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1. Introduction. The following odd-dimensional analogue of the Mori and Siu-Yau

Theorems (see [11]) which gave rise to the study of compact three-manifolds in [6]

forms the background for this paper. A compact normal regular contact Riemannian
manifold M of positive curvature is covered by a sphere 82n+1. This was known for

three-manifolds as a result of the classification of circle bundles over surfaces.
However, a stronger statement was obtained in [5], namely, a compact simply connected

normal contact Riemannian three-manifold of nonnegative curvature is homeomorphic with
3

§°. 1In dimensions greater than 3, the regularity of the contact structure allows
one to employ the Boothby—Vang fibration of N in which the base manifold N is a
compact Kaehler manifold of positive curvature. The homotopy sequences of the
fiberings gl g2+l CWn and S N then show that M is of the same

homotopy type as S2n*1, 8o by Smale’s solution of the generalized Poincaré
conjecture N is homeomorphic with g20+1 for n > 1.

The normality condition for contact manifolds is the analogue of the
integrability condition for an almost complex structure. When n = 1, to say that a
contact Riemannian manifold is normal is equivalent to the statement that the
characteristic vector field of the contact structure is a Killing field. Y. Carriére
[3] has classified Riemannian flows on compact three-manifolds, but the difficulty
encountered is that they are not automatically Killing flows. A compact
three-manifold M admitting a nomsingular Killing vector field is a Seifert manifold
(see §4 for a proof), so if M is simply comnected it is diffeomorphic to the
standard three-sphere s3. Chern and Hamilton (4] introduced the torsion |7| (the
length of 7) in their study of compact contact three-manifolds (M,g), where
7(= ong) is the Lie derivative of the contact metric g with respect to the

characteristic vector field xo of the contact structure, and they conjectured that
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for fixed contact form w = g(xo,j, with Io inducing a Seifert foliation, there

%

exists a complex structure ¢|B on B = ker w such that the Dirichlet energy

(11 ew) = § [ Iri% voi(a,g)

is critical over all CR structures. (A CR structure on an oriemtable
three-manifold is a contact structure together with a complex structure on B. Since
the latter is equivalént to a conformal structure, a Riemannian metric on a contact
three-manifold gives rise to a CR structure.)

Let M be a (2n + 1)-dimensional contact manifold with a fixed contact form w.
Denote the space of all associated Riemannian metrics to the contact form w by
H(w). Let g be a point of M(w), and denote by {g(t)} a curve in H(w) with
g(0) = g. Tanno [12] showed that g is a critical point of £, if and only if

(1-'2) vxor = 2r - §.

»

Thus, for n =1, £(g) is critical over all CR structures if and only if (1.2) is
satisfied. (This differs from the condition Vx 7= 0 incorrectly obtained in [4],
0

Theorem 5.4.) 1In the sequel, a critical point of € will be called a critical
metric. Note that g is a critical point of £ if xo is a Killing vector field

with respect to g.
Can £ have a critical point g such that £(g) # 0?7 Blair [1] showed that the
ansver is no if the contact structure on M is regular, i.e., if every point of X

has a neighborhood such that any integral curve of the characteristic vector field X,

vhich passes through the neighborhood does so only once. (A theorem of Boothby and
Vang says that a compact regular contact manifold is a principal circle bundle over a
symplectic manifold vhose fundamental form has integral periods.) He also showed that
the standard contact metric structure on the unit tangent bundle of a compact surface
of constant negative curvature is not regular [2], and that this metric g is a
critical point of £ such that 7 # 0.

In [6]) it is shown that if the scalar curvature r > -2 on a compact contact
three-manifold (M,g) whose characteristic vector field is a Killing field, then g
may be deformed to a contact metric of positive Ricci curvature. It is the main
purpose of this paper to show that g may in fact be deformed to a contact metric of
positive sectional curvatmre. This is a consequence of Theorem 1 which also yields
the statement that if r is a constant greater than -2 (equivalently, if the
generalized Tanaka-Vebster scalar curvature is a positive cong%ant), then g may be
deformed to a contact metric of (positive) constant curvature. Nore generally, if the
contact metric g is critical, then g is of constant curvature, if and only if the
characteristic field is a Killing field and the sectional curvature is 1.



