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HARMONIC POLYNOMIAL MAPS BETWEEN SPHERES
AND COMPLEX PROJECTIVE SPACES
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ABSTRACT: We construct compact convex moduli spaces of harmonic maps be-
tween spheres and complex projective spaces.

§1. Introduction and generalities.

Let M be a compact oriented (isotropy) irreducible Riemannian homogeneous
space. We write M = G/K, where G is a transitive Lie group of isometries of M
and the isotropy subgroup K acts irreducibly on the tangent space To(M) at the
origino = {K}. Let A € Spec(M) and consider the associated (finite dimensional)
eigenspace V) C C®°(M). We endow Va with the normalized Lj-scalar product

(, ) defined by

(B, p') = =
a{ vol(M) J

n(A) +1 - ' vol(M),

where 4, u’ € V,, and n(d) +1 = dimV, (= multiplicity of A). Precomposing
eigenfunctions with isometries on M gives rise to an orthogonal G-module structure
onV) [3].A map f: M — S™ into the Euclidean n-sphere is said to be a A-efgenmap
if the components f* ;s = 0,...,n, of f with respect to S® c Rr+! belong to V.
Such maps are harmonic in the sense of J. Eells and J.H. Sampson [7] and, in fact,
they can be characterized as harmonic maps of constant energy density (= %) [8].
A map f: M — S™ is said to be full if the image of f is not contained in a proper

linear subspace of R"*+!, Two
there exists an'isometry U € O

maps [ ,f' : M — S™ are said to be equivalent if
(n+1) such that f' = Uof. One of the fundamental

problems in harmonic map theory posed by J. Eells and L. Lemaire [8] and R.T.
Smith [15] in 1972 (for spherical domains) is to classify, for fixed A € Spec(M), the

equivalence classes of all full \-

eigenmaps f : M — S™.

The standard minimal immersion r: M — S™() g the prototype of A-eigenmaps
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which is, in fact, a full (minimal) homothetic immersion. Its components comprise
an orthonormal base of V;; different choices of the base give rise to equivalent
standard minimal immersions. From here on we fix f) : M — S™*) and thereby
an isomorphism R**)+1 = V, The G- module structure of V) then carries over
to a G- module structure py : G — SO(n(}) + 1) of R**)+!, By construction,
fa: M — 8™ is equivariant with respect to the homomorphism p;.

A full A-eigenmap f : M — S™ can then be written as f = A - f), where A is an
(n + 1) x (n(}) + 1)-matrix of maximal rank. The symmetric matrix

(f) = A*- A — Lya)41 € SR+

(depends only on and) represents the equivalence class of f uniquely. (From here
on, we use [16] as a standard reference, cf. also [19].) The condition (f, f) = 1
translates into (f) € E), where E), is the orthogonal complement of

span{ fr(z)?|z € M} C S*(R"MH),

where f3(z)? is the symmetric square of the unit vector f(z) € R+ which is,
in fact, orthogonal projection onto R - fy(z). The orthogonal complement is taken
with respect to the scalar product (B, B') = trace Bt - B',B,B'€ S*(R"(N+1),
Clearly, E, is a G-submodule of S2(R™*)*!) with respect to the induced module
structure Adpy on S2(R™(*)+1) Setting '

Lx = {C ~ L)+ € Ef|C 20}

(where > stands for positive semidefinite) the correspondence f +— (f) gives rise
to a parametrization of the equivalence classes of full A- eigenmaps f : M — S"
by the compact convex body L) of Ey. The G-module structure of E) leaves L)
invariant and, on L), the G-action is induced by precomposing A-eigenmaps with
isometries on M. For fixed f : M — S™, the isotropy subgroup Gy = Gy = {g €
G|3U € O(n+1) such that fog = Uo f} is nothing but the (maximal) symmetry
group of f. The classification problem for A-eigenmaps posed above can then be
translated into the problem of understanding the geometry of L) (in particular, its
boundary AL,) in E).As a first step we introduce a natural cell structure of L) as
follows. For a fixed full A-eigenmap f : M — S, define

E; = (span{/(z)?)lz € M})* € S*(R™?)

and
Ly = {C' - I € E4|C 20}.

