. Using the DoCarmo-Wallach theory, we classify (homogeneous) polynomial har- 
monic maps of complex projective spaces into spheres and complex projective spaces in terms of 
finite dimensional moduli spaces. We make use of representation theory of the (special) 
unitary group to give, for a spherical range, the exact dimension and, for complex projective 
spaces, a lower bound of the dimension of the moduli spaces. 

1. INTRODUCTION AND PRELIMINARY CONSTRUCTIONS 

One of the fundamental problems in harmonic map theory as posed by Eells 
and Lemaire in 1980 [3] is to construct and classify harmonic maps between 
complex projective spaces. Initiated by the work of Din and Zakrzewski [1] 
and Glaser and Stora [6] all harmonic maps of CP 1 (or, more generally, all 
isotropic harmonic maps of a compact Riemann surface) into CP" were 
obtained and explicitly described by Eells and Wood in [4]. These ideas have 
led to a fairly complete picture of harmonic maps of CP 1 into flag manifolds 
[5] and all stable harmonic maps ofCP 1 into irreducible Hermitian symmetric 
spaces [10]. Energy minimizing harmonic maps of CP 1 into CP" or, more 
generally, into compact Kfihler manifolds of positive biholomorphic sectional 
curvature were used (and shown to be (anti-)holomorphic) by Siu and Yau in 
the main step of their solution to the Frankel conjecture [11]. Since holo- 
morphic maps are known and expected to behave more rigidly than harmonic 
maps in general, it is natural to ask if harmonic maps of C P  m into CP ~ abound 
for m ~> 2. 

Our construction, which we proceed to describe, yields parameter spaces of 
large dimension of harmonic nonholomorphic maps of CP' ,  m/> 2, into CP" 
for various n. 

First, let p > q i> 0 and denote by ~P'~ P'~ = ~ f ,  + 1 the Hermitian vector 
space of homogeneous harmonic polynomials in the variables Zo, ~.o . . . . .  Zm, 

~m E C of bidegree (p, q). The Hermitian structure on ~P'q is given by the 
normalized L2-scalar product 

m!(n(P,2n m+lq) + 1) I ~ (~ ,  # ' )  = 2,~+ z ~"  ft' vo l (SZm+ l), ]2, ~ '  ~ ~t °v'~ , 
t/a 

where vol(S 2ra+ 1) is the volume element of the unit sphere S 2m+ ~ c C m+ ~ (with 
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total volume 2rim+l/m!) and 

_ ( m + p - p _ l  1)(m+q-q_l  1). 

Precomposition by unitary transformations (of C m+ 1) gives rise to a unitary 
(irreducible) U(m + 1)-module structure on gP'q which is given by the 
homomorphism pp,~: U(m + 1 ) ~  U(~P'q), pp.~(u).# = #ou  -1, u~ U(m + 1), 
#E YF p'q [8]. The central subgroup S 1 c U(m + 1) acts, via pp,q, on ~P'q by 
the single weight p - q > 0. 

DEFINITION• We call f :  S 2'n+ 1 ~ $2,+ 1 a (homogeneous) polynomial har- 

monic map ofbidegree (p, q) if the components of f in C m ÷ 1(~ s2m ÷ 1) belong to 
~P'q. In this case, f is a harmonic map between spheres since ~P'q consists of 

c 
(complex valued) spherical harmonics of order p + q [8]. In addition, we 
assume that f is full, i.e. the image o f f  is not contained in any proper (complex) 
linear subspace of C n ÷ 1. 

A (full) polynomial harmonic map f :  S 2~'÷1 --* S 2~+1 of bidegree (p, q) is 
equivariant with respect to the homomorphism pp_q: S 1 ~ S 1, p(u) = u p-q, 
u e S 1 c C, in particular, f factors through the Hopf bundle maps n: S 2"+ 1 __, 
CP m and/r:S 2 n + 1  " ~  CP ~ inducing a map f :  CP m.--~ CP n. 

