CURVATURE OF CONTACT RIEMANNIAN THREE-MANIFOLDS WITH CRITICAL METRICS

S. I. Goldberg 1
Department of Mathematics, University of Illinois, Urbana, Illinois 61801
and Department of Mathematics and Statistics, Queen's University, Kingston
Canada K7L 3N6

D. Perrone²
Dipartimento di Matematica, Universita' degli studi di Lecce
Via Arnesano, 73100 Lecce, Italy

G. Toth
Department of Mathematics, Rutgers University, Camden, N.J. 08102

1. Introduction. The following odd-dimensional analogue of the Mori and Siu-Yau Theorems (see [11]) which gave rise to the study of compact three-manifolds in [6] forms the background for this paper. A compact normal regular contact Riemannian manifold M of positive curvature is covered by a sphere S^{2n+1} . This was known for three-manifolds as a result of the classification of circle bundles over surfaces. However, a stronger statement was obtained in [5], namely, a compact simply connected normal contact Riemannian three-manifold of nonnegative curvature is homeomorphic with S^3 . In dimensions greater than 3, the regularity of the contact structure allows one to employ the Boothby-Wang fibration of M in which the base manifold N is a compact Kaehler manifold of positive curvature. The homotopy sequences of the fiberings $S^1 \rightarrow S^{2n+1} \rightarrow \mathbb{CP}_n$ and $S^1 \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ then show that M is of the same homotopy type as S^{2n+1} , so by Smale's solution of the generalized Poincaré conjecture M is homeomorphic with S^{2n+1} for n>1.

The normality condition for contact manifolds is the analogue of the integrability condition for an almost complex structure. When n=1, to say that a contact Riemannian manifold is normal is equivalent to the statement that the characteristic vector field of the contact structure is a Killing field. Y. Carrière [3] has classified Riemannian flows on compact three-manifolds, but the difficulty encountered is that they are not automatically Killing flows. A compact three-manifold M admitting a nonsingular Killing vector field is a Seifert manifold (see §4 for a proof), so if M is simply connected it is diffeomorphic to the standard three-sphere S^3 . Chern and Hamilton [4] introduced the torsion $|\tau|$ (the length of τ) in their study of compact contact three-manifolds (M,g), where $\tau(=L_{10})$ is the Lie derivative of the contact metric g with respect to the

characteristic vector field \mathbf{X}_0 of the contact structure, and they conjectured that

¹Supported by the Natural Sciences and Engineering Research Council of Canada.
²Supported by funds 60% of the Ministero Pubblica Istruzione.

for fixed contact form $\omega = g(X_0, \cdot)$, with X_0 inducing a Seifert foliation, there exists a complex structure $\phi \mid B$ on $B = \ker \omega$ such that the Dirichlet energy

(1.1)
$$\mathcal{E}(g) = \frac{1}{2} \int_{\mathbb{R}} |\tau|^2 d \operatorname{vol}(\mathbb{I}, g)$$

is critical over all CR structures. (A CR structure on an orientable three-manifold is a contact structure together with a complex structure on B. Since the latter is equivalent to a conformal structure, a Riemannian metric on a contact three-manifold gives rise to a CR structure.)

Let M be a (2n+1)-dimensional contact manifold with a fixed contact form ω . Denote the space of all associated Riemannian metrics to the contact form ω by $\mathcal{N}(\omega)$. Let g be a point of $\mathcal{N}(\omega)$, and denote by $\{g(t)\}$ a curve in $\mathcal{N}(\omega)$ with g(0) = g. Tanno [12] showed that g is a critical point of \mathcal{E} , if and only if

$$\nabla_{\mathbf{X}_0} \tau = 2\tau \cdot \phi.$$

Thus, for n = 1, $\mathcal{E}(g)$ is critical over all CR structures if and only if (1.2) is satisfied. (This differs from the condition $\nabla_{\mathbf{X}_0} \tau = 0$ incorrectly obtained in [4],

Theorem 5.4.) In the sequel, a critical point of \mathcal{E} will be called a <u>critical</u> metric. Note that g is a critical point of \mathcal{E} if \mathbf{X}_0 is a Killing vector field with respect to g.