Then the affine map ¢ : Ly — Ly defined by ¢(C — In41) = At.C-A - Ly,
injects Ly onto a compact convex set Iy containing (f). For a full A-eigenmap




fl: M- SV (f) € I iff f' = A’- f for some (n’ +1) x (p + 1)-matrix A’
of maximal rank, or equivalently, iff the components of f’ are contained in the
linear span of the components of f in V. Denoting by A, the affine subspace of
E) spanned by Iy, we have Ay N Ly, = I and the interior Irof Irin A5 is a
convex body containing (f). The convex sets I t, for the various f, give rise to a
cell decomposition of L. Clearly, I f» = int L) and when passing to the boundary
of a cell the range dimension of the corresponding full A-eigenmaps decrease. Note
also that the range dimension is constant on any Iy, in particular, it is n(2) on I,.
Forg € G,wehaveg - Iy = I fog—t 80 that the G-action on L) respects the cell
structure. We now subdivide the classification problem introduced above into the
following problems:

L. Compute dim Ly = dimE,.

II. Decompose E)(®grC) into irreducible components and determine the highest
weight vectors of the components.

HI. Describe the cell structure of Ly modulo the action of G.

Almost nothing is known for rank M > 2 (cf. [17]). For M rank 1, E), is the sum of
those irreducible G- submodules of §2(R™(")+1) which are not class 1 with respect
to (G, K) (i.e. which when restricted to X do not contain the trivial K-module)
[17]. For M = S™, I and II have completely been resolved [16]; III is known for
the first nonrigid range (m = 3 and A = 8) [19] while for m > 5 odd a cell
on 9L, is known corresponding to A-eigenmaps arising from the Hopf- Whitehead
construction applied to orthogonal multiplications [18].For M = CP™,I has been
resolved in [1] using subtle representation theory whilefor II,some components of
E) have been determined previously [11,12,20].Some components of E, have also
been discovered for M = HP™ whose dimensions thereby give a lower bound for
L

In §2 we treat the spherical case and select among the legion of examples some
classical and recent ones of interest. The results are then applied in §3 to con-
struct specific cells on L) which give rise to a massive amount of new examples for
harmonic nonholomorphic maps between complez projective spaces; an other funda-
mental question in harmonic map theory (cf. [8]). They include those discovered
by A. Din and W. Zakrzewski [5,6] and further classified by J. Eells and J.C. Wood

[9].
§2. Harmonic polynomial maps between spheres.

For M = $™ with (G,K) = (SO(m + 1), S0(m)),we have A = ), =
a(a+m —1) € Spec(S™) and the associated eigenspace V)_ is nothing but the
irreducible SO(m + 1)-module of spherical harmonics of order a on S™ C R™+!
[3]- To simplify the notation, from now on, we write V), = V,, E) = E,, etc.
By the rigidity theorem of E. Calabi [4], for m = 2, we have L, = {0}, i.e. the
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only full Ag-eigenmap is f, : S2 — S§3%3 the standard minimal immersion, which is
nothing but the classical Veronese surface in $2* [3]. For @ = 1 it is elementary
that L, = {0} However, for m > 3 and k > 2, we have dimL, > 0. More
precisely, for m = 3,

E,@rC= Y {V,f""‘) ® Va(a,_c)}
(b,c)EAL
b,c even
and, for m 2 4,
E.®rC = Z Y (:e0:0),

(b,c)€ELS
b,c even

where A, C R2 is the closed triangle with vertices (2, 2),(a,a) and (2a — 2,2)
and V2 is the (complex) irreducible SO(m + 1) -module with highest weight p =
(p1, Pas.-sp1) € (1/2: z) ,1 = [(m+1)/2] (cf. [16]). Applying the Weyl dimen-
sion formula, dim L, can be computed.

The first nonrigid range m = 3 and a = 2, i.e. the structure of full quadratic
eigenmaps f : §3 — S™, is of particular interest [19]. Using coordinates (z,y,u,v)
on S® C R4, let fo: S® = S™2 < n < 8,n# 3, be defined by fu(z,y,4,v) =

(z? +y® — u? — v?,2(zu — yv),2(zv + yu)), (Hopf mep),n = 2
(= + y? — u? — v?,2zu,22v,2yu,2yv),n = 4

(=% - y3,u? —v3,2zy, V2(zu + yv),\/i(yu — zv),2uv),n =5
(1/V2(2? +3° — u? - v?),1/V2(z* - ¥*),1/V2(u? - v?),
V2zy,V3(zu + yv), V3(yu — zv),\/iu.v),n =6

(:1:2 - y’,u,2 - v2,2zy, V2zu, V2zv, \/fyu, \/iyv,2uv), n=17
Fra(Z, 9,4, 9), (f2, 6 standard minimal immersion),n = 8,

Then, I;,2 < n < 8n # 3, comprise all cells of Ly modulo the action of
O(4). Moreover, Iy, = point, Iy, = segment, Iy, = 2-disk, Iy, =(finite) solid
cone, dim I;, = 5 and dim Iyg = 10. Note also that the O(4)-orbit of the point (f)
corresponding to the Hopf map f : S3 — S2 has 2 components which are imbedded
in the appropriate 4-spheres of the 5-dimensional components Vs(z,z) and Vs(z,—z) of
E, as Veronese surfaces.

