Classification of Quadratic
Harmonic Maps of S°
into Spheres

GABOR TOTH

§1. Introduction and statement of the result. In 1972 R. T. Smith posed
the problem of classifying all harmonic maps f: S™ — S™., m > 2, between
Euclidean spheres whose components are homogeneous (harmonic) polynomials
of (fixed) degree k (cf. [2, 6, 7] and (3], Problem (4.4), p. 70). Full linear
(k = 1) harmonic maps are isometries of S™ and, by Calabi’s rigidity theorem,
any full k-homogeneous harmonic map of S? is a standard minimal immersion
r.: 8% — S% [1, 8, 9]. The object of this paper is to give a classification of
full k-homogeneous harmonic maps in the first (nonrigid) range of m and k not
covered by the results above, i.e., when m =3 and k = 2.

Classification Theorem. Full quadratic (k = 2) harmonic maps of S® into
S™ exist only if 2 < n < 8 and n # 3. Moreover, if f: S — S™ is such a
map, then there exist U € O(4), V € O(n+1) and a symmetric positive definite
matriz B € S2(R"*1) such that

VofoU=Bof,,

where fp: S — S™ defined by
(22 + y% — u? — v%,2(zu — yv),2(zv + yu)), [Hopf map] n =2
(22 + y? — u? —v?,22u,22v,2yu, 2yv), =
(22 —y?,u? —v?, 22y, v2(zu+ yv),V2(yu — 2v),2uv), n =35

In(2,y,u,v) = (ﬁ (2 +y?—u® - vg),% (22 - y%,% (u? —v?),

V2zy,V3(zu + yv),V3(yu — 2v),v2uw), n=6
(9»'2“yz,u2—1)2,2933/,ﬂZU,\/ﬁzv,\/@yU,ﬂyv,qu), n=7
fas(z,y,u,v), [fr, = a standard minimal immersion] n=38§

For fized n, the matrices B (corresponding to the various maps f) form an
(open) convez body Iy, lying in a finite-dimensional vector space. Finally, Iy, =
point, Iy, = segment, Iy, = 2 —disk, Iy, = (finite) solid cone, dimIy, =5 and
dim[7 fs = 10.
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Remark. By way of contrast (to the nonexistence of full quadratic har-
monic maps f: S — S3), quaternionic square induces a full quadratic map of
S3 onto S2 which is evidently nonharmonic (cf. also [10]). Note also that the
gradient of cubic isoparametric functions give rise to full quadratic harmonic
maps f: S — S™ in dimensions n = 4,7,13,25 [11].

§2. Generalities on the parameter space. By the generalized Do Carmo-
Wallach classification theorem, for fixed k£ and m, the equivalence classes of full
k-homogeneous harmonic maps f: S™ — S™ can be parametrized by a compact
convex body L° lying in a finite-dimensional vector space E (cf. [8], pp. 297-
304). The parametrization is given by associating to f the symmetric matrix

(f) = At A—I,()41 € ST(R"F1)

where A is the (n+1) X (n(k) + 1)-matrix defined by f = Ao fy, with fy,:
Sm — §n(k) 3 fixed standard minimal immersion. Then
E = (W°)* = (span{fy,(2)*|z € S™})" c §?(R"(+1)
and
L° = {C "In(k)+1 € E'C > 0}.

In a similar vein, for fixed f, define
o\ 1
E; = (W7)" = (span{f(z)?|z € S™})” c S*(R"!)

and
$={C—1In41 € Ef|C > 0}.

Then the affine map p: L$ — L° defined by p(C — In1) = A*-C- A~ Ingy 41,
injects L} onto a compact convex set I;. Denoting by Ay the affine (= flat)
subspace of E spanned by Iy, we have Ay N L° = I; and the interior Iy of Iy in
Ay is a convex body containing (f). The convex sets I, for the various f, give
rise to a cell-decomposition of L°. Clearly, Iy, = intL° and the points of I Fre
correspond to maps f: S™ — S™ with maximal n = n(k).

Precomposing harmonic maps with isometries of S™ induces an
SO(m + 1)-action on the set of equivalence classes which, in turn, corresponds to
the restriction (to L°) of the SO(m + 1)-module structure of E given by Ad py, ,
where py,: SO(m+1) — SO(n(k)+1) is the homomorphism associated with
the equivariance of f,. Then, for a € SO(m+1), we have a- Iy = Ifoq-1, ice.,
the SO(m + 1)-action on L° respects the cell structure of L° introduced above.
Note also that dimL° = dim E > 0 if and only if m > 3 and k > 2 [8]. For fixed
f: 8™ — 8™, the isotropy subgroup SO(m+ 1)y is the “symmetry group” of
f defined by

SO(m+1)f ={a € SO(m+1)|3U € O(n+1) such that foa=Uo f}.
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Its Lie algebra is given by so(m+1); = {X € so(m+1)|3A4 € so(n+1) such
that f.(X) = Ao f}.