2. (Compact three—manifolds. A (2n+1)-dimensional manifold ,M is said to be a
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contact, manifold if it carries a global 1-form w # 0 with the property that

wA (dw)® #0 everyvhere. It has an underlying almost contact structure (¢,x0,w),
where w(Io) = 1, ¢lo =0 and ¢? =-I+we I;» I being the identity field. A
metric g, called an aggociated metric, can then be found such that w = g(xo,) and
dw(X,Y) = g(¢X,Y). (It should be moted that g is not umique.) If the almost
complex structure J on N : R defimed by J(X,fd/dt) = (¢X - 1), w(X)d/dt),

vhere f is a real-valmed famction, is integrable, the conmtact structure is said to
be normal. In this case, X, is 8 Killing vector field with respect to g.
Conversely, if n =1 and Xo is a Killing vector field, the contact structure on X

is normal. To facilitate the study of compact three-manifolds, one may apply the
follovwing important result due to Lutz and Martinet (8], namely, ‘every compact and
orientable three-manifold has a contact structure.’

In the sequel, we denote the Ricci temsor by S, and set o = S(XO,J[B.

THEOREX 1. Let N be a compact and orientable three—manifold with contact
metric structure (u,xo,g), where g is critical. Then, if the scalar curvature r

satisfies the inequality

2 2
(2.1) r>2( -+ A vae, o= r <o,
l_C
T

g has positive Ricci curvature.

PROOF. As in the proof of the Theorem in [6], to show that the Ricci tensor S
is positive definite, ve determine at each point x € M, a suitable basis {E,¢E,X0}

of T M, and verify that the subdeterminants along the main diagonal are positive.
Assume o, # 0. Since o, is a linear form on B, there exists a vector X ¢

B such that o = g(X,-). Hence, by choosing E = -(X/|X|), wve have [E| =1,

0 (E) =0 and o_(¢E) = |o].

The sectional curvatures K(XO,Y) of plane sections containing xo satisfy

(vxo"') (5,X) = l(xoa¢x) = x(xo,x)

AN

~

for any unit vector X € B (see [12], Lemma 7.1). MNoreover, since the metric g is
critical, then by ([6], Proposition 1, formula (ii)) and (1.2),



. Yy 7= 29,
(2 2)‘ xo"' L4
vhere 9(1,Y) = g((on¢)X,Y). Thus,

S(E,E) = S(¢E,¢E) + 29(E,E).
By polarization,
S(E,¢E) = ¥(E,gE)

since by ([6], Proposition 1), trace ¢ = 0 and ¢ is symmetric with respect to 9.
It follows that

2
S(E;E) = 3 + S - 1 + Y(E,E)
and '
r . c? -
S(¢E,¢E) = 5 + 7 — 1 - y(E,E).
Thus,
(¢ ¢? ]
g+ -1+ 9¥EE)  y(E,¢E) 0
r 2
(2.3) S = | ¥(¢E,E) 5+ —1- ¥%EE) o]
2
L 0 o] 2(1- %" )J

The subdeterminants along the main diagonal are positive. Por, the inequality (2.1)
implies

2
S(E,E) 23+ 5 -1-c>0,

' 2 2
S(E,E)S(JE,¢E) - S(B,0E)% = (F+ S -1-e)F+ S -1+ c)
1 cz 2
2 (2 ¢ el c)°>0

gince c? = ¢(E,E)2 + ¢(3,¢E)2, and

det S = 2(1 - 942.){({, + °-:- -1+ w(n,z))@ + %": -?\_ ¥(E,E))

2
- W(E,¢8)%) - 1012 + S - 1 + ¥(E,E))
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2 2 2 .
. 2 20 -G+ T -2 -H - 1oPG+ S -140)

2 2 2
G+G-1+0020-DE+S-1-¢)-o|F>0
by (2.1).

If o =0, the same argument applies to an arbitrary basis of the form
{E,¢E,X°}.

COROLLARY 1. Let N be a compact and orientable three-manifold with contact
metric structure (w,Xj,g), where X, is a Killing vector field. ZThem, if r > -2,

I admits a contact metric structure (aw,a-llo, ag + a(a - 1)w @ w) of positive
sectional curvature for some constant a, 0 < a € 1.