An other discovery of cells in dL; is offered by the Hopf-Whitehead construction.
Recall that a bilinear map F : R™+! x R™+! — R" is called an orthogonal multiph-
cation if |[F(z,y)| = |z| - |y|,z,y € R™*1. For given F, the map fr: S2m+1 _, gn
defined by

f(z,9) = (jz]* - [v]*,2F (z,¥)),
z,y e R™ |22 + |y* =1,
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is a quadratic eigenmap (which is full iff F is surjective) [2]. Notice that f, and
fa introduced above correspond to complex multiplication and real tensor product
on R?, respectively. In general, we consider the cell I = I fo C 0Ly, where

@ : §2m+1 , §(m+1)? i5 agsociated with the tensor product @ : R™H! x R™+1 _,
R(™+1)° Since fg is equivariant with respect to pg = ® : SO(m-+1) xSO(m+1) —
SO((m +1)?), the point (fg) € Ig is left fixed by SO(m + 1) x SO(m + 1) so that
setting it as the origin of the affine span Ag of I, we obtain an SO(m+1) x SO(m +
1)-module 4g. In fact, Ag = so(m+1)@so(m-+1), where on the right hand side the
module structure is given by Ad® Ad [18). It follows that dim Ig = (m(m + 1)/2)3.
Note that, for m = 1,2,]g has been determined by M. Parker explicitly [13].

§3.Harmonic polynomial maps between complex projective spaces.

For p > ¢ 2 0p+ g = a, let P9 be the (complex) irreducible U(m + 1)-
module of complex harmonic polynomials on C™*! of bidegree (p,g) [3]. A base
{f;,q};;(f;') C XP9, dimg ¥P? = n(p, g) + 1, with respect to a normalized Hermitian
Lz-scalar product on ¥4 induces a full A,-eigenmap f, , : 3™+ — gon(pa)+1,

where the components of f, , are {Re(f;;ﬂ),Im(f;.q)}:-;(g"'). Then, fp,q is equiv-
ariant with respect to the homomorphism ppq : U(m + 1) — SO(2(n(p,q) +
1)).Moreover as the central (diagonal) subgroup S* C U (m + 1) acts on ¥? via
Pp,q Dy the single weight p — g, the map f, 4 projects down to a map fp,q : CP™ —

CP™(P9) gych that 7o Ip,q = fp,q o7, where 7 stands for the respective Hopf maps.

LEMMA. The map fpq : S2m+1 — §20(ra)t+1 s horizontal with respect to 7 :
§2m+l — CP™, ie. (fp,q).(kern.) and (f,,5).((kern,)L) are orthogonal in T(S2n(p.a)+1)

PROOF: For z € §2™+! c C™*+!, the horizontal subspace (kerw,)L is the orthog-
onal complement of C - 2 in C™*! (shifted to z). Given w € (kerr,)L, we have to
show that

(dfp,q(w), dfp,q(iz)) = O,

where we used Hermitian scalar product in C*(P9)+1 and iz is considered in T, (S3™+1).
By homogeneity, we have

o | il
dfp»q(zz) =1 Efp,q(e“Z)lt:O - -d—te 2 Q)tlt=° * va?(z)

= i(p = ) fpa(2) = i dfy q2).

On the other hand, differentiating |f, 4(cost- z +sin¢-w)|? =1 at t = 0, we obtain
(dfp,q(w), dfp,q(2)) = 0 and the proof is complete.
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Applying the Reduction Theorem of R.T. Smith [15], we obtain that fpg °
CcpP™ — cprlrd) isa harmonic map-

REMARKS:

1.Form = 1n(p,q)+1 = (p+1)(q+1)—pq = pt+g+l=atlwe obtain the harmonic
maps fp,q* CP! — CP°. They and their conjugates comprise all harmonic maps
of CP?! into CP®. (For @ even we also have to add fa/2,6/2° CP! — CP® which is
induced by fa/2,6/2° g3 —» §29+1 which is not full.) These are the harmonic maps
which were discovered by A. Din and W. Zakrzewski |5,6] and classified by J. Eells
and J.C. Wood 9l