Let K(f) denote the (finite-dimensional) vector space of divergence free
Jacobi fields along f. Then ([8], pp. 278-290)

(1) so(n+1)o f+Ey o f + f.(so(m+1)) € K(f).
The composition

fe (so(m + 1))

so(m+1) — f.(so(m+1)) - (f. (s0(m+ 1)) Nso(n+ 1)of)

given by f. and the canonical projection has kernel so(m+ 1)y (D ker f.) and
so we have

so(m+1)

so(m+1)y

~ f(so(m+1)) K(f)
" (fe(so(m+1))Nso(n+1)of) ~ so(n+1)of "

Ti5y =Ty (SO(m+ 1)((f))) ~

(2)

More explicitly, the isomorphism is given as follows: For X(s € Ty, let
(a(t)) € SO(m+1) be a 1-parameter subgroup with £ (a(t) - (f))|t=0 = X(y) .
Denoting by X the infinitesimal isometry on S™ induced by (a(t)), to X (f)» the
isomorphism associates f.(X) mod(f«(so(m+1))Nso(n+1)o f).

As Efnso(n+1) = {0}, we will consider Efo f as a linear subspace of
E(%%o_f' It follows that, under the isomorphism above, the linear subspace

fu(so(m+1))
(so(m+1))Nso(n+1)of) *

Af NTsy given by X = % (a(t) . <f))lt=07 the orbit ¢t — a(t)-(f), t € R, is
actually contained in Iy .
Factorizing out, we have

Efof + fu (so(m+1)) K(f)
(f* (80(m+1))ﬂso(n+1)of) 80(’n+1)of.

Clearly, for (full) f: 8™ — S™(¥) | equality holds in (1) and (3).

AfNTyy corresponds to Eyo fN 13 Moreover, for Xy €

3)

§3. Proof of the Classification Theorem. The entire space of quadratic har-
monic polynomials in four variables z, y, u, v is 9-dimensional and is spanned
by 22 +y? —u? —v?, 22 —4y?, u? -2, zy, zu, TV, Yu, yv, uwv. Hence, for

2 < n < 8, a full quadratic harmonic map f: % — S™ is given by
(4) f(@,y,u,0) = by2? + bay® + cu? + cov?
+dyzy + dozxu + dszv + dgyu + dsyv + dguv,
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where the vectors b;, ¢;, d; € R"*!, ¢ = 1,2, j = 1,...,6, span R**! and
by +ba+c1+c2=0. As ||f(z,y,u,v)||? is a homogeneous polynomial of degree
4, the condition Im(f) C S™ translates into

(5) “f(zay7u’v)”2 = (I2+y2+u2+02)2

which has to be satisfied for all (z,y,u,v) € R*. Substituting (4) into (5) and
expanding both sides, we obtain various orthogonality relations between b;, ¢;,
d;j € R**1. For n = 2, a straightforward computation (in the use of the vector
cross—product in R3) gives the general form of a full quadratic harmonic map
f: 8% — §2, namely f is equivalent to

f;,ﬂ(x’yvu’v)

= (cos % (% 4 y% — u? —v?) +2sin % singf (e32v + €4yu)

—2sin g— cosg (egzu +e5yv),
O 2 .2
sin (2° —y* — cos B(u® — v?))

+2 cos % oS g (e2zu — e5yv) — 2 cos % sin g (e3zv —eq4yu)

.0,
+ 2€g sin 5 sin fuv,

—sin % sin B(u? — v?) — 2 sin % (e1zy + e cos fuv)

+ 2 cos % sin —g (eazu — e5yv) + 2 cos g— cos g (ezzv — 54yu)) ,

where 0 < o, < 7w and € = (ej)le € Z26 obeys the sign relations €16964 =
—€1€365 = 96366 = —€4€566 = 1. For fixed €, all f54, 0 < § < 7, are equiva-

lent. Passing to the equivalence classes, we obtain a homeomorphic embedding

of the triangle Tﬁ% into L° (induced by (a,8) — f5 5). By the sign re-
lations, these 8 triangles (corresponding to the various €) are easily seen to be
pasted together along their edges to form two disjoint copies RP;? and RP}? of
the real projective plane containing the (equivalence class of the) Hopf map f;
and its “dual”
fo(2,y,u,0) = (® +y% —u® —0?, 2cutyv), 2(zv-yu),

respectively. The symmetry group SO(4)y,, being the isotropy subgroup of
(f2) € OL°, is then at least 4-dimensional since the respective orbit is contained
in RP2. On the other hand, SO(4)s, C SO(4) is a proper subgroup since the
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Hopf map is not equivariant. It follows that dimSO(4)s, = 4 and therefore
SO(4)({f2)) = RP?2. Passing to O(4), we recover the other copy RP?. The
statement of the theorem follows for n = 2.

