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ABSTRACT. By the generalized Do Carmo-Wallach classification theorem

polynomial harmonic maps between spheres can be parametrized by a finite-

dimensional compact convex body. Here we describe the boundary of the

parameter space in the first nonrigid range by exhibiting a large number of

quadratic harmonic maps of S3 into spheres.

1. Statement of the result. A fundamental problem in harmonic map theory

is to classify all harmonic maps /: Sm —► Sn between Euclidean spheres whose

components are homogeneous harmonic polynomials of (fixed) degree fc (cf. [2, 4, 5]

and [3, Problem (4.4), p. 70]. By the generalized Do Carmo-Wallach classification

theorem, for fixed m and fc, the equivalence classes of full harmonic polynomial

maps of degree fc can be parametrized by a compact convex body L° lying in a

finite-dimensional vector space E [6, pp. 297-304]. Moreover, dimF/ = 0 iff fc = 1

and m > 2 (rigidity of isometries) or m = 2 and fc > 1 (Calabi's rigidity theorem

[1, 7]). In the nonrigid range m > 2 and fc > 1, though the decomposition of the

SO(m-Yl)-module structure of F®rC (induced from the S,0(m+l)-action on L° by

precomposing harmonic maps with isometries of Sm) into irreducible components is

known [6], the orbit structure of the invariant subspace L° (especially that of dL°)

is rather subtle. It is then natural to consider the lowest-dimensional case m = 3

and fc = 2 (dimF/ = 10), i.e., to study full quadratic harmonic maps /: S3 —* Sn,

2 < n < 8.

THEOREM,   (i) Any full quadratic harmonic map f:S3—>S2 is globally rigid,

i.e., there exist U e 0(4) and V e 0(3) such that V o / o U is the Hopf map;

(ii) There is no full quadratic harmonic map f: S3 —► S3;

(iii) For 4 < n < 8, there exist nonglobally rigid full quadratic harmonic maps

fn:S3^Sn.

REMARK. By way of contrast (to (ii)), for the existence of polynomial (nonhar-

monic) maps /: S3 —» S3, see [8].

2. Proof. The entire space of quadratic harmonic polynomials in 4 variables

x, y, u, v is 9-dimensional and is spanned by x2 + y2 — u2 — v2, x2 — y2, u2 — v2,

xy, xu, xv, yu, yv, uv. Hence, for 2 < n < 8, a full quadratic harmonic map

/: 53 —y Sn is given by

,., f(x,y,u,v) = bix2 + hy2 -Y ciu2 + c2v2

-Y dixy + d2xu -Y d3xv -Y d^yu -f- d5yv -Y deuv,
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where the vectors bi,c„dj e Rn+1, i = 1,2, j = 1,... ,6, span R"+1 and 61 +

b2 -Y ci + c2 = 0. As ||/(x, y, u, v) \\2 is a homogeneous polynomial of degree 4, the

condition im(/) C Sn translates into

(2) \\f(x,y,u,v)\\2 = (x2+y2+u2-Yv2)2,

which has to be satisfied for all (x,y, u, v) e R4. Substituting (1) into (2) and

expanding both sides, we obtain various orthogonality relations between bi,Ci,d3 e

Rn+1. For n — 2, a straightforward computation (using the vector cross product in

R3) gives the general form of a full quadratic harmonic map f:S3—>S2, namely,

/ is equivalent to

fí,p(x,y,u,v) = (cosf (x2 -Yy2 - u2 - v2) + 2 sin f sin §(£3xt> + £4yu)

— 2 sin | cos f (£2xu + £5yv),

sin §(x2 - y2 — cosß(u2 — v2)) -Y 2cos f cos ^(e2xu — £$yv)

— 2 cos j sin | (£zxv — £±yu) -Y 2£§ sin S sin ßuv,

— sin | sin ß(u2 — v2) — 2 sin f (£i xy + £q cos ßuv)

-Y 2 cos | sin |(e2xu - £^yv) + 2 cos f cos §(£3x1; - £^yu)),

where 0 < a, ß < n and e = (£j)^=1 € Zf obeys the sign relations £i£2£4 =

—c"i£3c"5 = £2£3£6 = —£4£s£6 = 1- For fixed £, all f§p, 0 < ß < it, are equivalent.

Passing to the equivalence classes, we obtain a homeomorphic embedding of the

triangle [0,7r]2/{0} x [0,7t] into dL° (induced by (a,ß) -► f^0). By the sign

relations, these 8 triangles (corresponding to the various £) are easily seen to be

pasted together along their edges to form two disjoint copies of the real projective

plane RP2, each containing the Hopf map

f2(x, y, u, v) = (x2 -Yy2 - u2 - v2,2(xu - yv), 2(xv -Y yu))

or its "dual"

f2(x,y,u,v) = (x2 + y2 - u2 - v2,2(xu -Y yv),2(xv - yu)).