PROOF. Since xo is a Killing field, g is a critical metric. In addition,

o and 7 both vanish. Thus, the matrix (2.3) reduces to

;-1 0 0
S=| o ;-1 0
| 0 0 2J

The components of the Riemann curvature temsor R with respect to the
orthonormal basis {el,ez,es} = {E,¢E,Io} are

- r -—
(2-4)  Byjue= 0S50+ 685 — 685k — GuSis — 7 (Bigedyy — 6850

Consequently, since Sij =0 for i¢# j, the only nonvanishing components of R are
those with two indices different.
Let P be a 2-dimensional subspace of the tangent space TH at xek, and

let {X = Lae;, Y = Ebjej} be an orthonormal basis of P. Then, the sectional

curvature K(X,Y) of P is given by

h 2 9 9
BR(EV)L,Y) = (a;by - ayby) Rygyg + (a;bg = aghy)“Ryg a0 + (a5hg = 23by) “Rygys -

=,
Thus, if r > 4, K(X,Y) > 0. B

Assume that there is a point xo € X such that 0 < (r(xp) + 2)/6 < 1. The



m1n1mum k of the function (r(x) + 2)/6 then lies in the interval (0,1]. Consider
the metric g on N defined by

g=-ag+a(a-Nwow

for some constant a, 0 < a <k ¢ (r(x) + 2)/6. If ve put & = aw and io = a_lxo,
then (a,io,g) is a contact metric structure whose characteristic vector field is a
Killing field. By a direct computation (see [5]), the Ricci tensors S and § of
the metrics g and g, respectively, are related by

(2.5) §=85+2(1-2)g-2(1-2)(2+a)we w,

so since g = algll & (1 - a)a 21‘!%, F-4-= g (5;%—2 -a). Thus, >4, from
which E(X,Y) > 0.

Note that if g is a critical metric, then formula (4) of [6] with n =1 and
b=a2-a reduces to (2.5) by virtue of (2.2).

L4

critical metrics. Hamilton [7] showed that a metric

g of positive Ricci curvature on a compact three—manifold can be deformed to a metric
of (positive) comstant curvature. If g is a contact metric, we obtain the following

COROLLARY 2. Let N be a compact and orientable three-manifold with contact
metric structure (w,lo,g) vhere Io is a Killing vector field. Then, if r jis a

constant greater than -2, the metric g may be deformed to a contact metric of
constant curvature 1.

PROOF. It is well-known that a Riemannian three-manifold (M,g) is an Einstein
manifold if and only if it has constant curvature (cf. (2.4)). The matrix S in the
proof of Corollary 1 says that g is an Einstein metric <=> § = (r/3)g <=> |S|2 =
r /3 <=>r =6. If r is a constant greater than -2, then the contact metric
defined by g = ag + a(a - 1)w® w, a = (r + 2)/8, has constant scalar curvature f
= ((r + 2)/a)-2 = 6.

Nore generally, if the contact metric is critical, then from (2.3)

2
IS]

2 2
2|0(? + 29(E,¢B)% + 4(1 - D2 + 2§ + § - 1)2 + 29(E,E)?

-,

N

22
2|a| + 2c2 +2(2- —1) +4(1 - 3)°

Hence, |S|2 = r2/3, if and only if,



[r - 6(1 - 943)]2 + 12(Jo}2 + ¢2) = 0.

L]

This yields

THEOREM 2. Let N be a compact and orientable three-manifold with contact
metric structure (w,X),g), where g is critical. Then, g is of comstant

curvature k, if and onmly if Xo is a Killing vector field and k = 1.

COROLLARY. A critical metric on the three—gphere with constant curvature is the
standard pormal contact metric.

LEMMA. Let N be a compact contact (2n + 1)-dimensional manifold with contact
Riemannian structure (w,xo,g) vhere g is critical. Them, for a > 0, (& = aw,

X, = a—llo, g=2ag+ (a? - a)w ® w) is also a contact Riemannian structure with
critical metric g. MNoreover, the scalar curvatures of g and g are related by

2
. 2
£==I :; 0 _2n + ;55 (a -1),
a
and
18] = a3/2|q|,

shere & = S(Kj,-)|B.

PROOF. The Ricci temsors S and § are related by [6], formula (4), namely,
(3.1) §S=8S-2a-1)g+20a-1)(na+n+1Nwe w
since g is a critical metric. Thus,

g(-osio) 3 ff[s(x()’xo) ¥ 2“(32 - 1)]

L2 - Sf.) + 2n(a? - 1))
a

2
= 2n — 5—5 .