For the nonexistence of full quadratic harmonic maps f: S — S3, we have
to show that there is no system of vectors b;, ¢;, d; € R*,1=1,2,57=1,...,6,
spanning R* such that they satisfy the orthogonality relations equivalent to (5).
This can be done by tedious but elementary computation separating the cases
dim span{b;,c;}2; = 1,2 or 3. (Note that in the last case, it is convenient to
use the vector cross—product on span {b;,c;}2 ;.)

Let V; and V, denote the affine span of RP?2 and RP,?, respectively. As
SO(4) acts on E without fixed points, V7 and Va are actually linear (SO(4)-
invariant) subspaces of E. We claim that £ = V; @V, is an orthogonal di-
rect sum with V; and V2 irreducible SO(4)-submodules. First note that in [8]
we determined the irreducible components of the complex SO(m + 1)-module
E®gr C in general in terms of the (coordinates of the) highest weights which,
in our case m = 3 and k = 2, specializes to E®gr C ~ V32’2 GBV32’_2, in par-
ticular, dimE = 2 dimV,*? = 10. (This alone implies the theorem for n = 8.)
Now, computation shows that SO(4)s, N SO(4)y,; is 2-dimensional (in fact, the
identity component is the standard maximal torus T' C SO(4)), or equivalently,
50(4)s, acts transitively on RP,? from which the decomposition follows easily.
To describe the orbit structure of the irreducible orthogonal SO(4)-module V;
first note that the possible (positive) dimensions of the orbits may only be 2 and
3. A straightforward topological argument shows then that the 3—dimensional
orbits actually occur. In fact, if all nontrivial orbits were 2-dimensional, or
equivalently, if there were no singular orbits on the unit sphere S;* of V;, then
S# would split into a product, a contradiction. It follows that the orbits on
S;* form a homogeneous (isoparametric) family of hypersurfaces with no excep-
tional orbit and two singular orbits (= focal varieties) corresponding to RP;?
and its antipodal [5]. The same description applies to dL; = dL°NV; as it is
equivariantly homeomorphic with Si*. Now, consider Iy,. By straightforward
computation, we obtain that Iy, is a closed 2-disk with center (f5) and bound-
ary 0I5, = {(ff)ko € R} C RP?, where, using complex coordinates z = z +1y
and w = u+1v, f(z,w) = (¢*°2% +w?, Im(2¢'(¥/? zw)) . Moreover, Iy, is an
orbit under the action of the circle group

I = {diag(e"®,e™"*)|a € R} C SO(4).
As (f5) is in the center of Iy, , the orbit SO(4)({fs)) is singular and is then
opposite to RP; in AL°. In fact, as computation shows, (fs) € R-(f2). The
orbit structure on AL is that of a homogeneous family of hypersurfaces and hence
(by considering a radial segment of I7,) we obtain that every SO(4)-orbit on AL,
intersects Iy, , or equivalently, SO(4)(Is,) = 8L1. As f} = f2odiag(1,1, —1,1),
the orbit and cell structures on 0Ly = JL° NV4 are the same as on dL1 .
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Next we consider Ir,. A simple computation shows that Iy, C OL° is a
closed segment with boundary points (f2) € RP? and (fj) € RP?. Since
every isotropy subgroup of RP;? acts transitively on RP}2, the group SO(4)
acts transitively on the set of segments joining RP?> and RP,? whose union is
therefore equal to SO(4) (Iy,) .

Next, Is, C OL° is a solid cone with base 2-disk Iy, € AL; and vertex
(f5) € RP2. Note also that (fg) is on the center segment joining (fs) and (f3)
and the circle group T leaves (f}) fixed and hence rotates Iy, . As (fs) € R-(f2),
it follows that SO(4) acts transitively on the set of cones with base 2-disk a
2—cell in AL; and vertex in RP,2. The union of these cones then coincides with
SO(4)(If,) - The same conclusion holds for V; and V; interchanged (by applying
diag(1,1, — 1,1) € O(4)).