Can \mathcal{E} have a critical point g such that $\mathcal{E}(g) \neq 0$? Blair [1] showed that the answer is no if the contact structure on M is regular, i.e., if every point of M has a neighborhood such that any integral curve of the characteristic vector field X_0 which passes through the neighborhood does so only once. (A theorem of Boothby and Vang says that a compact regular contact manifold is a principal circle bundle over a symplectic manifold whose fundamental form has integral periods.) He also showed that the standard contact metric structure on the unit tangent bundle of a compact surface of constant negative curvature is not regular [2], and that this metric g is a critical point of \mathcal{E} such that $\tau \neq 0$.

In [6] it is shown that if the scalar curvature r > -2 on a compact contact three-manifold (N,g) whose characteristic vector field is a Killing field, then g may be deformed to a contact metric of positive Ricci curvature. It is the main purpose of this paper to show that g may in fact be deformed to a contact metric of positive sectional curvature. This is a consequence of Theorem 1 which also yields the statement that if r is a constant greater than -2 (equivalently, if the generalized Tanaka-Webster scalar curvature is a positive constant), then g may be deformed to a contact metric of (positive) constant curvature. More generally, if the contact metric g is critical, then g is of constant curvature, if and only if the characteristic field is a Killing field and the sectional curvature is 1.

2. Compact three-manifolds. A (2n+1)-dimensional manifold , N is said to be a contact manifold if it carries a global 1-form $\omega \neq 0$ with the property that $\omega \wedge (d\omega)^n \neq 0$ everywhere. It has an underlying almost contact structure (ϕ, X_0, ω) , where $\omega(X_0) = 1$, $\phi X_0 = 0$ and $\phi^2 = -I + \omega \circ X_0$, I being the identity field. A metric g, called an associated metric, can then be found such that $\omega = g(X_0, \cdot)$ and $d\omega(X,Y) = g(\phi X,Y)$. (It should be noted that g is not unique.) If the almost complex structure J on N R defined by $J(X,fd/dt) = (\phi X - fX_0, \omega(X)d/dt)$, where f is a real-valued function, is integrable, the contact structure is said to be normal. In this case, X_0 is a Killing vector field with respect to g. Conversely, if n = 1 and X_0 is a Killing vector field, the contact structure on N is normal. To facilitate the study of compact three-manifolds, one may apply the following important result due to Lutz and Martinet [8], namely, 'every compact and orientable three-manifold has a contact structure.'

In the sequel, we denote the Ricci tensor by S, and set $\sigma = S(X_0, \cdot) | B$.

THEOREM 1. Let N be a compact and orientable three manifold with contact metric structure (ω, X_0, g) , where g is critical. Then, if the scalar curvature r satisfies the inequality

(2.1)
$$r > 2(1 - \frac{c^2}{4}) + \frac{|\sigma|^2}{1 - \frac{c^2}{4}} + 2c, \quad c = |\tau| < 2,$$

g has positive Ricci curvature.

PROOF. As in the proof of the Theorem in [6], to show that the Ricci tensor S is positive definite, we determine at each point $x \in \mathbb{N}$, a suitable basis $\{E, \phi E, X_0\}$ of $T_x \mathbb{N}$, and verify that the subdeterminants along the main diagonal are positive.

Assume $\sigma_{\mathbf{X}} \neq 0$. Since $\sigma_{\mathbf{X}}$ is a linear form on \mathbf{B} , there exists a vector $\mathbf{X} \in \mathbf{B}$ such that $\sigma_{\mathbf{X}} = \mathbf{g}(\mathbf{X}, \cdot)$. Hence, by choosing $\mathbf{E} = -\phi(\mathbf{X}/|\mathbf{X}|)$, we have $|\mathbf{E}| = 1$, $\sigma_{\mathbf{X}}(\mathbf{E}) = 0$ and $\sigma_{\mathbf{X}}(\phi\mathbf{E}) = |\sigma|$.