By homogeneity, we have 

f * ( ~ C p n )  = @P-q~Icpra, 

where 7 stands for the canonical line bundle. Taking first Chern classes, 
it follows that f has degree p - q  (on second cohomology), in particular, 
m ~< n. By the Smith Reduction theorem [3], f :  c p m ~  cpn is harmonic 
i f f f : s Z ' ÷ l - - - , S  2"+1 is horizontal, i.e. the differential of f maps the 
horizontal distribution (ker n.)J- c T(S 2m ÷ 1) into the horizontal distribution 

~ t:'J ~n(p,q) ~ p , q  ( k e r n . ) ± c  T(s2n+I). For a fixed orthonormal base tJp,qJj=o c 
(over C) which, at the same time identifies ~P'q with C n(p'q)+l, define 

• fn(P'q)~. S 2'~+1 C ~p'q)+l. Clearly, fp,q is equivariant with f v,q = (f°v,q, " , J  p,, ." "-+ 
respect to Pv,q: U(m + 1) --+ U(n(p, q) + 1), in particular, by the choice of the 
normalizing constant above, fv,a maps into the unit sphere of C "iv'q}+ 1. We 
obtain that fp,q: $2m+1 --+ S 2"(v'~)+1 is a full polynomial harmonic map of 

bidegree (19, q). 
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PROPOSITION 1. fp,q: S 2m+1 ---~S 2n(v'q)+l is horizontal, in particular, the 

induced map f p,q: CP m ~ C P  ntp'q) is harmonic. 

Proof. Let o = ( 1 , 0 , . . . , 0 ) ~ C  m+l be a base point and U(m)= [1] x 
U(m) ~ U(m + 1) the corresponding isotropy subgroup. The isotropy repre- 
sentation of U(m) or: To(S 2~+1) decomposes as 

To(S2m+ 1) = ker n,o @ (ker ~Z,o) ±, 

where ker n,o ~ R is trivial and U(m) acts on (ker n,o) ± ~ C m by ordinary 
matrix multiplication. Equivariance of fp,q with respect to pp,q implies that 
(fp,~),(ker n,o) and (fp,q),(ker n,o) ± (shifted to the origin) are real irreducible 
U(m)-submodules of the restriction v'q ~/+l lvt , , ) .  They are distinct since fp,q 
is nonconstant. By Schur's lemma (applied to the orthogonal projection of 
their linear span onto one of them), they are orthogonal. By equivariance, 
(fp,q),(ker n,) and (fp,q),(ker n,) ± are orthogonal everywhere on S Era+ 1 

REMARK. Since CP m = U(m + 1)/U(1) × U(m) is isotropy irreducible, it is 
easy to show that (fp,q), is homothetic on (kern,)  ±. In particular, (fp,q), 
(ker n,o) ± ~- C m as a real U(m)-module. Moreover ~p,q: CP m ~ CP "tp'q) is then 
a homothetic immersion. Being harmonic it is therefore minimal. 

Given a full polynomial harmonic map f :  S TM + t ~ $2. + 1 of bidegree (p, q) 
we can write f = A .fp,q, where A is a complex (n + 1) x (n(p, q) + 1)-matrix of 
maximal rank. We associate to f the Hermitian symmetric matrix 4d' ) = 
A*. A - I ~ H o r n ( J r  °p,q, 3 ~  p,'/) : 3(C p,q t~ ~ p , q  = 3efv ,q • ~ q , p .  The condition 
that f maps into S 2"+ ~ can then be translated to the condition that ( f )  is 
perpendicular to the orthogonal projection proj[fp,q(z)] ~ :,~fv'q®3~ q,p (onto 
C'fp,q(Z)) for all z~  S 2m+1, where Horn (,CrY'q, ~ " ' q ) =  3¢~"'q ® 3/g q'' is en- 
dowed with the Hermitian scalar product <C, C'> = trace(C'*.C), C, C's  
~" 'q  ® ~q'P. Indeed, for z e  S 2m+1, we have 

If(z)l 2 - 1 = (Afp,a(z), Afv,q(z)> - <fv,a(z),fv,a(z)) 

= <(A*. A - I)fv,q(z),fv,q(z)> 

= trace(proj[fv,q(z)]- (f>),  

We wish to reformulate the condition of horizontality of a full polynomial 
harmonic map f :  S 2m+ 1 ~ $2.+ 1 of bidegree (p, q) in terms of ( f )  = A*A - I, 
where f = A.fv,q. Using horizontality of fv,q, for VzCkerlr,. and X~¢ 
(kern . . ) ' ,  we compute 