Finally, I, t, C OL° is a 5-dimensional compact convex body which is the
convex hull of Iy, and Iy, where

fi(z,y,u,) = (a2 —y?u? —v2,2zy,v2(zu —yv),ﬁ(yu+zv),2uv)

with 8y, C RP? and (f3) € R-(f;). Moreover, I leaves Ij; pointwise
fixed. (In fact, in complex coordinates, dly; is given by the equivalence
classes of f,°(z,w) = (e 2% + w?,Im(2¢**/?7w)) .) Similarly, the circle group
I' = {diag(e"*,e"*)|o € R} leaves Iy, pointwise fixed and rotates I;s . The group
SO(4) acts again transitively on the set of convex hulls spanned by any pairs of
2—cells (C,C;) with C; C dL;, ¢ = 1,2. The union of this set is contained in
SO(4)(I;) c aL°.

Summarizing, we obtain that O(4)(Is UIs,) C 0L° contains all segments
which join L; and L, and hence it coincides with the whole JL°. Since

7
O (I, u1z;) = 0)(U I1.).

n#3

the proof is finished.

§4. Applications. In his thesis [6], R. T. Smith also posed the following
problem:

Given a Jacobi field v along a harmonic map f: M — N
between Riemannian manifolds M and N, does there exist a
1-parameter family fi: M — N, |t| < €, of harmonic maps

a
such that fo = f and %lt-_-o

By constructing a 1-parameter group of nonharmonic diffeomorphisms of
R? with induced Jacobi field, he solved the problem negatively [6], pp. 105-107.
Here we show, however, that the answer to this question is affirmative for a large
number of (full) k-homogeneous harmonic maps f: S™ — S™. We begin with
the following:

=97
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Lemma. Let f: S™ — S™ be a full k-homogeneous harmonic map and
assume that equality holds in (1). Then v € K(f) if and only if there exists a
1-parameter family fi: S™ — S™ of full k-homogeneous harmonic maps such
that fo = f and %{qt_o =v.

Proof. Given v € K(f), the induced vector-function # S™ — R™*! de-
composes as ¥ = A-f+B-f+X(f), where A € so(n+1), B € E; and
X € so(m+1). Choose € > 0 such that 2¢B+ I,41 is positive definite for
t| < € and define f; = py0+/2tB+ 1,110 fot, where (p;) = (exp(tA4)) C
SO(n+1) and () = (exp(tX)) C SO(m+1). Then AS"f, = - fe,
Ak = k(k+m —1) € Spec(S™), i.e., fi: S™ — S™ is a (full) k-homogeneous
harmonic map for |t| < €. Clearly, fo = f and %J;—‘|t=0 = v. The converse
follows from the fact that v € K(f) if and only if AS™ ¥ = At - v ([8], p. 280).

As noted at the end of §2, the condition of the lemma is satisfied for any f
with equivalence class in int L°. Using the (proof of the) Classification Theorem,
for n = 3 and k = 2, we can prove more, namely:

Theorem 1. For any full quadratic harmonic map f: S — ", 2<n <8
and n # 3, equality holds in (1). In particular, every v € K(f) can be generated
by a 1-parameter family of quadratic harmonic maps.

Proof. Using the notations in the proof of the Classification Theorem,
clearly, it is enough to show that equality holds in (1) on the cells I, ,2 <n <7,

n # 3. To argue by dimension comparison, we first note that dim(m%%)ygf) is

constant on any open cell. Using an appropriate base in the space of quadratic
spherical harmonics on S3, we note that a tedious but straightforward compu-
tation yields

9

2
(KU \_)D
“ o (i) =)

9’
For n = 2, as T(ys,y = T(s,y(RP?) is 2-dimensional, equality holds already in
(2). For fixed f: S — S*, (f) € Iy,, we first claim that Ejo fN fi(so(4)) =
{0}. In fact, as noted in §2, if X(5y = % (a(t) - (f))|,_, € ArNTy), then
the orbit ¢ — a(¢)-(f), t € R, is contained in Iy, which, by orthogonality. is
possible only if X sy = 0. The action of SO(4) on OL® respects the cell structure
and so SO(4); = SO(4)7, N SO(4); with identity component T C SO(4) the
standard maximal torus. Hence dim(SO(4)({f))) = 4. This and dimEyo f =1
make up 5 in (6). For n =5, Ij, is a 2-disk with center (f5) € R-(f2), in
particular, SO(4)s, = SO(4)y, and the orbit SO(4)((fs)) is 2-dimensional. As