The sectional curvatures $K(X_0,Y)$ of plane sections containing X_0 satisfy

$$(\mathbf{V}_{\mathbf{I}_0}\tau)(\mathbf{I},\mathbf{I}) = \mathbf{I}(\mathbf{I}_0,\phi\mathbf{I}) - \mathbf{I}(\mathbf{I}_0,\mathbf{I})$$

for any unit vector X & B (see [12], Lemma 7.1). Moreover, since the metric g is critical, then by ([6], Proposition 1, formula (ii)) and (1.2),

$$\nabla_{\mathbf{X}_0} \tau = -2\psi,$$

where $\psi(\mathbf{I},\mathbf{Y}) = g((\mathbf{L}_{\mathbf{X}_0}\phi)\mathbf{I},\mathbf{Y})$. Thus,

$$S(E,E) = S(\phi E, \phi E) + 2\psi(E,E)$$
.

By polarization,

$$S(E,\phi E) = \psi(E,\phi E)$$

since by ([6], Proposition 1), trace $\psi = 0$ and ϕ is symmetric with respect to ψ . It follows that

$$S(E,E) = \frac{r}{2} + \frac{c^2}{4} - 1 + \psi(E,E)$$

and

$$S(\phi E, \phi E) = \frac{r}{2} + \frac{c^2}{4} - 1 - \psi(E, E).$$

Thus,

(2.3)
$$S = \begin{bmatrix} \frac{\Gamma}{2} + \frac{c^2}{4} - 1 + \psi(E, E) & \psi(E, \phi E) & 0 \\ \psi(\phi E, E) & \frac{\Gamma}{2} + \frac{c^2}{4} - 1 - \psi(E, E) & |\sigma| \\ 0 & |\sigma| & 2(1 - \frac{c^2}{4}) \end{bmatrix}.$$

The subdeterminants along the main diagonal are positive. For, the inequality (2.1) implies

$$S(E,E) \ge \frac{r}{2} + \frac{c^2}{4} - 1 - c > 0,$$

$$S(E,E)S(\phi E, \phi E) - S(E, \phi E)^2 = (\frac{r}{2} + \frac{c^2}{4} - 1 - c)(\frac{r}{2} + \frac{c^2}{4} - 1 + c)$$

$$\ge (\frac{r}{2} + \frac{c^2}{4} - 1 - c)^2 > 0$$

since
$$c^2 = \psi(E,E)^2 + \psi(E,\phi E)^2$$
, and
$$\det S = 2(1 - \frac{c^2}{4})\{(\frac{r}{2} + \frac{c^2}{4} - 1 + \psi(E,E))(\frac{r}{2} + \frac{c^2}{4} - 1 - \psi(E,E))$$
$$- \psi(E,\phi E)^2\} - |\sigma|^2(\frac{r}{2} + \frac{c^2}{4} - 1 + \psi(E,E))$$

$$\geq 2(1-\frac{c^2}{4})\{(\frac{r}{2}+\frac{c^2}{4}-1)^2-c^2\}-|\sigma|^2(\frac{r}{2}+\frac{c^2}{4}-1+c)$$

$$=(\frac{r}{2}+\frac{c^2}{4}-1+c)\{2(1-\frac{c^2}{4})(\frac{r}{2}+\frac{c^2}{4}-1-c)-|\sigma|^2\}>0$$
by (2.1).

If $\sigma = 0$, the same argument applies to an arbitrary basis of the form $\{E, \varphi E, X_0\}$.

COROLLARY 1. Let II be a compact and orientable three-manifold with contact metric structure (ω, I_0, g) , where II_0 is a Killing vector field. Then, if II_0 if II_0 admits a contact metric structure $(a\omega, a^{-1}I_0, ag + a(a-1)\omega \cdot \omega)$ of positive sectional curvature for some constant II_0 , II_0 and II_0 and II_0 and II_0 are II_0 and II_0 are II_0 are II_0 and II_0 are II_0 and II_0 are II_0 are II_0 are II_0 are II_0 and II_0 are II_0 are II_0 are II_0 are II_0 are II_0 are II_0 and II_0 are II_0 are II