< f , V ~ , f , X ~ >  = ((a*A)(fp,q),V~, (fp,q),X~> 

= <(A*A - I)(fv,q),V~, (fp,q),Xz> 

= <<f>, ( fv,q).Vz'( fv,q).X~>, 
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where the dot stands for the Hermitian symmetric product. (Given a Her- 
mitian vector space H and v, we H, we denote by v ' w  the Hermitian 
symmetric endomorphism of H given by (v'w)(u) = ½(u, v ) w  + ½(u, w)v,  u e 

H. Now the last equality is a simple computation. Note also that, for 
n = ~fP'q, we have fp,q(z).fp,q(z) = proj[fp.q(z)].) We obtain that f :  S 2m+ 1 

S 2"÷1 is horizontal iff ( f )  is perpendicular to the Hermitian symmetric 

endomorphism (fp.q). Vz'( fp.q) .  X z  for all Vz e k e r ~ . ,  and X~ e (ker 7c,,) I. To 
put these into a formal description, denote by S p'q the real U(m + 1)-sub- 
module of Hermitian symmetric endomorphisms of ~f~P'~. Clearly, S p'q is a real 
form of ~P'q ® ~vf~,p. Then 

and 

W p'~ = spanR {proj [fp,~(z)] ] z e S z"~ + 1 } 

Z p'q = spanR {(fp.q). Vz" (fp, q), Xz I V~ e ker rc.~, X z  e (ker re.z) ± } 

are (real) U(m + 1)-submodules of S p'q. Finally, let E p'q be the orthogonal 
complement of W p'q + Z p'q in S p'q and set 

L p'q = {C e E p'q I C + I />  0}, 

where '/>' means positive semidefinite. Clearly, L p'q c E p,q is a U(m + 1)- 
invariant convex body containing the origin in its interior. 

Moreover, E p'q consists of traceless endomorphisms of ~P'q, in particular, 
L p'q is compact. 

[~ ~n(p,q) ~ Ep,q ' To see this, we integrate the defining equality, for C = ~cijh,j=o • 

n(p,~) 

cz~ f p,~(z)f p,~(z) = 0 
i , j=O 

over S 2m+1 to get -~=0 cu = trace C = 0 by orthogonality. 

Summarizing, we associated to each full polynomial horizontal harmonic 
map f :  S 2m+ 1 ~ $2,+ 1 of bidegree (p, q) an endomorphism ( f )  = A*.A - 

/ e  L p'q via f = A.fp,q. As for the U(m + 1)-action on L p'q, we clearly have 
u ' ( f )  = ( f o u - ~ ) ,  u e U(m + 1). By the polar decomposition, the para- 
metrization is injective on the equivalence classes of maps where two full 
polynomial harmonic maps f , f ' :  S 2m+ ~ ~ S z~+ 1 are said to be equivalent if 
f '  = U ' f  for some U e  U(n + 1). Furthermore, as square root can be taken 
from positive semidefinite endomorphisms, the parametrization is clearly 
surjective. Thus we obtain the following: 

THEOR EM 1. The equivalence classes o f  ful l  polynomial horizontal harmonic 

maps f :  S 2m+1 ~ S z~+ l o f  bidegree (p, q), p > q >I O, can be parametrized by 
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a compact convex body L p'q lying in a finite dimensional vector space E p'q. The 

interior of L m corresponds to those maps with maximal n = n(p, q). E p'~ is 

a (real) U(m + 1)-submodule of the U(m + 1)-module S p'q of Hermitian sym- 
metric endomorphisms of ~ f  p'q. The parameter space L p'~ is U(m + 1)-invariant 
and the action is induced by precomposing harmonic maps by unitary trans- 

formations. 

REMARK. The result above is a DoCarmo-Wallach type classification 
theorem [-2]. 

We now take p -- q. In this case ~fP'P has a natural real form ~vfov'v which is the 
real U(m + 1)-module of(real valued) homogeneous harmonic polynomials in 
the variables Zo, ~o . . . . .  Zm, ~r, e C of bidegree (p, p). Note that ~,Yfo p'p is nothing 
but the eigenspace of the Laplacian on CP m corresponding to the eigenvalue 
4p(p + m). 