I I I I3
[ T
O U N
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the circle group T rotates Iy, , it follows that SO(4)({fs))NIs, = (fs) and so
A, NT5,y = {0}, or equivalently, Ef; o fs N (f5)«(s0(4)) = {0}. Thus, by (6),
equality holds in (1). For fixed f: S3 — S° with (f) € Iy, \{(f5)}, we have
SO(4)y € SO(4)¢,, which is a proper inclusion of the identity components as
I' ¢ SO(4)f but T' C SO(4)f, . In particular, dim SO(4)({f)) > 3. On the other
hand, SO(4)({f)) N1y, is a circle (with center (fs)) and so dim(A;NTys)) =
1, or equivalently, Efo fN fy(so(4)) is 1-dimensional. Thus, equality holds in
(1). For n = 6, let o denote the center segment of the cone I, joining (fs)
and the vertex (f}). For f: % — S® with (f) € o, the orbit SO(4)((f)) is
4-dimensional (as SO(4); = SO(4) 7, NSO(4)5; = SO(4)5, N SO(4)y;) and, as T
fixes (f}), it intersects Iy, only at (f). Thus, Efo fN fi(so(4)) = {0} and since
dim Eyo f = 3, equality holds in (1). For (f) € Iy, \ o, the orbit SO(4)(({f))
is 5-dimensional (as it can easily be seen by projecting (f) down to Iy, from
(f4) and it intersects Iy, in the circle T'((f)). In particular, Ef o f N fu(s0(4)) is
1-dimensional and we are done. Finally, for n = 7, let o denote the segment in
I}, joining (fs) and (f5/) and consider first the case f: S® — S7 with (f) € 0.
If (a(t)) C SO(4) is a 1-parameter subgroup such that a(t)-(f) € Iy,, then
a(t)(Is,) = Iy,. Hence a(t)- (Is,) = Iy, in particular, a(t) leaves (f5) fixed.
Similarly, a(t) - (f{) = (f:) and it follows that a(t) leaves (f) fixed. Thus, Eyo
SN fu(so(4)) = {0} and, as dim SO(4)((f)) = 4 and dim Efo f = 5, equality
holds in (1). Secondly, assume that (f) € o/, where o’ is a segment joining (ff)
and a point (f’) € Iy, \ {{fs)}. Taking a 1-parameter subgroup (a(t)) C SO(4)
with a(t) - (f) € Iy,, we obtain that either a(t) leaves (f) fixed or rotates (f)
around the circle I'((f)) . Thus dim(Ey o f N f.(s0(4))) = 1, dim SO(4)((f)) =5
(as SO(4)y = SO(4)5 N 80(4)fg =S0(4)5 N 80(4)&') (c SO4)s, N SO(4)fé) is
1-dimensional) and we are done. Lastly, assume that (f) € o”, where ¢” is
a segment joining (f') € I, \{(f5)} and (f") € I;;\{(f5)}. Using the circle
groups I and I" it follows that Eyo fN fu(so(4)) = 2, dimSO(4)({f)) = 6 and
the proof is finished.

Example. The condition for equality in (1) fails to be satisfied if m > 3.
In fact, for the full harmonic map f: S® — S° given by the Hopf-Whitehead
construction applied to the tensor product ®: R3 x R® — R?, i.e.,

f@y) = (l=I* = llyl* 2z ®y), =,y € R, |lz[I>+|ly|* =1,
we have
s0(10)o f+ Ego f+ f.(s0(6)) # K(f).
In fact, as computation shows, dim K (f) = 81, dimso(10) o f =45, dimEjo f =
9 and dim f, (s0(6)) < 15.
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Theorem 2. For any m > 3 and k > 2 (nonrigid range), the principal
1sotropy type of the parameter space L° with respect to the SO(m + 1)—action is
finite. Equivalently, the symmetry group of a full k—-homogeneous harmonic map
f: 8™ — S™ is generically (i.e., on an open dense subset of L°) is finite.

Proof. We have just seen from the last step of the proof above that, for
m = 3 and k = 2, there exists finite isotropy and so the principal isotropy type
should also be finite. Indicate, for a moment, the dependence of £ on m and k
by EX. Then, for k > 2, E? ®@gr C C Ef ®g C [8] and the result follows in this
case. Form >4, SO(m+1) is simple and the (complex) irreducible SO(m + 1)
modules with nonfinite principal isotropy type were classified by Wu-Yi Hsiang
([4], pp. 83-85). A comparison of his list with the irreducible components of

Ek ®g C gives the result.
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