PROOF. Since X_0 is a Killing field, g is a critical metric. In addition, σ and τ both vanish. Thus, the matrix (2.3) reduces to

$$S = \begin{bmatrix} \frac{r}{2} - 1 & 0 & 0 \\ 0 & \frac{r}{2} - 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

The components of the Riemann curvature tensor R with respect to the orthonormal basis $\{e_1, e_2, e_3\} = \{E, \phi E, I_0\}$ are

(2.4)
$$R_{ijk\ell} = \delta_{ik}S_{j\ell} + \delta_{j\ell}S_{ik} - \delta_{i\ell}S_{jk} - \delta_{jk}S_{i\ell} - \frac{r}{2} \left(\delta_{ik}\delta_{j\ell} - \delta_{i\ell}\delta_{jk}\right).$$

Consequently, since $S_{ij} = 0$ for $i \neq j$, the only nonvanishing components of R are those with two indices different.

Let P be a 2-dimensional subspace of the tangent space T_XM at $x \in M$, and let $\{X = \Sigma a_i e_i, Y = \Sigma b_j e_j\}$ be an orthonormal basis of P. Then, the sectional curvature K(X,Y) of P is given by

$$g(R(X,Y)X,Y) = (a_1b_2 - a_2b_1)^2R_{1212} + (a_1b_3 - a_3b_1)^2R_{1313} + (a_2b_3 - a_3b_2)^2R_{2323}.$$

Thus, if r > 4, K(X,Y) > 0.

Assume that there is a point $x_0 \in \mathbb{R}$ such that $0 < (r(x_0) + 2)/6 \le 1$. The

minimum k of the function (r(x) + 2)/6 then lies in the interval (0,1]. Consider the metric \tilde{g} on M defined by

$$\tilde{\mathbf{g}} = \mathbf{a}\mathbf{g} + \mathbf{a}(\mathbf{a} - 1)\boldsymbol{\omega} \bullet \boldsymbol{\omega}$$

for some constant a, $0 < a < k \le (r(x) + 2)/6$. If we put $\tilde{\omega} = a\omega$ and $\tilde{X}_0 = a^{-1}X_0$, then $(\tilde{\omega}, \tilde{X}_0, \tilde{g})$ is a contact metric structure whose characteristic vector field is a Killing field. By a direct computation (see [5]), the Ricci tensors S and \tilde{S} of the metrics g and \tilde{g} , respectively, are related by

(2.5)
$$\tilde{S} = S + 2(1 - a)g - 2(1 - a)(2 + a)\omega \otimes \omega$$

so since $\tilde{g}^{ij} = a^{-1}g^{ij} + (1-a)a^{-2}I_0^iI_0^j$, $\tilde{r} - 4 = \frac{6}{a}(\frac{r+2}{6} - a)$. Thus, $\tilde{r} > 4$, from which $\tilde{K}(X,Y) > 0$.

Note that if g is a critical metric, then formula (4) of [6] with n = 1 and $b = a^2 - a$ reduces to (2.5) by virtue of (2.2).

3. Constant curvature and critical metrics. Hamilton [7] showed that a metric g of positive Ricci curvature on a compact three-manifold can be deformed to a metric of (positive) constant curvature. If g is a contact metric, we obtain the following

COROLLARY 2. Let N be a compact and orientable three-manifold with contact metric structure (ω, X₀, g) where X₀ is a Killing vector field. Then, if r is a constant greater than -2, the metric g may be deformed to a contact metric of constant curvature 1.

PROOF. It is well-known that a Riemannian three-manifold (N,g) is an Einstein manifold if and only if it has constant curvature (cf. (2.4)). The matrix S in the proof of Corollary 1 says that g is an Einstein metric \ll S = $(r/3)g \ll$ $|S|^2 = r^2/3 \ll$ r = 6. If r is a constant greater than -2, then the contact metric defined by $\tilde{g} = ag + a(a-1)\omega = \omega$, a = (r+2)/8, has constant scalar curvature $\tilde{r} = ((r+2)/a)-2 = 6$.