2. For ¢ =0, the map foo =Ta* cp™ - cp™e n(e,0) = m+6) i nothing but

the (holomorphic) Veronese map [14] induced by va : S 2m+1 _, (801, where

va(20y e 2m) = ((aY iolim) 228 2o )ig e im =0t
Yoot 20

We now take Tp.q = Ifps ond intersect it with the linear subspace Fizadp. (5’ E.)
to obtain the convex set FiZadp. (5%, Ip,q)- Given a full Ag-eigenmap i Gt
gN with (f) in the intersection, we have f = A-fp,qforsome (N+1)x (2(n(p, q)+1))-
matrix A of maximal rank. Moreover, as (f) € FiZade. (S, Ea), the map f is equiv-
ariant with respect to a homomorphism p s1 — SO(N +12 and A: r2ea+1) —
RN+ is intertwining between Pa and p. As p acts on R2(n(p:0)+1) with the single
weight p — q(> 0) the same holds for p, in particular, N=2n+1is odd and
A% C:‘(”"')"" _, Cr+! is complex linear. By equivariance, f projects down to 2
map f: cp™ — CP" such that w o f=for. Repeating the proof of the previous
lemma, it follows that fis horizontal with respect to T : g2m+l —» CP™ so that
A ECPT = CP" is harmonic. It follows that the convex set FiZadpa (S, T5,q)

parametrizes the harmonic maps f:cP™— CP™ obtained in the above manner.

REMARK: Examples are easy 10 construct. For instance, form=2and p=24=
1,
flzw,t)=(VT/ 8(|2)? — 2lwl)z V 178(|wl® — 212w, V 778(Jw|? - 21t1°)w;
V7B — 2wl 778(1tl? — 212}t V 178(j2l? — 21tz
V622, Vow?l, Ver'z, V6zwt)
gives rise to a harmonic map | : cp? — CP°.
Returning to the general gituation, we first note that fpq: gam+l o S 2n(p,a)+1
is equivariant with respect to the homomorphism Pp,q * Um+1)—S o(2(n(p,q) +
1)) corresponding to the U(m+ 1)-module structure on XP? = cr(pa)t+1, Setting

(fp,q) s the origin of the affine spal Ep,q Of FiZadpe (51, Ip,q) We obtain that €p,q
isaU(m+ 1)-module and

Epa & F i-"Adpu(S L Ep,q)




as U(m + 1)-modules, where Ep g = Ey, . (cf.§1).
Let E, 4 be the sum of those irreducible U(m + 1)- submodules of S?(¥g7) (¥R = ';
the realification of ¥P+7) which do not contain U(m)-fixed vectors.

PROPOSITION. E,, C E,,.

PROOF: Let p : S2(%E7) — Wo denote the orthogonal projection, where Wy =
R - fp,q(0)? and o = (1,0,...,0) € S?™*! is the base point left fixed by U(m).
Consider the induced representation

I= Indggziﬂ)(wo) = {¢: U(m+1) = Wo|¢(u - v)
= u - Y(v),u € U(m),v € U(m + 1), ¢ continuous }.

For o € 52(¥&7) we define the map ¥(o) : U(m-+1) — W, by ¥(0)(v) = p(v-0),v €
U(m+1). Then ¥(0) € I so that we obtain a homomorphism ¥ : S*(¥R?) — I of
U(m + 1)-modules. We have ker ¥ = (span{U(m + 1) - Wo})L = (span{f(z)?|z €
§2m+14)l = E, , so that im¥ = E,, C I as U(m + 1)-modules. By Frobenius
reciprocity [21], we have dimhomy (m+1)(Ep,q: Epg) < dimhomy(m41)(Epg, I) =
dim homy (m) (Ep,q, Wo) = 0 and the claim follows.

By the proposition above a lower estimate on dim Fizap, (S*,Ip,q) = dim&yq
is provided by

To enumerate L(p,q), we complexify

Fizaq,, (S, S2(HR7)) ®r C
= Fizg4p, (S, S2(XP? @ HIP))
= NP9 @ NTP @ YUP @ P

and obtain that
is the sum of those irreducible U(m + 1)-submodules which do not contain U(m)-

fixed vectors. This is just the condition for spherical harmonics ¥%® so that we
obtain.

L(p,q) = 2dimg P! ® HP?
-2 m[u%t: 49 @ ¥P9] - dime N
b




313

For m,a = 4, the Littlewood-Richardson rule [10,22] gives the multiplicity
m WP WP ® §9?| = min{b+1,¢+ 1,6 b+ 1}

(cf. also [1]).

we finally get, for m,a 2 4,

NN o (VR gy gey|
-2imin{b+ 1,g+1,6-b+1} [(’":")2 - ("':_'_’1' 1)2} :

b=0

REMARKS:
1. Enumerating, form =a = 4, we find

L(3,1) = 36,600.

2. For ¢ = 0, L(a,0) = 0. In fact, as can be easily shown, FiZadp, (8%, Ia0) =
{(va)}'
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