We call f :  S 2m+ 1 ~ S" a polynomial harmonic map of bidegree (p, p) if the 
components of f in R" + 1( D S n) belong to ~,~o v'p. In this case f factors through 
the Hopf bundle map zr: S 2m+ 1 ~ Cpm yielding a harmonic map f :  CP m ~ S ~. 

We define the fullness of f with respect to proper real linear subspaces of R" ÷ 1 
and equivalence with respect to the orthogonal group O(n + 1). Defining 
fp,p: S2m+ 1 ~ sn(p,p), n(p, p) + 1 = dimR J/fo p'p, W p'p, E p'p and L p'p analogously 
(over R) and repeating the construction we arrive at the following: 

THEOREM 2. The equivalence classes of full polynomial harmonic maps 
f :  $2~+ 1 ~ S" of bidegree (p, p) can be parametrized by a compact convex body 

L p'p lying in a finite dimensional vector space E p'p. The interior of L p'p 
corresponds to those maps with maximal n = n(p, p). E p'p is a (real) U(m + 1)- 
submodule of the symmetric s q u a r e  S2(~oP'P). 

2. E S T I M A T E S  ON THE D I M E N S I O N  OF THE P A R A M E T E R  SPACE 

To pin down the U(m + 1)-module structure of E m, let o = (1, 0 . . . . .  O) ~ C m + 1 
and denote by U(m) = [1] x U(m) c U(m + 1) the corresponding isotropy 
subgroup. 

For p > q ~> 0 the U(m + 1)-module W p'q can then be written as 

W p'q = spanR{U(m + 1)'proj[fv, q(o)] }. 

As proj[fm(o)] is left fixed by U(m), it follows that every irreducible 
U(m + 1)-submodule of W p'q is class 1 with respect to (U(m + 1), U(m)) (i.e. 
contains a U(m)-fixed vector). After complexification, noting that the re- 
presentations occurring here are absolutely irreducible, we obtain that 
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W p'~ ® C is contained in the sum of complex class 1 subrepresentations of 
~ut~P'q ® Jcg~'P with respect to (U(m + 1), U(m)). By Cartan [15], every complex 
class 1 representation of (U(m + 1), U(m)) in ~P'~ ® g~'P is of the form ~b,b. 
We obtain the estimate 

dimR W p'q <<. ~ m[~b'b: fit ap'q ® ~cl,p]. dimc~b,b. 
b 

In a similar vein, we have 

Z p'q = spanR { U(m + 1)- [(fp,q), Vo "(fp.q), Xo ]lVo 

ker lr,o, Xo ~ (ker rC,o)J-}. 

PROPOSITION 2. Given a real U(m)-submodule Zo of S p'q, define 

Z = spanl~{U(m + 1)'Zo} c S p,q. 

Let Z be the sum of those complex irreducible U(m + 1)-submodules of 
~,~P'q ® ~q'P that, when restricted to U(m), contain an irreducible component of 
Zo ®R C. Then, we have 

Z ® R C c Z .  

Proof. This is an application of the Frobenius Reciprocity. The proof 
follows in exactly the same way as that of Lemma 12.2 in [15]. 

Setting 

Zo = spanR {(fv,q), Vo'(f p,q), Xo I Vo ~ ker rr,o, Xo ~ (ker re,o) -L}, 

the U(m + 1)-module Z in Proposition 2 specializes to Z v'q. Moreover, as U(m) 
acts on ker n,o trivially, we obtain that Zo ~- C m as real U(m)-modules. 
Complexifying, we get 

Zo ®RC -- o¢~ '° ~ ~,¢o,~ 

as complex U(m)-modules. Now, Proposition 2 implies that each irreducible 
U(m + 1)-submodule of Z p'~ ®RC contains ~¢g~,0 or ~o,1 (by restriction to 
U(m) ~ U(m + 1)). To get a step further, recall that an irreducible complex 
U(m + 1)-module V ~ = V~+I is uniquely determined by its highest weight 2, 
which, with respect to the standard (diagonal) maximal torus of U(m + 1), is an 
element of Z m + 1 with decreasing entries. In particular, we have 

Se.m,~+ = v ~ . , o  . . . . .  o , - ~  
1 - - m +  1 

Moreover, the Branching rule [18] takes the form 

V(/.1 . . . . .  .~,n+ 1) I = V o. 
m + l  IU(m) E m~ 

o 
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where the summation runs over all a = ( a l , . . . ,  a ' )  e Z m for which 

~i >~ ai >>- "" >1 2., >f am >t 2"+1. 