More generally, if the contact metric is critical, then from (2.3)

$$|S|^{2} = 2|\sigma|^{2} + 2\psi(E, \phi E)^{2} + 4(1 - \frac{c^{2}}{4})^{2} + 2(\frac{r}{2} + \frac{c^{2}}{4} - 1)^{2} + 2\psi(E, E)^{2}$$

$$= 2|\sigma|^{2} + 2c^{2} + 2(\frac{r}{2} + \frac{c^{2}}{4} - 1)^{2} + 4(1 - \frac{c^{2}}{4})^{2}.$$

Hence, $|S|^2 = r^2/3$, if and only if,

$$[r - 6(1 - \frac{c^2}{4})]^2 + 12(|\sigma|^2 + c^2) = 0.$$

This yields

THEOREM 2. Let N be a compact and orientable three-manifold with contact metric structure (ω, X_0, g) , where g is critical. Then, g is of constant curvature k, if and only if X_0 is a Killing vector field and k = 1.

COROLLARY. A critical metric on the three-sphere with constant curvature is the standard normal contact metric.

LEMMA. Let N be a compact contact (2n + 1)—dimensional manifold with contact Riemannian structure (ω, X_0, g) where g is critical. Then, for a > 0, $(\tilde{\omega} = a\omega, \tilde{X}_0 = a^{-1}X_0, \tilde{g} = ag + (a^2 - a)\omega = \omega)$ is also a contact Riemannian structure with critical metric \tilde{g} . Moreover, the scalar curvatures of g and \tilde{g} are related by

$$\tilde{r} = \frac{r + 2n}{a} - 2n + \frac{c^2}{2a^2} (a - 1),$$

and

$$|\tilde{\sigma}| = a^{-3/2}|\sigma|,$$

where $\tilde{\sigma} = S(\tilde{\mathbf{I}}_0, \cdot) | \mathbf{B}$.

PROOF. The Ricci tensors S and S are related by [6], formula (4), namely,

(3.1)
$$\tilde{S} = S - 2(a-1)g + 2(a-1)(na+n+1)\omega \otimes \omega$$

since g is a critical metric. Thus,

$$\begin{split} \tilde{S}(\tilde{I}_0, \tilde{I}_0) &= \frac{1}{a^2} [S(I_0, I_0) + 2n(a^2 - 1)] \\ &= \frac{1}{a^2} [2(n - \frac{c^2}{4}) + 2n(a^2 - 1)] \\ &= 2n - \frac{c^2}{2a^2} . \end{split}$$

On the other hand,

$$\tilde{S}(\tilde{I}_0,\tilde{I}_0) = 2(n - \frac{\tilde{c}^2}{4}), \text{ where } \tilde{c}^2 = |L_{\tilde{I}_0}\tilde{g}|^2,$$

from which $\tilde{c} = a^{-1}c$. Hence,

$$\mathcal{E}(\tilde{\mathbf{g}}) = \frac{1}{2} \int_{\mathbb{R}} \tilde{\mathbf{c}}^2 d \operatorname{vol}(\mathbb{H}, \tilde{\mathbf{g}}) = \frac{\mathbf{a}^{n-1}}{2} \int_{\mathbb{R}} \mathbf{c}^2 d \operatorname{vol}(\mathbb{H}, \mathbf{g}) = \mathbf{a}^{n-1} \mathcal{E}(\mathbf{g})$$

since $d \text{ vol}(\mathbb{I}, \tilde{\mathbf{g}}) = \frac{1}{2^n n!} \tilde{\omega} \wedge (d\tilde{\omega})^n = \mathbf{a}^{n+1} d \text{ vol}(\mathbb{I}, \mathbf{g})$. Since \mathbf{g} is critical, it follows that $\tilde{\mathbf{g}}$ is also a critical metric. Now, let $\{\tilde{\mathbf{E}}_i, \varphi \tilde{\mathbf{E}}_i, \tilde{\mathbf{I}}_0\}$, $i = 1, \dots, n$, be a φ -basis with respect to $\tilde{\mathbf{g}}$. Then, $\{\mathbf{E}_i, \varphi \mathbf{E}_i, \mathbf{I}_0\}$, $i = 1, \dots, n$, is a φ -basis with respect to \mathbf{g} , where $\mathbf{E}_i = \mathbf{a}^{1/2} \tilde{\mathbf{E}}_i$, and