The symmetry group Gh = {U e SO(4) | f2 o U = V o f2 for some V e 0(3)},

being the isotropy subgroup of the point in dL° corresponding to f2, is then at

least 4-dimensional since the respective orbit is contained in a copy of RP2. On

the other hand, Gf2 C 50(4) is a proper subgroup since the Hopf map is not

equivariant. It follows that dim G/2 — 4 and hence the 50(4)-orbit corresponding

to f2 should coincide with a copy of RP2. Passing to 0(4) we recover the other

copy and (i) follows.

For (ii), we have to show that there is no system of vectors bi,Ci,dj e R4,

i = 1,2, j — 1,..., 6, spanning R4, such that they satisfy the orthogonality rela-

tions equivalent to (2). This can be done by tedious but elementary computation

separating the cases dimspan-f&^c,}2^ = 1,2 or 3. (Note that in the last case, it

is convenient to use the vector cross product on the 3-dimensional linear subspace

spanned by ¿>¿, c¿, i = 1,2.)

To prove (iii) needs an entirely different argument. Recall first that the pa-

rametrization of the equivalence classes of harmonic maps by L° is given by as-

sociating to the full quadratic harmonic map /: S3 —* Sn, 2 < n < 8, the sym-

metric matrix A* • A — Ig € 52(R9), where A is the (n + 1) x 9-matrix defined
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by / = A o fx2 with fx2 : S3 —► S8 a (fixed) standard minimal immersion. Then

E C 52(R9) is the orthogonal complement of W° = span{/,\2(x)2 | x e S3} and

L0 = {C — I9 e E | C > 0}. (Here > stands for "symmetric and positive semidefi-

nite".) In the same spirit, for fixed /: S3 -> 5" define 1V£ = span{/(x)2 | x G S3},

Ef = (W?)1- C S2(Rn+1) and L°f = {C - In+1 e Ef \ C > 0}. Then, the affine

map tp: L° —> L°, defined by tp(C - In+i) = A* • C • A — I9, injects L° onto a

compact convex set If. In the affine subspace spanned by //, the interior If of If

is a convex body which contains the point corresponding to /. Thus the sets //,

for various harmonic maps /, give rise to a subdivision of L° into disjoint convex

sets. To show (iii), it is enough to give a series of full quadratic harmonic maps

/„: S3 -» Sn, 4 < n < 8, such that dimEf(= dim//) > 0. First, let /6: S3 -+ S6
be defined by

f6(x,y,u,v) = {-j={x2+y2 - u2 -v2),-j=(x2 -y2),-=(u2 - v2) ,

\Flxy, \f?>(xu -Y yv), w2>(yu — xv), \J2uv 1 .

Then F/6 = R3 with 1 ¡& isomorphic to the finite (straight) cone in R3 with vertex

(1,0,0) and base circle of center (-1,0,0) and radius 2. The origin corresponds

to f&\ (—1,0,0) corresponds to a full harmonic map /5 : S3 —» S5 with dimF/5 =

2 and the points on the (open) edges of the cone correspond to full harmonic

maps f4: S3 —> S4 with dimF/4 = 1. (Note that f5(x,y,u,v) = (x2 — y2,u2 -

v2, 2xy, v/2(xu -I- yv), \/2(yu — xv), 2uv) and for f4 one can also take the harmonic

map obtained by applying the Hopf-Whitehead construction to the real tensor

product ® : R2 x R2 -» R4 [3].) Finally, define /8 = fx2 : S3 — S8 and f7: S3 -»

57by

fo(x, y, u, v) = (x2 — y2,u2 — v2,2xy, \plxu, V2xv, \2yu, v2yv, 2uv).

Then, dim E¡% — 10 and dim E¡7 = 5 which completes the proof.

REFERENCES

1. E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom. 1 (1967),

111-125.
2. J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978),

1-68.
3. _, Selected topics in harmonic maps, CBMS Regional Conf. Ser. in Math., No. 50, Amer.

Math. Soc, Providence, R.I., 1983.

4. R. T. Smith, Harmonic mappings of spheres, Thesis, Warwick University, 1972.

5. _,  The spherical representations of groups transitive on Sn, Indiana Math. J. 24 (1974),

307-325.
6. G. Toth, Harmonic and minimal maps, E. Horwood Series, Halsted Press, John Wiley & Sons,

1984.

7. N.  R.  Wallach,  Minimal immersions of symmetric spaces into spheres,  Symmetric Spaces,

Dekker, New York, 1972, pp. 1-40.

8. R. Wood, Polynomial maps from spheres to spheres, Invent. Math. 5 (1968), 163 168.

Department of Mathematics, The Ohio State University, 231 West 18th
Avenue, Columbus, Ohio 43210

Current address:   Department of Mathematics, Rutgers University, Camden, New Jersey 08102

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