In particular, an irreducible U(m + 1)-submodule of Z p'q ®k C c ~,~¢t °p,q ® Wq,P 
that contains jf~,o (resp. 3ego, l) is of the form V (b'l'° ..... o,-b-1) (resp. 
V(b+t,o ..... o,-1,-b)). Summarizing, we obtain the estimate 

dimR Z p'q ~< 2 ~  m[V (b'l'° ..... o,-b- 1): 
b 

.~P'q ® o f  q'p] dime V (hA'° ..... o,-b-1) 

To determine the multiplicities in the tensor product above we apply the 
Littlewood-Richardson rule [7] together with Weyl's duality [16] between 
representations of GL(V) and the symmetric group S .  on N ' V  for a vector 
space V. We get 

m[o~b'b: 2¢ ~p'q ® 3¢ 'q'p] = min{b, q, p + q - b} + 1 

and 

m[V(b,t,o ..... o,-b-1): ~p,q ® ~p,q]  = min{b, q, p + q - b}. 

For  completeness, we give here the details for the proof of the first formula. The 
proof of the second formula is analogous. (Note also that, for m = 2, these 
multiplicity formulas can easily be derived independently using Steinberg's 
formula.) In terms of the highest weights we have to determine the multiplicity 

m = m[V (b'° ..... o,-b): V(p,o ..... o,-q) ® vtq,o ..... o,-p)]. 

Setting a = p + q, m is zero for b > a (e.g. by Steinberg's formula) so that we 
will assume that b ~ a. In the first step of the Littlewood-Richardson rule, to 
each weight vector we add a suitable element of Z + . (1 , . . . ,  1) to make the 
entries />0. We obtain 

(b,O . . . . .  O, - b )  + (a ,a  . . . .  ,a )  = (a + b , a , . . , a , a  - b), 

(p, 0 , . . . ,  O, --  q) + (q, q , . . . ,  q) -- (a, q , . . . ,  q, 0), 

(q,O . . . . .  O, - p )  + ( p , p , . . .  ,p )  = (a ,p  . . . .  ,p,O). 

Each vector represents a tableau consisting of m + 1 rows; the coordinates 
representing the length of the respective row. We then superimpose the two 
largest tableaux, i.e. which correspond to the first and third vectors, to obtain 
the system shown in Figure 1. 

In the second step we fill in the complementary boxes with the numbers 
1, 2 , . . . ,  m and from each of these we use the amount  given by the respective 
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P q b 

1 

p + q - b  
Fig. 1. 

I 
I t  

coordinate of the second vector, i.e. we use a l's, q 2's . . . . .  q m's. The rules for 
filling in are as follows: 

(1) In each row the numbers are nondecreasing, 
(2) In each column the numbers are (strictly) increasing, 

(3) When reading the sequence of numbers from right to left (a) the l's are 
always O.K.; (b) given i + 1 in the sequence, the number of previous i's is 
greater than the number of previous (i + 1)'s. Now, the required 
multiplicity m is the number of possible ways of filling-in. 

Turning to the proof, we first note that, by (3), the empty boxes in the first 
row are filled up with b l's. By (2), the empty boxes of the second row can only 
be l's and 2's and, by (3), the l's precede the 2's. Any column which begins at 
a box in the second row contains consecutive integers. For  a column which 
begins with 1, this is a consequence of (3). For a column which begins with 2, 
this follows from (2) as the length of the column is m. 

Case I. l <~ b < q 

In this case there are q - b empty boxes in the ruth row which overlap with 
those of the (m - 1)th row. Consequently, the empty boxes in the second row 
have to start with q - b l's. The remaining b boxes give b + 1 possibilities for 
filling in l's and 2's. Once the second row is filled up, the rest is determined. 
Thus, in this case, the multiplicity is b + 1. 