$$\tilde{r} = \text{trace } \tilde{S} = \tilde{S}(\tilde{I}_{0}, \tilde{I}_{0}) + \sum_{1}^{n} \{\tilde{S}(\tilde{E}_{i}, \tilde{E}_{i}) + \tilde{S}(\varphi \tilde{E}_{i}, \varphi \tilde{E}_{i})\}$$

$$= 2n - \frac{c^{2}}{2a^{2}} + \frac{1}{a} \sum_{1}^{n} \{S(E_{i}, E_{i}) + S(\varphi E_{i}, \varphi E_{i})\} - \frac{4n}{a} (a - 1)$$

$$= \frac{r + 2n}{a} - 2n + \frac{c^{2}}{2a^{2}} (a - 1).$$

Moreover,

$$\begin{split} |\tilde{\sigma}|^2 &= \sum_{1}^{n} \{ \tilde{S}(\tilde{X}_0, \tilde{E}_i)^2 + \tilde{S}(\tilde{X}_0, \varphi \tilde{E}_i)^2 \} \\ &= \frac{1}{a^3} \sum_{1}^{n} \{ S(X_0, E_i)^2 + S(X_0, \varphi E_i)^2 \} \\ &= \frac{|\sigma|^2}{a^3} . \end{split}$$

The lemma and Theorem 1 give rise to the following theorem (see also [6]).

THEOREM 3. Let M be a compact and orientable three-manifold with contact metric structure (ω, X_0, g) , where g is critical. If there exists a constant a such that c < 2a and

(3.2)
$$r + \frac{c^2}{2} > \frac{|\sigma|^2}{(a^2 - c^2/4)} + 2(2a + c - 1),$$

then I admits a contact critical metric of positive Ricci curvature.

Another application of (3.1) yields the following extension of Theorem 2 of [5].

THEOREM 4. Let \mathbb{I} be a compact (2n+1)-dimensional manifold with contact metric structure $(\omega, \mathbb{I}_0, g)$, where g is a critical metric and $\sigma = S(\mathbb{I}_0, \cdot) \mid B = 0$. Then, if $S + \lambda g$ is positive definite for some $\lambda < 2 - c/\sqrt{n}$, the first Betti number $b_1(\mathbb{I})$ of \mathbb{I} is zero. If, in addition, \mathbb{I} is simply connected and n = 1, it is diffeomorphic with S^3 .

PROOF. Consider the deformation defined by

$$\tilde{\mathbf{g}} = \mathbf{a}\mathbf{g} + (\mathbf{a}^2 - \mathbf{a})\omega \bullet \omega$$

for some constant $a = (2 - \lambda)/2 > c/2\sqrt{n} > 0$. Then, (3.1) becomes

$$\tilde{S} = S + \lambda g - \lambda (2n - \frac{n\lambda}{2} + 1)\omega \bullet \omega.$$

Since $\tilde{\sigma} = \sigma = 0$, to see that \tilde{S} is positive definite we need only consider $\tilde{S}(X,X)$ with X horizontal and X vertical.

If X is vertical, that is, if $X = tX_0$, then

$$\begin{split} \tilde{S}(X,X) &= t^2 \tilde{S}(X_0, X_0) \\ &= t^2 \left[S(X_0, X_0) + \lambda - \lambda (2n - \frac{n\lambda}{2} + 1) \right] \\ &= t^2 \left[2n - \frac{c^2}{2} - n\lambda (2 - \frac{\lambda}{2}) \right] \\ &= \frac{t^2}{2} \left[n(2 - \lambda)^2 - c^2 \right] > 0, \quad \lambda < 2 - \frac{c}{\sqrt{n}} . \end{split}$$

If X is horizontal, that is, if $\omega(X) = 0$, then

$$\tilde{S}(I,I) = (S + \lambda g)(I,I) > 0.$$

Thus, \tilde{S} is positive definite, and so $b_1(1) = 0$. The last part is a consequence of Hamilton [7].