On the other hand,

1
)
—
-]
|
ot
=%
S
=
=
(4]
-
(4]
o
"
=]
Lal]
oa

§(%,.%,) =



from which & = a”lc. Hence,

L]

£(8) = ,H' e%d vol(N,8) = 2 j. ¢%d vol(N,g) = a"l£(g)

since d vol(H,§) = 2T1' @ A (d@)" = a™1d vol(N,g). Since g is critical, it
n:

follovs that § is also a critical metric. Now, let {Ei,¢§i,i0}, i=1,...,n, be
a p-basis with respect to g. Then, {Ei,¢Ei,XO}, i=1,...,n, is a p-basis with
respect to g, where E, = allzﬁi, and

n
f = trace § = §(K),K) + J {8(E;,E;) + S(vE;,vk,)}
1
c2 1 0 4n
;- ‘§ {S(E;,E;) + S(vB;,e2))} - T (2 - 1)
. 2
Ix2n 2n+-2-§§(a-1)
Horeover,
n
1812 = J {8(3,.E,)? + 8(R,,4E)%)
1

The lemma and Theorem 1 give rise to the following theorem (see also [6]).

THEOREM 3. Let M be a éompacg and orientable three-manifold with contact
metric structure (w,X),g), where g is critical. If there exists a constant a

guch that ¢ < 2a and

2

(3.2) r+-°2->(—2—|1|-;-—+2(2a+c—1),

a® - c“/4)
\\
then N admits a contact critical metric of positive Ricci curvature.

Another application of (3.1) yields the following extension of Theorem 2 of [5].



THEOREM 4. Let N be a compact (2n + 1)-dimensional manifo¥d with contact
metric structure (w,X,,g), where g is a critical metric and o = S(Xj,-)|B = 0.

Then, if S + Ag is positive definite for gome A < 2 - c¢/yn , the first Betti
number b,(M) of N jis gero. If, in addition, N is simply connected and n = 1,

it is diffeomorphic with SS.

PROOF. Consider the deformation defined by
n 2
g-8g+ (a°-s)wow
for some constant a = (2 — A)/2 > ¢/2/n > 0. Then, (3.1) becomes

§=S+2g-A(n- %} + 1we w.

Since & = 0 = 0, to see that § is positive definite we need only consider §(X,X)
with X horizontal and X vertical.
If X is vertical, that is, if X = tX;, ther

5(x,X)

t%5(2,,1,)
t2[8(Xp,Tg) + A - A(2n - B + 1))

Jpn—g-nuz-g]

]

2
Lhe-0%-cfs0, 2c2-L.
n

If X is horizontal, that is, if w(X) = 0, then
§(X,X) = (S + Ag)(X,X) > 0.

Thus, § is positive definite, and so bl(l) = 0. The last part is a consequence of
Hamilton [7].

4. Remarks: (a) The quantity r + c2/2 appearing in (2.1) and (3.2) is equal

to r* -2, where r* is the generalized Tanaka-Vebster scalar curvature defined in
[12]. The Vebster curvature V studied by Chern and Hamilton in [4] is equal to
r*/8. The conditiom om the scalar curvature r in Corollarieg_l and 2 may therefore
be replaced by the assumption that r* or VW be positive. The main result of [4]
says that every contact structure on a compact orientable three-manifold has a contact
Riemannian metric whose Webster curvature V is either a constant £0 or V>O0.



(b) Corollary 2 is mot too surprising since a compact simply connected
three-manifold N which admits a nonsingular Killing vector field is diffeomorphic to
s3. To see this, let 6 be a compact Lie group of isometries of M and denote by
p#, € 6 the one-paramater group generated by x(amt/at = XI). The flow by gives

rise to an abelian subgroup of 6. The closure of K, inside G is a torus and
approaches b, inside this torus by sl. since the action of B, is locally free,
one can take Sl sufficiently close to B, 8o that it acts locally free on N. This

action gives rise to a Seifert manifold structure on M. But a simply connected
Seifert manifold is diffeomorphic to s3.

(c) The following remark is due to Grant Cairns. 6. Nonna [9] has constructed a
flov on S% which is not a Killing flow, so it is meither regular nor normal. In his
example, he deforms the Hopf fibration, namely, s is considered as the union of two
solid tori in such a way that in each torus the Hopf fibration induces a flow tangent
to each of the 2-tori parallel to the boundary. The flows induced on these 2-tori are
just linear flows with ‘constant’ ratiomal gradient. When one deforms the flow as in
[5], p. 655, one simply changes the gradient to amother comstant (possibly irrational)
gradient. However, the gradiemt can be changed in ;uch a wvay that it is not a
constant (i.e., it depends on the 2-torus) and yet the deformed flow is still a
contact flow. The resulting flow has infinitely many closed leaves and infinitely
many non—closed leaves, so it camnot be a Killing flow.
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