Case lI.  q ~ b <~ p 

The empty boxes in the (m - 1)th and mth row do not overlap. Filling the 
empty boxes in the second row gives q + 1 possibilities. Note that, since 
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p + q - b >7 q, there are enough empty boxes for the leftover m's in the last 

row. The multiplicity is then q + 1 

Case I lL p < b <<. p + q. 

In this case, there are p + q - b + I possibilities for filling the empty boxes in 
the last row with l's and m's. The rest is determined so that the multiplicity is 
p + q - b + l .  

Having exhausted all possibilities, the multiplicity formula followso Putting 

everything together, we obtain the following 

T H E O R E M  3. For the parameter space L p'q, p > q >i O, we have 

d i m L P ' q > ' { ( m + p ) ( m + q ) - ( m + p - 1 ) ( m + q - 1 ) }  q \ p - 1  q - 1  

- ~ m i n { b + l , q + l , p + q - b + l  
b=0 b 

_ ( r e + b -  
b - 1  1)2} 

- 2  ~ min{b ,q ,p+q-b  r e + b - 1  
b=l b + l  

b(m + b + l)(m + 2b + l) 
m(m - 1) 

REMARKS. 1. We conjecture that the lower bound for the dimension is 
sharp so that actually equality holds. Without the horizontality condition, for 
m = 2 and p + q ~< 4, we will show this to be the case in the forthcoming 
section. 

2. For  q = 0, easy computation shows that L p'° contains the origin only 
which corresponds to the classical Veronese mapping. 

For  p = q the situation is simpler because ~vt °g'p is the (real) eigenspace of the 
Laplacian on CP m corresponding to the eigenvalue 4p(p + m). Since CP m is 
rank 1, the irreducible components of E p'p c S2(~vf~ 'p) are not class 1 with 
respect to (U(m + 1), U(m)) [15], [12]. Thus, after complexification, we have 
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the equality 

dim W p'p = ~ m[~Ct°b'b: S2(~P'P)] dimc ~b,b. 
b 

To determine the multiplicity in the symmetric square we apply the 
combinatorial rules of Chapter 3 in [9] and obtain 

m[~b,b:s2(~p,p). ] = [  min{b + 1,P+21,2p--b + 1}[ 1 

+e, b<~2p, 

where [1" I] denotes the 'greatest integer ~<' function and e = 1 for b even and 
e = 0 for b odd. 

THEOREM 4. For the parameter space L p'p, we have 

dimL p'p = ~ P p - 1  

- - ( m ; P l  1)2-- 1 } 

- ~ 0 { [  m i n { b + l , p + l , 2 p - b + l }  I } 
b 2 + e .  

REMARK A lower bound for dim L p'p has been obtained by Urakawa [14]. 

3. P O L Y N O M I A L  H A R M O N I C  MAPS OF S 5 I N T O  S 2 n + l  

From here on we put m = 2 and p/> q/> 0. Then, by the multiplicity formula 
above, we have 

p+q 

~(~P'~ ® ~'~q'P ~ ~ min{b + 1, q + 1,p + q - b + 1}V (b'°'-b) 
b=O 

q p + q - 2 c  

@ ~ ~ m i n { b + l , q - c + l ,  
c = l  b=O 

p + q - b - 2 c + l }  × 

× {V(b+ .... - b - 2 ~ ) ~  V(b+2~,-<,-~-~)}. 
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For q >~ 2, we have 

q p + q - 2 c  

dimU'q  ~> 2 ~ ~ m i n { b + l , q - c + l , p + q - b - 2 c + l }  
c=2 b=O 

( b + l ) ( b + c + l ) ( b + 3 c + l ) > 0  

so that we obtain an abundance of full polynomial harmonic maps f :  CP 2 
CP ~. For example, for quintic polynomial harmonic maps we get dim L ~'2 >/ 
170. To simplify the exposition, we now set aside horizontality by putting 
p = 2 a n d q = l .  W e h a v e  