4. Remarks: (a) The quantity $r + c^2/2$ appearing in (2.1) and (3.2) is equal to $r^* - 2$, where r^* is the generalized Tanaka-Vebster scalar curvature defined in [12]. The Vebster curvature V studied by Chern and Hamilton in [4] is equal to $r^*/8$. The condition on the scalar curvature r in Corollaries 1 and 2 may therefore be replaced by the assumption that r^* or V be positive. The main result of [4] says that every contact structure on a compact orientable three-manifold has a contact Riemannian metric whose Vebster curvature V is either a constant ≤ 0 or V > 0.

- (b) Corollary 2 is not too surprising since a compact simply connected three-manifold N which admits a nonsingular Killing vector field is diffeomorphic to S^3 . To see this, let G be a compact Lie group of isometries of N and denote by $\mu_t \in G$ the one-paramater group generated by $\mathbf{X}(\partial \mu_t/\partial t = \mathbf{X})$. The flow μ_t gives rise to an abelian subgroup of G. The closure of μ_t inside G is a torus and approaches μ_t inside this torus by S^1 . Since the action of μ_t is locally free, one can take S^1 sufficiently close to μ_t so that it acts locally free on N. This action gives rise to a Seifert manifold structure on N. But a simply connected Seifert manifold is diffeomorphic to S^3 .
- (c) The following remark is due to Grant Cairns. G. Monna [9] has constructed a flow on S³ which is not a Milling flow, so it is neither regular nor normal. In his example, he deforms the Mopf fibration, namely, S³ is considered as the union of two solid tori in such a way that in each torus the Mopf fibration induces a flow tangent to each of the 2-tori parallel to the boundary. The flows induced on these 2-tori are just linear flows with constant rational gradient. When one deforms the flow as in [5], p. 655, one simply changes the gradient to another constant (possibly irrational) gradient. Mowever, the gradient can be changed in such a way that it is not a constant (i.e., it depends on the 2-torus) and yet the deformed flow is still a contact flow. The resulting flow has infinitely many closed leaves and infinitely many non-closed leaves, so it cannot be a Milling flow.

REFERENCES

- 1. D. E. Blair, Critical associated metrics on contact manifolds, J. Austral. Math. Soc. (Series A) 37(1984), 82-88.
- 2. _____, On the non-regularity of tangent sphere bundles, Proc. Royal Soc. of Edinburgh, 821(1978), 13-17.
- 3. Y. Carrière, Flots riemanniens, Astérisque, 116(1984), 31-52.
- 4. S. S. Chern and R. S. Hamilton, On Riemannian metrics adapted to three-dimensional contact manifolds, Lecture Notes in Math., 1111, Springer-Verlag, Berlin and New York, 1985, 279-308.
- 5. S. I. Goldberg, Nonnegatively curved contact manifolds, Proc. Amer. Math. Soc. 96(1986), 651-656.
- 6. S. I. Goldberg and G. Toth, Torsion and deformation of contact metric structures on 3-manifolds, Tohoku Math. J. 39(1987), 365-372.
- 7. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17(1982), 255-306.
- 8. J. Martinet, Formes de contact sur les variétés de dimension 3, Proc. Liverpool Singularities Sympos. II, Lecture Notes in Math. 209, Springer-Verlag, Berlin and New York, 1971, 142-163.
- 9. G. Monna, Techniques de h-platitude en géométrie de contact, Thesis, U.S.T.L., Montpellier, 1981.

- 10. F. Raymond, Classification of the actions of the circle on 3-manifolds, Trans. Amer. Math. Soc. 131(1968), 51-78.
- 11. Y. T. Siu and S. T. Yau, Compact Kaehler manifolds of positive bisectional curvature, Invent. Math. 59(1980), 189-204.
- 12. S. Tanno, Variational problems on contact Riemannian manifolds, preprint.