~2 ,1  (~ ~ 1 , 2  ,~ ~6.t~O,O ~]) 2#(~1,1 (~) 2.~et:2,2 @ ~ 3 , 3  (~ 

~) V (1,1,-2) ~ V (2,-1,-1) (~ V (2,1,-3) ~) V (3,-1,-2) 

T H E O R E M  5. The irreducible components of (WZA) -L are not class 1 with 
respect to (U(3), U(2)), i.e. we have (as U(3)modules) 

(W2A) ~ ® C --- V (1'1-2) • V (2'- 1'-1) @V (2'1'-3) E3 V (3'-1'-2) 

Proof. Assuming the contrary means the existence of a Hermitian sym- 
metric endomorphism C ~ (W2'l)" of d~ 2'1, which is equivariant with respect 
to the subgroup U(2) c U(3). By the Branching theorem[18], we have 

~ 3  [u(2)= Y. 
0~<r~<2 
0~<s~<l 

so that C is (real) diagonal with respect to this decomposition. Now we pick an 
orthonormal base ~¢i ~4  ~2,~ ~:p,~ji=o in consisting of weight vectors of U(2) in 
J~'~, 0 4 r ~ 2, 0 ~ s ~ 1. Namely, using the coordinates z, w, t ~ C, we set (in 
~] ,~ ) :  

~ o , o  = span{(izl 2 _ iwl 2 _ itlZ)z}, 

~ , o =  span{~22  (iw,2 _21zlZ)w,~2(lt12- 21z[Z)t}, 

~2 ,o  = span{v/~ w2~, v/~ t2~, x~ ~ ewt}, 

= span{  

~ , l  = span{(Iwl 2 - ItlZ)z, x/~z~t, x/~zwt-), 

~¢~22'1 = s p a n  ([wl 2 - 21t12)w, ~ (Itl 2 - 21w12)t, 
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where the polynomials in the brackets are (by definition) the components of 
f2,a : S 5 ~ S 29. The condition C ~ (W2a) ± translates into ( C ' f 2 a ,  f 2 a )  = 0. 
Expanding, it follows easily that C = 0, a contradiction. 

REMARKS. Using an explicit base, a similar result can be obtained (for 
quartics) for oef3,~. 

Using the base of W2, ~ occurring in the proof above, various cubic harmonic 
eigenmaps can be constructed between S 5 and S 2"+~, 6 ~< n ~< 14. For 
example, let f.: S s ~ S 2n+1 be defined by 

f ~ ( z ,  w ,  t )  = ((Izl z - ~ lwl  2 - ~ltlZ)z, (Iwl z - c~ltl ~ - / / I z l Z ) w ,  

(Itl 2 - a lz l  z - fllwl2)t, 7zTt 2, V~z 2, ~'i-w ~, 6~,wt) 
(~=  - 1  + 2x/~,fl = 3 -  2x/~, ~ = 4 ~ / - 1  + 2x/~, 

6 =  2x/6X/3 + 2x/2 ), 

fg(z, w, t) = (v /~(Iz l  2 -21wt2)z, 1/~/~(Iwl 2 - 21zi2)w, 

x /~ ( Iwl  2 - 21t12)w, 1/.fi(Itl 2 - 21w12)t, 

x / ~ ( I t l  2 - 21z12)t, 1 / x / ~ ( I z l  2 - 21t12)z, 

f12(z, w, t) = ((]zl 2 -- Iwl 2 - Itl2)z, 1 / ~ ( [ w [  2 -- 2[z]2)w, 1 / ~ ( I t l  2 - 21zl2)t, 

, f i w <  fi 2 , fiz2, , f i z <  tlwl 2 - i,l )z, 

,fiz, t, - 21tl2)w, 1/,fi lti - 2iwl2)t, ,f iw< fi wt) 

and the remainder can be obtained by replacing x/~ ~,wt by (x/~ ~,wt, x/~ z~t) 
and by (,v/2 ~wt, V/2 z~t, ~ zwr). 

REMARK. We conjecture that there are no cubic harmonic maps f :  S 5 
$2,+ 1 of bidegree (2, 1) for n ~< 5. This is certainly the case (as computation 
shows) if we assume that the components belong to the span of that of f6. (In 
the terminology of [13], ( f 6 )  is a vertex of LZa.) 
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